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ENERGY FUNCTIONALS OF KNOTS II

JUN O’HARA

ABSTRACT. We study an energy functional of knots, e;? (jp > 2), that is finite
valued for embedded circles and takes +oo for circles with double points. We show
that for any b € R there are finitely many solid tori T71,- - ,Tyn such that for any
knot with €;? < b can be contained in some T} in a good manner. Then we can show
the existence of a minimizer of ¢;? in each knot type.

0. INTRODUCTION

An energy functional of knots is a functional on the space of immersed circles
in R3 which is finite valued for embeddings, and which blows up to +oo for circles
with double points.

Let S' = R/Z. Put

T ={f:S5" - R® C'-immersion such that [f'(t)}] =1 forall t € S'}.

Let |z — y|s: (z,y € S') denote the minimum of the arc-lengths on S? between
z and y;

|z ~ yls1 = min{|z — y|,1 - |z —yl}.

Then it is equal to the minimum of the arc-length on f(S!) between f(z) and f(y)
for any f € 7.

Define a functional ¢;? : T — RU {400} (0 < j,p < 400) by the following
integral.

v w0=3|[ [ - roe) =]

Since the integrand is non-negative e;P(f) > 0 or e;?(f) = oo for any f € I.

We studied e;? with 0 < j <2 and 1 £ p < 400 in [02]. The arguments there
also hold for j > 2. The basic properties of ¢;7 depend only on whether jp > 2,
jp=2,0r jp < 2.

For instance, e;? is an energy functional of knots if and only if

2 2 X
(0.2) pZ; (0<3<2) or .—>p_>_; (2<j<4)
(Theorem 1.1).

Typeset by ApS-TEX
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In particular, e;! is a regularization of potential energy of charged knots when
we assume that the repulsive force is inversely proportional to cubic of distance.
(Therefore it is different from the usual Newton potential energy.) This special case
was formerly defined as the energy E in [O1] with E = ¢! — 2.

A knot type is an ambient isotopy classes of embedded circles in R3. In [02], we
showed that only finitely many knot types occur below any finite e;? threshold if
jp > 2.

In [Fr-H], Freedman and He studied the energy E on the space of rectifiable
curves, and showed that the finiteness of knot types also holds for any finite £
threshold.

As for the minimizers for the energy E, Freedman and He showed that there is
a C! planar convex circle that realizes the infimum of E in the class of all simple
closed curves. They also defined E for embedded lines in R? and showed that for
each prime knot type K, there is a proper rectifiable line vy, with “knot type” K
that realizes the infimum of £ amoung all proper rectifiable lines with the same
“knot type” K.}

In this paper we study e;? with (0.2) and jp > 2. The contribution of jp # 2
is as follows. If e;P(f) with jp > 2 is finite, then f is a bilipschitz embedding with
uniform Lipschitz norm ([02]). If, furthermore, e;?(f) with jp > 2 is finite, then

fis Cl'ﬁ—embedding with uniform Eﬁ;%' Hélder norm on f' (Theorem 1.11).
Thus, e;P with jp > 2 is more restrictive in the sense that if ;7 with jp > 2 is
finite, then the “pull-tight” phenomena are excluded, which may occur below finite
value of e;? with jp = 2 (Theorem 3.1 of [02]).

We show that only finitely many “shapes” of knots occur below any finite e;?
threshold. That is, for any j,p and & > 0, there is a set of finite solid tori
{T1,--+, Ty} such that any f(S') with ¢;7(f) < b can be contained in some T;
“in a good manner” after a congruent translation of R (Theorem 2.3). Then we
can use the argument in [Fr-H] to show the existence of the minimizers of ¢;? in
any knot type. That is, for any j, p and for any knot type K, there is an embedded
circle f; p x with knot type K that realizes the infimum of e;? amoung all embedded
circles of the same knot type K (Theorem 3.2).

We also show that the number of knot types which have representatives with

e;? < bis less than exp(CbFzP-'f) for some C > 0 (Corollary 2.7), and that the
thickness of a knot is greater than C'(ej”)_??{_f for some C' > 0 (Proposition 4.2).

Remark 0.1. Suppose f is a C'-immersion whose |f’| is not necessarily 1. Let Ly
be the total length of f(S1);

1
L= f or:

and D(f(z), f(y)) be the minimum of the arc-lengths on f(S') between f(z) and

1M.H.Freedman, Z-X.He, Z.Wang, and S.Bryson announced that they showed that F is Mobius
invariant, and using it they showed that E(fo) < E(f) for any f if and only if fo(S?) is the round

planar circle, and that in every prime knot type there exist minimizers of E, which turn out to
be of class C111,
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fly);
z+1
Dy(f(a), f) = min{ | " 1F ol [ 1rwla.
We can define &;(f) by

1

5% [ [ oo - sy} Ve o]

Then, &;7(f) = e;*(f) if f € T, and &;? does not depend on the parametrizations
or affine similarities of R3.

1. BASIC PROPERTIES OF ¢ 7

Theorem 1.1. The functional e;? satisfies the following two conditions if and only
if
(1.1) > 2 (0<y5<2) L > > 2 (2<j<4)
. = = 1% or -_— pPZ = 7 .
P=3 7-2 J
(1) If f(S') has a double point then e;?(f) = oo.
(2) If f is a C*°-embedding, then e;(f) < oo.

Proof. Since the proofs of Theorems 1.9 and 2.3 of [02] also hold for j > 2, the
condition (1) is satisfied if and only if jp > 2.
Suppose f i1s a C°°-embedding. Since

2 _ 2 (=) 4 4
@)= S =l — vlss? = Lo it s offe -yl
near the diagonal, the integrand of (0.1) is O(]z — y|s:(?=9?) near the diagonal.
Hence €;7(f) < oo if and only if (2 — j)p > —1. |

Definition 1.2. When the condition of Theorem 1.1 is satisfied, we say that e;?
is an energy functional of knots.

Remarks 1.8. ([02]) Suppose f is a C?-embedding. Then
(1)
1 1 1

pm e (f)= o A TP Eoule®

1 H 2

where |f'(z)| is the curvature of f at z.

(2)

J—0p—oo z,yES z#y If(I) - f(y)l
= log(Distor(f)),
where Distor(f) denotes Gromov’s distortion of f ([Gr]).

lim lim e;P(f) =log( sup m)

We can weaken the condition (2) of Theorem 1.1 to the following form.
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Proposition 1.4. Suppose e;? is an energy functional of knots. If f is a cle.
embedding, where o > 1-22-;—1—, then e;?(f) < oo.

Proof. If f is of class C1®, then for some C > 0,
1f(z) = f(W)| 2 |z = yls2 = Clz — ylsa**!

for all z,y € S'. Hence the integrand of (0.1) is bounded above by C’|z —y|g: (22=9)P
for some C’' > 0. a

In the following of this paper we work with fixed j and p with (1.1) and jp > 2,
le.

2 1 2
>= (0<3<€2) or —=>p>= (2<j<4).
P> (0<j<2) 5 ; ( )

Remeark. In this paper we denote constants which can be given explicitly as con-
tinuous functions of j and p by C; with capital C, and other constants by c;.

We show that if e;7(f) < oo then fisa Cl'ﬁ’izﬁ-embedding.
We improve Theorem 2.4 of [02] to obtain

Lemma 1.5. There exists a constant C; > 0 such that for any b > 0 if e;P(f) < b

then
£(z) - f(y)| > C1b™ 7= (1 _ M)

|z — yls:
forall z,y € S*.
Proof. Assume e;P(f) < b. Fix z,y € S! and put

§=lc~sls, d= @)~ W), B=6—d, and h=1-3.

Suppose 0 < 3,1t < g. Then
|flz+s)— fly—t)| <d+s+1t,
(o4 9) = (v=Blst 2 d+ 36,
Therefore

{jcjp(f)}pi% f%{(d+:+t)j —~ (d+1%ﬁ)j}p dsdt

PR ECED e

1
d+s+t<d+ ﬂ<1 E,
d+38 ~d+38~ 2

(J’b)"z{ (1——) } f /(d+3+t)‘“’dsdt

Since
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Similarly

/%(d+s+t)'jpds— . 1—(&)”'_1 (d+ )17
0 ip—1 d+t+4

ip—1 )
S

and therefore

/0% _/0%(d+s+t)-fﬂ dsdt

> G {1 -(1- %):‘»—1} {1 - (o- g)w} e

Hence

p 1
U 2 5o DGr =)

I COIN GO S

As (1 —-£)* <1-min{l,a}{ for 0 <{ <1and a>0,

- in{1,7})? min{l,jp— 2}, _
gr-1 > (min{l,j} . pyPRPt2. O
—  2pt85p(5p—1)(jp—2)

Proposition 1.6. Let b > 0. Put

d

; F ip—12 05d<Cb_ﬁ%§a
1- ¢~ Fr b dFE ( ' )

¢p(d) =

where C) is given in Lemma 1.5. Put

—

Dy ={(6,d){0 <d <6< 5 such that 6 < ¢y(d) if d < C b1},

(See Figure 1.1.) Then if e;P(f) < b then
(lz —yls1, 1f(=) = F(¥)]) € Ds.

In particular, if e;P(f) < oo then f is an embedding.

Proof. Suppose e;7(f) < b (b>0). Put 8 = |20 — yo|s: and do = |f(xo) — f(wo)l.
By Lemma 1.5, (6p,dp) lies in the (6, d)-plane above the the curve 7y given by
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7=1{(3 : hclb_#’hﬁ,(}lb_;ﬁhﬁ)lo <h<1)

={6=¢s(d)0<d<Cb"7T). O

wH—

=15
5
d;
0 > 6
FIGURE 1.1
Put
1
(12) d = di(b) = (5)FTCb77,
(see Figure 1.1}. Then if 0 < d < d; then
(1.3) 5(d) < d(1 + 20, FF b7 4% ) < 2d.

Hence if (§,d) € Dy then either d > % or d 2 d,, which means;

Corollary 1.7. For any b> 0 if ¢;?(f) < b then either

1) = 1) 2 5l =~ uls

15(2) - @)l 2 ()FH o

for all z,y € S, where C is given in Lemma 1.5.
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Corollary 1.8. Forany f € 7,

e?(f) > (1 - %)‘1’-’(201)%‘??,

where C is given in Lemma 1.5.

Proof. By the proof of Lemma 3.1 of [Fr-H], for any f € Z, either

1£(0) - f( UES 7
or

=I5
Suppose e;*(f) = b < (1 - 7—) (2C1)u+"' Then ¢s(d) < V2d for 0 < d < &,
and hence (3 m) is not in D, which is a contradiction. O

Let Zv; - v denote the angle between two vectors v; and v,.
We improve Proposition 2.5 of [O2] by replacing the angle T by  and using
Proposition 1.6 instead of Theorems 2.3 and 2.4 of [02] to obtain

Lemma 1.9. There exists a constant Cy > 0 such that for any b > 0, f with
e;P(f) <b,and 8 (0 <0 < x), if

o — yls: < Crb~ T
then £f'(z)- f'(y) < 6.

Proof. Suppose e;?(f) < b. Put ¢ = %(( 2).

Suppose | f(zo) — f(yo)| £ % (2o < yo). Then for any 2,y with 2y <z <y < yo
= |f(z) — f(¥)| £ |zo — yols: < di,
by (1.2), and hence by (1.3)

|z — yls: < d+ cad' Y,

where c; = c3(b) = 201—%13#7.

Therefore the curve segment f([z,y]) is contained in the solid cylinder with axis
—_
f(z)f(y) and radius rp(d) given by

V2C32“'3 L ‘é_ —$p eI ity

ry(d) =

Put ¢4 = c4(b) = lCCl 1y g+t
The proof of Lemma. 2.6 of {02] goes parallel if we replace the angle T by 8 to
yield
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Sublemma 1.10. Suppose 0 < 8 < n. Then there exists a constant cs = cs(6) > 0
such that if a C'-immersion h : (z9 — 6,50 +€) — R® (¢ > 0,z < yo) with
|h(z0) — h(yo)| = 1 satisfies the following condition (%), then Zh'(zo) - h'(yo) £ 6.

(*) For any z,y with 2o < = < y < yo, the curve segment h([z,y]) is contained
in the solid cylinder with axis h(z)h(y) and radius cs|h(z) — h(y)|**1.

Proof. Put cs = 274(2% —1)6. O
Define a constant C3 > 0 by

min 2,( 2y = min{2 ~¥a1 2783 v 2 )T job AR
=Chb™ 5%50';‘%71.

If |20 — yols1 < C b_ﬁhﬂ%(g'? then the homothety

|f(zo) = fwo)I 7' f : (w0 — €30 +€) > R
for some small ¢ > 0 satisfies the condition (*) of Sublemma 1.10, hence £f(z) -
flyo) < 8. O
Theorem 1.11. There exists a constant Co > 0 such that for any b > 0 if ¢;7(f) <
b then f isa CLAEE embedding such that

1F(2) — f(W)] < £F(z) - f'(y) < CobTFP o — y| 52 To7D
for all z,y € S*.

Proof. Follows from Proposition 1.6 and Lemma 1.9 with Cy = C, G 1

Remark 1.12. The author does not know whether e;7(f) is finite when f is a C1'*-
. 1 _jp—2 p—1
embedding with Eﬁw-_zj <a< U’;p—.

2. FINITENESS OF SHAPES OF KNOTS
Fix any b > 0.

Definition 2.1. A homeomorphism F : D? x S — T C R? is a good (e-) torus for
b (e > 0), or good (e-) torus for short, if the following three conditions are satisfied;
(1) Let f(t) = F(0,t). Then f € T and ¢;?(f) < b.
(2) T D N(f(5')) = {P € R*|dist(P, f(§)) < e}
(3) If e;7(¢9) < b (g € T) and g(S*) C T, then PraoF~'og: S' — S'isa

homeomorphism, where Pry : D? x §1 — S is a projection.
P ) Ppro)

Definition 2.2. (1) An embedding f € T can be contained in a good torus F' if
there is an orientation preserving congruent translation of R?,U, such that

Uo f(S') C F(D* x SY).

(2) A set of finite good e-solid tori § = {F},--- ,Fm} (m € N) is a complete (e-)
system if any f € T with e;7(f) < b can be contained in some F; € S.
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Theorem 2.3. There exists a complete ¢-system for some € > 0.

In order to prove Theorem 2.3, it suffices to work in the following class Z7;
Iy = {f € I|f(0) = 0, f(0) = (1,0,0), and ;7(f) < b}.

Roughly speaking, we construct a complete system of “thickened PL-knots”.
Definition 2.4. Let N € Nand r > 0.

(1) An embedding f € I3 is r-captured by a sequence of N points in R®*, L =
(O:Ph" ' )PN—I)y if

f(&) € B.(P) = {PeR|IP- P <1}

forall j (1<j<N-1)

(2) L =(0,P,--- ,Py—-1) is an admissible (N,r)-polygon if there is an f € I}
which is r-captured by L.

(3) A set of finite admissible (N, r)-polygons

S={Ll=(O’P1'a aP;v_1)|ISsz}

is a complete family of (N, r)-polygons if any f € I} is r-captured by some L'.
Lemma 2.5. For any N € N and r > 0, there exists a complete family of (N,r)-
polygons.

Proof. Put jo =lp =1 and P;; =0. Put

Wi, = {f() €R°|3f € T3},

Since Wj, is bounded, there are finite points {Pj,1, Pjy2,* -+ , Pj,1;, } such that;
(1) Forany j; (1 < 71 £1,) thereisan f;,;, € Ig such that fjojl('}lv) € B, (Pjyj, ),
i
(2) Wio - UJ-J10=]B'-(PJ'OJ'1 )
Inductively, for a sequence of k points (Pjy, Piojiy: " »Piojr--ju,) thus con-
structed with 2 < k< N-land1< 5 < Ijojl"‘ji-l (1 <i1<k- 1), put

k
Wioir-isr = {f(55) € R*[3f € I] such that

f(35) € Br(Pyojy--i,) for all i(1 <i < k= 1)},

Since Wjyj ..., is bounded , there are finite points {Pj,j,..j,_,1," ",
PjOjl“'jk_leOjl"'jk—l} such that

(1) For any jx (1 < 5x < ljojl"'jk—l) there is an fjp;,...;, € Zgy such that
fiof—in(Fr) € B,-(P_,-ojll...jl.) foralli (1<i<k),

(2) Wigjy-jaen C U;,,D—._:l“-lBT(Piojl"'jh)‘

The set {(Pjo, Piojrs"* Piojr--jn_y)} thus constructed is a complete family of
(N,r)-polygons. O

Proof of Theorem £.3. The proof of Theorem 2.3 reduces to the following lemma;
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Lemma 2.6. There exist Ng € N, r9 > 0, and ¢y > 0 such that for any admissible
(No,ro)-polygon L, there exists a homeomorphism Fy, : D?* x §* — T C R? such
that;

(1) If f € I§ is ro-captured by L, then N (f(S')) C T.

(2) If g € I} satisfies g(S') C T, then PrpoF 1 0g: S' — S! is a bilipschitz
map.

Suppose L is an admissible (Ng,ro)-polygon, and f € I is ro-captured by L.
We can deform Fj, to obtain a good €p-solid torus F, such that

F1({0} x 8') = f(S"),
Fr(D? x {t}) = Fr(D* x {t}) forall te S
Therefore for any complete family of (Ng, 7o )-polygons {L,, -+ L, }, we can con-

struct a complete €p-system {Fr,,---,Fr,.}. Then Lemma 2.5 implies Theorem
2.3. O

Proof of Lemma 2.6. (1) Take N; € N such that

1 T :n-;
. _—< _*‘L[,,_
(2.2) N~ (20000) b

?

where Cj is given in Theorem 1.12.
Then if 0 € yg —z9 < 'F]Tf’ then for any f € I} and for any z,y € [z, yo),

(2:2) £'(@) 5y € 100

(2:3) £§'() - F(20)f(w0) < 155-
Assume N > N;. Put

(2.4) r=r(N)= 40’(;N.

Suppose L = (Py,--- ,Py—1) is an (N, r)-polygon, and f € I is r-captured by
L, ie.

(2.5) |f(-jv _P)<r foralli.

Since by (2.2)

1 141 ™ ,
_1\7 If(= ) f(——)| 2 ¥ %100 for all 7,
(2.5) implies
1 1 .
— > — cos — —
(2.6) N +2r > |P; — Piyq| 2 ~ <% Tog 2r  for all ¢,
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where suffixes are taken modulo N. Then by (2.4), (2.5), and (2.6)

Hence by (2.3) and (2.7)
(2.8) Lf'(z) PPips < 12—;0 if z € %%1 for all 4,
and therefore,
(2.9) (P, P.- PPy, < 15(?—0 for all s.

Let Vi (V1) be a ’forward’ (backward’ resp.) cone with axis F,-P,-.H and angle
2% which is tangent to By(P;) (Br(Piy1) resp.), where B.(F;) is a 3-ball with
center P; and radius r. Put 0D = V} N V!, where D* is a 2-disc. Let U; be the
union of B,(P;), B.(P;4+1), and the intersection of the two closed cones of V} and
V! sandwiched between B.(P;) and B,(P;+1). {See Figure 2.1.)

FIGURE 2.1

Then by (2.5) and (2.8) f([4, 5t]) C U; for all i.

Suppose 0 < p < 4. Let IT; = II;(p) denote a solid cylinder with axis PP
and radius p sandwiched between two flat surfaces 3; = Z;(p) and Zj41 = Zi41(p)
where IT; meets IT;_; and II;y,. (See Figure 2.2.) Put Ty(p) = UNX 5 Ti(p).
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FIGURE 2.2

Put
1
+ + 2r(N) 27 2r
R=R(N)=r(N)+ ( 5 + r(N)sin 100) an ooz,

then R < 5Jy. By (2.6) the radius of D' is not greater than R for all . Hence
(2.10) F(8Y c UNS'U; c NS T(R) = TL(R).

We look for N (N > N;)and e (0 < € £ 5%9”) such that for any admissible
(N,r(N))-polygon L, T;,(R(N) + €) is a solid torus.
(2.11) Let h; = hi(p) : D* x [0,1] = II;(p) be a homeomorphism such that

(1) hi(D? x {0}) = Ti(p), hi(D? x {1}) = Bia(p),

(2) h.’(O,t) =tPj4, + (1 - t).P,',

(3) hi(D? x {t}) is a flat surface whose forward normal vector v;(t) changes
affinely as ¢t moves from 0 to 1.

Then by (2.9)
(2.12) Zvi(t) - PiPiys £ —  forallt €10,1].

Suppose R(N) < p < . For each i, we can define 7; : II;(p) — (‘ A '—ﬁ—) cs!
by
Proo by "N (X)=Pryoh; 7o f(ri(X)) X € ILi(p).

Then for any X € II;(p), by (2.12),(2.2), and (2.8)

R+p
21'r ’
100

3T
=100

(2.13) X — f(r(X)] £ —=¢

(214) éf (T,(X)) P P,+1
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Suppose IIi(p) N IT;(p) 3 X (¢ < j). Then there is k with : < k < j such that

LP;Pipy - PePrps > —.

2
Put t = 71i(X), t; = 7(X), and ty = 5. Then t; < tx < t;, and Zf'(¢;) - f'(tx) >
7 — 2% by (2.8) and (2.14). Then by Theorem 1.11

Iti—fk| ZCO_%(E';) (E_s_w b‘ﬁ’ﬁ_

e
2 100)

By (2.13) and Corollary 1.7,

ARLD > 1%~ ()l + 1X = £62,)
> |f(t:) ~ 755
lti =t
2 or

(HFFC b

zmin{%Co‘zg‘t';l(%_ i )*';d:-scl}b e

100

Let the last term be denoted by Cgb~ 7=, Take N, € N such that

1 1 2
1 — < =Cgb™ 777,
(2 5) N2 > 4Csb L4

Put Ny = max{N;, Nz}, ro = r(Np), € = ﬂlvp and py = R(Np) + €. Then
Po < ’Ezf;' and

2RWNo) +0) _ gy,

2
COs 100

Hence II;i(po) N IT;(po) = O if 1 # j. Therefore for any admissible (Ng,ro)-polygon
L = (Py, -+ ,Png-1), T = Tr(po) is a solid torus. By gluing h;’s constructed in
(2.11) together, we can obtain a homeomorphism Fr:D*x S' = Tr(po). Then
by (2.10) T(po) D N, (f(SY)) for any f € I3 that is ro-captured by L.

Thus the condition (1) is verified.

(2) Suppose for some g € I§ and ¢y € S, g(to) € II;(py) and

7 3
107!' > Zg (to) PP,.H > E‘fr

If tp — N’ <t<ty+ '}10'0’ then g(t) is contained in a cone V with “axis” ¢'(ty) and

angle 775, and

I(g() — g(t0),9'(t0))| 2 cos 755 * [t = tol,
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where ( , ) is the inner product.

By (2.9) the angle between any cone ray of V and PjPj4; (j=t—1lorit+1)is
not smaller than 7. Since py < 2310,

1l =
FOSIHZ 2 Po,

1 7 27 .. )
mcos;ﬁle—Pj.,.ll——pota.n-i-aa, j=t—~1lorit+1

by (2.6). Therefore g must pass through 0II;_; U 0IT; U 8II;4, at some t € [ty —
ﬁ;,to + 7;1,0-] Hence for any g € I such that g(S') C Tr(po)

0<4g'(t)  PiPiyy < 11011' or 1—701r < Zg'(t)- PPy <
if g(t) € II;(po). This, together with (2.9), implies the condition (2). 0
By (2.1) and (2.15) we can take
Herp
max { (20000) , Ci b | 4+ 1,

™ 6

Ny =

where [ ] is Gauss’s symbol. By Corollary 1.8 Ny < C1b7=7 for some C7 > 0. By
Lemmas 2.5 and 2.6, every knot with ;7 < b is ambient istotopic to a PL-knot

with N, vertices. Since the number of knot types of PL-knots with Ny vertices is
No(Ng—3 i
less than 5_°L5°_1, we obtain

Corollary 2.7. There exists a constant Cs > 0 such that for any b > 0 the number
2
of knot types which have representatives with e;? < b is less than exp(Csbﬂh).
3. EXISTENCE OF MINIMIZERS OF e;?
Definition 3.1. Let K be a knot type. Define e;?(K) by e;7(K) = inf jek €;7(f).

The argument given in Lemma 4.2 of [Fr-H] can be combined with Theorems
1.11 and 2.3 to show that e;P(K) is realized by a minimizer f; , k.

Theorem 3.2. For any knot type K, there exists a chED -embedding f; . k
with knot type K such that e;?(f;p k) < e;P(f) for any f € T of the same knot
type K.

Proof. Let {f;} C T be a sequence of embeddings of knot type K with
.lirn e_,-”(f,') = ij(K).

By Theorem 2.3 there is a good solid torus for e;7(K)+1, F, and a subsequence
of {f;}, still denoted by {f;}, such that f; can be contained in F for all :. By
Theorem 1.11

1fi'(2) = £i'(@)] < CobToF |z — y| 1 6T for all z,y € S
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for all i. Hence all f;"’s are uniformly continuous. Since f;' (Sl) C §? for all ¢, by
Ascoli-Arzela’s theorem, there is a subsequence of {fi'}, again denoted by {fi'},
which converges uniformly to a —J(Lj -Holder map ¢ : St — S2.

Since )
/ g(t)dt =0,
0

g = fi, for some CV T immersion foo € I. As the integrand of (0.1) converges
pointwise as { — oo, by Fatou’s lemma

¢;7(foo) < liminf e;P(f;) = e;P(K).
Since fo can clearly be contained in F and €;7(fx) < ¢;7(K), foo € K by
Definition 2.1. Therefore €;7(fo) = €;7(K). a
Remark. Some studies and computer simulations on polygonal knots minimizing
some energy-like functionals are given in [A},[B-O},[B-S],[Fu],[Gu], and [O3].
4. THICKNESS OF A KNOT

We give a notion of the thickness of a knot in connection with the argument nof
solid tori containing knots in §2.

Definition 4.1. (1) The Thickness of a C'-embedding f : S — R3? is defined by

Tk(f) = _f sup{eo|N(F(S')) is a solid torus for all € with 0 < € < ¢},

where Ly is the total length of f(5'), and N.(f(S')) is an e-neighborhood of f(S*).
Definition 2.1.

(2) The Thickness of a knot type K is defined by
Tk(K) = sup{Tk(f)}.
feK

Proposition 4.2. There exists a constant Cy > 0 such that for any f € T with
ei?(f) < oo,
Tk(f) > Coe;?(f) 777

Proof. Let ;7(f) =b> 0. Put t; = (%—)2”-25 b~77-%. Suppose 0 < yo — zg < o
_—,
and z € [zo,y0). Since Zf'(z) - f(z0)f(yo) £ ¥ for any z € [z0,y0], f(2) lies in

—)
the intersection of forward and backward sohd cones with axis f(z)f(yo), angle

7, and vertices f(zo) and f(yo). Therefore for any point P in the straight line
segment with endpoints f(z) and f(yo),

|P — f(2)| < max{}P — f(zo)l,|P — f(yo)I}-

1 1(L)J’i*’"-’ (1)**-%0 .
r1—2m1n 5 800 , 5 1 .
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Then by Corollary 1.7, if |z —y|s1 > to then |f(z)— f(y)| > 2r1. Assume N,(f(S?))
is not a solid torus for some r (0 < r < ry). Then there are z;,y1,21 (21 < 21 < 1),
and P; € N (f(S'))suchthat [Py—f(z1)| < r, |P1—f(y1)| £ r,and |Pi—f(z)] > 1,

which is a contradiction. Hence Tk(f) > r;. a
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