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Abstract

SymboUe manipulation of sparse polynomials, given as lists of exponents and
nonzero eoefficients, appears to be mueh more eomplicated than dealing with poly­
nomials in dense cneoding (see e.g. [GKS 90, KT 88, P 77a, P 77bJ). The first
rcsults in this dircction are due to Plaisted (P 77a l P 77b], who proved, in partieu­
lar, thc NP-complcr,r.ncss of divisihilit,y of a poly"nomial x n -1 by a produet ofsparsc
poIYlloll1ial~. Oll tltc et.her hand , csscntially llothillg nontrivial is known about thc
eemplexity cf the divisibility problem of two sparse integer polynomials. (One ean
easHy prove that it is in PSPACE with the help cf [M 86].) Here we prove that
nandivisibility of two sparse multivariable palynornials is in[B NP, pfovided that
the Extended Riemantl Hypothesis (ERH) hold's (see e.g. [LO 77]).

Thc divi~ihility prohlem is elosely related to thc rational interpola.tion problem
(whase dccidability allel complcxity ,bound are determined in
[GKS 90]). In this setting we assume that a rational funeticn is given by ablack
box for evaluating it. \Ve prove also that the problem of deciding whether a rational
funetion given hy a blaek box equals a polynomial belangs to Ne, provided the ERH
holds and moreaver, that we know the degree cf some sparse rational representatian
of it.



1 Nondivisibility problem for sparse polynomials

Let f = Ll<i<t aiXJi , 9 = Ll<i<t biXKi E 22 [XI 1 ••• , X n ] be two at most t-sparse poly­
nomlflls. Assl~mc tha.t every (fegrec degr.) (f), degr.,.(g) < d, 1 :S j :S n and the bit-size
l(ai), l(b i ) of cach integer cocfficil;nt 0i, bi is Icss t.han ,'1. Thc problem is ta test, whcther
9 divldes f. Observe tlIat t.hc bit-sizc of input. data. is O(l(M + n log ci)).

First, we consider the case n = 1 of one-variable polynomials f = Ll<i<t ajxij , 9 =
""" b'xkj - -L...l $i$t 1 •

Lemlna 1. Any nonzero 7'001. 01 9 (also 01 J) has multip/icity /ess than t.

Proof. Assurne the cantrary and let Xo # 0 b~ a root of 9 with multiplicity at least l.
Then g( xo) = g(1) (xo) = ... = gO-I) (xo) = O. Hence the t x t matrix

1

k]
h:l(k1 - 1)

k1(k1 - 1)(k1 - 2)

1

kt

kt(kt - 1)

kt(k t - l)(k/ - 2)

is singular. This leads :'0 a contradict.ion sincc I,his matrix by e1ement.ary transfornlations
of its rows can be reduced to a Vanderlllonde ma.trix. •

Assurne that 9 does not divide f. Then there exists a factor h E 2Z[x] of 9 that is
irreducible over Q, and such that its multiplicity· m g in 9 is larger than its multipliciiy
mj in f. The Lemma 1 above shows 7n g < t.

There exist polynonlials u, v E Q [;1:] wit.h deg(u), deg(v) < d such that 1 = uh +
v (~ ). Taking into aCCollnt the bounds l(h), / (~) :5 M +d that apply to factors of

9, f, respectively, we obtain l(u), l(v) ::s j\1d°(1) by virtue of the bounds on the bit-size
of minors of the Sylvester matrix (see e.g. [CG .82, L 82, M 82]). Let us rewrite the
cquality in thc following way: 1.00 = uoh + va (~), where Wo E 22, uo, Vo E l2[x}.

Thcre cxist at Inost /\1/ . dO(l) prinlcs which rlividc Wo. Thcl'efore, illere exists a prinlc
p ~ JV = (/\1 d)O(l) (provided thc ERH holds [LO 77, \V 72]) which does not di vide an)'
of Wo, the leading coefficient lc(g) of 9 and the discl'iminant of h, anel moreover thc
polynomial h(modp) E GF(p)[x] has a root in GF(p). Then the multiplicity of this root
in f equals mj and in 9 is at least m.g •

Thc nondct.erminlst,ic proccdure \Inder construction gucsses a prime p ~ lV and an
elelnent a E GF(p) and tests wh ether for some 0 :5 i :5 t - 1 one has g(O') = g(1)(O') =
". = g(i}(a) = 0, f(i)(O') ~ 0, lc(g) f: 0 in GF(p).

One (an easily see that if such p, Q' exist then 9 does not· divide f. Indeed, in the
opposit.e case, (lc(,q))j I = ge for some integer.., and a polynomial e E Z6'[x]. R.educing
t.his eql1a.tion moc! p. one geLs a contl'adiction.

Now we return to the multivariable case. Suppose again that 9 docs not diviclc f.
Let h E LZ(X1 , ... ,);nJ have a silnilar property to the h in the univariate case. Assunle

2



w i tilotl t. loss of gCllcrn,l ity tli (l,t. a. vrtri ahle X J OCCtl rs i Tl It.. 'Then g also does not d i vide
J in tbc ring Q("\'2, ... "\'n )[.\""d by the Ga,lISS lemma. Considcl' division of J by 9 wiLll
remainder in the latter ring: / = 9f-L + O. Then degxj(Il), degxj(8) < d2

, 2 :5 i :5 n
(cf. {L 82]) and the denominators of JLl 0 are the powers of lex 1 (g) E L2'[X2 , ••. X n ).

Henceforsome integersO::; X2, ..• ,xn :5 cP+dwehave(lcxl(g)·lexl(O))(X2, ... ,Xn) =F O.
Therefore, the polynomial g(X], X2,' •. ,xn ) E L2'[X]] does not divide f(X1 , X2,' •• ,xn ) E
2Z[Xtl in the ring Q [Xl]'

The nondeterministic procedure guesses an index 1 ::; i ::; n, thus Xi (in our argument
above its role was played by Xl)' the integers 0 ::; X2,' •• , Zn ::; cF +d and applies the non­
deterministic procedure descl'ibed before to one:'variable polynomials g(X I , X2, ... ,xn ),

f(."K j ,X2"" ,.'r n ). Thus, we have provcd the following

PROPOSITION 1. Nondivisibility of sparse nHiltivariable polynomials belongs ta
NP pravided Extended Riemann Hypothesis.

2 Divisibility problem for sparse rational function
given by a black-box

The preposition 1 can be improved if t-sparse /, 9 E 2Z[X], ... , X n ] are not explicitely
given, but we only have a black box (see e.g. [GK 91, GKS 90]) for the rational function
f /g pl'ovided th"t. lexl (9) = ] and abolInd on d is givcn. This is due to the fact t.hat in
thc one·variablc ease \\'c ncccl on Iy a. hOllnd on A1 which one can get even in Ne [raIn a
black·box relying on the constructian from [GK g]] of a big enough number. To da this
we proceed as folIows. .
Assume that f = 4= ajx ij , 9 = L: bixki , t1 , t; ::; t and 9 has a minimal possible

1<1<t 1 I<i<12

degl'cc for any t~spa~s~ rcpresentation- 0-[ the rational function q = f /g.
Let J\!! = mfl.x{ /( (Ji), /( hd} + 1.

I

Take successive primes Pt, ' .. ,Pt and for each p ari-Iong them calculate (by black·box)
q(p), q(p2), . .. ,q(p2/2+t). For at least one p all these values are defined, i.e. 9 does not
vanish in these points. Let us fix such p.

Lemnla 2. At least. on e 0/ q( p) I q( p2) \ ... 1 q(p2t2 +1) has an absolute value greatel' than
2M/2t / (ldl 2

•

Proof. Denote IV = max{ Iq(p) I, ... , jq(p2t2+I)]}. The homogenous linear system in
the indeterminates Ai, Bi

L Aip3
ii = ( L Bil/ki)q(p~), ] < s < 2t 2 + 1

j~i~tl l$i$t'2

has a unique solution sinee the polynonlials f, 9 provide a mininlal tpsparse representation
of q, hence ( L Ajxij )/( L Bixki ) = q(x). Therefore, each ai, bj equals to a quotient

l<i<tl t<i<t'2

of a suitable -p~ir of (tl +-t 2- - 1) x (tl + t 2 - 1) minors of this linear system. Thcn
2d . d '2max{lail\ Ibil} ~ (Np2t 2t)2t ~ (A(t 4 t )2t, The lemma is proved. •

Onc ean constl'lIct in jVC thc int.egcr l'ld/
2 ({GCH 86]), then by Lemma 2 an integer

larger than 2M / 2t and again using [BeB 86] an integer larger than 2M.
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Then the algorithm constructs an integer No > 36 . 23M . d5 . Finally, the algorithm
yiclds thc numnr-r lV = q(q(!'/o)), \Ve claiJn thaI. !'l is big enough (see [GK 91]), namely,
divide with the remainder f = eg + rem(f, g), then for each integer AT} ;::: fl ,ve have
o< IreryJ,g) (JVd J < ~, provided that rem(f, g) # O.

Let us prove the claim. Denote d} = deg(f), do = deg(g). W.l.o.g. assume that
lc(f) > O. Then f(No) > f\rg1 _dNgl- 12M > ~Ngl, 0 < g(No) < Ngo+dNgo- 12M < ~Ngo,

hencc q( 1Vo) > 31V31 -do. 0n t.he other ha nd f( I\ro) < 2M dl\rg, , g( 1\'0) > Ngo - 2MdNgo -I >
~ I\rge, therefore q(JVa) < 2M +1dNgl -do. \Ve get that q(Na) < 3Na iff d1 = da. In this
case 9 divides f if and only if f /9 == const, arguing as in tbe proof cf Lemma 2 the
latter identity is equivalent to the equalities q(p) = ... = q(p2t~+1). So, we assume now
that dl - da > O. Notice that the absolute value of each coefficient of rem(f, g) is at most
((d I - da +2)2M )rl1 -do+2 (see e.g. [L 821) . In a simila.r way N = q(q( No)) > ~ (q( No) )d1-do >
3do-dl-ll\iJdl-do)"J and g(lV) > jVdo - 2AI doN·do- 1 > ~Ndo. Hence 0 < Irem(f,g)( ..N)1 <
((dl - da + 2)2M)dl-do+2daNdo-1 ~ ~ Ndo. This proves the claim.

So, divisibility glf is equivalent to (f / g)(N) being an integer. The number of
arithmetic operations of the exhibited algorithm is at most (t log d)O(l) with the depth
O(log tlog log d). Thus, thc divisibility problem for one-vRriable rational function given
by a. bla.ck~box 1 is in Ne.

In the multivariable case divide with the reruainder f = eg + rem(f,9) w.r.t. the
variable Xl, namely in the ring Q(X2 ,··· ,Xn )[X1], thus e, rem{f,g) E Q(Xl,' .. ,Xn ]

since lexI (g) = 1. After substituting XI = Xdn- 1
1 X 2 = Xdn-~, .. " X n = Xd'J, we get an

eCjllrdit.y 7 = eg + rcm(f,g) fo!' nonvanishing identically polynomials !,e,9, rem(f,g) E
Q [Xl and a.n incqllality clcgx(q) = dn - 1 clcgx

l
(g) > dcgx re1n(f,g). Therefore 0 =j;

rem(f, g) = ren2(] ,g) and we conc1ude that 9 di vides f iff 9 divides !. So, wc apply the
divisibility test for one-variable case exhibited abo\;e to the rational function 7j = 7/9,

Hence thc numher of arithnlctic operations can be bounded by (tn log d)O(1) with thc
dcpt.h O(log(tn) log log d) invoking thc bouncls for one-variable case.

PROPOSITION 2. The problem of testing whether a sparse multivariable rational
function given by a black~box, equals· to a polynomial, belangs to NC, provided that a.
bound on the degree of some t-sparse representation f /9 is given such that lex! (g) = 1.

Acknowledgements. The authors than k ~1. Singer for interesting discussions.
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