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Abstract

Symbolic manipulation of sparse polynomials, given as lists of exponents and
nonzero coefficients, appears to be much more complicated than dealing with poly-
nomials in dense encoding (see e.g. [GKS 90, KT 88, P 77a, P 77b]). The first
results in this direction are due to Plaisted [P 77a, P 77b), who proved, in particu-
lar, the NP-completeness of divisibility of a polynomial z™ — 1 by a product of sparse
polynomials. On the other hand, essentially nothing nontrivial is known about the
complexity of the divisibility problem of two sparse integer polynomials. (One can
easily prove that it is in PSPACE with the help of {M 86].) Here we prove that
nondivisibility of two sparse multivariable polynomials is in{B NP, provided that
the Extended Riemann Hypothesis (ERH) holds (see e.g. [LO 77)).

The divisibility problem is closely related to the rational interpolation problem
(whose  decidability  and  complexity  bound are  determined in
[GKS 90]). In this setting we assume that a rational function is given by a black
box for evaluating it. We prove also that the problem of deciding whether a rational
function given by a black box equals a polynomial belongs to NC, provided the ERH
holds and moreover, that we know the degree of some sparse rational representation
of it.



1 Nondivisibility problem for sparse polynomials

Let f = TicictaiX?, g = Ticice iX¥i € Z[X1,..., Xn] be two at most t-sparse poly-
nomials, Assume that every degree deg, (f). deg,,(g) < d, 1 <j < n and the bit-size
I{a;), 1(B;) of each integer cocfficient «;, by is less than M. The problem is to test, whether
g divides f. Observe that the bit-size of input data is OQ({{M + n log d)).

First, we consider the case n = 1 of one-variable polynomials f = ¥i<i<: aizh, g =
2agict biz*i.

Lemma 1.  Any nonzero root of g (also of [) has multiplicity less than t.

Proof. Assume the contrary and let zg 5% 0 be a root of g with multiplicity at least ¢.

Then g(zo) = g (zg) = -+ = g{*=1(z4) = 0. Hence the ¢ x ¢ matrix
1o
ky ook,
bi(ky = 1) o k(b =1)
ko(ky = 1)(ky =2) - ke(ke = 1)(ke = 2)
Ba(ky = 1) (b = £42) o Ry(kim1)- - (b~ t+2)

is singular., This leads to a contradiction since this matrix by elementary transformations
of its rows can be reduced to a Vandermonde matrix. W

Assume that g does not divide f. Then there exists a factor h € Z[z] of g that is
irreducible over 3, and such that its multiplicity m, in g is larger than its multiplicity
my in f. The Lemma 1 above shows m, < .

There exist. polynomials u,v € Q[z] with deg(u), deg(v) < d such that 1 = uh +
v (P‘LT) Taking into account the bounds I(A), I(H“!'T) < M + d that apply to factors of

g, [, respectively, we obtain /(u), {(v) < Md°?) by virtue of the bounds on the bit-size

of minors of the Sylvester matrix (see e.g. [CG 82, L 82, M 82]). Let us rewrite the
equality in the following way: wo = uoh 4+ v (TLT)’ where wg € Z, ug, vo € Z[z].
There exist at most M - d?) primes which divide wo. Therefore, there exists a prime
p< N = (Md)PW (provided the ERH holds [LO 77, W 72]) which does not divide any
of wyg, the leading coefficient lc(g) of g and the discriminant of h, and moreover the
polynomial A(modp) € GF(p)(z] has a root in GF(p). Then the multiplicity of this root

in f equals m; and in g is at least my.

The nondeterministic procedure under construction guesses a prime p < N and an
element o € GF(p) and tesis whether for some 0 < i < ¢ — 1 one has g(a) = g (a) =

=gl a) =0, fi(a) #0, lc(g) # 0 in GF(p).

One can easily see that if such p, a exist then ¢ does not-divide f. Indeed, in the
opposite case, (le(g))f = ge for some integer s and a polynomial e € Z|[z]. Reducing
this equation mod p, one gets a contradiction,

Now we return to the multivariable case. Suppose again that ¢ docs not divide f.
Let h € Z[X,,...,X,] have a similar property to the A in the univariate case. Assume
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without loss of generality that a variable X occurs in . Then ¢ also does not divide
[ in the ving Q (X, ..., X,)[X,] by the Gauss lemma. Consider division of f by ¢ with
remainder in the latter ring: f = gu + 0. Then degy, (), degx,(6) < d*,2 < i < n
(cf. {L 82]) and the denominators of s, § are the powers of lcx,(9) € Z[Xa,...X,].
Hence for some integers 0 < z,...,z, < d*+d we have (lcx,(g9) - lex, (0))(z2,. .., zn) # 0.
Therefore, the polynomial g(X),22,...,2,) € Z[X;] does not divide f(Xy,zs,...,25) €
ZZ{X1] in the ring Q [X1].

The nondeterministic procedure guesses an index 1 < ¢ < 7, thus X; (in our argument
above its role was played by X;), the integers 0 < zs,...,z, < d*+d and applies the non-
deterministic procedure described before to one-vartable polynomials g(Xi,z2,...,an),
f(Xi1,za,...,2,). Thus, we have proved the following

PROPOSITION 1. Nondivisibility of sparse multivariable polynomials belongs to
NP provided Extended Riemann Hypothesis.

2 Divisibility problem for sparse rational function
given by a black-box

The preposition 1 can be improved if ¢-sparse f, g € Z[X),...,X,s] are not explicitely
given, but we only have a black box (see e.g. [GK 91, GKS 90]) for the rational function
f/g provided that lcx,(¢g) = 1 and a bound on d is given. This is due to the fact that in
the one-variable case we need only a bound on M which one can get even in NC from a
black-box relying on the construction from [GK 91] of a big enough number. To do this
we proceed as follows. )

Assume that f = 3~ a;iz¥, g = Y biz*, t;,t; < t and ¢ has a minimal possible
1<7<t, 1<i<1,
degree for any i-sparse representation of the rational function ¢ = f/g.

Let M = max{{(a;), (b))} + 1.

Take successive primes pi, - -+, p; and for each p among them calculate (by black-box)
q(p), g(p?), -, q(p***1). For at least one p all these values are defined, i.e. g does not
vanish in these points. Let us fix such p.

Lemma 2. At least one of ¢(p), q(p?), -+, q(p***+') has an absolute value greater than
2,&{/2:/5.1&? _

Proof. Denote N = max{|¢(p)], -, lg(p***!)|}. The homogenous linear system in
the indeterminates A;, B;
2 A,-p’j" = Z ng’k‘)q(p’), 1 <s<2t? 41
1<i<t 1<i<t;
has a unique solution since the polynomials f, ¢ provide a minimal ¢-sparse representation
of g, hence ( 3= Ap?)/( & Biz") = g(z). Therefore, each a;, b; equals to a quotient
1<7€ 1<i<t

1<t <1<tz
of a suitable pair of (¢; + {; — 1) x (¢; + {2 — 1) minors of this linear system. Then

max{|a], b} < (Mp292t)% < (M14€)2 The lemma is proved. ®

One can construct in NC the integer ' ([BCH 86]), then by Lemma 2 an integer
larger than 2/2* and again using [BCH 86] an integer larger than 2.
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Then the algorithm constructs an integer No > 36 - 23 . 4% _ Finally, the algorithm
yields the number N = g(q(Ny)). We claim that A is big enough (see [GK 91]), namely,
divide with the remainder f = eg + rem(f,g), then for each integer Ny 2 N we have
0 < |ZEBUL2 ()| < 4, provided that rem(f,g) # 0.

2

Let us prove the claim. Denote d; = deg(f), do = deg(g). W..o.g. assume that
le(f) > 0. Then f(Ng) > N& ~dN$~12M > IN$ 0 < g(No) < NP +dNge~12M < NG,
hence ¢(No) > 3 V&=%  On the other hand f(No) < 2MdNET, g(No) > NE —2MdNG~! >
%NS", therefore q(Ng) < 2M+1ING =% We get that g(No) < $No iff dy = do. In this
case g divides f if and only if f/g = const, arguing as in the proof of Lemma 2 the
latter identity is equivalent to the equalities ¢(p) = -+ = ¢(p***!). So, we assume now
that d; —dy > 0. Notice that the absolute value of each coefficient of rem(f, g) is at most
((dy—dg+2)2M )% =442 (sce e.g. [L 82]). In asimilar way N = g(g(No)) > 3(q(No))=% >
glo-di =t N =) ang g(N) > Nl — 2MdoN%-! > IND. Hence 0 < |rem(f,g)(N)| <
((dy — do + 2)2M ) =do+2dy, Ndo=1 < I N%_ This proves the claim,

So, divisibility g|f is equivalent to (f/g)(N) being an integer. The number of
arithmetic operations of the exhibited algorithm is at most (¢logd)®) with the depth
O(log tloglog d). Thus, the divisibility problem for one-variable rational function given
by a black-box, is in NC.

In the multivariable case divide with the remainder f = eg + rem(f,g) w.r.t. the
variable X, namely in the ring Q (X, -+, X,)[X1], thus e,rem(f,g) € Q[Xy, -, X,]
since lex,(g) = 1. After substituting X, = X¥7', X, = X9 ... X, = X%, we get an
equality f = 5 + rem{f, g) for nonvanishing identically polynomials f, 2,7, rem(f,¢) €
Q[X] and an incquality degy(7) = @*~'degy, (9) > degy rem(f,g). Therefore 0 #
rem(f,g) = rem(f,g) and we conclude that ¢ divides f iff § divides f. So, we apply the
divisibility test for one-variable case exhibited above to the rational function 7 = f/3.

Hence the number of arithmetic operations can be bounded by (tnlog d)°0'} with the
depth Oflog(in)loglog d) invoking the bounds for one-variable case.

PROPOSITION 2. The problem of testing whether a sparse multivariable rational
function given by a black-box, equals to a polynomial, belongs to NC, provided that a
bound on the degree of some t-sparse representation f/g is given such that lex, (g) = 1.
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