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This volume is the fourth part of a study of the homotopy classification

problem. There are at the moment five parts:

Volume 1: Abstract homotopy theory with an Appendix on extensions

of categories (Chapter I,II,III,IV,V and chapter Ext).

Volume 2: Combinatorial homotopy theory of CW -complexes (The

first, the second and the third part of chapter A).

Volume 3: Iow dimensional homotopy theory (Chapter B, in prepa-

ration).

Volume 4: Homotopy theory of differential algebras (Chapter Ci,

C2 and chapter D and a lecture).

Volume 5: Homotopy theory of topological mapping cones (Chapter E

and chapter P).

Introduction of Volume 4:

Differential algebras appear in algebraic topology frequently. For
example th§ singular chain complex of a topological group or of a loop space
has the structure of a differential algebra the multiplication of which is
induced by the multiplication on the space. In this volume we study the
algebraic homotopy theory of differential algebras with coefficients in a
principal ideal domain. Then we study connections with topology which are

obtained by the chains on a loop space.

For a complete discussion of the contents see chapter introductions.

Also the following lecture is an introduction for this volume. Chapter C2



is an analogue of the first part of chapter A. An analogue of the second
part of chapter A can also be worked out; this and a continuation of chapter

D are in preparation.

Bonn, October 17, 1983
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The chains on the loops and

4 - dimensional homotopy types

Hans Joachim Baues

In this lecture I want to describe some results on a problem of

J.H.C. Whitehead:

Classify algebraically the hamotopy types of

4 - dimensional polyhedra!

In 1948 J.H.C.- Whitehead solved this problem for simply connected
4 - dimensional polyhedra; he first used the 'enriched cohamology ring'
{7] and later the 'certain exact sequence' [9] as the classifying in-
variants which determine the homotopy type. On the other hand he has
shown in (8] that two 3 -dimensional polyhedra are homotopy equivalent
iff the cellular chain complexes of the universal coverings are homo-
topy equivalent. These results rely on the following facts (a) and (b)

respectimely:

(a) Each simply connected 4 -dimensional CW-~complex X is homotopy

equivalent to the mapping cone ¢, of a map £ between 1 -point

£

unions of 2 - dimensional and 3 - dimensional spheres,

Here A,B,C and D denote index sets.

(b) Each chain map between chain complexes of universal coverings

is gecmetrically realizable up to dimension 3.



For 4 —dimensional polyhedra which are not simply connected there
is no analogue of (a) and we cannot use (b). Therefore the solution
of the general problem has to be different from the solutions in the

special cases described by J.H.C.. Whitehead.

We are not yet able to solve the problem completely but we describe
a result which solves the problem ‘up to the prime 2'. Moreover, we

solve. the problem if the second homotopy group n, satisfies the con-

2

dition that multiplication by 2 is an iscmorphism or that ", =% is

the group of integers.

Our classifying invariant is the chain algebra given by the chains
on the loop space. In fact, for all connected polyhedra this chain algebra
determines the chains of the universal covering, see (24). Therefore
gii:i.s ‘invariant is more powerful than the chains of the universal

covering used by Whitehead.

Also. we describe a small model of this chain algebra, which extends

the result of Adams and Hilton [1] to the non simply connected case.

The results described in this lecture are just a few items in my
forhtcaming book 'On the hamotopy classification problem'. This book will

contain all proofs and the explicit constructions.

We say a CW~-complex X is reduced if the O -skeleton of X consists
of a gsingle point, which is the base point of X . All maps and homo-
topies which we consider are basepoint. preserving. Lat (W be the cate-
gory of reduced CW - complexes and of cellular maps. Its homotopy category
¥/« .1is aquivalent to the homotopy category of all path connected CW-

spaces. Let



(1) &+ W—> Chain

be the functor of cellular chains on the universal covering. Here Chain”

-Chd-ﬁ; is.the following category. Objects are pairs (m,C) whc'rn".
_w_ | :stl;: q;‘oup and where C is a positive chain complex of free (ri’qhti
"z[n}j;mdul.s with coaz[n] . A morphism in Chain” is a pair (w;fi:z
,(;‘r.c") .--_-—-> (n*,C') where ¢: * ——» T' is a homomorphism between.
‘.qrouﬁl and where £ is a cp-equivariaht chain mg; that is dfalfd':
‘and  £(x:q) = (£x)-(@a) for x€C, AETW ; fo-Z[wj . The functox; in

(1) is given by
Cy(X) = (nlx,c,..i)

whezre X is the universal covering of X in which we fixed a base-
-point * , Thus for each map f: X —>» ¥ in (W there is a unique
hnscpdint preserving covering map E: X —> ¥ . This map is cellular
and induces a W, (£) - equivariant chain map, f£,: CuX —> ¥ ,
between the cellular chain. complexes. The functor E, in (1) carries
‘th'c_.nap f to the pair (lt1 (f),f,.) . Two morphisms (¢p,£f), {(@',£")
i.n.- Chain~ are homotopic if @=@' and if there is a - equivariant
up a: C —>» C' of degree +i with GO-O and da+ad = £' =€

" The ftq:ctor {1) induces the functor
(2) | Cot CW/ ot ———> Chain /e

between homotopy categories. As a variant of the Whitehead theorem we

have

(3). Amap £ in (W is a hemotopy equivalence if and only if

E,‘,t is a homotopy equivalence in Chain .



Moreover, for the full subcategory CW™ of n-dimensional camplexes

in QW whitehead proves in [8]:

(4) on O/~ the functor C, is full and on OV /a the

functor C, is full and faithful.
We derive from (3) and (4)

(5) Two 3 -dimensional complexes X,Y in (W are homotopy equi-
valent if and only if their chain complexes E*x ' c.:*y are

homotopy equivalent in Chain .
Such a result is not true for 4 - dimensional complexes, but we get
(6) Theoxrem: Leéet X, Y be ¢4-dimensional complexas in (W and let
F=(g,f): CX —> C,¥

be a mp in Chain . Then we associate with the triple (X,Y,F)
an obstruction alement

Oy 3(F) € 54(x,<p*r(uzz))

with tha following property:
The homotopy class of F in Chain /o ia realizable by a map in
W if and only <if Oy y(P)=0 .

Here H® denotes the cohomology with local coefficients and I is

the quadratic construction of Whitehead [9]; T is a functor so that
*

P(nz-!) is a L (Y) - module which via @ is considered as a L x) -

module.



If X and Y are simply connected we can derive frem the theorem

the result of Whitehead in [7]. In the general case we get:

{7) coxollary: ITwo ¢~ dimensional complexes X, Y in W are homotopy

equivalent if and only if there i3 a homotopy equivalence
F=(9,f): E,,X o E'*Y

in Chain with OX,Y(F)=0 .

Thus we have to compute the obstruction Ox Y(F) in terms of in-
[4

variants of X and Y respectively. This is not yet completely done.
We know however, how to compute the image of this obstruction under

the following homomorphism:
~4 * -4 * .
(8) Te: H (X0 T(N,Y)) — H (X,0 (n2Y®n2Y)) .

Here T: I'(A) ——» A®A is the canonical homomorphism associated to

the quadratic map q: A —>» AQA , q(a) =a®a . Clearly, if A-nzY'

is a n Y-module then t is a homomorphism of LAY (Y) -modules. It is

b
well known that T is an isomorphism if A=2 or that T admits

a natural retraction if multiplication by 2 is an isomorphism on
A . Thus in these cases Ty in (8) is injective and therefore the

" image TaOy Y(?) vanishes iff O, !(F) vanishes. We can describe the
’ !

‘element TaOy Y(E') in terms of F and the chain algebras C, (X and
[ 4

Cof%Y which are given by the cubical chains on the loop spaces X and
QY respectively. For the computation of TaOy Y(F) we only need to
[ 4

know small models of these chain algebras.

To this end we describe the connection of the chain algebra C, (X



and of the chain complex E‘x .

Let R be a subring of the rationals @ . We introduce the following

diagram of categories and functors:

w S8R g
(9) . Co®R Jyﬁ
Chainy ——= > DFil,

The functor 6* was defined in (1); if we replace in the definition
of Chain the ring Z by the subring R of Q we obtain the cate-
gory Cha&u; .

The subcategory DAR of chain algebras is defined as follows:

A chain algebra A is a graded, associative algebra A with unit

together with a differential d: A ——» A of degree -1 and an aug-

mentation €: A =——» R such that

(a) A, as a module, is a free R-module,
(b) (a,d) 4is a chain complex with A =0 for i<o0,

(c) € is an algebra. homomorphism. and a chain map,

(d) the multiplication u: AQA ——» A is a chain map.
We say A is good if

(e) the homology in degree O , HOA , 1s free as an R-module.



(10)

(1)

(12)

Let DAR be the category of good chain algebras. The maps are of

degree zero and preserve U,d and € .

Clearly, A=C,X®R is a chain algebra in DAR . Hera X 1is the
Moore loop space which has an gssociative multiplication. The homology

in degree O is
Hc(c,,ﬂx®n) = r[m, x] .

For a chain algebra we have the canonical projection
A: A —>HA=H

which is trivial in degree >1 . Via )\ the algebra H=H A is an
A~-module. Lat BA be the reduced bar construction and let T: BA—>

A be the canonical twisting cochain. Then via (11) the two-sided bar

construction

BA = n®r BA@TB |

is defined, see [3], [4]. This is an object in the following category
DFﬁR . Objects of DF;(R are pairs (H,E) where H is an augmented .
(non qradod} algebra with unit which is free as. an R-~-module and where

€. is a chain complex of H-bimodules.with the following propecties:

(a) En is a free H-bimodule and.the differential d is a map of

H=bimodules, né€x ,

(b) Ec-x®u , En-o for n<oO ,



(13)

(14)

(15)

Amap O=(p,0): (8,C) ——> (H',C') is a homomorphism @: B ——> H'
between augmented fnon graded) algebras together with a Q- biequivariant’

chain map o©: E — E' with aoato®cp in degree O.
The functor & in (9) carries the cbject (W,C) to (H,C) with
- -l
B=R[r] and c=cQE m®r°®) .

We identify an H~- bimodule with a right 8®n°p-module. Bere H°P is
the opposite algebra and H®H°P is the enveloping algebra, see [2].

If H=R[r] we have the cano‘nical homomoxphism

£: B —> &P , £la] = [a”']
which yields

E: B —> HQEP , E(x) = x®&x .

via I the algebra H®HP is a left H-module which is denoted by

L a®E°®) . The functor a is: defined on maps in the obvious way.

Now  all categoriea and functors in diagram (9) are defined. We
introduce. homotopy categories by localizing with respect to weak equi-

valences:

Definition: We. call. £: X ——>» ¥ in W a twisted R~ valencs

if £ induces iscmorphisms

Let noRCw be the category obtained by localizing (W with respect

to twisted .R- equivalences.



In DAR a weak equivalence is a map which induces isomorphisms in

-

homalogy. In ChaaénR and DFﬁR weak equivalences are pairs (¢,f)
~ where ¢ is an isomorphism and where £ induces isomorphisms is homo-

' logy. Moreover, twisted R- equivalences are the weak equivalences in
(W . Then we get:

(16) Proposition: ALIl fimetors in (9) carry weak equivalences to weak
equivalences.

Fox ?:,@R this is part of the R- local Whitehead theorem, for B

thig is proven in [5].
Morecver, we have the following important result:

(17) Theorem: (A) Amap f in CW <8 a twisted R-equivalence if and only

if the induced map 5J®R 18 a weak equivdlence in ChainR .

(B) Amip g 7in VA, 8 a weak equivalence if and only if
the tnduced map §g 18 a weak equivalence in vFﬁR .

Part (A) is a variant of the Whitehead theorem, see (3), part (B)

seems to be new. For A in DAR the homology of BA is denoted by
(18) Tor, (# A,H A) = He(BA) .

Tharefore, (B) is equivalent to

(19) Theorem: 4 mp f: A —> B in DA, induces isomorphisms in homology
tf and only <f

Torflﬂof,ﬂaf): TarA(RaA,HoA) — TarB(HaB,HOB)



18 an tsomorphisnm.

This result is well known in the connected case 805-2103-3 . We now
localize all categories in diagram (9) with respect to weak equivalences.

By (16) we obtain the diagram of functors:

. Ho_CW CHIQR » HoDA
R o 2 (R
\\\AR _ ”~
~N 2 s s
- q* . -
(20) C,®R a BoDA, B
7
P ” pu]]
”~
v & v
HoCqu.nR = > ncDFﬂR

In extension of equation (10) we gat:

(21) Theorem: Diagram (20) commutes, that is, there is a natural equiva-
tence
t: B(C,X®R) ———> a(C XBR)

in HoUFﬁR .

%

Let & aoDAR be the pull back category. Then commutativety of the
diagram yields the functor A, in (20). The functor Q@ is faithful
so that the.pull back category can be considered as a subcategory of

HOIMR .

(22) Remark: The result seems. only to be known in the case X=X(w,1) . In

this case we have the equivalence



Co @R ~ R[]
in DA_ and
B(rIn]) = B(R[n],R[n])

is the normalized bar construction of the non graded algebra R[mw] .

From (21) we deduce the classical equations

Hy (R[7],) = B, (K(W,1), U

&5 (r[n],TH = ﬁ*(x(n,n,ra) .

Here I' is a R[w]- bimodule and the left side is the Hochschild (co-)

homology of the algebra R[r] . The right side is the (co-) hamology of

the group ©® , compare chapter X, theorem 5.5 in [5]. V4

For an algebra A in DAR we have the one-sided bar construction

(see 3], [4]):
(23). BAQ H , H=HA ,
where H is an A-module by A: A —> HOA . From (21) we deduce
(24) Corollary: There is a natural equivalence
B(C,QX®R)® H — > C X®R
in HoChain~ where H=R[x]=H QX .
Proof: For A=C,X®R and C=CXQR 1let
1®¢: A=BQHP ———> HQR=H .

Then we get



BA®, B = B(a) ®Au®e)*n

- L ]
~ (ac)@Au@e) H=C . /

The corollary shows that the chain algebra C XER determines up
to weak equivalence the chain complex of the universal covering as

mentioned in the introduction.

We now are ready to state our results on the classification problem

for 4 ~dimensional polyhedra:

(25) Theorem: Leét X and Y be C‘W-carplcm,ofdimnaion 4 and let
1/2ER<=Q . Then X and Y are equivalent in HoRdll if and
only if Ap(X) and A (Y) are equivalent in the pull back cata-

iy
gory a HoDA, .

(26) Thecrem:. Let- X..and .Y be CW-camplexes. of dimension =4 and
assume that n,I=%Z or that multiplication by 2 is an tsomorphism
on Y. Then the complexss X and Y are homotopy equivalent
in O if and nly if AgfX) and Ag(Y) are equivalent in & HoDAy..

(27) Remark on the proof of (25). and (26): Let A=C,X®R and let B=C, Y
@R . Wa show that for a map
P= (9,£): CX®R —> C YOR
there is an obstruction
- .4 .
°a,a‘°"’ € B (X, (n2!®n2!) ®R)

with the following properties. We have:



(28)

(29)

OA,B(GP) =0

if and only if there is F: A —> B in HoDAR such that for the
equivalence t in (21)

t(BF) = (aF)t
in HoDFﬁR . Moreover, for T, in (8) we have

T*ox.Y(F) = Oy, -

This shows that (26) is a consequence of (7), since the assumptions

in (26) imply that T, is injective. Similarly we prove (25). /

Next we show that the localized categories in diagram (20) can be
replaced by homotopy categories. We introduced already the notion of

homotopy in Chain in (2). We have an isomorphism of categories

BoChain, = Chaing /= .

Similarly, we have
HoDFMR = DFMR /o

where two.maps (p,a),(9',0') in vFilR are homotopic if @=¢' and
if there is a - biequivariant map a of degree +1 with aoso and
davod -mg*' -0,

We now consider BoRCW . We say that a space X is a twisted R~
space if X is a complex in (W for which the universal covering is
an R-ipacc, that is nnx-nni = nnf(@R , 22 . Lat CWR be the full
subcategary of . (0 consisting of twisted R - spaces. Then we have the

canonical. equivalence. of categories:



(30)

(31)

HORGU ~ HoRCWR = CWR/“ .
The equivalence is induced by the inclusion CWR cCw.

ko:eova:, let vFAR be the full subcategory of DAR consisting of
chain algasbras A for which the underlying algesbra is a free associative
algebra the generators of. which have augmentation O , we writa A= (T(V),
d) where V is the set.of generators of A . We introduce the notion

of homotopy on DFAR as follows: Two maps f£,g: A—>» B are homo-

topic if there is amap a: A > B of degree 1 of the underlying

graded modules with

ad+dax = g- £

alxy) = (ox) (gy) + (=1) '~ (£x)(ay) .

Bomotopy ‘o is a natural. equivalence relation on DFAR .

Theorem: We have the canomical equivalence of catagories

HaDAR ~ HoDFAR = DFAR/u .

The equivalence is induced by the. inclusion DFAR c DAR . This result
seemsbe known only in case R 1is a field, see [6]. It is in fact

available if R is a principle ideal domain.

By. use of the equivalences in. (28),(29),(30) and (31) we can replace
all categories. in diagram (20) by hamotopy categories. This is important
for computations, in particular the chain algebra C,(X®R can be re-
placed by a free chain algebra A= (T(V),d) with a small number of

generatorss



(32) Theorem: ﬁet X be a (W-complex in (W with cellular chain complexes

CeX . (Here C'nX = Hn( VP & -1) t8 the free abelian growp generated
by the n—-cells of X .) For

7’

slex eslox , n=o
v =< - =
n = 6'1X X 6'2)( , n=1 ,
-1
\s Cn+1X , n=z2

there is a differential d on the tensoralgebra T(V) such that

the chain algebra A= (T(V),d) is equivalent to C,QX 1in HoDAz .

This result shows that theorem (25) and (26) can be used for explicit

computations.

Theorem (32) is known for the special case that X has trivial 1-
skeleton X' =% - Then we have C,X=0 and V=s-1'5,,,(x) , and the
differential of the theorem is the one constructed by Adams and Hilton
in [1]. The method of Adams and Hilton relies on the Moore comparison
thecrem for spectral sequences which is not available in. the non simply
connected case. Our proof of theorem (32) is totally different and uses
a new technique. All details and many more facts related to the results
above.will be contained in my forthcaming book 'On the hamotopy classi-

fication problem®.
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Chapter C: The homotopy theory of chain algebras

Introduction:

In the first part, chapter C1, we show that the category of chain al-
gebras is a cofibration category and we discuss the basic homotopy theory
in this category. In particular, we consider homotopy groups and homotopy
groups of function spaces for chain algebras. These groups are related to
the hamology of the chain complex of derivations, see (C1.§ 6) . The arqu-
ments and constructions in this chapter are to some extent typical for the
homotopy theory in vﬁrious algebraic categories, compare the examples in
(x.§5) .

In the second part, chapter C2, the homotopy category of chain algebras
is approximated by a tower of cateéories in a similar way as this was done
in chapter A for the hamotopy category of (W -complexes. Therefore, many
results of combinatorial homotopy theory are now available for chain al-
gebras. It turns out that twisted cohomology for chain algebras is the
same as the Hochschild cohomology. The Whitehead theorem for CW -complexes
corresponds to the result that a map f: A ——>» B between chain algebras
{with HOA and HOB free as modules) is a weak equivalence if and only
if the induced map between the Hochschild homology groups is an isomorphism,
see (C2.2.18). Moreover, we will see that the theory on finiteness ob-
structions of C.T.C. Wall [8] for CW - canplexes has a strict analogue for
chain algebras. This result is based on model constructions, in particular
minimal models are constructed (these generalize those in [2], see (C2.§9)).

We point ocut that in the literature homotopy theory of cnain algebras usu-



~ii-

ally considers only connected chain algebras. Most of the results here alsc

deal with chain algebras which are not connected.
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§ 0 dotation

Let R be a fixed principal ideal domain of coefficients with unit

l1€eR .

A (graded) module V is a sequence of R -modules, V= {Vn :n€z} .
V is free if all Vn are free R -modules and of finite type if all
Vn are finitely generated R -modules. An element x€V has degree
x| =n iff x€V . Amap f: V—> V' of degree r (r€z) isa
sequence of R~ linear maps f_ : V. —> V » N€EZ . A graded module

n n n+r

V is positive ‘if Vnao for n<oO .

A chain complex V 1is a positive module V with a map d:
V —> V of degree -. satisfying dd =0 . The homology HV is the
graded module kernel d/image d . A chain map £f: V —> V' is a

map of degree O with df=fd . f is a weak equivalence if f in-

duces an isomorphism f_: HV 2 HV' in homology. We consider a graded

module as being a chain complex with trivial differential d=0 .

We denote by * the trivial chain complex which is R in degree

0 and is 0 in all other degrees. An augmentation is a chain map
€ V > » v denotes the kernel of ¢ and HV=fAV is the re-
duced homology. An augmented chain complex V is pointed if we have
achainmap i: # —>V with ei=1 . Amap f is pointed if

fi=i and ef=¢ .

The direct sum of chain complexes M and N is M eN , (M@ N,

=z Mn @ Nn » with the differential d(x+y) = dx+dy for xGHn .



yENn . Clearly, H(M®N) = HM @ HN . For a pointed chain complex V

we have V=# @ V .,

The tensor product M @ N of chain complexes is given by

"
®
=
-
=

(M8 N)
(0.1) r+s =n

d(x®y) =(dx) 0y + (-l)lxlx 8 dy .

Here @ is the tensor product of R -modules over R . For the differ-

ential d on MO N we also write d=c16:I.N+:|.MGd,(1=lM

denotes the identity of M ). Here we use the Koszul convention for

signs, namely, the interchange isomorphism

(0.2) T: MO8N—>NOM

is given by T(x 8 y) = (-l)lxl Iy'y,& x and any calculation which
involves the interchange map will be made accordingly. For instance

(18d)(x@y)-= (-l)lxlx 8 dy since d has degree -1 . We have

(0.3) j: HV @ HW —> H(V 8 W)

by j({x} 8 {y}) = {x 8 y} . Here {x} €EHV denotes the homology class

represented by the cycle x . The homomorphism 3 enters in the Kin-

neth formula.

(0.4) Definition: A (graded) algebra A is a positive module A together
with amap U: A ®@ A ——>» A of degree O and an element 1€A°
such that the multiplication x:-y = u(x ® y) is associative and 1
is the neutral element, (1-:-x = Xx. 1= .x). A (non graded) algebra is a

graded algebra A which is concentrated in degree O, that is AO-A .



Amap £: A —> B Dbetween algebras is a map of degree O with

f(1)=1 and f£(x-y) = £f(x) - £f(y) . An augmentation of an algebra A
is amap e€: A —> #* Dbetween algebras. An augmented algebra is pointed

by i: # —> A , i(1) =1 . The quotient module
QA = K/K-R

is the module of indecomposables of A . Here XA :A is the image of
w: A 8% —> X . Amap f: A —> B between algebras with efze¢

induces a map Qf: QA ——> QB between modules.

V4
D.5) Definition: For a graded module V we have the tensor algebra
V) = @ v
n&0
&n _ . 80 _
where V =Ve...0V is the n-fold product, V=R . We have
inclusions and projections of graded modules
von — (V) ——> v,
n n
The tensor algebra is an algebra with multiplication given by
von 8 v - Ve(nm) . The algebra is pointed by i:io » €3p, . We
clearly have QT(V) =V . For amap a: V—> W of degree 0O let
T(a): T(V) ——> T(W)
be given by T(a)(xla sxn) = axls Oaxn . Then QT(a) = a . /

6) Definition: An algebra A is free if there is a submodule VCA

with the following properties:



(1) V is a free module.

(2) The homomorphism T(V) —> A of algebras given by VCA is

an isomorphism.

In this case V generates the free algebra A . If E is a
basis of V the free monoid Mon(E), generated by E, is a basis of
the free R-module A . Moreover, the composition VCA —> QA is

an isomorphism of free modules.

We say, an algebra A 1is connected if A°==R is the coefficient

ring.

(0.7) Lemma: Let F: A —> A' be a homomorphism between comnected free al-
gebras, then F <8 an isomorphism i1f and only 1f QF: QA —m> Q4'

'i8 an isomorphism.

Proof: We can use an inductive argument over the degree. The assumption of

connectedness is crucial for the direction '<&' . 0

For algebras A and B we have the free product ALB which is the

push out of A € * > B in the category of algebras. Such free
products exist. In particular, the free product BIUT(V) of B with

the free algebra T(V) is given by

(0.8) BUET(V) = Be (ve )

1120
Here the multiplication is defined by

(aoevle...OvneaanOOwls...Gmebm)=

aosle... Ovno(an'bo)sw a...meobm

1



with a; .bjEB and vs ,w].ev . The product an'bo is taken in the

algebra B .

If B is augmented by €g: B —> # we obtain the augmentation
€: BIT(V) —> # by e(b) =eB(b) for DEB and e(v)=0 for

vEV .,



(1.1)

(1.2)

§ 1 The category of chain algebras

Definition: A chain algebra A 1is a graded algebra A together with

a differentiai d: A—> A of degree -1 and an augmentation e:

A —> # such that

(a) A ,as a module,is a free R -module,

(b) (A,d) is a chain complex,

(¢) € 1is an algebra hmdnorphism and a chain map,

(d) the multiplication u: A ® A ——> A is a chain map, that is
dlxey) = (a0y + -1 *lxcay)

Amap f: A —> B between chain algebras is a map of degree O with

f(1)=1, efze , df=fd and f(x'y)=fx-fy . Let DA be the category

of chain algebras and of such maps. i

The trivial chain complex # 1is also a chain algebra which is the

initial and the final object in the category DA of chain algebras.

The homology HA of a chain algebra A 1is an augmented algebra

with the multiplication

HACHA——;——)H(AOA)——“-—)H(A)
» .

and with the augmentation €, HA —> H# =% . The unit in HA is



1=(1}€H A . Moreover, the homology HA in degree O is a (non graded)

algebra with augmentation ¢, .

(1.3) Definition: We say a chain algebra A is free if A is free as an aug-

mented algebra, see (0.5) and (0.6). /

We now introduce the structure of a cofibration category for DA .

(1) Amap f: B——>A in DA is a weak equivalence iff f induces

an isomorphism f : HB ——> HA in homology.

(2) Amap B—> A in DA is a cofibration if there is a submodule

V of A with the following properties:

(a) V is a free module with €(V)=z0 .,
(b) the homomorphism BHUT(V) == A of algebras, given by B—>A

and VCA, is an isomorphism of algebras.

We call V a module of generators for B>—> A .

Remark: A chain algebra A is free iff # —> A is a cofibration.
Thus the subcategory of free chain algebras is the category (DA) o °f
cofibrant objects in DA . Clearly, V in (2) is free by (1.1)(a) since

R 1is « principal ideal domain. /

1.4) Theorem: The category DA with the structure (1), (2) above

18 a cofibration category in which all objects are fibrant.
Proof: The composition of cofibrations is a cofibration since we have

(BUT(V))UT(W) = BU(T(V)UT(W)) = CIT(VOW) .



Thus the composition axiom Cl is clearly satisfied. The push out axiom

C2 is proven in § 2. Axiom C3 is proven in (1.5) below and C4 is proven

in§4. | ' D

Remark: In fact, most arguments needed for the proof of (l.4) are im-
plicitely contained in the paper of Adams and Hilton [ 1]. Since, how-
ever, these arguments are quite hidden in the context of [ 1 ], we prefer

to give a complete proof of (1.4) in the following sections.
The following proposition is the factorization axiom €3 in DA .

(1.5) Proposition: Let f: B ——> X be a map in DA . Then there exists a
cofibration i1 and a weak equivalence g with f=gi: B >—> A

—~—>x.

(1.6) Definition: We call a cofibration BCA = BI T(V) a simple cofibration

if the differential has the property dVCB . In this case we write

A = B[v] .

(1.7) Lemma: For a cofibration BCA there is a filtration

Bca®calc.....ca

of simple cofibrations B C A° and 4% C A**! (i20) with A=1lima®.

Proof: For A = BIT(V) let V- ={x€V:|x|si} . Then a*=BUT(V})

i+l - Al[v.

is a chain subalgebra of A with A i ﬂ] . 0

(1.8) Lemma: Let B be a chain algebra with differential dB and let V be
a positive module. For a homomorphism d: V —> B of degree
-1 with dgd = O there existe a unique differential dy om A=
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BUT(V) which extends d such that BCA ie a simple cofibration.

Proof: Clearly, by the derivation formula there is at most one dA . Also

d, is well defined since the derivation formula is compatible with the

A
associativity law, that is

d(xy) 'z + (-l)lxylxydz

"

d((xy)z)

(dx)yz + (*1)|x'x d(yz)

d(x(yz)) . 0

Lemma (1.7) and (1.8) yield an inductive construction of cofibra-
tions. This is useful in the construction of the following

proof.

Proof of (1.5): We construct inductively simple cofibrations

B=atca®c...climat=a

s . al ) n
and extensions &,* A" —> X of f such that gn’. HiA — aix
is an isomorphism for i<n and is surjective for i=n . This is true
for n=-1 . Assume we have constructed g, - Then we choose V=Vn+1
and d such that ( Z denotes the cycles)
: n n

v "-"d—') (za™) n -—p->> HnA

maps surjectively onto kemel(gn). . Therefore we can choose g' such

that

n
n n
. &
d d
*
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commtes. Now g' yjelds the map
g': A =A"IT(V) —> X
of chain algebras which extends g,

Clearly, HiA' = HiAn for i<n . For i=n we have HnA' = (ZAn)n/

d'A'm_l where

v - al n n n
d'An'l-l AR_._IOAOOVOAO——>(ZA )n

as follows by (2.1). By construction of V- the map pd' maps surjectively

an .

nt

onto kernel Eow * Therefore g' induces the isomorphism H I,‘A'

Now we choose W =Wn+ and g" such that the composition

1

1"
W—>—E (ZX) , ——> H X

is surjective. We set dW =0 . Then the extension

n+l '
n+l ( )

of g' given by g" induces an isomorphism B8 .1 for isn and

a surjection H

n+18n+1 * 0
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§ 2 A _spectral sequence for cofibrations

and the push out axiom

We first observe that for a cofibration i and a map f there

exists the push out diagram in DA

i . v -
A > X = AU_Y
(2.1) i Ii
B f 5y

where i is a cofibration.

Proof: By (1.7) it is enough to prove the existence of the push out
(2.1) for a simple cofibration B>—> A =B{V] . For such a cofibration

we define

Xx=Y([v] » dy=£d,: V > B >y ,

see (1.8). 0

For the proof of the push out axiom €2 in DA it remains to show:

(2.2) Proposition: If f i8 a weak equivalence them f in (2.1) i8 a weak
equivalence.

(2.3) Remark: By (1.7) and a degree argument it is enough to prove (2.2) for
a simple cofibration i in (2.1). This simplifies the spectral sequence
below a little bit.
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Por the proof of (2.2) we use the following spectral sequence of a
cofibration: Let B >-——»-A=B UT(V) be a cofibration generated by V .

We introduce the double degree Ix|= (p,q) of a typical element

x=bvb ...vbhb €A
] nn

171

n n

by p= X lvil and gq= L lbil , compare (0.8).
i=1 i=0
Let A a be the module of elements in A of bidegree (p,q) and let
r
(2.4) FA= o A .

isp i,3
j0

The modules FPA form a filtration of subchain complexes in A which is

bounded above since An < PnA . This yields the spectral sequence

{B: qA,dn} which converges to HA . We obtain the E1 - term as follows:
1[4

We have

O
E = (FA/F _A)
p.q (p/p-l

= A .
ptq Prq
Using the interchange isomorphism T we get

e (VN b @ @@ (1)

n20

A =

p.q )q ’

compare (0.8). Moreover, the differential a® is given by the commutative

diagram

plq nzo q
a° ® 1ga,
n20
\!
o ~ n @ (n+t)
E T o (PN g (8 ) .
T R P q-t

Here 4  is the differential on 2% (n+1)  getermined by the differential
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on B . Since V is a free R-module we derive

1 o o
(2.5) Ep'q H(Bp'q,d )
T o v°" on g® ),
nz0 P 19

We now use the comparison theorem for spectral sequences for the proof of
(2.2). Since (2.1) is a push out diagram we have X=YUT(V) and f£(u) =v
for vEV . Therefore f induces a map between spectral sequences such

that for the 21 ~ term the following diagram commutes:

1 ~ Gn e (ﬂ+1)
AT o ]
EP'Q nz0 v )P Hq('B )
{
(2.6) g, o 108 (2 ),
: n20 1

el x= 0 v°" on (® 0H),
P q

e no
Since f is a weak equivalence we know that £, in (2.6) is an isomorphism
by the Kinneth formula. Now the comparison theorem shows that also £y:

HA S HX is an isomorphism and (2.2) is proven. 0
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§ 3 Cylinders

In a cofibration category we use the

of a cylinder I_A of a cofibration B >—>A . In the category DA

B
.we have. an explicit construction for such a cylinder:

(3.1) Definition: Let B >—> A be a cofibration in DA . We define a cylinder

AULAr—rr—> 1A > A
B (10,11) B P

as follows: As in (3) of (1.4) we choose a generating module W of the
cofibration BCA so that A=BIT(W) . The underlying algebra of IgA
is

(1) AzBUT(W' @W" @sW) .

IB
Here W' and W" are two copies of the graded module W and sW is

the graded module with (sW) n > wn-l . We define i  and i, by the

identity on B and by

3 - t 3 - "
(2) ix=x', ix=x for x€EW .

Here x'€W' and x"€W'" are the elements which correspond to x&€W-=

W' =W" . Moreover, we define p by the identity on B and by

px' =px"=x for x'EW' , x"EW' ,
(3)

p(sx) = 0 for sx€sW .

The differential d on I_A is given by

B

dx' =idx , d4dx" = i dx
(W) { o 1l

dsx = x" -~ x' - Sdx .
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where XEW , Here §: A ——> IBA is the unique map of degree +1 bet-

ween graded modules which satisfies

r
Sb =0 for DbEB ’

(5) { Sx = sx . for x€EW s

\ S(xy) = (Sx)y" + (-1)'xlx'(8y) for x,yEA .

(3.2) Lemma: (a) The mp S 18 welldefined by (S).

(b) The differential i8 welldefined by (4) and (5) and satisfies
dd=0.

(¢) The inclusions ia, t, satisfy

1:1-1:0 = 5d+ds

(d) 1:0,1:1 and p are chain maps with pio=pi1 = identity.

(e) (ia,il) 18 a cofibration and p <8 a weak equivalence.

By (d) and (e) we see that I,A is a factorization of the folding
map (1,1): AUgA —> A . Thus, IBA satisfies the conditions for

a cylinder in a cofibration category, compare axiom C3.

Proof: For (a) it is enough to check,by (0.8),that S is compatible

with the associativity law of the multiplication, that is

S((xy)z) = S(x(yz)) =
= (Sx)y"z" + (-l)lxlx'(Sy)z" + (-l)lxl"'Ilevyv(sZ) .

Moreover, (b) follows from (c). Now (c) is clear on B and on w€W

we obtain (c) by



(3.3)
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Ade-l-dSw = Sdw+dsw = (W' -w') ,

see (4) in (3.1). Assume that (c) holds on x ,y€A . Then (c) holds on

the product x°y since

Sd(xy) +dS(xy) =

(Sdx +dSx)-y" + x'(Sdy +dSy) =

(x" - x' )yn + xa(yn _yt) = xnyu -x'yt

Moreover, (d) is clear since pS=0 by (5) in (3.1). By definition in
(1) of (3.1) we directly see that (io,il) is a cofibration. It remains

to prove, that p is a weak equivalence, see (3.5) below. 0

Definition: Let BCA be a cofibration and let f,g: A —> X be maps

between chain algebras. We say £ and g are DA -homotopic relative

B if le z E‘B and if there is a map

H: IgpA —> X

of chain algebras with f=Hi ,g=Hi, . Wecall H a DA - homotopy

from £ to g rel B . Equivalently we call the map
a=HS: A —> X

of degree +1 a DA -homotopy from f to g (rel B) , since & determines
H.Amap G: A —>» X of degree +!1 is given by a homotopy H iff

the following holds:

(1) a(b) =0 for bLEB ,
(2) ad+da = g-f .

(3) a(xy) = (ax)(gy) + (-1)|x|(fx)(ay) .



(3.4)

(3.5)
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By (2) we see that a DA -homotopy is a chain homotopy. Theorem (1.4)

implies that 'DA -homotopic rel B' is actually an equivalence relation.

Lemna: Assume the cofibration B >——» A =Bu T(W) u generated by W .
Then a mp a: A —» X of degree +1 i8 a DA -homotopy from f to
g tf (1) and (3) in (3.3) hold and tf (2) in (3.3) <8 satisfied on

generators weENW .

Proof: We prove inductively that (2) in (3.3) is satisfied. Assume (2)

is satisfied on x and y , x,y€A , that is
adx +dox = gx - fx |,
ody +day = gy -fy .

Then (2) is also satisfied on x-y since we have

od (xy) +da(xy) = a((ax)y +x(dy)) +d((xx)gy + (£x)ay)
= (adx +dox) (gy) + £x(ady +day)
= (gx - fx)gy + fx(gy - £fy)
= gxgy - fxfy = g(xy) - £(xy) .

"0

Here we set x= (-1)

Propesition: p: ng —p A 18 a weak eéquivalence.

Proof: By the following argument it is enough to prove (3.5) for a simple
cofibration B >——» A . We consider the following diagram with notation
as in (1.7):
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=]
el
4

I n_lAn — An
A

IBA
A
1) l push

n-1 An-l

4
()
v

Here Pn’Pl; is the projection p of IBAn . Agssume (3.5) is true for
all simple cofibrations A" >—3 A" . Then we see by (1) .inductively
that P, is a weak equivalence for all n . Here we use the fact that (1)
is a push out diagram and that p is a weak equivalence if P, is one

by (2.2). We now prove (3.5) for the simple cofibration
B>—>» A=sBUTW) , AW <B.

In this case the differential on IBA is given by

(2) dsw = w" -w' ’

compare (4) and (5) in (3.1). For ioz A>—>IA we have pi°=1A . On

the other hand we construct a DA - homotopy
(3) o: IBA —-—)IBA y & 1 iop ’

from the identity 1 on IBA to iop . This shows that p is a weak

equivalence. We define a on generators w',w" and sw (WEW) by

asw = O v
(4) aw' =0 ’

qw" = sw ,

and we set a(b)=0 for bE€B . Then (2) in (3.3) is satisfied on genera-

tors of the cofibration B >=—>» IBA since we have



(5) dx(sw) +ad(sw) = O+ Q(w"” - w’)

= gw=-0= (1 -iop)(lv) ’
(6) da(w') +0d(w') = 0 = (1"109) {w') '

(7) ac{w”) +ad (w") = dsw+0

=Y ey = (l-i.op) (w*) .

Now (3.4) shows that @ is welldefined by (4). 0
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§ 4 The relative lifting theorem

We consider the diagram in DA

B > X
A
Vd
Ve
1 /,f ~Pp
7~
Ve

A B >y .

(4.1) Proposition: Let i be a cofibration and let p be a weak equivalence
and let pf=gi . Then there exists f such that if=F and such
that pf and g are DA-homotopic relative B .

' (4.2) Corollary: Each object in DA is a fibrant model and therefore the axiom
on fibrant models, (C4), is satisfied in DA .

Proof of (4.2): Consider in (4.1) the case where f£=1 and g=1 and

p=1i. 0

Remark: By (II.1.11) we know that (4.1) is actually a consequence of the
axioms (C1),...,(C4). Thus it would be enough to prove (4.2). The proof

of (4.1) however is conceptually as simple as the proof of (4.2). /
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Proof: We construct f and the DA-homotopy a: pf = g inductively.

Let W' = {x€W: |x] Sn} . Then we have the filtration of cofibratioms
B=A"l ca®cC ... CA=BIT(W)

where A" = BUT(W®) . We define £ : A" —> X and DA~ homotopies

a: pfn = glAn =g, as follows:

For n=-1 let f_; =f, a_
fined and let a be an element in a basis of “n .
by

J.=0 . Assume now fn and an are de-

L - Then da€a” and

and + dc:v.n 8, " pfn

we have

pfn(da) gn(da) - dun(da)

z d(gﬁﬂ(a) - a (da)) .

Since p is a weak equivalence there is x€X with dxzfn(da) .
Moreover, gnﬂ(a) -Gn(da) -px is a cycle in Y . Thus there is a

cycle z€X and an element y€Y such that
pz+dy = gn+1(a) ~anda-px .

We now define the extension fn-t-l of fn by fn-rl(a') = x+z and we

define the extension a1 of a by a n+l(a) = y . Thus we obtain

dfn+1(a) = dx = fn(da.) z fn+1(da)

gm.l(a) -pfml(a) = gm_l(a) -p(x) -p(2)

=dy+ada=da . (a)t+ta .da) .

n+l a+l
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Therefore %4y is a DA-homotOPy relative

B from &y41 to pf
We set f=1ip fn

n+l °*
and a=1lim g

g
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§ 5 The cylinder functor

The cylinder in the category DA which we described in (3.1) {s
natural in the following sense. A pair (A,B) in DA 1is a cofibration

B>—> A in DA and a pair map f£: (A,B) —> (X,Y) is a commutative

]

in DA . Such a pair map induces the map

diagram

£ -
ey r—————
ﬁ

1) If: IBA —— IYX

as follows: Let A=BIUT(V) . Then we define

-
( If)ioa = iofa for a€A
() { (If)ila = ilfa for a€aA
L (If)svy = Sva for veEv.

Here S, =S: X ——> I.X is the map of degree +1 in (3.1)(5).

.2) Lemma: There i8 a unique map If in DA which satisfies () above and
we have

(nn) (If)SA = Sxf .

Proof: Clearly, there is a unique map between algebras which satisfies
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(#). We now check (#*), On bEB equation (#*) is true since SAb =0
and since for fbEY also Sxfb =0 . Moreover, by definition,(##) is

true on vE€V . Assume now (#*) is true on x,y€A . Then we have

(If)S(xy) = (I£)((Sx)y" + (-1)|x|x'8y)

((I£)(Sx)).(£y)" + (—l)lxl(fx)’-((lf)(sy))

Sf(xy) ,

compare (3.1)(5). This shows that (#*) is also true on xy and thus (#*)

is proven. From (#*) we derive that If is a chain map:

(If)d(sv) = (If)(v" -v' -Sdv)
= (fv)" - (fv)' - Sfdv
= ds(fv)
= d(If)(sv) s
compare (3.1)(4). Now lemma (5.2) is proven. a

:5.3) Corollary: For a composition of pair maps fg: (D,E) —> (A,B) ——> (X,Y)

in DA we have
(nan) I(fg) = (If)(Ig) .

Proof: Let D=Ey T(W) . Then we have for wEW

(I£)(Ig)(sw) = (If)(Sgw)
= S(fgw) by ()
= (I(£g))(sw) by (%)

.5.4) Corollary: The cylinder IA of a cofibration B >—> A in DA <is
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welldefined wp to canomical isomorphism.

Proof: The definition of I,A in (3.1) depends on the choice of ge-
nerators V for B>——p A . Let V' ba a differsnt choice and
let I!"A be the cylinder given by V' . Then we have the canonical
isomorphism in DA

< s
Il: IBA —— IBA

which is induced by the identity on A . That Il is an isomorphism

follows from the functorial property in (***), 0

The cplinder functor (S5.1) is compatible with push-outs as follows:

Let

IBA IYX
5.5) push

rsa—-——g-—-»:"x

is also a push out diagram.
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Proof: Let A = AJ|T(W) . Since for WEW we have
(IF)sw = S(fw) = Sw = sw
we derive (5.4) from the construction of a push out in (2.1). 0

Let B be an object in DA . Then we have the category (DA)E

The objects of this category are the pairs (A,B) in DA , the maps
are the maps under B in DA . We - obtain by (5.3) and (5.4) a

functor

I: (DA)E ——s (04)B
C (o4

with I(A,B) = (IBA,B) . We say amap £: (A,B) ——>» (A',B) in
(DA)z is a cofibration if f: A ——> A' 1is a cofibration in DA .
The initial object of (DA)i is the pair (B,B) given by the identity

of B . For this structure of (DA)? we have the

(5.6) Proposition: The category (DA)g 18 an I -category in the sense of
§3 in chapter I.

In particular the full subcategory of free objects in DA , namely

*
(17A)c = (I7A)c is an I -category, see §O of the following chapter.

Proof: We have to check the axioms (Il),...,(I5). (Il) is obvious by
(*%%x) and (I2) follows from (5.5). Now (I3) follows from (1.4) and
(I1.4.10}. Moreover, (I4) is clear by the definition of the cylinder
in (3.1). The interchange axiom (I5) follows by (1.4), in fact, by (4.1)

we can choose a lifting T for the diagram



T
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~ T
-~
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IgIgA 5T > A
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(6.2)

(6.3)

(6.4)
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§ 6 Homotopy groups

Let B>—> A=BIUT(W) be a cofibration in DA and let u: B ——> U

be a map in DA . We denote by
DACA, )"

the set of all maps A ——> U which extend u . On this set we have

the homotopy relation rel B in (3.3) which is an equivalence relation.

This gives us the set of homotopy classes
u w

[A,U]" = DA(A,U) / (= rel B)
If B=# and A=T(W) is free,we set

[A,U] = DA(A,U) /(= rel %) .
We denote by ({x} the homotopy class represented by x .

For the cylinder
IA = BUT(W' 0W" 0 sW)

in (3.1) we have the homotopy addition map

m: IBA — IBAUAIBA = D2

see (II.2.5). Here we have
DZ = BUT(W' aW" W™ eswo oswl)
with W':H":W"':Hozw =W .

1

There is no explicit description of the map m since this map depends

on the differential of A .
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i"l .

1)

(2)

(3)

(4)

We describe the following inductive construction of the map m .

The map m in (6.4) is a homotopy i'=i"' of the inclusions 1i°',

M: A —> D2 with

M(b) = 0 for bEB,
m(sw) = M(w) for we€W ,
Md +dM = i -1 s

M(xy) = (Mx)y"' +(-1)|xlx'(My) for x,y€A .
On the other hand we cbtain from the canonical inclusions

jgriy: Igp —> DZ

jow' =w, jow" =w, josw = 8w

J‘lwl = w" , jlw" = W"' R jlsw = swl
the homotopies

So = JOS ’ Sl = jls: A ————> D2

where S is defined in (3.1). These homotopies satisfy

(5)

The

(6)

in-4

S d+ds
o o

AL

Sld +d$1

refore we have the operator

which satisfies the following equations:

A —» DZ ., Therefore m is given by the homotopy (see (3.3)):
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(7) dM +Md = 0
(8) M(b) = 0 for bEB
(3) M(xy) = (Mx)y™ +(-l)ix|x'(ﬁy) +(S°x)(y"' -y") -

(-1)”‘|<x~ -x(8,y) .

We now construct M inductively: Let vEW be given with [v|=n
and assume we know M(w) for all WwEW with |w| <n . Then by (9)
we have a formula for Mdv. By (7) this element is a boundary Mdv =

dg . We choose such a £ and we set

(10) Mvz-£ , Mv = S°v+Slv-£ .

(6.6) Example: We consider the example which in topology corresponds to a

product X = Sn+l x Sm"'l

of two spheres (n,m21). Let v,w and vxw
be elements of degree n,m and n+m+1 respectively and let A(X) =
T(v,w,vxw) Dbe the free chain algebra generated by these elements with

the differential

dv = dw = 0 and for [v,w] = vw-(-l)nmwv let

(1)

d(vxw) = (1) [v,w] .

We construct M on A(X) . First we set Mv=Mw=0 . Since dSov = v -y

and dS.w = w"' -w" we obtain from (9) in (6.5) the equation

1
ﬁ(vv;) = (S =wh) = (1) (v - v )(S W)
= (-1"a((s v) - (s,9))
Similarly we get
MGr) = (1™ ac(s w) (5, 9))
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Therefore we see that Md(vxw) = df with
- _1y(n+1)(m+1)
(2) -§£ = (SOV)(SIW) + (-1) (So")(slv) .
Now we can define M by

My =S v+S.v , Mw =S w+S_w
o o

1 1

M(vxy) = So(v x w) +Sl(v xw) +(sov)(slw) +
(-1)(P*1)(m+1)

(Sow)(81V) . s

For amap u: A —> U we consider the homotopy groups of function

spaces (n21)
(6.7) “n(UA'Bs“) = [agA:q]u ’

compare (II.§6,§10). We know that n, is a group and that LI

for n22,is an abelian group. For n=1 the group structure on n,

is induced by the comultiplication m on ).'.BA which makes the diagram

I A > IAU, TA
P pUp
EgA m > LgAU LA
il I
AULT(sW) An'r(swcoswl)

commutative. Here p is the canonical identification map with pw' =

pw''sw , psw = sw for w€W , From (III.7.10) and (C2.0.7) we derive:

'6.8) Theorem: Lgt B >—> A = BUT(W) be a cofibration and assune W 1is finite

dimenstional. Then NI(U“B,I() i8 a nilpotent growp.

From the dsfinition of QA ve derive:
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n
(6.9) XB

A=BUT(Wes'W) = auT(s"w)
The differential d on ZgA (n21) is given as follows. Let

(6.10) s": A —> ):;A

be the map of degree n with

s™b

"
o

for beB ,

Snw = snw for WwEW ,

xlx-(Sny) for x,y€A

Sn(xy) = (s"%)-y + (-l)rll
Then d is defined on W by dA and on s"W by

(6.11) gsnw = (-1)%"aw .

One easily checks that this is compatible with the definition of Z.BA

in chapter II, § 5.

If B=# (and A=T(W) is a free chain algebra)we define the suspen-

sion IA by the push out

L A-———————>TFA

B > &

or equivalently LA=Z A/ A , compare (2.4). We derive from (6.11)

IA = (T(sW),d) with

(6.12)

d(sw) = —sde for wewW

Here dQ is the differential on QA=W , see (0.6). Clearly, the n-fold

suspension is



(6.13)

(6.14)

£ = A/ A= (T(s™W),4)
with ds"w = (-l)nsndqw .

The homotopy set [Z"A,U] has a group structure which we obtain

as a special example of (6.7) since we have

[£,0] = (=Pa,0]°

where O0: A > » > U is the trivial map. The following example

shows that the group [LA,U] ,in general, is not abelian.

ntl sm+l) be the chain algebra of (6.6). Then we

Example: Let A =A(S
have for x=sv , y=sw , z=3(vxw) the degrees |z| = |x| +|y| , see
(6.6). Moreover, LA =T(x,y,z) has trivial differential and the comulti-

plication

m: LA ——> FALZA = T(xo,x],yo,yl,zo,zl)

is given by

me = x+X, .
(1) 4 BY =Y YL
" -nlxllyl
kmz-zc,1~zl+x°yl-c-( 1) Yo*y

For the homotopy set (see (6.19) below)
(zA,U] = H, ,(U) xH (U) xH (u)
’ | x| Iyl |x|+]y]
we obtain by (1) the multiplication + :

(2) (ao’ac’Yo) + (QIOBIQYl) =

(ao +a1130 "'31’?0 _*71 *aos1 + (-1)"“ 'ylﬁoul)
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Here aoﬁl and Boa are products in the algebra HU.

1
The commutator of the elements
a =(a,0,0) , B=(0,8,0) €[£A,U]
is by (2) the element
(3) -a-B+a+B = (0,0,[a,B])
Thus, if the Lie bracket

[asB] = a*B - ('l)lal lBIB‘u

of the algebra HU is not trivial, the group [ZA,U] is non abelian. /

By use of derivations there is an alternmative description of the homo-~

topy groups in (6.7) and (6.13).

(6.15) Definition: Let BCA be a cofibration and let u: A —> U be a

map in DA . An (A|B,u) -derivation of degree n (n€Z) is a map

F: A—> U
of degree n of the underlying graded modules such that

(1) F(b) =0 for bEB

(2) Flxy) = (Fx)(uy)+(-l)nlxl(ux)(1-"y) for x,y €A
The set of all such derivations:
(3) per_ = Der_(0AI%,0)

is a module by (F+G)(x) = (Fx)+(Gx) . We define a boundary operator
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() 3: Der ——> Der _,

3(F) = Fed - (-1)"d°F

where d denotes the differential in A and U respectively. One

easily checks that 3(F) is an element of Dern_ and that 233 =0 .

1
Thus we have for all n€Z the homology

(5) #_Der (*12,u) = ker(3) / in(2)

of the chain complex of derivations. ' Vi

(6.16) Proposition: Let BCA=BU T(W) be a cofibration in DA . Then we have

for n21 a canonical bijection
rtn(UAIB,u) = Hnbcr’(lfqla,u) .

For n22 this is an isomorphism of abelian groups.

Since for n=1 the example (6.14) shows that n, needs not to be

_ 1
abelian the bijection in (6.16) cannot be an isomorphism of groups for

n=1 . It is an interesting problem to compute the group structure of

“10

Proof: Let A(}:gA,u)“ be the set of all algebra maps
- n
F: A —> U

between the underlying graded algebras with ?l A SU - We have the bi-

jection

(1) A(::A.u)“ = Der_

b L]
al
.l'l’
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with §" in (6.10).Now F is a chain algebra map (dF=Fd) if and

only if 3F=0 , Therefore (1) gives us the bijection (see (6.1))
(2) DA(Y.nBA,U)u = kernel (3)
It remains to show that for
- = n u
Fl,pze DA(T pRU)
we have

with 3G =F,.~F

. - -
*) F,2F_rel A o 3G€De:c.'n+1 2 '

1 2

Then clearly (2) gives us the bijection in (6.16), see (6.1) and

(6.7).

Now a DA-homotopy G from F, to f‘z (rel A) is given by a map

of degree +1
G: X“BA —_— 0

with (see (3.4)):

(3) Gx =0 for x€Aa,
(4) Gad+ 4G = F2-F1 ’
(s) ey = @0 E + -0 E 0@

for x,y€ }ZnBA . Therefore the map
(6) G = Gs"

is of degree n+l1 and satisfies by (6.10)

(7) Gb=0 for bEB ,
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(8) Glxy) = G((s"x)y + (-1 1Xlx(s%yy)

(n+1) Ix}

= (Gx) (uy) + (-1) (ux) (Gy)

for x,y€EA . Here we use (3) and (5). By (7) and (8) we know that

GE l)e:lrm_1 . Moreover, by (4) and (6.11) we have for vEW

(9) 3G(v) = Gs%av - (-1)™1ags?y

(-1)%Gas®v + (-1)"ags"v

(-1)“(52-51)s“v

n
(-1)" (@, - F)) (V)

Therefore 3(-1)"G = Pz-rl . The other direction of (=) can be proven

in a similar way.

It follows from (6.23) and (6.22) below that the bijection is actually

an iscmorphism of groups for nx2 . 0

(6.17) Definition: For chain complexss V,W let
Bomn = Bonn(vm) (n€EX)

be the module of linear maps of degree n from V to W . Let

H Bomn —p Bcunn__1 be defined by
of = £4 - (-1)"ar .
Then, sincs 33 = O , we have the homology

Bnaon,, (v,.w)

of the chain complex (Hom,,3) .
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Remark: Let sV be the chain complex with as"v = (-l)nsndv . Then
Bnﬂom,,, (Vv,W) 1is just the set of homotopy classes of chain maps sV

— W,

From (6.16) we derive the following special case:

(6.18) Corollary: Let A be a free chain algebra and let QA be the chain
- complex of indecomposables of A . Then we have for nz 1 the

canonical bijection
[}:”A,U] = HnHom*(QQ,U) .

For n22 this 78 an isomorphism of abelian groups.

(6.19) Addendum: If the differential on QA <8 trivial we have

B Hom, (QA,U) = Hom (QA,H,U)

compare (III.4.3) in [6].

Proof of (6.18): In fact, we have for O: A > * » U the iso-

morphism of chain complexes
Der*(UAl*,O) = Hom, (QA,U)

Since QA is a free module we obtain (6.19). 0

(6.20) Definition: A cofibration B >—>» A in DA with

A=BLTW) = & B@(W&B)Gj
j=0

is of filtration sn (with respect to W ) if

n
Mc @ BO(WQB)Qj '

=0



compare (0.8).

The simple cofibrations which we considered in (1.6) are just those

of filtration O. We now consider cofibrations of filtration 1 with

(6.21) cBSO®BOWEeB .

(6.22) Example: Let Y < X = YIT(V) be a cofibration in DA . Then for nz1!
X< I x = X AT(s"V)

is a cofibration of filtration =1 with respect to sV . In fact, by

(6.11) we see

as"v cxesvex .

(6.23) Proposition: Let B c A = BILT(W) be a cofibration of filtration sl.
Then the comultiplication m on IA in (6.8) i8 given by

m(a) = a for a€d ,

miew) = sw_+ sw

o 1 for wewW .

(6.24) Corollary: If B < A ts of filtration s1 then the bijection

uz((/“B,u) = HIM,(U“B,u) R
18 an igomorphiem of abelian groups, see (6.16).

Proof of (6.23): For wEW we have

(1) dw = dlw + dzw

with 4, vEB and A wEBOWOB . This shows that for # in (6) of



(6.25)

(6.26)
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(6.5) we have
(2) M(aw) = Fa(dzw) .

see (8) in (6.5)Y. Now (8) and (9) in (6.5) show us that for a®ve®pg ,

(e,BEB, vEW), we have

(3) fiaevep) = (-1)%"'® (fv)@8™ , k=lal

Assume now we have constructed M with Mv=0 for |vi<n . Then for

w, lwl=n+1 , the equation (1), (2) and (3) above show
(4) M(aw) =0 .

Therefore we can choose E£=0 in (10) of (6.5). Thus for all vEW

we have Mv=0 or equivalently
= + =
(5) m(sv) = Mv = Sov Slv SV_+sv, . 0
Let T be the free chain algebra generated by the generator ¢t

in degree O , clearly dt=0 . Then £ = 7(s™t) has trivial dif-

ferential and the homotopy groups are
nt@a) = [£7r,A] = B_(A)
n ' n

for n21 , see (II.§6) and (6.18). Moreover, the relative homotopy

groups of a pair (A,B) in 0DFA are
mC(A,B) = H_(A,B) = H_(A/B)
n"’ n" ' i

Here A/B is the quotient chain complex of the underlying chain com-
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plexes of B and A , see (1I.7.7). The exact homotopy sequence

(1. 7.8) for the functor n: is just the long exact homology sequence

(6.28) Remark: T corresponds in topology to the 1 - sphere 51 so that
R:(A) corresponds to the homotopy groups “n+1 (X} , n21 , of a space

X . Clearly, the homotopy groups of spheres n:(t"r)‘ can be easily

computed in the category DA .
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0.1

(0.2)

(0.3)

§ O Free models of chain algebras

We have seen in chapter C1 that the category DA of chain algebras

is a cofibration category. We consider the full subcategory
DFAc DA .

Here ODOFA consists of free chain algebras, that is of differential free
algebras. We know that DUFA = (DA)C is the subcategory of cofibrant

objects in DA which is an I - category by (C1.5.6). Let DFA/x~
be the homotopy categoxy of ODFA . We derive from (II.3.6) the following

equivalence of categories which is induced by the inclusion (0.1).

Theorem:

Ho(DA) ~ DFA /=
Here Ho denotes localization with respect to weak equivalences in

Remark: The equivalence (0.2) corresponds in topology to Ho (Topo) ~ CW/

see (A.0.2). We have the functor
C,f: Topo ——> DA

which carries a space X to the singular chains of the loopspace X /
see chapter D. This functor carries the 'homotopy theory in Topo ' to tt
homotopy theoxry in DA' . We will sﬁxdy this functor in more detail in
chapter D. In this chapter we analyze the purely algebraic homotopy the?
of DA . We proceed in close analogy to the combinatorial homotopy theor
for CW-complexes in chapter A. It will be very helpful to the reader ¥

compare our results and constructions here with the c~rresponding resultf



(0.3)

(0.4)

(0.5)

and constructions for (W -complexes in chapter A. For example, the following

corollary is the analogue of the Whitehead theorem (A.0.3). /

Corollary: A map in DFA is a homotopy equivalence iff it i8 a weak equi-

valencea.

For each algebra A we choose by the factorization axiom (C3) a free
model MA , which is a free chain algebra together with

~a
*>'——"HA—>A .

The equivalence in (0.2) is induced by the model functor

which associates with f: A —> X in DA the unique homotopy class

Mf for which

MA NE » MX
£

» X

homotopy commutes. Here Mf is given by (4.1). We know that different
choices of models yield canonically isomorphic model functors. Compare the

proof of (II.3.6).

Example: By use of the bar construction B and the cobar construction 0

(see §2 below) we have the functor
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B: DA ——> DFA |
together with a natural map
a: QB(A) ————> A

which is a weak equivalence. This is proven in [5]. Thus QB(A) is a

model of A€ Ob(DA) and for each model MA ——> A we have a homotopy

equivalence

MA o= QBA

which is welldefined up to homotopy. In fact, {IB is a model functor

]
and two model functors as in (0.4) are iscmorphic.
Remark:

In the literature there is the following different approach of des-

cxibing the localized category Ho(DA) in terms of a homotopy category.

‘Let DASH be the category with the same cbjects as DA but with mor-

phisms

DASH(A,X) = DA(QB(A),X) .
Composition in DASH is defined by

gef = goQf: QBA ~—> (BX ——> Y .

Here f: BA —> BX is the adjoint of £: JBA ——> X . Homotopy in

DASH 1is defined by homotopy rel * in DA . By the equivalence & in
(0.5) we clearly have the bijection

ay: [9BA,QBX] ——> DASH(A,X)/_ .

We thus derive from (0.2) the equivalence of categories



(0.11) Corollary:
B DASH,,_ ~ Ho (DA)

In the case, where R is a field, this result was obtained by

Munkholm [ 71].

Each free chain algebra A= (T(V),d) in OFA 1is a complex in DA

as follows, compare (III.§ 3):

Let V'={x€EV: |x|Sn} . Then A"= (T(gn),d) is a sub chain algebra
of A which we call the n-skeleton of A . In particular A°='r(v°)
is just the tensor algebra on V°=-V° with trivial differential. We

have the filtration of chain algebras

(0.7 A°cA1<:.....=A-’1_i’m A?

1

Each inclusion A" < An+ is a principal cofibration:

n+l
CcD ———mee B B
™

{0.8) v push 7]
n
D —emma——

n+l fn+1

Here D " (T(s-lvn_'_l),dﬂo) is a tensor algebra with trivial diff-
n

1
erential. The attaching map fn+1 is given by the differential d 1in

A , namely



(0.9)

(0.10)

-1
fm_l(s v) =d(v) , vevn+1 .

-1 -1 -1
_ Moreover, cnmi' (T(s Vn+lcvn+1),d)  with d(s 'v) =0 and d(v)=s v

for wevm_1 . is the cone on r Clearly, (0.8) is a push out diagram

Dn+
iﬂ DA -
By (0.8) and (0.7) we see that the class of objects in ODFA is the cla

X , of complexes in DA with the following properties: X€x iff (a) and

(b) hold:

(a) x° is a free algebra concentrated in degree O.

{b) X has attaching maps fn+1= D

1 — X where Dn+1 is a free

algebra generated by elements in degree n.

By a degree argument all maps in {QFA are filtration preserving. There-

fore we have the iscmorphism of categories

OFA = Complex(® .

Recall that Complex(x) is the full subcategory of the category Complex

in (III.3.6) consisting of objects in X .

We consider two natural equivalence relationa, ~ and o~ , on the cate-

gory DFA . Let £,g: A ——> B be maps in DFA and let IA be the cylir

dex on * >—b A, see (C1.§3) .

Definition: We set f~g if there is a homotopy H: fog , H: IA —> B/
such that H. restricts to H": IA" —> B for all n. Then H is a 0-

homotopy in the sense of (III.1.13).//

Definition: We set fw~g if there is a homotopy H: fo~g , H: IA —> B

as in (C1.3.3). Clearly, H: APUIA"™ ! UA® ——> 8" since H is a map of



degree O between graded modules. This shows that H is a 1 -homotopy in

the sense of (III.1.13).//

We obtain the homotopy categories

1
(0.12) DFA /> = DFA /= ~ Ho(DA)

and we have quotient functors

(0.13) OFA —> DFA/~ —> DFA/ o .

We will describe ‘'towers of categories' which approximate the categories
DFA/~ and OQFA/= respectively. These correspond in topology to the

towers for (iy/~ and (/= , see chapter A.

We derive these towers for Q0FA from the general twisted towers in

(v.§6) since we have the following crucial lemma:

(0.14) Lemma: The class, % , of free chain algebras.in DA 18 a very good class

of complexes in the sense of (V.6.1).

For the proof of the lemma we first observe the following equations: lLet
Dn + be a free chain algebra generated by .the set Z of elements in de-

gree n . Then we have

(0.15) D, - \z/ =

n

where T is the free chain algebra generated by the generator t in degree
O. We therefore get the following equations for the homotopy set (compare

(C1.6.18) and (C1.6.25)):

(0.16) [0,y 0] = [\z/- £'r,0]

e X 21,0l = X nTw = X u @ .
z 2 n z 0



By use of (0.16) we see that (0.14) is an immediate consequence of the

following lemmata; compare the proof of (A.0.12).

Lemma: Let V be a free module concentrated in degree n and let A

k

be a free chain algebra. Then the inclusion A~ < A of the k-ske~

leton induces the map
k
which i8 surjectitve for k=0 and which is an isomorphism for k21 .

Recall that Hn(xvil)2 is the kernel of Bn(o,l) where (0,1): XvY

~e—p» ¥ is the projection.

Procf of (0.17): The lemma is clear for n=0. For n21 we show

(1) Hn('l'(v)vlt)2 = HQOVRE
where HsHOA . In fact, we have
(2) (T(V) vA)_ = a°gvea’ e A

and (0,1) on (T(V) VA)n is the projection onto An . Let XEAOQVGAO
and yeAn . Then x+y represents {x+y} Bn('r(v) VA)2 if d(x+y) =0
and if y=dy' , y'€A_,, - This shows d(x) =0 and {x}={x+y} . Now

we obtain equation (1) by (2) and by

Q o
(3) {T(V) vl\)m_1 AI@VQA @A @VQAI ® An+1 0

(0.18) Corollary: Let n 21 . Then the partial suspemsion E yields the comm-

tative diagram



H“(T(V) VA)2 == HOVBOH

EIS

Hn+1(2T(V) vA)z_ == HB®sVBOH

where 3 1is the H-biequivariant map with 3(v) =gv for v €V . For
n=0 the partial suspension E i8 surjecitve and is induced by the
composition:

7(v) vA° — A°oves’ ——> HosVOH .
8

Here pr 1is the projection onto a direct swmmand of T(V) va° and
s(a®v®p) = {a} ®sv B {8} |

1

—a" - . n .
(0.19) Lemma: Let V=g 'V ., and let £=fp.1° TV) ——> 4" be the attaching

map in (0.8). Then the map (nf.,l)* :

n n n+l n
Hn+1(CT(V) vA©,T(V) vA") ——>Hn+1(A A7),

which t8 induced by the pair map (0.8) is surjective for n=0 and is

an tsomorphsim for nal . For n.21 we have

P ( An+1

n, _
n+l A7) = HaVn+1 0[{

where H:HoAn-rHaA . For n=0 see (3.2) below.

_Proof: We have (An“/l\n)n = 0 and

n+l, . n

@™ */ah °

o
n+l A Qvn+.1 oA °

This shows that (W.,1), is surjective. Now let n21 . Then we have

n+l .. n [} o
(A" "/a )m_2 = A aleeA oA 0Vn+1QA1 ‘0
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Remark: The n - skeleton of a free chain algebra corresponds in topology
to the (nt+l) - skeleton of a CW - complex. Therefore the lemmata above
correspond to the lemmata in (A.0.16),...,(A.0.18) with a shift in degree
by +1. For the proof of (0.14) we use the lemmata here only in case nz21.
Therefore we do not need the analogue of (A.0.19). Still an analogue of
(A.0.19) is true if we restrict to chain algebras for which the homology

in degree O is a free R - module, compare the proof of (4.7) below.//



(1.1)
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§ 1 Chains and twisted cha% and the
Hochschild (co)homology

For a chain algebra A the homology in degree O, H-BOA r is an

augmented algebra (non graded). The augmentation

€: H —> R

is induced by the augmentation of A . We say M is an H-bimodule
if M is an R- module together with actions of H on M from the

right and from the left, that is, we have a map of R~ modules
HeMeH —E—> M ,

which we write u(c®mef) = ac-m-B and which satisfies {-m-f = m-f ,
am-l = a-m and (G-m)f = a-(m-B; . If V is a free R- module then
M=HOVO®H is the free H-Dbimodule generated by V (with the obvious

action of H from the left and the right).

(1.2) Remark: Let Bpp be the opposite algebra of H . As modules, E°Pagm .

*
We denote by U €E°P? the element corrsponding to Uu€H . Then the

multiplication in E°P is defined by
* * *
U - A = (A J u) ’ X P €R .

The algebra H®HE'P with (xou’)-(xlou;)‘- AL ® ({41~u)* is called

the enveloping algebra of H , see Cartan Eilenberg [ 3]. An H -bimodule

M may be regarded as a right module over the algebra H® g°P by

setting
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*
me(AOu ) = u-m-A

for m€EM .

For bei.modules we have the following functors HomB - and

Q. g -let M and N be H-bimodules, then
(1.3)a Homﬂ_H(M,N)

is the R- module of H -biequivariant maps F: M ~——> N , (that is

F(c*m*B) = G*Fm-f ).

Moreover, the 'bimodule tensor product' of M and N is the

R - module

(1.3)b M‘n-a"

which is obtained from the tensor product M@N of R- modules by. the

identifications

meén =m®&fn , «a,fER ,

omé®n = m® nax mEM , n€EN .

Compare X§4 in [6].
If M=HOVOH is a free bimodule we have

BomH_H (@ VO H,N) = Hom(V,N)
(1.4)

(HeVeH) oB N =VON

-

Let GI,G2 be algebras and let N be a (GI'GZ) -bimodule, that

is left - - . .
a left G, -module and a right G, - module with (g,°n)*g, =g, (n-g,)

for 9y €G1'92€GZ' nEN , 1f
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(D:B—-)GI,W:H—-)GZ

are algebra homomorphisms, we obtain an H -bimodule structure on N

by
a-n-8 = () *n- (YB) .
We denote this H ~bimodule by
*®
(0, ¥) N

If G, =G

1 =6, and @=V§ we write

* *x
(DN' (‘Dr‘p) N -

»
In particular we have the H-bimodule € R with ¢ in (1.1). For an
H-bimodule M and the (GI’GZ) -bimodule N we say F: M ———p N is

(0, V) - equivariant if F(a-m+B) = (pa)«(Fm)«(YB) . Clearly,

Hom,,_ (8, (@,¥) M) = Bomy  (M,N)

is the R-module of (9,{) - equivariant maps. By (1.4) we have the iso~

moxphism of R~ moduls

Hom(V,N) = Bonw'w

f » Ywefoy

(HOVeH,N)

with (PO £Qy) (@@ veB) = (pa)(fv)(yB) .

If 9=y we call a (9,9) - equivariant map also a Y- biequivariant

map.

For the catagory DFA of free chain algebras we introduce the

following commutative diagram of categories and functors:
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(1.8) DFA 3

We call b the chains and b the twisted chains on OFA . Dia-

gram (1.8) corresponds to diagram (A.1.24).

(1.9) Definition of DFM :

Objects are the free chain complexes (or differential free modules),

C, with the following properties:
(a) Cﬂ is a free R~-module , n20 ,

(b) COBR,

{(c) dI-O.

Maps are chain maps ¢ , for which co is the identity of R in de-

gree O. /

(1.10) Definition of DFM :

Objects are pairs (8,C) where H isan augmented non graded algebra and
where C is a chain complex of B-bimoduies with the following pro-
perties:

-

(a) én is a free H -~ bimodule and d:C —> &n—l is biequivariant,

(b) Eosaoa (let y: Eo ~—=>» H be the multiplication),

(ec) O-ud1: C1 — Co —— H O,

A map g= (9,0): (H,C) —> (8',C') is a homomorphism, @: B ——> H' /

between augmented non graded algebras together with a ¢ - biequivariant

chain map, g: C ——» C' , with O, =9w0® in degree O. /J
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Via the augmentation € we have an H - bimodule structure on R .
The functor € in (1.8) carries the object (H,C) in ODFM to the

object

*
ce, ,€R in UFM .

*
Clearly, for a free H~bimodule M=H®V@®H the module M € R=V

‘H-B
is a free R- module. This shows that the functor £ in (1.8) is well-

defined by (1.11).

We now define the functor of chains b'. on DFA in (1.8). For the

free chain algebra A= (T(V),d) 1let

2= kernel(€: A ——>» R)

~e Ao

be the augmentation ideal. Then A A c?A are sub chain complexes

of A . The quotient chain complex

QA =A/A-A = (V. d )

is the chain complex of indecomposables, see (C1.0.6). We define the

differential @ on sQA = sV by dsv = -sdQv , VEV ., This gives

us the chain functor b in (1.8) with )

bA = R®sSQA = (R®sV,d) .

Here R 1is concentrated in degree O. The functor b is defined

onmps f in OFA in the obvious way: bf = 1R0 sQf .

Next we define the functor b of equivariant chains on DFA .

This functor carries a free chain algebra, A= (T(V),d) to
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(1.14) bA = (H,BA) , BE=HA ,
where bA » as a free graded H -bimodule, is given by
bA = H® (ROSV)OH

or equivalently by

ba=

{aosvn_ion » nzi ,
n

HOH e D=0 ,

For the definition of the differential § on bA we use the map

A in (1.16) below. Let
(1.15) A: A ————p HSHOA

be the obvious projection with Ax=0Q for Ix|I>0 and Aix={x}
for |x|=0 . Here {x} denotes the homology class of x€ A . Clearly,

all elements of Ao are cycles. By A we obtain the map of degree O
(1.16) A: A = T(Vi — HQ Ve H
with
A1) =0
Alv) = 1ovel for vev ’

Alxy) = (Ax) (Ay) + (Ax) (Ay) for x,y€EA .

Now the differential & of BA in (1.14) is the H -biequivariant

map of degree ~1 with (VEV):

R -sAdv Ivlzl ,
(1.17) dsv =

(Av)®1 - 1@ (Av) jlvi=o .
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Here s: HOVOH ——> HOSVOH is the biequivariant map which carries

v to sv.
(1.18) Remark: For nZ1 the diagzam

n n-1
(a )n = 'r(vo) ® vn ® 'r(vo)‘o {a )n

l projection
T(Vo) [ ] Vh 9 T(Vo)
Aele

HOeV oH
n

commutes. For n=0 the map
A: (a°) = T(V) —> HOV_OH
o o o
is the unique map with

A1y =0
Av) =10vel for v€V°

Alxy) = (Ax) (Ay) + (Ax) (Ay) . y,

By (1.18) we have a direct way of computation for Adv in (1.17)

since for |v|=n+! we have dvE(l-\n)n .

The functor 5 carries amap F: A —> B in DJFA to the map

@, F,) in OFM. Here
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@=Fy: H=H A ——> G=H B
is the induced map in homology and
?,: BA —> BB

is the @ -biequivariant chain map with

F =000
(1.19) R _
I-’n(sv) = gAFv , vEVn_l,nZI .
By (1.17) and (1.19) we obtain the commutative diagram of chain maps
a F - B
(1.20) sA sA
bA/SOA - >bB/b B .
Fy

Here sA is a chain map of degree +i. We will see in (D.4.24) that sA

corresponds in topology to the 'homology suspension'’ map.

(1.21) Lemma: b %8 a welldefined functor on DFA and we have the canomical

equitvalence of functors in A
-~ * -
This shows that diagram (1.8) commutes.
We leave it to the reader to check all details for (1.21).

Next we consider homotopies.
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(1.22) Definition: Two maps 0,0': C ——» C' are homotopic in DFM

(Oxg') if there are maps a=aj: cj — c:'j_'_1 of R—-modules with
(a) Goso
(b) da+ad =¢g' -0 .

Two maps (®,0), (¢',0'): (H,8) —> (B',8') are homotopic in DFM

if ¢@=¢' and if there are Y -biequivariant maps a=aj: éj — (.:3+1

(3 20) which satisfy (a) and (b). /

Remark: Amap O0: C ——> C' in DFM is a weak equivalence iff

O,: BC ¥ HC' is an isomorphism. A map (9,0): (4,C) —> (8*,C")

-

in DFM is a weak equivalence iff ®: H S H' and 0,: HC ¥ HC' are

isomorphisms.

In OFM and DFM respectively we have:
(1) homotopy is a natural equivalence relation,

(2) weak equivalences are exactly the homotopy equivalences. Y

The functors in (1.8) induce the following functors between homo-

topy categories:

(1.23) DFA /e €
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(1.24) Lemma: The functors tn (1.23) are welldefined.

Proof: We consider the cylinders in the categories OUFM and OFR
which yield the homotopy relations in these categories respectively.

For C=(ROW, d) in OFM we have the cylinder
(1) IC = ROW' @W"OW

where W'=2W"=W and W=sW with d;=w?-w‘-€w for weEW .

We have the canonical isomorphism

. (2) T: IbA = bIA

where for A= (T(V),d) in DFA the cylinder IA = (T(V'eV"e V),d)

is defined by (C1.3.1) with B="* . Thus we have
(3) IbA = R@ (sV)' @ (sV)" @ sV
(4) bIA = Res(V'@V"eV) '.

The isomorphism T in (2) is the identity (sV)' = gV' , (sV)" = sV"

and is defined on sV by
(5) (V) = -s:r , VEV .

Here v=»sv and v~ v are two maps of degree +l1 which are inter-
changed. Therefore we have the sign in the definition of T . One

easily checks by (C1.3.1) that T 4is a chain map.

From (2) we derive that b induces a functor between homotopy
categories in (1.23). Similarly we proceed for b . We define a

cylinder I(H,C) = (8,1C) in OFH by
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(6) IC = H® (ROW' OW" O W) O H

where C=H® (ROW)®H . On W the differential in IC is given by

d;-w”-w'-dw

-

wvhere now : HOWOH —> HOWOH is the biequivariant map which
maps W to ; . This cylinder gives us the homotopy relation on
DFR in (1.22). The functor b in (1.23) is welldefined since we

have the isomorphism in DFM
(n t: IbA = bIa .

Here T is the biequivariant map which is defined on generators in

the same way as T in (1.23). We have to check that T is a chain

map:

Proof of (7): For A= (T(V),d) we have EA'sH. (ROSV)OH , sV=W .

For w=svEW we get

~ -~ -
dsv = (sv)' - (sv)" -dsv € IbA

€ 8V = -sv € bIA

L

dsv = -ghdv

pva -
o [J

SA(v" - v' - Sdv); € TOA .
Nl

‘iyf‘o
I

Therefore it is enough to check

/N -
(8) Tdsv = sASdv .
Here dsv = -gAdv . We deduce (8) from

(9) ﬁc-ASx for xEA=T(V) .
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Now (9) is clear for x=1 and x€V . Assume (9) is true for x

and y€A then we get by (1.16) and AS=0 :

As (x-y) = A((sSx)-y" + (-l)h‘lx'-(sw)
= so O™ + -0 ey (asy)
where Ax'=0 if |[x|+%0 . On the other hand
Tow = ofy + B0 oy)
Since Ay"=)y , Mx'=Ax equation (9) is proved. 0

Similarly as in (A.1.26) we define homology and cohomology.

Definition: Let A be a free chain algebra with H=H°A and let
T be an H-bimodule. The functor b gives us the chain complex of

R - modules

b,(a,T) = b(a) 'B-ar

the homology of which is ﬁ*(A;I') . Moreover, we obtain the cochain

complex
K - .
b (A,T) = Homn_a(b(h)l )
~%
the homology of which is H (A;) . /
By the standard arguments we see that homotopic maps in O0FA induce

the same homomorphisms in homology and cohomology. Therefore the homo-

logy and cchomology groups of A are homotopy invariants. This allows

us to define for any chain algebra X in DA and arv E!c’x-bimod\lle

I' the modules:
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-k -~
H (X;T) =8 (Mx;T)

(1.26) - -
H, (X;T) = H, (MX;])

where MX is a model of X in DFA , see §0 . In fact, any homo-
topy functor on DFA gives us a nice functor on DA by the equi-
valence in (0.2). We again point out that models MX of X are

unique up to a canonical homotopy equivalence.

By (0.9) we can take for the model MX of X the canonical model

(BX —> Xi. We set
BX = bQBX
and thus we obtain equivalently to (1.26):

H, (X;T) = Hy(Bxe_ _T)

H~-H
(1.26)" " . .
B (X;I') =H Hona_B(Bx.I‘) .

The advantage of (1.26) is that we can take any model MX of X
for the computation of these (co)homology groups. In the next section

we study BX in more detail.

(1.27) Remark: Slightly more general we define the homology and cohomology

of pairs in DFA . Let B >—> A be a cofibration in DFA with
B=a=T(W) , A=T(WO®V) . The generators W of B determine a sub chain

complex of H - bimodules in bA , namely
HQ (ROSW) @H C bA
which gives us the quotient chain complex:

B(A,B) = b(A)/ (H® (R®sW) @ H) .
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If we replace t;(A) by Q(A,B) in (1.25) we obtain the relative
- -
versions of homology and cohomology, H,(A,B:T') and H (A,B;T)

respectively. /

Remark: Let X be a (non graded) algebra which is free as an R ~

module and let T be an X-bimodule. We can consider X as being
an object in DA concentrated in degree O (with trivial differential

and H°x=x ). Therefore we have by (1.26) homology and cohomology

groups
- EY ]
(1) By (X;T) , B (X:T)

which are invariants of the homotopy type of X in Ho(DA) . On

the other hand we have the homology and cohomology groups of Hoch-

schild, see (2.15),
3
(2) Hy (x;) , B (X;T)

as defined in Cartan-Eilenberg [ 3] and Mac Lane { 6 ]. We shall prove
in §2 that the homology and cohomology groups respectively in (1)
and (2) coincide. Thus Bochschild (co)homology is an invariant of the
homotopy type of X in Ho(DA) . We call the groups in (1.26)' the

generalized Hochschild (co)homology.

Remark: Let A be an object in DA and let M be an R - module.
»*

Then M=g¢ M is an BOA-bimodule via the augmentation ¢€: HOA

—> R . Let X ——> A be amodel of A in ODFA . Then we have

- *

H (A,g M) = a“nomn(bx,u)

(=) - .
Hn(h,s M) = Bn(bx.RM) .
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This is the stage 1 (co)homology of A with coefficients in M as

defined by Mac Lane in chapter 10, § 11 [ 6], see § 2. We have to

distinguish this (co)homology from the 'stage O (co)homology' whi:ch

is Hn(A:M) and Hn(A;M) defined by the underlying chain complex
of A . Therefore we use H . Clearly, (x) is again an invariant in

Ho(DA) , compare theorem 11.2 in chapter X of [ 6]. /

We now compare the Hochschild cohomology with the twisted cohomology
defined in (III.§5), see (1.32). In fact, we discovered the chain complex
Q(A) above by considering the twisted chain complex Y((A) = E)X(A) in
(I11.6.3). For the free chain algebra A , which is a complex in DA as

in (0.9), we have the attaching maps

-1 n-1

given by the differential in A= (T(V),d) , fn(s-lv) =dv . These attaching
maps yield the twisted chain complex kY(A) with the boundaries (3: I-\“m1

c A)

dn=(1vj)an€ [Dn'znn—1VA]2 ,

see (IIX1.6.3). Here dn is also defined for n=1 by use of the comulti-
plication

M T(Vo) —_— T(Vo) VT(VO) = T(VéQV;)

where V;=V;=V° and where U (v) =v' +v" for ~vev° . For the chain

v
complex K(A) = EkY(A) with boundaries EQ ~we get:
Lemma: For q basis element v €Vn , n&l , we have

2 -
(E'dn)(v) EHn(I Dn-l VA)Z = HQaVn_ ®F

1

by (0.16) and (0.18). This element satisfies the equation
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(Ed,)(v) = sAdv
gee (1.17).

Proof: First let n>1 . We have

n-1__o o] n-2
av € a ATQV _,8Ar"e (")

with adv=x+y , yE(l\r‘"z)n_1 and

o o
x=Zaievi®Bi€A QVn_IQA .

)
where 01.3163 ’ vievn_1 . The map

o . w vy O n-2
a G(vn_levn_l)ea o (A )n_1

n-2

is given by the identity on (A" ) and by v > v" +v' for vEY

n-1

This shows that (an) (v) 1is represented by
(an) (v) = - ZX aiaviesi + X 018 (v'i+vi) @Bi
- '
iuieviQBi .

Therefore we get

(EVE ) (v) =8 I {°‘i}@"i°{51} = Adv ,
see (1.18). Now let n=1 . Then we have for v€v1 the element

div) -}Zvi ...vi €'1'(V°) y v €Vo .

I "1 s ik

Now (Vfl) (v) 4is given by

(VEDN(V) = =Zv" ...v" 4+ L (V" +v')...(v" +v' )¢
1 1 4 ig ¢ 1 4 ig is
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By (0.18) we know that the partial suspension projects all words to
zero with more than two factors in V; . Therefore (BVfl) (v) 1is repre-

sented by
S

I v o...v (sv" )v! cee W
I k=1 *i k-1 k+1 s

This element represents Adv , see (1.18). 0

From the lemma (1.31) we derive:

(1.32) Theorem: Let A be a free chain algebra and let u: A ——> U be a map

in DA . Then there is a natural isomorphism
£ (Kayu) = B (4,078 )
giadsul = sU dpak

for n2l, n+k21.

Here H U is the HO(U) - bimodule given by the algebra structure

n+k

on H,(U) and u*Hm_ U is the H_ (A) -bimodule induced by u

k HoA

*:

BOU , see (1.5).
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§ 1 Appendix:
The spectral,K sequence for homotopy

gqroups of function spaces

let X and Y be free chain algebras and let Y >—>» X be a

cofibration, that is Y=T(W) and X=T(WOV) . We set
xp-’r(wovp'l) . P20 ,

with W={veEV: [visp} . Then X, is a subchain algebra of X and

we have Yaxoc cee & X

Let U be a chain algebra in DA and let u: X —> U be a

map in DA . We consider the homotopy groups

(1 nn(ux'Y,u) , nz1,

see (Cl.§6). These are abelian groups for nz22 , but for n=1 this
group, in general, is not abelian. In § 6 of chapter Cl1l we discussed
the relationship of the groups /1) with the homology of the deriva-

tion complex.

The inclusion xp < X induces a homomorphism between groups

Xy b4
a :n (U 1) —————> Ux
p q( ) q( p .up)

where U : X ———p U is the restriction of u . For K = kernel G
PP P.q P

we have the filtration

Iy

(2) cee &K < .. &K -nq(ux su)

K c
Peq p-i,q 0,q

of subgroups. We say (X,Y¥) is finite dimensional if there is N

with xN-x . In this case we have KNq-o .
14
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The spectral sequence below describes the associated graded group of

the filtration (7.3) which is defined by the quotients

3 F'd=x K , q21
) P‘loq/ P:Q 1

These are abelian groups. Moreover, the spectral sequence can be used

for the computation of the set (p22)

@0 1N e 1}
p p-1

* \'4 v
where i : [x ,u]l’ — [x .,ul” is induced i+ x < .
P’ p p-1 BY ipt Xpy T - Here

v=u, is the restriction of u . The set o .0 has a canonical abelian
group structure with {up_l} as zero element, see (III.7.6).
In the following theorem we use the cohomology in (1.25) with the

following coefficients. The map u: X —> U induces
®=uy: B X —>HU .

Since HnU ,n21, is a HOU—bimodule we have the induced coeffi-
* *
cients ¢ Hnu = (,P) HnU as in (1.5). We denote these coefficients

as well by u*BnU , see (1.32).
Theorem: There 18 a spectral sequence
>q - q
22 =y, t,u) , d)
with the following properties (rz22):

(E1) Ei"q=0 for p<1, q<0 ad dr: El;:q Egr,q-l s

a homomorphism of bidegree (r,-1) .

(E2) For p,q21 we have an igomorphism Eﬁ’q = cIf (X,Y)

p.q
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18 fintte dimensiomal with Xy=X we have Eﬁ’q = Ez’q . More-

over, for q=0 and p22 we have Eg’och’a .
(E3) The Ez- term 18 given by the Hochschild cohomology

29 = Px, 148

eq-17) 2 PHIE2, q21.

For q=0 ad pz2 we have

0 *
E'g’ =P (X, ¥;ud

p-lw .

(E4) The spectral sequence is natural in the obvious way.

Proof: By (1.32) this is essentially a special case of (III.7.7). In de-
gree g22 the result also can be derived from a filtration of the chain

complex Der, (UXI¥,u) , see (C1.§86). 0

The spectral sequence here is the analogue of the one for CW - complexes

in (I11.9.9).
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§2 The bar and the cobar construction

We introduce the notion of a graded coalgebra which is dual to
the notion of a graded algebra in (Cl1.0.4). We only consider

connected graded coalgebras.

(2.1) Definition: A& (connected graded) coalgebra C is a positive module

C together with a map A: C ——>» C®C such that

(a) C =R ,
[o]
(b) A 1is associative: (A®1)A = (1904A)A ,
(¢) The map €: C ——3>» R , which is the identity in degree 0, is

acounit, (e®l)A=1= (18€)A .

A map f£: C ——> D between coalgebras is a map of degree O with
(E® £)A=Af and ef=¢ . The inclusion 1i: R=c°c C is a map

between coalgebras. We have

C= C/Rv== cokernel (i) ,

A: C =—> C®C induced by A ,

PC=Xkernel(A) is the module of primitives in C . The map f induces

Pf: PC ——> PD . /

(2.2) pefinition: For a positive module V with V°=-0 the tensor coalgebra

is
(V) = @ VP
ns0

The diagonal is defined by
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k
A(le...OVk) = T (vlo...OVi) ] (vi+10...0vk)
i=0
with vl,...,vkev . We have i=i° ’ €=p° as in (C1.0.5) and
PT' (V) =V ., We say that a coalgebra C is free if there is a map

p: C —>» V of degree O which induces the isomorphism C ¥ T'(V)

of coalgebras. /

(2.3) Definition: A chain coalgebra C is a (connected graded) ccalgebra

C together with a differential d: C ——» C of degree -1 such

that

(a) C is free as an R - module
(b) (c,d) is a chain complex: dd=0 .
(c) € and 'A are chain maps.

A map f: C ———> D betwaen chain coalgebras is a map between coalgebras

with df=fd . Let 0UC be the cateqory of chain coalgebras. We say

a chain coalgebra is free if the underlying coalgebra C is free. Let

DFC be the full subcategory of D consisting of free coalgebras. /

We now define the bar construction B and the cobar construction

1 . These constructions are functors

(2.4) A —2> DFC , DC —2> DFA

The cobar construction ((C) is the chain algebra

Q(c) = (T(s~1d) /)

with the differential dﬂ. whose restriction to geneiu.ors 11: s_ia

< T(s"'8) s defined by, see (2.1),
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(2.5) doi, = —ii(s.lds) + 12(5-105—1)53 .

The bar construction B(A) is the chain coalgebra

B(A) = (T'(sA) 145)

with the differential d’B whose component pldB for p,: T (sA)

—> sA is given by, see (Cl1.0.4),
(2.6) P = -(sds-l)p + s'ﬁ(s~105'1)p
: 1dB 1 2 7

(2.7) Remark: We give a more explicit description for the boundary dla

on BA and for the boundary dn on fiIC . Write a typically gener-

ator
(1) (s®...05)(a,®...0a) |, aie'i' ,

of BA as [a,|...!| an] . With the Koszul sign convention we have

1
T
(2) [all eenl an] = (-1) (sal)e...ﬁ (san) '
n
T = ¢ (n~j)la,l .
3=1 ’

From (2.6) we derive the formula

n-1
- _1yJ
(3) dB[all...Ian] jE1 (-1 [all...lajaj+1l...lan]
n
+ I (—1)n+6(j)[a1! Lolada oo lal]
j n
j=1
4-1
with &8(j) = L lakl . The formula for the diagonal in (2.2) is
k=1

replaced by

Alal..taleZ 0% (a 1. 120l l..la]
al PO an j-o 31 .o j aj+1 P an
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3
where T(j) = (n-3) I la | .
k=1 ak

On the other hand we have the following explicit formula for the
cobar construction C . The boundary dn on NC 1is given on

generators sz, xec, by

(5) dn(s-lx) = -stiax) +5 (-1 '%g! (s-lxi) 9 (s-lx;)
i .

where Ax = I x‘Ox}:EEOE .

g & V4

The bar construction B is a right adjoint functor for the cobar

construction § . The adjunction maps

a: WB(A) = T(s BA) —> A

B: ¢ ———> 7' (s6iC) = BQ(C)

are just the algebra and coalgebra extensions respectively of the

projection or inclusion

s (p)): s BA——>s SA = A

s(i,) : ¢ = 3816 ——> 6 .

In [ 5] it is proven that @ and B induce isomorphisms in homology:

Therefors a: (B(A) =MA —=3> A is a model of AA .

We now consider the functors b and b in (1.8). One easily

verifies the equations in ODFM :

C = bR(C) for C€EDC

B(A) = bQB(A) for A€EDA .

Moreover, we define the two sided constructions
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C = bQ(C) = (H8COH,d) |, H=H_QC

(2.10) - - -
B(A) = bOB(AR) = (H@BA®H,d) , H=H°A

which are chain complexes in DFM . For g(A) we use the canonical

isomorphism
Oy: H=H_ (QBA) =HA

given by a in (2.8).

(2.11) Lemma: Let A: 5———>H=HO(QC) be given by Ax=0 for |z|>1
amd Ix= {s_la:} for |z|=1 . Then the H -biequivariant differ—

-~

ential d om C ig given by , z2€C ,

-~

de=(x)e1-10(3z) € HO K for lzl=1

dr=ledzel+ I [(%al)exlel+(-1) ’xllc:céa'iz;:']
i

for Izlz2 ,

gea (5) in (2.7).

This is an easy consequence of (1.17). For C=BA we obtain the

special case:

(2.12) Corollary: The differential d om BA is the H-biequivariant
map with (see (2.7)):

-~

d[a1 l... IanlzlodB[al fooe Ian]cl +
Maj)ola .. 1a lo1 +

n
(-1)"1ela; |... la,_;10 Xa )

where X A —> H=H A 18 defined in (1.15). Thie formula is
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also true for n=1 since the empty bracket [ 1 ie the unit
1€ER.

We point out that ehiso in (2.12) since aiE'K . Therefore

e(l;A)-'BA for the functor € in (1..8).

(2.13) Proposition: Let A€DA and let MA ——> A be a model of A . Then

we have the canonical homotopy equivalence

bMA = BA in DM

bMA «BA in ODFM .

Proof: In fact, we have the canonical homotopy equivalence BA o MA

in ©DFA ., Now we apply the functor b and b in (1.23). 0

In particular, if A is a free chain algebra we can take MA=A .

This shows:

(2.14) Corollary: Let A€ DFA , them we have canonical homotopy equivalences

ba: BA ~bA in DFM

-~ »n

ba: BA « bA in DFM .

This is clear since a: ((BA —>» A in (2.8) is a homotopy equi-

valence, see (2.9) and (2.10).

The map ba in (2.14) is induced by the projection q: A —> QA

=A/A-X . More precisely, the diagram

ba

BA/R > bA/ R
] p ]
T' (sR)/R ——> ok —2 5 g
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commutes, see (2.8) and (1.13).

(2.15) Remark: If x=xo is an algebra in DA (which is concentrated in
degree O)we have X=H X=H . In this case BX is the reduced bar
resolution and BX=B(X,X) is the normalized bar resolution of

X . Compare Mac Lane [ 6], chapter X.

The Hochschild homology and cohomology of X with coefficients

in the X -bimodule I is defined by

B (GT) =H (B(X,x)0, T

X
B (1) = 8 (Bom_ (B(X,X) ;1))
respectively, see [ 6], chapter X, § 3, § 4.
We have the homotopy equivalence
MX = QBX
which induces the homotopy equivalence

BMX ~ b(BX =BX=B(X,X) in DFN .

This shows that Hochschild (co)homology coincides with the (co)homo-

logy in (a) of (1.28). /

(2.16) Remark: Let A be a chain algebra and let M and N be left and

right differential A - modules. Then the two sided bar construction
N® BAO M
T T

is deﬁ.ned, the homology of which is
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(=) 'rorA(N.M) = H*(NOTBAOT N) ,

compare [ 5] and [ 4 ]. The homology HA is a left and right A -modul
by A: A ——> H which we denote by A'm . One can check that there

is a canonical isomorphism of chain complexes
- * *
BAaAaoTBAQTAH .
Therefore the homology of QA is

(+%) Tor, (A'8,\'8) = B8

Now let M and N be left and right H - modules respectively.
Then MON is an H-Dbimodule in the cbvious way. Via the map
Az A ——=p BOA the modules M and N are also left and right
A-modules which we denote by A*M and A’N respectively. In this
case we get slightly more generally than (#%) above the natural

equation
- L
(s%8) Hy(A,MON) = Tor, (A N,A M) .

The advantage of this equation is the fact that the left side can
be computed by any free model MA of A, see (1.26). This is in

general not true for 'IbrA in (*).

(2.17) mlition; Let F be a weak equivalence in DA . Then Bf and
Sf are homotopy equivalences in DFM and DT-ﬂ respectively. In
A
particular, Bf and Bf induce isomorphisms in homology.
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In particular Bf and gf induce 1somorphisms in homology.

Remark: For Bf the result in (2.17) was proven in theorem 11.2 of
chapter X [6 ]. For Bf the result in (2.17) was obtained by Eilen-

berg-Moore in case f: A —> X is a weak equivalence where HOA ’ Hox

are R-flat, see 2.6  in {4] and (2.16).

Proof of (2.17): We have the commutative diagram

. e L,
BX Bf >qBY .

Thus (B(f) is a weak equivalence in OFA and therefore a homotopy
equivalence. This shows that Bf=Db(QBf) and Bf =b(QBf) are homotopy

equivalences, see (1.23). 0

(2.18) Remark: Let A and X be chain algebras such that HOA and Hox

are free as R-modules. In (8.13) we will prove that in addition to

(2.17) the following statements are equivalent:

(1) f: A ——>» X is a weak equivalence in DA .
(2) Bf: BA —> BX is a homotopy equivalence in OFM .
(3) Bf: BA ——> BX is a weak equivalence in DFM .

(4) The induced map £, =Tor (Hof,ﬂof) '

£
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£y: Tor, (A HOA,A B A) —> Tor (A H X, A HX)
is an isomorphism.

For (2)e (3) see the remark following (1.22) and for (3)e (4)

compare (#x) in (2.16) where we use the following result (2.19). /

(2.19) Theorem: Let A be a free chain algebra for which HOA=H 18 free

as an R-module . Then the sequence

-~

b —”L»izA —-‘3—>130A—l‘—>y—-->o ,

given by the chain complex 5.4 » 18 exact. Here 50.4 = H®OH and

w HeH ——>H 18 the algebra multiplication in H . Equivalently
we have

Hba =0 ad w:HBATHEA .

Remark: This result corresponds in topology to the fact that the uni-

versal cover of a CW- complex X is connected and simply connected.

A
See (A.1.18). In addition to (2.19) we show in (4.6) below that szA =

HiA if BOA is free as an R-module. This corresponds to the Hurewicz

A
isomorphism H x=-rr1$'2x .

2

(2.20) Corollary: Let X be a chain algebra such that the wundarlying

R-module of H ,X i8 a free R-module. Then we have tsomorphisms
of HOX - bimodules

TorX(HaX,Hox)a = HOBX = HoX B
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Tor (H X,H X), = #,BX = 0 ,

azéx

H.X

it
LY

TorX(HoX R HOX) 2

Proof of (2.20): We use (2.13), (2.19) and (4.6), and (2.16). 0

Proof of (2.19): For A: A —> H=HA we have the diagram in

DA

{BH : > H

=
~
~

(1) BA - ]\)\

195:71 g > A

of

where & is the adjunction map which is a weak equivalence. Since
A and {IBA are cbjects in DOFA we can define the map g, in (1)

by a homotopy inverse c-l of a,
-1
(2) 9, = (BA) a

Now 9, induces an isomorphism in Ho and is surjeci:ive in H1
!

since this is the case for A: A ——> H ,

We construct a model M of g1 .

(3) A > T > M 3 » {IBH

as in (C1.1.5). Thus

(4) M=ALT(W) = T(VOW |,

where we have wo-wl-o » 8ince we can choose 9 in the proof of

(C1.1.5) to be 'gl in (2).
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We know that S'B = bBE = B(H,H) is the normalized bar resolution

of H , see (2.15). Therefore, see [ 6],
‘ Hnsﬂio for nx1 and
() '

:Biﬂ——'—'——»ﬂ is an isomorphism .
ot By

Since g 4n (3) is a homotopy equivalence in O0OFA we see that

Eq is a homotopy Veq‘uivalcnce in DFM . Therefors
(6) " (Bg),: EBM¥ H BH  for all n,
compare (2.17).

We now consider the inclusion A M 1in (3). Since woswlso we

see that
o)) ‘BA=bM for ns2.
Therefore bA ——b I;H induces the isomorphism

HISA - 81534 -0 by (6) and (5)

BobA - BobH - BOBH = H by (6) and (S) .

Thus the proposition is proved.
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§ 3 Homotopy systems for chain algebras

e introduce hamotopy systems for chain algebras in the same way as

this was done by J.H.C. Whitehead for CW - complexes, seae (A.§2).

lLet A= (T(V),d) be a free chain algebra with skeleta A" =
(T(V") ,d) where V'={x€V: Ix|sn} . The projecticn P =€: A —> R

is the augmentation of A . We set

H_ @A™y oz
(i) On= DnA =

g (a%) , n=0
[}

Clearly, HO(AO) = 'I‘(Vo) is a free algebra with augmentation Espo .

We have boundary maps

: ——
(ii) dn' pn pn__1 , nzt .

Here d =2 ul(Al,A°) —_— a°A° and d_=32: an(A“,A“"l) —_—

-1 n-l Bn-l (An-l’An-Z) for n22 . The operators 3 and
j are taken form the exact homology sequence of a pair of chain com-
plexes. All pn "are R - modules but po-'r(vo) is a free algebra.

Moreover, all On are Oo-bimodules by

ﬂOO OnO po —— pn

ao{xie B » {a-xB}

Clearly, if x e(An)n is a cycle relative (™) then also

n-1
a-x°f is a cylce relative (I\n)n_1 . In particular,

(1i1) p1 is a po-bimodula.

The image d, (p,) is an ideal in B’o = kernel € such thac
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- n
pospo/ dls::1 BOA-BOA , n&i .
'is an augmented algebra. Moreover,

(dv). p, is a Eo-bimdnl. for nz2 .

'Here the action of 50 is induced by the action of P  on 0 .

These data (i).,...,(iv) have the following properties:

(a) dd=0 , €¢d=0 .
(b) po' is a free algebra.
(c) Py is a crossed (Do,dl) - bimodule.

This means that pl is a Oo-bimodulc and dI: 01 e Do
sat_isfies

dl (G'X°B) = Q° (dIX) 'B ’ 5,35 po ’ x€ p1

(dlx)-y = x~(d1y) : X, Y€ Py -

Moreover, o, is a free crossed (0°,d1) - bimodule, see (3.2).

(d) Pp is a free pd-bimodule for n22 .

(@) 4 for nz3 is a map of Eo-bimdules and 4 —

2" P2
kernel d, is a map of Eo-b:l.nodules by the action of 0 .

This follows from (c). -

Motivated by the definition of homotopy systems for CW - complexes
by J.H.C. whitehead we now introduce the category of homotopy systems

for chain algebras:

(3.1) Definition: A system of R -~ modules Py n20 , with boundary maps

dn and actions as in (1),...,(iv) is called a homotopy system for
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DA if the conditions (a),...,(e) are satisfied. By a homomorphism

between such homotopy systems,
£: p—> " .

we mean a family of R~ linear maps fn: pn — pr'l (n20) such

that
(1) fd=af .
(2) fo is an augmented map between free algebras, f1 is fo-biequi—
variant and f_, n22 , is f_-equivariant, whexre f : g —> '
n o o Yo o]

is induced by fO: po ——>.p° .

Let H=H(DA) be the category of homotopy systems and of homomorphisms

between them. /

It is convenient to fix for a homotopy system p a basis Vn in

each free object Py of (b}, (c) and (d) respectively. For example, if

p =p(A) with A=T(V) , then Vn is a basis of the free object

Dn (A) . We consider this in more detail:

Remark: We alreaéy pointed out that

o
(*) PA = H (A ) 'r(vo)

is the free algebra generated by Vo . We obtain 01A by the chain

complex Al/ a° with

(al /1\°)2 25 @l | (al /1\°)o
Il il 1l

T(Vo) oV OT(VO) eV OT(VO) —— T(Vo) OVIOT(VO) —_— 0

1 1



(3.3)
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Here 9 is given by 4 in A , namely

d(cexeBoyey) = (a-dx-B)eyey

-0®x® (B-dy-Y)
for x,y€ v1 ., a,B, Y€ 'r(vo) . This in fact shows that

(o) pA=H (al,2%) = T(V.)®V,8T(V )/ in 3

1

is the free crossed (°1'd1) - bimodule generated by V., , compare the

1
equations in (c).

Moreover,
n _n-i -

(#%n) PA=B (AL,A" ") =p OV ep  (nz2)

is the free 50-— bimodule generated by V_ . This is easily checked

by computation of Hn(An/ An-") » see (0.19), /

We now compare the homotopy system P n(l\) with the chain complex
of equivariant chains b(A) which was defined in (1.14). For this

we introduce maps, n20 ,
hn: Dn(A) . bn+1 (A) = H.sVnQH .

Definition of h : For nz2 let hn-; be the suspension:
a3

- lad
h =g: HOV_ ®H ——> HOsSV_OH
n n n

where EO-B-HOA . Let XA T(V_)=p_ ——> HE be the quotient map.

Then h1 is the A ~-biequivariant map with hl(v) =gy , vE v1 . More~

over let h°-§A be the map given by A 1in (1.18). /
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The maps hn fit into the diagram

v

i nd Ll X

for which we have the equation

-

dh = -hd .

This is clear by definition of d in (1.17). Since h, is surjective
the equivariant chain complex BAA is essentially given by the homo-

topy system QA . This leads to the following commutative diagram

/\

DFM(——-H

of functors:

Remark: Diagram (3.4) above cooresponds to diagram (A .2.3) (3) and the

functors in (3.5) correspond to the functors in (A .2.2). y,

The functor b in (3.5) was defined in (1.14). The functor p is
given by p(A) in (i) above. Moreover, we define the functor C in

such a way that (3.5) commutes:
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(3.6) Definition of the functor C :

Por a homotopy system p in H 1let
c(p) = (8,C,) in DFMN

be given by He=p =p_ /dp, andby

HOH » N=0
(1) cn -

HO® sV 8H » nx 1l
n—
vhere Vn is a basis of the free object Py (nk 0). We have maps

(2) hn: pn — Cn+ (n20)

1

which are defined in the same way as hn in (3.4). In particular hn
is the suspension 3 for nz 2 . For the quotient map A: p—> Eo
=H the map h1 is the A -biequivariant map with hl(v) =18gv®1 for
veE v1 . Moreover haz 'r(vo) =p, —> HOsV OH is given by hcssA

with A in (1.18). We define the boundary d: C. —> C__, in the

diagram

o a_ d a

> c3 > <:2 - c1 -3 co
(3) ~ h2 h1 ho

> Py > Py > P

by dh=-hd . On C, let d be the biequivariant map with

(4) s(sv)- (W)e1 -18iv for 'VEVO .

Compare (1.17). For a homomorphism £: p —> p' the induced
map is £4: CPp —> CPp' which is ?o-biequivan.ant and
which satisfies

(f,.)o- focfo in degree O

(S) ,
hitf, = (f) b in degree n /
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(3.7) Proposition: C 78 a welldefined functor and diagram (3.5) commutes.

Proof: We first check that C(p)= (H,C,) in (3.6) is a welldefined

object in DFM. For this we have the show (1) and (2):
(1 hodl (kernel hl) =0 ,
(2) dghd =0 .

For (1) we consider the commutative diagram

HOV o H —a HOV ®H —2 5 hen

18182 h, h =A
1 o
HI(A A ) ——dy T(Vo)

d
1
A

/a

T(Vo) eV 9 T(Vo)

1

We know by definition of A that
(3) M1-0 .

Therefore we see that for a,B€ T(Vo) , u€ V1 we have

hodl (a-v-8)

Ad(aovep)

Ala*dv-B)

Afa) *Aiav) *A(B) + A(a)-A(av) "A(B)

+ Ada) *A(av) -A(B)

A(a) - (Adv) - A(B)



"mctofe_::i. h,d in the diagram above is )\-biequivariant. This

impuoaa('l:)', Por the proof of (2) we show
(5) - &ho(a) = (Qxel-1e0a , a€T(V) .
Then clearly @40 by ().
' Clearly, for a=vEV_ we have by definition of d and A
& (v) =d(1evel) = (el - 18 (Av) .

Now issung equation (5) is true for a=x and a=y , x,y€'r(v°) .
Then
Emom-y) = d(Ax-Ay + Ax-ly)
= Ax(dAy) + (dAx) )y
= Ax(dhoy) + (dhox) Ay
= Ax(Aiy®1l - 18)y) + (Ax01 - 10 \x))ly
= AMx-y)®1 - Ax@ Ay + Ax@ Ay — 10 A(x'y) .
Thus (5) is also true for x°y . This proves (5). Next we have to

check that- (5) in (3.6) gives us a welldefined map £, in OFA.
The map f,,: C, —> C, is the 'f'o - biequivariant map with
(6) f*2(V) b hlfl (v) for VEV1 c pl .
Similarly £, : C, —> Ci is the Eo-biequ.i.vanmt map with

(7 | £ay (V) = hif (v) for vE€ Vv.Ep, -

Now we can check h'f = £.h and c.l..‘.,.-f,.a.
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Moreover, we have to check that for an arbitrary homotopy system
P in H the chain complex Cp=é satisfies condition (¢) in (1.10).

This is clear since ualv =0 . q
o

We have the cylinder IA = T(V'@V"®sV) of A=T(V) in ODFA . We
define Ip in H in such a way that pIA = Ip for P=pPA . This

leads to the following notion of hoinotopy in H :

(3.8) Definition: Let £,g: p —> p' be homomorphisms in H . We write

(n20) of linear

f g if there is a sequence (xn: pn — pn+ 1

maps with the following properties:

(a) Go(x'y) = (Gox) (g,y) + (fox) (Goy) r X, Y€ L

(b) a is a homomorphism which is Afo biequivariant for n=1
and which is f'o-biequivariant for n>1 . (We have Af =)\g

and §°=§° by the following condition)

(c) -fc> +g, = dao
@) -fn+gn=da+ad (n21)
We call a= {Gn} a homotopy from £ to g . Let H/ o De the

homotopy category of H .

V4

The functors in (3.5) induce a commutative diagram of homotopy categories

and functors

DFA /=

.

\
A
(3.9) b p
A
/o

A
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It is in fact easily seen that for the cylinder Ip in H we have

c:':'p- ICp . This shows that the functoxr C is compatible with the homotopy

_ ralations.

In the topological situation, (A.2.6), we have seen that C is a tuil

. %nd faithful functor. We do not know whether this is also true for C in

(3.9). We can prove, however, the following result which relies on theoren

(2.19). Let H(f) be the full subcategory of H ccns‘istinq of homotopy

lym; p for which E;-po/dlpl is free as an R -module.

Theorem: The funator
: H Al
C: (f)/ﬂl——bv /=

t8 full and faithful.

' Proof of (3.10): We derive the result, in the same way as in (A.2.7), from

the fact that C restricted to the categories of 1 ~dimensional objects,
C: Hlm /& — DFﬁl/u

is full and faithful, see (C3.1.11). We need the assumption on H(ﬂ in

the proof of (4.7) below, compare (6) in the proof of (A.2.7). 0



-53-

§4 The exact sequence of J.H.C. Whitehead

for chain algebras

In (A.§3) we described the exact sequence of Whitehead for CW-
complexes. By similar arguments we now obtain an exact sequence for

chain algebras.

Let X be a free chain algebra X= (T(V),d) with skeleta X =
(T(Vn),d) . Let aaaox be the subalgebra of degree O in the graded
algebra H,X . Clearly, an iAs an. H -bimodule by the algebra struct-
ure in HX . As we have seen in (C1.6.25) the homology an can be

interpreted as a homotopy group:
(4.1) T (X) = E_(X)
- n n »
The map SA: X —> Sx/ﬁox of degree +1 in (1.20) induces
(4.2) j: BX —>H BX , nzil.

1

This is a biequivariant map between H- bimoudles. It corresponds in

topology to the Hurewicz - homomorphism (A.3.4)

We define the I - functor of Whitehead on the category 0DFA by
(4.3) I7(X) = Image (i: nn(x"‘ly —> 5_(x") .

Here i 1is induced by the inclusion xn‘l cx®, compare (A.3.5).

Clearly,
(4.4) rg-o and I"f-o.

Morxeover, I‘: is an H-Dbimodule for ngz2 .



e T_ T - |
| One easily checks that m =H , I and H,P (zl) are
functors d'cti'nc'd‘cn the homotopy category DFA/ex, and thus on Ho(DA) ,

‘soje §o..

(4.5) Proposition: Asswme H=H X is fres as an R-moduls. Then we have
the natural exact sequence of H-bimodules, kz1,

N o 2, X —j—>ak+15x - r{_r\_f .

‘Thc' sequence termnates with, see (4.4),

ag—»aﬁx-—»o——»alxiazix-—»o. |

Natmatty means that the sequence is a functor which carries ob-
jects in DFA to exact sequences in the category M . Here .M.
is the category .with objects. (H;M) for which H is a non graded
algebra and for which M 1is an H -bimodule.

Morphisms are pairs (q,8) where g: M ~=—=p M' is g-biequivariant.
By (4,2) and (4.3) we have functors

T -~
,TT,8b
DFA/uBk R0

.M. L

We call ,M, the category of bimodules.

The result (4.5) shows that for any free chain algebra X , for
which ﬁox is free as an R- module,we have the iscmorphism of B X-
bimodules:

(4.6) alx - nsz .

In topology this corresponds to the Hurewicz isomorphise m OX = nzi .
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(4.6) is essentially a consequence of proposition (4.7) below.

Proof of (4.5): We apply (A.3.13). We use similar definitions for

Cn and An as in (A.3.14). That is
(1) C =p and A =H x" for n=20
n 'n n n

and Cn=An=0 for n<0O . The homomorphisms 3 and B in (A.3.12)
are the obvious operators of the homology exact sequence of a pair.

We thus obtain by (A.3.13) the exact sequence (k€ 2Z)
b T. i b
(3 — [‘kx ——>HX —j—->ﬂkpx — I‘k_lx .

Here Hkpx=ﬂk=kernel dn/ image dn +1 is defined by the homotopy
gsystem (PX,d) in §3 . The exact sequence in (4.5) relies on the fact

that we have canonical isomorphisms

-

(3) anx - Hn+1bx , na1l,
(4) Hopx = po/ Image d1=H=HOX
We prove (3) in the following proposition (4.7). 0

(4.7) Proposition: Let p be a homotopy system in H(f)' Then hn in (3) of
(3.7) induces the isomorphism of H-bimodulas:

he: Hp = Cle) Mmza1).

Hn+1

Proof: Let p1 be the homotopy system with p}tso for k=22 which

coincides with 0 in dimension =1 . We call pl the 1 - skeleton

of P . Consider the diagram
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P

A A ——
2 AT %

kernel :1'2 < ¢

hl .ho

karnel d1 c pl ——-L-b»'po

given by ;:)1 , see (3.6). We prove that
- h,: kernel d, ——— kernel d

1 1 -9y

is an isomorphism of H - bimodules, H=O°/d101 . Let V_,  be a basis

1

of 01 and let DO-T(VO) . Then dlz vl——bf:(vo) yvields the

chain algebra

(2) A= (T(V_ 0V ),d

with dv-dlv for v€v1 . Clearly, we have
(3) | p(A) -pl‘ .

As in the proof of (2.19) we choose a model M
4) A >-—-—->u.._‘:_.;ma

in the categoxry DA . We know

(5) Mt =al

(6) nnﬁn-o and EM=0 for nzl.

We now consider diagram (3.4) for M . By (5) we cobtain



~57-

U
=
o
=
\ 4
9]
v
O

(7 RS ~ h

D3M —— OZM

Y
©
[

A 4

By (6) we know that the rows of this diagram are exact, (in fact,
Hsz=O and HlpM=O by (2} in the proof of (4.5)). Since diagram
(7) commutes exactness of the rows implies that h1 in (1) is an

isomorphism. This proves (4.7).



(5.1)

(5.2)

(5.3)

(5.4)

Definition: A free chain algebra A= (?(V),d) has dimension gn if V, =¢
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§S5S On 1 -dimensional chain algebras

We define the dimension of a free chain algebra.

k
for k>n . Let DFA" be the full subcategory of DFA consisting of

n -dimensional chain algebras. v

Chain algebras of dimension 1 are closely related to presentations of
(non graded) algebras. In fact, by choosing generators of a non graded

algebra H we find a sequence

vl ____E___, 'r(vc) -—-—-x—-—-)b!l

with the following properties

(a) v1 and ‘V° are free R -~modules,
(b) X 1is a surjective map between algebras,

(c) f(vl) generates kernel()A) as an ideal in 'r(vo) .

We call such a sequence a presentation of H . Property (c) is satisfied

i£f the sequence

T(VO)QVIGT(VO) -—d;-b T(Vo) —rbﬁ

is exact, df(aovaa) = q-fv°B .
Remark: Presentations of H are in 1-1 correspondence to 1 - dimensional

free chain algebras A with BOA-H « In fact, £ in (5.2) gives us

the chain algebra C,=A=(T(V_,V,),d) with A&(v)=£(v) , VEV, , which
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satisfies HA=H . Here Ce is the mapping cone of the map

£: T(s" V) ——> T(V )
1 o

in DA given by £ in (5.2), £(s 'v) =£(v) . Thus '1 - dimensional chain
algebras' and 'presentations of algebras' are in similar connection to
each other as, in topology, 2 -dimensional 'CW - complexes' and 'presen-

tations of s'.
group /

Let Cg be a further chain algebra of dimension 1 with g: W, —> T(wo) .

1
A map

F: C

f-—-—>C

in UFA1 induces the homomorphism

(5.5) o= F*: Hocf — Hocg .

Moreover, P yields a commutative diagram

v1 E >‘1‘(W°) ewie'r(wo)
a
g
A ]
(5.6) T(vg) . > T(Wo)
A
/
nocf ® > ﬂocg

where n-PO is an algebra map and where £ 1is the linear map, E,‘apl v,
1

The map £ is welldefined since we have in degree 1, (Cg)1 ='r(w°) BW, 8
'r(we) . On the other hand we can choose for each algebra map ¢ in (5.6)

a pair (&,n) such that the diagram (5.6) commutes. In this case we say



(5.7)

(5.8)

that (E£,n) induces ¢ . Diagram (5.6) corresponds in topology to diagras

(A.4.3).

Similar as in (A.4.6) we derive from (5.6) the following model categor)

of DFA' .

Definition: The objects of M1 are linear maps £: V, —=p 'r(voj where

1

Vo and vV, are free R -modules. The morphisms (E,n): £ —=» g in M1

are pairs (£,n) for which diagram (5.6) commutes. Composition is definec
by

(E,n)o (E',n') = ((n®@EONn)oE',nen') ,
see (1.7). Clearly, we have the cancnical equivalence of categories
u' = oral

which carries £ to C, and (£,n) to F with !'o-n,r

P =f as

1 lv1

above. /

The category H1 of 1 -dimensional homotopy systems is a quotient cat(
gory of M1 . We obtain the natural equivalence relation ~ , for which t

diagram

M =  pral
P p

v Vv

Tl PO

commutes, as follows: lLat

qg: T(Wo) OW1 O‘l’(ﬂo) c—— picg



be the quotient map in (*x) of (3.2). Then we define, for morphisms £ —>g
i W,
') ~ (E,n) <= n=n and =q & .
(&n) ~ (&,n) n=n an ng ng

One easily checks that diagram (5.8) commutes.

We obtain the homotopy relations in Ml = DFA1 by the homotopy relation
in DFA1 , see (0.10), (0.11). Moreover, we have by (3.8) the homotopy re-

lation in H1 .

(5.9) Proposition:
oFAl /e = W1/~

]
=X
-

]
=
T
~
R

oFAl Ju= M/

1
(£)

for which the homology in degree O, Hocg ¢ is free as an R -module. For

Let Ml(f) =0FA be the full subcateogry of objects Cg in DFALl

this subcategory of 1.)FA1 the homotopy relation can be described in a sim-

pler faghion:

(5.10) Lerma: For morphisms (E,n),(&E',n'): f —>» g 1in Ml(f) we have (§,n) =~

(€',n’) iff there 18 a linear map

o Va — r(wo)a W16 T(Wo)

with

(1) n'lvo-n|V0=dga in Hom(Va,T(Wo)) R
EE' -EE = (0OF ad @A

(2) E’gE E'gE (o gcx WAf

Here (1) implies that (E,n) and (E',n’') <induce the same map

] - -yt
tp.FIoC H——bHoC H

f g
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The map A: T(Vo) ——»HQVOOH 18 defined tn (1.8) and

Eg:xol Q0 T(Wa) ‘”1"”"0) —p H! owzaa'

i8 given by the quotient map ): T(Wo) ——p B' , (2) T8 an equation

in Hom(Vl,H'GVIOH') .

Remark: We have checked that SAf = (1v3j)E(Vf) , compare (1.31). Therefo

(5.10) corresponds to the homotopy relation in (A.4.8).

V/4
Proof of (5.10): We congider the diagram
[} L}
- (cg)2 )4 gwleu
-, -7
P .
/& a E // h
e 1 }y, - 1
s ’ e
t————
Vl -—-;-.-» T(:O) OWI OT(WOJ pi
ra
P4
£ a 4 a
,’ o g 1
.
I
’ v v
1 ]

Hexre p's=p(C g) is the homotopy system of the 1 -dimensional algebra
cg . P is the quotient map in (%%) of (3.2). The map a is given by
a map

a: V° — T(Wo) QWIQT(WO)

and has the property

GO(V) = x(v) for vevo v
(*)
uo(x'y) - (aox) n‘y) + (nx) (aoy).
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By definition of homotopy in OFA we know that (&,n) ~ (£,n) are homo-

topic maps in ODFA iff there is « and a, such that
(1) n-n= dgao P
(2) E-E=da1+a°f

Now (1) is satisfied iff

' g - =
(1) n]vo nlvo dga .

Moreover, since image d = kernel p we have (E,n) = (E,q) in ODFA iff

there is a with (1)' and
(2)° p(E-g-aof) =0 .

We have
dlp(g-s-aof) = (n-n)f-dlpcxof

= dgaof - dgaof =0

Thus p(g-E—aof) ‘maps to kernel(dl) . By (1) in the proof of (4.7) we
know that l'x1 is injective on kernel (dl) . Therefore (2)' is satisfied

iff for Egahlp we have
()" Eg(E-E-aof) =0 .
By (*) above we have

E = GE o)A .
(3) tho (@ g ®)

Therefore (1)' and (2)" are equivalent to (1) and (2) in (5.10). This proves

the proposition. 0



(5.11) Proposition: The functor

A
b: (f)/a—--DOFa/u

t8 full and faithful.

Proof: By use of (5.10) this can be proved in the same way as (A.4.30). W
describe a slightly different method of proof as follows. We leave it to

the reader to check the details. 0

Let [f,q]w be the set of homotopy classes of maps f —»g in M1
which induce ¥: Hocf —-—bﬂocg . We have a transitive and effective act

A
of the abelian group Hz (Ct,w*ﬁlcg) on [f,g]m , 8ee (6.4) below.

A A :
On the other hand let [bct'bcg]w be the set of homotopy classes of

A
¢ - biequivariant maps in DOFM /e . Then we have similarly a transitive an

A ® A
effective action of 32 (cf,tp szcq) on this get. Morecver, the function
A [ ] [A A
b: f,qw-—b bcf,hcg]w
is j « ~'equivariant, where
t A
j : n (cf,cpac ) ——->H (c ,wnzbcg)

is induced by

A
: H C ~memdp H_bC .
3 1°g 2" g

A
Thus b is a bijection since 3 is an isomorphism, see (4.6). i
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§ 6 On n-dimensional algebras

We consider the homotopy category of n - dimensional chain algebras,
DFA” /=, and a quadratic natural group action on DFA" /=~ . An n - dimen-

sional chain algebra Xx=x" gives us the principal cofibration
el et LTV ) .

The attaching map £: T(s-lvn) ———-»xn'l of x“=cf is given by the

differential d in X° . f(s-lv)=d(v) , see (0.8).
We have the group action
(6.1) 1, U] xE(P,0) —— [X7,U]

on the homotopy set [cf,U] y UEDA . See (III.3.6). Here we use the

abelian group

(6.2) EG,U) = [ZT(s-lvn) ,u]

= H (Vv ,H U) b o
om 0 nU ’Hmw,lp(bn-ﬁl ,HnU)

= bt (x",co*nnm ,

see (1.25). Here we can take for ¢ any algebra map ¢: Hox —_— Hou .
The action (6.1) can be described by
{F} +a = {F+a}

where FP+a: ¥ —> U is the map in DA with (P+a')k-5‘ for k<n

k
and

(6.3) (1?4-0:)u Ivn = (Fn Ivn) +a .



(6.4)

(6.5)
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Here we choose @ such that

v g >ZU0UCU
n‘ /n n
\_\. /
N ,
N ¥
HU
n

commutes. an denotes the cycles in U of degree n.

Let [xn,ulw be the subset of all homotopy classes in [X®,uU] which
induce ¢ in no . This set can be empty. If it is non empty, the coboun-
daries in ll;m'l x" ,(p‘anm are elements of the isotropy group in each

une [x“,u]w . Therefore (6.1) induces the action
[x”.u]mx (X0"E O —— IX“.U]“,

Only for n=1 this is a transitive and effective action. For n>1 the
spectral sequence in the appendix of §1 yields the isotropy group I(un)

of the action (6.4) in L

Bn+1 0

1
Pl = P et m T

By (6.1) and (6.4) we have a natural group action on DFAn/u which has
a quadratic distributivity law. The mixed texrm as#+8 is given similarly

as in (A.5.9) by composition of cocycles. We describe this in more detail.
Let X,Y,Z be objects in DFA" and let

FE [x,z]‘p :r GE [z,x]w

ae it (x.w'nnr) , pe™ (9% %) .

Then composition in DFA" /o satisfies the distributivity law
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(6.6) (F+Q) (G+B) = FG+F,B+G a+axp

in [2,Y] op The induced functions P . and G* are the obvious homomor-

phisms for cohomology. The mixed term is the délement
asp € A (z,w*w"'ann

with

A
xxf = {b 12 ——>ax—r>n bx:lex -—a—>anv} .

Here j is defined as in (4.2) and bEB , a€a are cocycles which re-

present the cohomology classes g and f respectively. We have for X=X
that

(6.7) kernel j = I (X)
by the exact sequence (4.5). The inclusion of H_ X - bimodules,
T
j: I_(X) cHX

induces the homomorphism

3: AMI(Z " 1‘ X) ——»Q‘“(z B* H_X)

via vwhich we define the action

(6.8) | [z.x]wxﬁn+1 (z.w*r:x) — [2.x],

{Fl+y = {F} +3(y) , see (6.4).

This, again, is a natural group action on UFAn /e which we denote by
'+ . Moreover, (6.7) and (6.6) show that TI'+ is a linear action which gives

rise to the linear extension

(6.9) [+ ———> OFA /ot ———> (DFA" /) /T



(6.10)

of categories. In the next section we give a different description of the

category (DFA" /o) /T , see (8.12).

Remark: We can develop this section further in close analogy to (A.§5).
We leave it to the reader to introduce Postnikov functors for DFA/ e« ;
and to introduce the éauqories Tn . T: for DFA® /e~ by use of k- inva-
riants, see (A.5.14). We even think that an analogue of Whitshead's result

(A.5.28) should be true for chain ugebtu.//
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§ 7 Homotopy systems of order n , nz3

Almost the same arguments and definitions which we used in chapter a
for the construction of the CW - tower are now available for the construc-
tion of the DA - tower. Similarly as in (A.§6) we first define the cate-

gory of homotopy systems of order n.

A free chain algebra X= (T(V),d) has attaching naps

1 1

- n—
(7.1) fn. Dn-'r(s Vn) — X

with f‘-cfn » see (0.8). The homotopy class of fn is given by the map

-1 -1
(7.2) £:s vV —>n X

which carries s v to {av} , VEV . Here 4 is the differential in

X , compare (0.16).

Let H-aox“-l -Box y n22 . The homotopy class of fn is asg well
given by the H - biequivariant map f n which makes the following diagram

commitative

ll;n+1x — H® sVu )3
s|s
0 " .
n
v I
B, ) — xn(xn,xn'l)

(7.4) Remark: The element fn is a cocycle in the cochain complex



(7.5)

(7.6)

A -
Honﬂ_g(b‘x.ﬂn_l (<" l)) v

A
that is fndn *2 =0 , see (1.17). This follows for example from property

(a) in (V.5.2), compare also (A.6.4).//

Let Y= (T(W),d) be a further free chain algebra and let F: X —>
be a map in 0A . By naturality of diagram (7.3) the map F induces the

commutative diagram (n =2 2)

A A
LWL B L
fn gn
g —nu_ ("7
n-1 n, n-1 :

Here 9, is the attaching map for Y defined in the same way as in (7.:

A - .
The map €n+1'bn+ P is induced by F , see (1.19), and n: l-—-> e

1
is the rxestriction of F . By (1.20) we see that diagram (7.5) is a commt

tative diagram. The maps En +1 and n* are @ -biequivariant where

cp-HO(n): aox —>HY,

A
We deduce from fn in (7.3) the boundary dn+ by the following

1
comnutative diagram

A -1
bn_‘.lx 3 ey B

1
!
3
a . =)
- A
n+l n B bxn-l

A
b

n

A -
x - N
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Here j 1is the map in (4.2) which corresponds to the Hurewicz homomor-

phism.
We now introduce the category of homotopy systems similarly as in (A.6.7).
Definition: Let n22 . A homotopy s.ystem of order (n+1) in DA is a triple
b, , )

where X" -1 is a free chain algebra of dimension sn-1 in DJFA and

-1 A A
where mox“ 1,b) is an object in OJFM , see (1.10), which coincides

A na
with bx" 1 in degree Sn . Moreover,
A -1
£:D  ——> an_l}{‘

is an (Hoxn-l) - biequivariant map with

(1) dn+1 - a(fn) .
A
Here dn+1 is the boundary in b and a(fn) is given as in (7.6).

A homomorphism or a map between. homotopy systems of order n+l is a

pair (E,n) which we write

A - A -
(€ (b,g X" Yy — b',g )

vhexre n: }f‘-l —->Yn-1

is amap in OFA/~ , see (0.10), and where
A A A
E: b —p b' is a B (n) - biequivariant map which coincides with b.n

in degree sn . Moreover, (£,n) induces the commutative diagram

A — Y
n+l a1 n+l
(2) \ifn 95
- n -
R ik z > !
n-1i n-1
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Let Hn " be the category of homotopy systems of order (n+i) in DA
and of maps as above. Clearly, composition is defined by (£,n)(E,n) =

(€E,nn) -y

We have obvious functors (n 22)

(7.8) DFA/~ --r-;-:;—-) Hn+1 -—r—-b Hn

with Ar =r , nz23 . Here we set
n+l n
, A -1
z X = (b*x,fn,x" )

where fn is given as in (7.5). The functor rn carries the O - homotop

+1
A f‘-1 Yn-l

clasg of P: X ——>» Y to (b,F,n) wvhere n: — is the

restriction of P , see (0.10). By (7.5) and (7.6) we gsee that L is

a waelldefined functor.

We define A by
A - A -
A g Y = b PP
n n~-1

where fn- is the attaching map for !fl-l .

1

(7.9) Lemma: Let X D¢ the class of free chain algebras, considered as a class
of complexes in DA , see (0.9). Then the category of twisted n —system
admits the canonical tesomorphism

- - ¢V
Hn+1 = Tn(i) s Kn(i) nz2) .

The functors in (7.8) correspond to thoee in (V.1.16) and (V.4.18).
See also (V.6.2).

Proof: The lemma is a consequance of the dafinitioms vhere ve use (1.31)
and (0.14). 0



73~

(7.10) Lemma: There ts a canonical isomorphism of categories ): H3 T H , where

H 8 the category of homotopy systems in § 3. (Compare (A.7.8)).

Proof: We define A by

A, £, x"
( Ilex ) = (p*'d)

where
A

2'.\5..'_1 y 122

(1)

p =
i pi(x’) , i=o0,1 .

A
The boundary in 4: Pisg —> 0, isgiven by @ in b for i22 and
is given by p(xl) for i=0 . For i=1 we obtain d by the composition

a: p.=b, ——>u.x! B !, %) =0, (x*
P Py= 0, £ 1 L\ Py (X ) =p, .

The functor A carries a map (§,n) to the obvious induced map. On the

A
other hand if (p_,d) is given we obtain (b,fz,xl) with

A B 1
2) b,£,,x") = (p_,a)

as follows: Let X' = (T(V_@v,),d) be given by the boundary

V1 cp —>p, = T(Vo)

where Vi is the fixed basis in pi . We get f2 by d: p2 — p1
since
1

d(pz) < kernel 4 = Hlx .

By (3.4 ) and (1) in (7.7) we see that (2) is satisfied. By (5.9) we see

that the functor A is an isomorphism of categories. 0

Clearly, for A in (7.10) the diagram
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3
~
?
v
=

"

(7.11) P

commutes, compare (3.4) and (3.5).

We deffixe the homotopy relation = on Hn +1 in such a way that o

in (7.8) induces a functor between homotopy categories. We follows the

definition of =~ on K:(z) in (v.1.21) and (v.1.21)°.
(7.12) Definition: Let n32 and let
A - A -
(E,N),(E',n"): (bvfnvxp 1‘) —— (b'rgn'yn 1)

be maps in Hn-l-l . We set (E,n) o (§',n') if Kon-BOn' (=p) and if

there exist ¢ -biequivariant maps

A A
dj+1: bj — b).+1 (3 2n)
such that
(a) {n} + 9% = n'} in OFA/ax ,
(b) g"( - Ek = ukdk + dk-o-l“kﬂ s k2n+t

The action + in (a) is defined in (6.1), {n} denotes the homotopy claf

of n in [ L,%71] . we write a: (E.n) « (E',n") .y

One can check that o is a natural equivalence relation on Hn s "

Moreover, we have

(7.13) Proposition: The iteomorphisms in (7.9) and (7.10) induce teomorphisms
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between homotopy categories (n2)

- R
Hm_l/a- Tn(i)/u- Kn(i)/u,

Hs/u=H/u s 8ee (3.8).

We now are ready to apply the result on the twisted tower in (V.§6) .



(8.1)
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§ 8 The main result: the DA - tower of categories

We show that the categories DFA/~ and DFA/o can be approximated
by towers of catagories. These towers are examples of the twisted tower
in (v.§6), they corre-pénd in topology to the CW -towars in (A.§7) . In
fact, as we will prove in chapter D there is a canonical map which carri
the COW - tower to the DA -tower. This map is given by the chains on the
loop space, see (0.3). We here describe the purely algebraic properties
of the DA - towers which are constructed by use of the categories Hn an

wWhitehead's functor l": in (4.3) factors over the catho:y' HM_1 '

that is we have a commutative diagram (n 22)

DFA/~ ->
rn-o-l n+l
T T
I'n I.ﬂ
Y " -

where .M. is the category of bimodules, see (4.5). We define r:x for @

. A -1
object X=(b,f ,X" ') in H_ . by

T -1
TpX = Image ift’ fn-t ) —s Hn-1 (Cg)

where f is a map which represents f , f is given by choosing a bas

A
in blH'

1.B‘o:‘:ama;:v

A - A -
(Em): X = B2 87— ¥ e Br,g 7
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in le1 there is a map

(8.2) F: Cf —--—)Cg. ' g€9‘n .

which is associated to (En +1,n) . Therefore the induced map
T T,
(En)y =Fp: T X —> Y

is welldefined. Clearly, (f,n) * depends only on the homotopy class

of (Em) in H /.

We define a natural system Zn+11‘: on Hn+1 as follows: For (£,n)

as above let

n+l_T A
(8.3) p A l"n(E,n) CHonw (

T.
"p bn+1 IrnY)

be the subgroup of cocycles in the cochain complex
(8.4) #om  (5,rTY) = Hom, (b0 TT¥)
: o' n oMy g (P90 LY ’

compare (1.25). Here H=H°X and ¢: Box — HOY ;o 0=n_ is induced

by n .

We define the natural system HkI‘: on Hn 41 by the cohomology of

1
(8.4):

A A
(8.5) BTT (€)= BS(,0" T

with ¢ as above. For k=n+! we have the quotient map z“*lr: — HnHI‘: .
The induced maps are the obvious homomorphisms given by the functor I’:
in (8.1) and given by chain maps. Clearly, ﬂkl': is also a natural system

on Mn-l-i/m *

The following result is a special case of (1v.6.3):
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(8.6) Theorem (the DA -tower): We have towers of categories which converge to
the homotopy categoriee DFA /~ and UFA /= regpectively, see (0.10
and (0.11). These towers are constructed by the categories Hn and
Hn/u of homotopy systems, n23 , and we have a canonical quotient -
betuween these towers as indicated in the following diagram, compare *
notation in (Ext.§ 6).

DFA /~ > > DFA /o
x r
+1..T + ) +1. T + )
= I‘n — Hn .2 e I'n — Hn+2/~
A A
H v 9, @27 H jos =0y 20T
n+i n-o-l/
\/} v
H3 > > H3/u
I I
H H > H /=
C

o/ .

Here H is the category of homotopy systems in §3 and C is the funct
(3.9). The composition of all functors in the left columm is the functor

P, ses (3.5). The composition of all functors in the column to the right
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A
is the twisted chain functor b in (1.23).

By (3.10) we know that the functor C is full and faithful on the full

subcategory H(f)/”" in H/=2 .

The quotient functor p is a map between towers for which the diagram

n+l T + 0 +2_T
z rn Hn+2 Hn+1 Hn I‘n

(8.7) p P p 1

+1.T + 0 n+2, T
i I‘n — Hn+2/a — Hn+1/°' —>» H T

is a commutative diagram with exact rows, see (Ext.5.7).

We define the obstruction operator ( and the action 2" +11‘: + in
(8.7) as follows: Lat X,Y be objects in Hn+2 and let (E,n): AX —> AY
be a map in Hn+1 . Then there is a map F: © —> ¥ ag in (8.2) which

is associated to (En +1.n) . This map yields the element

(8.8) 0(F) = -gn+1€n+2 + (F*)fn+1

A
€ Homw'w(bn+2,ﬁnYn) .

The homomorphism ((F) factors actually over I':Y < HnYn and is a cocycle
in
A T

(b ryey .

Hmtp,tn n+2’ ' n

Therefore O(F) determines the cohamology class

A
(8.9) 0E,m = (0@} € P2 <b,¢"'r:n ,

see (8.5). This is the obstruction operator in (8.7).
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(8.11)

(8.12)

Now let (E,n): X —> Y be a map in Hn+2 and let

+1.T A T
a€Z T ((En) clm (b .Y .

With the inclusion i: r:y S8 Y" we define the natural action z"“r:+
on f“n+2 by
(E,n) + & = (E,n+ia)

where n+ia is defined as in (6.3).

Proof of (8.6): We leave it to the reader to give a direct proof of (8.6

As in (A.7.12) the result is as well a direct consequence of (V.6.3) by

(0.14). By (1.31) we see that I‘n+ on Tn(I) coincides with Zn+1I':+

on Hn_._1 . Also the natural systems n:r ’ H':';ll' on Tn(z)/u coincide
n

with Knﬂl': and u‘””r” on Hn “ /o . Now the theoream follows from

(v.6.3) by using (7.13) and (7.9). 0

We describe explicitely some properties of the DA - tower. These pro-
perties are immediate consequences of the discussion in (Ext.§6) . The

gimilarity with the results in (A.§7) is striking.

Clearly, the functor tn is full and faithful on the category

+1
m:A“"l /~ and UFA“-I/G: respectively, compare the definition of L4

let Hﬁ :: be the full subcategory of Hn +1 consisting of objects

A

A -
(b€ ,x*7!) with b =0 for 12n+2 . Then the quotient category

(DFA%/o) /T in (6.9) can be described by the equivalence of categories

n ~ +1
(DFA™ /o) / T et H:‘m/u

, - This follows fram (8.6) since T+ in (6.9)

vhich is induced by zn +

corresponds to a"“r:'+ in (8.7), ses (6.8).
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From (Ext.6.6) and (8.6) and (3.10) we derive:

Theorem: Let f: X ~——> Y be a map in OFA .

(A) The restrictions f': X' —> ¥ are equivalences tn DFA/~ for
all n if and only if the induced map of: pX —> pY in H 18

an isomorphtsm.

(B) The map f is a homotopy equivalence in DFA/=~ if and only if

the induced map of: pX ——> pY 1is a homotopy equivalence in H/x .

(C) Assume that the wnderlying modules of HOA and HOB are free. Then
the map f i8 a homtopy equivalence in DFA <if and only if the
induced map g*'f: ?*x —_— II;*Y 18 a homotopy equivalence in
DF /o .

This result is known if H°A==H°B=O is trivial. We don't know of a
reference for this theorem in case HOA is non trivial, see alsc (2.18).
Part (B) of the result above shows that homotopy systems in § 3 have their

A A
own significance and have better properties then b or B .

We consider the homotopy classification problem for maps in DFA /=~ .

Let X and Y be free chain algebras; we want to compute the set [X,Y]
of homotopy classes of maps from X to Y in DFA/~ . The DA - tower

yields the following method:
Let rnx R an be the restrictions in Hn and let
n
[}!,Y]‘p = [rnx,rnY](p

be the set of morphisms r X —> rnY in Hn/u which induce ¢ . For

each algebra homomorphism ¢ the DA ~ tower yields the #fnllowing diagram:
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[X,Ylm

n+l
(4]

o't v+ 2 [x,v]

N
A J
* T

n 0 +1
(x,x] ) —> (%0 I 0

A

(8.15)

cooo<

A
83 (x.tp'r:'y) -2y [x,r]:,

A
v
[x,!]; 2, g (x.co"rfv)
C
v
A A
[hx.bﬂw

Here C is a bijective map if aox and a°Y are frse R -modules. The
arrow D+ denotes the action of the corresponding group on the homotopY
set. The arrows r,),0,C denote maps between sets. Each sequence D,/
is exact in the sense that
-1
Image A = 0 " (0) ’
(8.16)

orbits of D in P = A (e .

If X has dimension Sn the tower (8.15) is finite with
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n+l

[:mr]‘p -[x.Ylw .

The isotropy group of the action D+ can be computed by use of the spectral

sequence in the appendix of §1 . Here we use the same method as in (A.7.29).

The tower of sets in (8.15) leads to the following obstruction theory:

(8.17) Definition: let X and Y be free chain algebras and let : Hox——>H°Y

be a homamorphism of algebras. We say that a ¢ - biequivariant chain map
A A
d: bX ——> by

is n ~realizable if the homotopy class {d} lies in the image of

A A A
b: [x,v](‘; —_— [bx,bY]w , n23.

We define the higher order obstruction to be the subset

+1 At A+l * T
0" @ =0b (@) W (X@T__¥) . y
Clearly,
d is n ~realizable <= 0n+l (d) is non empty,

d is (n+l) -realizable e= o€0n+1 a) .
If aox and HOY are free R -modules each d is 3 ~realizable.

(8.18) Theorem: Lgt X and Y be free chain algebras for which HOX and HOY
are free R-~-modules. We suppose that X <18 finite dimensional. Then
X and Y are homotopy equivalent tn DFA/~ tf and only if there

exists a pair (g,d) with the following properties:
(a) @ HX £ B,Y s an isomorphism of algebrus.

(6) d: QX — S.Y 18 a @-blequivariant chain map which induces tgo-
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morphtems in homology.
(c) 0€0™(d) for n24 .

It seems likely that the algebraic properties of the obstructions i
(8.18) are very similar to the algebraic properties of the obstruction
in the topological case, see (A.7.31). In fact, the analogy between th
DA - tower and the OW - tower might lead to a deeper understanding of th

homotopy clagsification problems in topology, compare chapter (D).

Next we consider the group E(X) of homotopy equivalences X —
in DOFA/ . We denote by E (X) the group of equivalences of r X i
Hn/at . Moreover, let z(gx) be the group of homotopy equivalences in
DFﬁ/ o ; Aut (nox) denotes the group of automorphisms of the algebra

HX.
[+

The DA - tower gives us the following tower of groups with H°=Hox
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E(X)

L A ']

An T
(X0 _(X) ——> E__ (X)

1

A
e —L s u B¢ (X" _ %)
n Q€ Aut H n
[o]
A + )
(8.19) 33(x,r§x) —r o E, (X)
A
A
E, (X) —9% 5 H4(X,tp*I'§x)
@EAut H
o]
c
v
A
E(bX)
H
o]
Y
Aut H
[«}

If H X is free as an R-module then C in (8.19) is an isomorphism of

groups. The function ( is the obstruction operator with

o € B 5, ¢* T %)

for uezn(x) and ¢ Hox ——-)Hox induced by u .



(8.20)

(8.21)

The obstruction is a derivation, that is
Otuv) = u,0(v) +v0@) .

Thus the kernel of ( is a subgroup of EX . Ve define the homomorphis

+

1 in (8.19) by the action D+ and by the identity 1 in Bn-l- X , tha

1
is .

1Y@ =1+a , aeﬁ"(x,r:_ix) .

The kernel of this homomorphism.can be computed.by the spectral sequence

in the appendix of §1.

The arrows r,1+,l,c,!!° of diagram (8.19) are homomorphisms of group:

Moreover, the sequences (1",1,0) are exact, that is
kernel 0 = image A ,
kernel A = image 1% .

By exactnes we obtain the group extension

0 ——»> image 1+—->En+x—l—->kerne].0»———>0

1
The associated hamomorphism

kernel 0 —l‘-—-b Aut (image 1+)

is induced by the homomorphism
h T
EX —> Aut(gn(x. n=1X))
hw @ =u @ = @@,

compare (Ext.§4).

All these results are immediate consequences of theorem (8.6), compart
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(Ext.§ 6) . Moreover, by (Ext.6.24) and (Ext.6.25) we get

(8.22) Theorem: Let X be a finitte dimensional free chain algebra for which

HOX 18 free as an R-module. Then the kermael of
A A
b*: E(X) ——> E(b,X)

. . , A
i8 a solvable group. If G <is a sugbrowp of E(X) such that b,(G)
18 a nilpotent group and such that G acts nilpotently on 9’“‘1 (x,rf;x)

via (8.21) for all n22 then G <is a nilpotent group.

Compare the result in (A.7.45). We leave it to the reader to formulate

the obvious. results which correspond to (A.7.48) and (a.7.50).
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€9 PFiniteness obs*tsmi'ass\&n‘d\ﬁimi\mda*ls

We here show that the results in (A.§ 8) on CW-complexes are in a
similar way availahle for free chain algebras. In particular the results
of C.T.C. Wall on finiteness obstructions for CW -complexes have a direct

analogue for chain algebras. As in (A.§8) the crucial result is the foll

wing:

(9.1) Theorem: The functor A: Hn+1 /™ ——>H /= of the DA-tower satisfies

the strong suffictency condition for n23 , compare (A.8.1).
By (A.8.1) and by the DA -tower (8.6) we thus have:
(9.2) corollary: The functor A3, Hn/s --—>H3/= and the functor
P: DFA"/ ot e H/
satisfy the stromg sufficiency condition.
By a limit argument we even have:
(9.3) Theorem: The functor
P: DFA /ot~ H /o
satisfies the strong suffictency condition.

For convenience of the reader we give the essential part of the proof

of (9.1). It is a strict analogue of the proof of (A.8.4).

v v
Proof of {9.1): Let G: X —> Y be a homotopy equivalence in H /=

v
n23 , and assume we have an object ¥ in H . with Ay=y . We have t

construct an object X together with amap F: X —> Y fn H such
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v v v _2
that AX=X and AF=G . Let X = (b,£,X" °) where

A

(1) f£: b —>H X2
n n-2

Here bn is a free nox“ =2 - bimodule. For a generating module sVn_1 of

hn we choose a map of R -modules:

(2) v — sz 2 2
n-2 n-

n-1 1

which represents (1). Let xn-l be the mapping cone of this map. Let

Y = (b' ,g,Yn-l) and let
v v
(3) G=(E,n): X ——> AY =Y

be the homotopy equivalence in the assumption of the theorem. We can choose

a map

() 6 ¥ ——> " in R

which is associated to (£ ,n) in (3). We derive the following commutative

diagram of unbroken arrows:

n+1

1]
bn+1




The rows of this diagram are exact, they are part of the exact sequenc

of J.H.C. Whitehead. Moreover, since G in (3) is a homotopy equivalence

the induced map

T n-1 T n-1
X o > Y
le
(6) I H
v & v
NeX ¢ > rxTY

is an isomorphism for k<n .
Diagram (S) and (6) show that there is a map fo in diagram (5) with
(N jfo =4 .

In fact, since bn + is a free Hox-bimodule, we obtain £° by showing

1
9d =0 . This is the case since

Giadd =gk, =0

where 9§ =0 . We use (6). The map £, in (7) gives us the object

1
(8) X0y ® (b,fo,x“‘)
v
with )‘x(o) = X . Therefore the obstruction
v v
(9) 0, @ €Tt ¥
(o)’ n=

is defined; (p-th Hc,xn.1 . HOYn -1 . The isomorphism of coefficient

G, in (6) gives us the element

(10) {a} =c~lo et % .
- x(o) Y n~-1

Let a be a map given by the composition

a T Y T n-1 . -1
(11) ar b~ T, Xl X —psa X .
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Here @& is a cocycle which represents (10). We define

-1
g -arb, —>n_ X

(12)

X = (b,£,XY) .

v

We have AX= X =X and
(o)

(13) OX'Y(G) =0 .
Therefore G is realizable by a map F: X —> Y in Hn+1 /= with

AF =G in Hnlﬁ . Clearly, F is a homotopy equivalence since )\ satis-

fies the sufficiency condition.

We have to check that (13) is satisfied. The cohmmology class in (13)

is represented by the cocycle, see (8.8),

T VY -1
Gyaf-gE b -—>T _¥cC Hn_lYn .

By definition of f we get

{(Gyaf, ~9E ;) = G2l

{6y 4fy ~9E 4y} - Gyalo)
=0y ¢© =g fal
(o)

= 0 'bY(IO).U

We proceed in the same way as in (A.§8) :

A N
(9.4) Definition: An object C=(H,C) in DFM is n ~realisable if there is a

free chain algebra X and an isomorphism in vrﬁ :

~ A
@\, = (aox,(bx)“) )
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A A A
Here C° and (hgt)n = bx" 1 denote the n ~skeleta of C and bX re-
spectively. let

A A A
DFM(f)(n) < DFM(n) < DFM

be the full subcategories of DFﬂ consisting of n -realizable objects
(H,C) for which H is free as an R ~module respectively. Let DFA(f)
the full subcategory of UFA consisting of free chain algebras X for
which Hox is free as an R ~-module., Clearly, by Q in (1.8) we have th
functor

A A
b: DFA(” — ‘DFM(f (n)

)

for arbitrary n . Y
The functor C in (3.5) has the following property:
(9.5) pPropesition: The functor

A

(f)
i8 an equivalence of categories. Moreover, this functor satisfies thé

strong sufficiency condition.
We derive from (9.3):
(9.6) Co;‘oligx: The functor
A A
satisfies the strong sufficiency condition.
There are many corollaries of this result:

(9.7) Definition: We say, a free chain algebra Y= (T(V),d) is finite, count?

or of dimension Sn if V is finitely generated, countably generated OF
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dimension Sn respectively. Vi

(9.8) Corollary: Let X be a chain algebra for which H OX 18 free as an R -mo-
A A
dule and suppose f: C —> BX 18 a homotopy equivalence in DFM

where C s 2-realizable. Suppose C satisfies any combination of
the conditions

(z) Ci 18 a finitely generated R-module for < smy ,

(i) C; is countably generated for ism, ,

(1i2) €;=0 for Z>mg

Then X 18 weakly equivalent to a free chain algebra Y satisfying the
corresponding conditions

i m1 4 * .
(7) ¥ t8 finite,
. ’i'z .
(z2) Y 18 countable,

(ii1) dimY sz .
We can follows Wall's proof for deleting the 2 -realizability condition

in (9.6), compare the remark on (A.8.11). Moreover, we cbtain in the same

way as in (A.8.12) the following-obstruction to- fintteness:

(9.9) Corollary: Let n23 and let X be a free chain algebra for which H:HOX
18 a free R -module. Suppose the n -gkeleton Xn—l 18 finite and suppose

A
(7) Hi(bX)=0 for i>n and
A A
(Z7) dbn+1X i8 a direct sumand of b, X over #e fP , 8ee (1.2),
A
Let B, be a complement of this swmand in b X and let

o(x) = (—1)”{Bn} € 'Zo(aoaop)
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be the element in the reduced projective olass growp of n which is
gtven by the finitely generated Hgaap -module Bn » which 18 pro-
jeotive since B, is a direct swmand of b X . Then o(X) is an ol
struction, depending only on the homotopy type of X , which vanishe
if X 18 finite, and whose vanishing is suffictent for X to be

homotopy equivalent to a finite free chain algebra of dimension sn .

Addendum: If X 18 homotopy equtvalent to an n -dimensional free chain
algebra the conditions (i) and (ii) are satisfied.

The projective class group EO(A) of aring )\ 1is defined in (A.8.

The proof of (9.9) is the same as the proof of (A.8.12).

If a chain algebra X is connected, nox-n . we can derive from (9

small models as follows, compare (A.8.16):

(9.10) Corollaxy: Let X be a chain algebra with H ,X=R . Suppose for the ba

construction BX a presentation
0 —>»R" =—p BR™~ —> HkBX —p O

of the R-module HkBX i8 given (r1=b1 =0 ), (recall that R 1is¢
principal ideal domain). Then there i8 a weak equivalence

= (7(V),d) —>» X
in DA where X 18 a free chain algebra for which
dmpl(Vi_q) = b+ g -

A

Proof: For BX=BX there is a chain complex C= (R@sV,d) and a homo¥
A

equivalence Cw~BX in DFﬁ . Since H,X=0 and V, =0 we know that ¢

is 2 - realizable. Thus the result follows from (9.6). 0
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{(9.11) Definition: We call a free chain algebra K= (T(V),d) minimal if Vo=o

(9.12)

and if dQ on QK is trivial, dQ=O : Or equivalently if dv , vEV ,

is decomposable, dV < K-XK . We call K a minimal model of the chain

algebra X if there is a weak equivalence
K = (T(V),d) —> X
where K is minimal.

Corollary: Let X be a chain algebra with Hox =0 . Then there exists a
minitmxl model of X <ff HBX 18 free om an R-module. Two minimal mo—-

dels of X are itsomorphic as chain algebras in UFA .

In case R is a field, this result on minimal modals is also proven

in [2].

Proof of (9.12): We can take rk-o and bk-dim Hka in (9.10). Clearly,

the existence of a minimal model K implies that

”~

BHBX = HBK = HbK = sV

is a free R - module. 0
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§1 The universal cover of a classifying space

* *
Let A be the simplicial categqory. Objects in- A are the sets

A(n) ={0,...,n} , n20 , of im.:egers and morphisms are the monotone
functions Q: A{n) —> A(m) , that is a(i) fa(j) if is=j . The
morphisms of A*' are generated by the injective maps d,: A(n-1)

~——> A(n) ‘{i}éA(n) » 1€A(n) , and by the surjective maps s;:

A(n) ———> A(n-1) with si(i) = si(iﬂ) =i for i€A4A(n-1) .
Associated with A* is the covariant functor
*
(1.1) p: & —> Top , Aln) —> A"

which carries the set A(n) to the standard simplex A" . A" is the
convex hull of the unit vectors v; = ©,...,1,...,0) in Rnﬂ and is
equal to
An"{;tv.:f.tal ost,s1}.
i=0 11 i i ' i
The mapping Q_: A? —> A" induced by p is given by

au(l t

Vi) =Lt
1 b 8

iVa(i) -

A simplicial space X is a contravariant functor

*
(1.2) X: & ——> Top , X =X(A(n)) .
We define the realization, |X| , of the simplicial space X by

(1.3) IX{ = ¢ O A"xxn )

n=0 /=~

Here the equivalence relation '~' is generated by



(@b, x) ~ (t,a*x)
for a: A(n) —> A(m) , t€A" , x€X .

Let H be a topological monoid, that is H has an associative
multiplication M HXH —> H with unit *€H . We can form the

contravariant functor
»
(1.4) BH: A —> Top

which we call the geometric bar construction for H . This functor

maps the set A(n) to the n - fold product H®=H X ... XH and is

given on generating morphisms by

pry, i=o0

* .
di = ui ’ i=1,...,n-1
prn ' i=n
* . n-1 n .
s; =3y, H & —> &' (i=0,...n-1) .

Here ]Ji(xl,..'.,xn) = (xl”"'xi.xi-'n-l"”'xn) and pr; is the pro-
jection omitting the i - th coordinate. j i is the inclusion filling

in =* as the i - the coordinate of the tuple

ji(xl""’xn) = (xl'""xi-l'*'xi""'xn) .

A space X is wellpointed if the inclusion *<X of the base-
point is a closed cofibration in Top . The following variant of the
Dold - Lashof result [ ] is due to Milgram [ ], see also I.§1 in

(1.



(1.5) Proposition: Let H be a topological group or let H be a path
comrmected topological monoid, and let H be well-pointed. Then

the realization |BH| is a classifying space for H .

Proof: We define a contravariant functor

EH: A* ~—> Top , Aln) +—— Hn+1 ’

by
PX Hn+1-———->l-ln . 1=0
* 1
d, =
: n+l n
pi B w3 H , 1=1,...,n
and by *
. n n+l .
si =]i+1:H ———> H , i1i=0,...,n-1 .

Then q=pr . : EH(A(n)) —> BH(A(n)) is a natural transformation

of functors. One can check that the realization of q ,

q: |EHl ——> |[BHI

q(t,x) = (t,qgx)

is a quasi-fibration with fiber H , see [ ]. Since |EH| is contrac

ible, the result follows. ' 0

(1.6) Example: The subspace I_B_nl-ll of |BH| is given by points (t,y) €

A xut, ign . 1f Hszn,sl,s3

the space gnﬂ is the Erojective
space RP_, (:l?n ’ HPn respectively and the restriction of q above

is the Hopf fibration.

Let G be a topological group. We can define the universal cover

éG of a classifiying space BG

EG . That is we identify in each fiber of

by identifications in the total space



each path component to a point. This leads to the commutative diagram

of fibrations

[o]
\p
TN
(1.7 A A > B
.7 G
~q

where A is the obvious map which maps a point in the fiber G to
its path component in ITOG . From the construction in the proof of

(1.5) we derive the simplicial space
- *
(1.8) BG: A —> Top

which carries A(n) to Gn xw , "=ﬂ°G . and which is defined on

*
generating morphisms of A by
pr,: H® X ———> Hn-—l xp , i=0

My o B xq —> 8" lxn , i=1,...,n

with un(xl,...,xn,a) = (xl,...,xn_l,(lxn)'a) and by

*

= 4 1
i Jiv1

c H  xn — #M xn

s
for i= 0,...,n~1 .

(1.9) Definition: A topological group G is a CW-group if G is a CW-
complex such that #*€G 1is a zero cell and the multiplication u:

GXG —>» G 1is a cellular map. We use the CW - topology for G XG . /
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For a (W-group G we set

(1.10) B, =BGl , B = IBGl , E =IEGI .

G

The projection q in the proof of (1.5) gives us

where A is induced by 1 X X G" XG ——> G x1 .

Let A" =A"-3A" be the 'open' standard simplex.

-~

(1.11) Proposition: For a CW-grow the spaces BG, BG’ E.'G are CW - complex:
the cells of which are

‘n
(a) A Xe;x... %e, cBG
on -~
(b). A erX...Xenxac:BG
. ‘n
(e) A erX...XenxacEG .

Here e, (£=1,...,n) are cells in G which are different from *,
a s an element in w=n G and a 1is any cell in G . If the
cell a lies in the path compoment & of G we write Xa=a .
In this case the map A in (1.10) projects the cell (c) above to
the cell (b). Moreover, the map p <in (1.10) is the universal
covering which projects the cell (b) above to the cell (a), compare
(A .1.11).

This is a consequence of (I.3.4) in [ ].

For the (W -group G we obtain the chain algebra

(1.12) A = C,G



(1.13)

(1.14)

of cellular chains. Here C,G is the cellular chain complex of the

CW-complex G (over R ). The multiplication of the chain algebra

A is induced by the cellular map U: G XG ——>» G ,
Hx: AO® A = Cu(GXG) —8> C,G =A .

In § 2 of C2 we defined the bar construction BA of A . Similarly

as in (C2.2.12) we now define, HaHOA '
(Ba) GTH and (BA) e’tTA .

Compare (C2.2.16). As modules these are tensor products (BA) 3H and
(BA) ®8 A respectively. The differentials are given by the formulas
d(fla,f...la Jea =

n
@ fajl...la Daa+ (-n7al...la _ 18 Oa -

d([all... lan]ea) =

n -
dotlajl... 11 Jea) + (-1)"[a |...l1a _.]la@(a -a)

Here a€H=HoA and a€A and )\: A ——> H denotes the projection.

We use the notation in (C2.2.7), 4 = dBQI + 184 is the differential

aQ
of the tensor product BAQA of chain complexes.

Theorem: For the CW-complexes in (1.10) we have canonical tsomor—

phisms of chain complexes such that the diagram



C*BG = B/‘A\
Px 1Q¢
c, B z BAG _H
G T
N
AN 1QA
I

commutes, ¢€¢: H —> R 18 the augmentation. The diagram is natural

for cellular homomorphisms f: G —> G' .

Since EG is contractible we can derive that BA@TA is contrac

ible. This is a wall known fact, see [ ].

Proof of (1.14): We define the isomorphism I on generators of C,E

(1) I(Anxelx...xenxa) =[a1|...lan]®a

where ai-ei-e(ei) € A=kernel ¢ . Similarly, we define the isomor-

phism on C*EG and C,B_. . Compare the proof of theorem I.3.19

G
in [ ]. Clearly, I in (1) gives us an isomorphism of modules. We

have to check Id=dI . We obtain the boundary in CuE; by

n
(2) a(a x‘1x"'x°nx" =

(@A) xe x...xe xa+ (-1)" Axd(e x..xe,

Now it is well known that in C*An we have

o n ) -
(3) @ - f (-nta "t .

P
1=0 1

From the identification in (1.3) we get



(4) (A" xe, x

..Xe Xa =
1 n

‘n-1 *
b ¢ X x X
A di(e1 en a) .

The definition of EH vyields

rel>< cee X (ei'ei ) % ...Xenxa , i=1,..,n-

+1

*
x X X = X X
{5) di(e1 .o Xe a) Tez en*a , i=0

X (e -a) , i=n .
n

We conclude by (1) and by the formulas (2),...,(5) that on the cellular
chain level we have the boundary with the following summands where

we use the convention

Ieila. , a, = e -¢t(e,) ,
i i i

(6) a, = (-1) i

with Ieil = dimension(ei)

(7 Id(A"xe x...Xe xa) =
1 n
n 2 - -
(8) + (-1) z [all...ldejl...lan]®a
i=1
. n - -
(9) + (-1) [al|"'|an]®da
n-1 1
(10) + 151 (-1) [ail""ei e g -Ele e, ) l...lan]®a
(11) + c(el) [azl...lan]®a
(12) + 0" [al...la 1€ (e o)

Bere (8) and (9) correspond to the second summand of (2) and (10) + (11)
+ (12) is the first summand of (2) by (3),(4),(5).

On the other hand we have by definition in (1) and (1.13)



(13) ar(A"xe, X ...xe_Xxa) =

(14) + (dB[all...Ian])®a

(15) + (-2, ... 12 1®aa

(16) + (-0 [a ] la_ 1@ (e ~ce )a) .

In (15) we have the factor (-1)" since the degree of [all...lan]
is Iell+ e ¥ Ien|+n , see (C2.2.7)(2). Clearly, (9) and (15) cancel

out. Moreover, (12) and one summand of (16) cancel out. It remains to

(17) (14) = (8) + (10) + (11) + (-1)"(ce ) [a,]...la_ ]Qa
n 1 n-1

This is a consequence of formula (€2.2.7) (3) since we insert there

(e.-e )

(18) aj'aj+1 = 57541

-e(ej'ej-rl)

- tle.)a € (e

ke TE TR AL PO DL 0
By (C2.2.12) we see that BA yields BA@TH by the formula

(1.15) R@BEA = RQHQ_ (BA®_H)

- BA@TH .

Here we consider BA as a left H-module and we consider R as an

H - module via the augmentation €: § ——>» R .

On the other hand we can derive from BAQ TH the chain complex

BA in OFR.:
For the chain algebra A=C,G we know that

H=H A =HG = Rn] (m=n_G)



(1.16)

(1.17)
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is the group ring of W . We write the group n’=n‘°G multiplicatively.

Let H°P be the opposite algebra of H and let
£: § —> P

be the algebra homomorphism with E[a] = [a-ll for a€nm . From &

we derive the algebra homomorphism, see (C2.1.2),
E: 8 —> 5@E®P , E(x) = xQEx .

via £ we consider H®E®P as being a left H-module which we denote

*
by & (a@u%®) .
Theorem: For A=C(C,G there its an H-biequivariant tsomorphism
i ~ -
(BAQ _H)®,E (A®KP) = Ba

in DFM . Heve E (HQHP) 1is the left H-module given by the ring
homomorphism (1.16). The isomorphism ts natural with respect to a
cellular homomorphism f: G ——> G' . Moreover, the isomorphism
reduces to the identity of BA®TH if we apply RQ-‘.H , compare
(1.15). |

Proof: For the cells e, in G- {*} the elements
(1) ai-ei-c(ei)EA

form a basis of A=kernelle: C,G —> R) . We set
(2) Xe, =a

if e, is a cell in the path component Q€ no(G) . We define a map

(3) h: BAG H —> éa-ao)TaAc-)Tu



-12-

on basis elements,

(4) x=[e1-8e1|...len-—8en]®u , by

(s) nx) =a T (xe ) L. (xe,) " '®le, -cte,l...le_-te ]
| MR | | 1'°°°'%n n

where e, are cells in G- {*} and where Q€N . Thus h is well-~

defined as a map of R-modules. In fact, h is a map of right H - modu

where H operates on BA via £ in (1.16), compare (C2.1.2).

Below we check that h is a chain map, that is ah==hd . Moreover,

we show that the map
- =¥ -
(6) h: (BA® H)@ L B@°P) —> Ba
xQ (a®B) j—> B-(hx)°a

is an isomorphism in DFii . Clearly, h is a chain map (if h is one

since
& (x® 28) =d(B hx"a) = B-dhx-a
= B-hdx-a = h(dx® (a®B)) .
We define an inverse h of h by

h(BD[a,l...la 18w = ([a |...|a I80)@, (18D
where B-B(xel) .o (xen)a . Clearly, ﬁl: is the identity. Moreover,
gﬁ is the identity since vwe have for

- )
x [a1 l... Ian]®n€ BA(.TH

the equations, x= (x¢1) (Xen) '
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hh (x@, (a®@B)) = ﬁ(a-hx-m_

= h(B*n 1-x'1<2’)[a1 ... lan]®na)

([all.. . lan]@na)@ﬂ (1®8a)

([a,l... lan]®n)®H(€a )+ (1@ Ba)

x@a (@& B)

since in H®HP we have

(Ew) o (1®8a) = (@®@a”!) (1@ 8a)

= a®Boa”! = a®B

For the proof of (1.17) it remains to check that h in (3) is in fact
a chain map. To see this we use the notation in the proof of (1.14).

For the basis element x in (4) we have with
X = (xel)' '(xen) €mn < R(n]

the equation:

(7) dhx = a-lxnl'a[al i... |an]‘a =
(8) ra v l®a (a,l... 12 1Qa
X B gl n $
(9) oy @) ®la ... la 1®a
X 1 2'°°" "n
(10) r -0 a7 l@la ). 1a L 1®A(a) e
X 1°°° “n-1 n :

Compare (C2.2.12). On the other hand we have by definition in (1.13)

. o
(11) dx dB[all...Ian]Qs.u +
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n - -
(12) + (=07 [a l.de_1®Ma )0 .

For the computation of hdx we have to write the terms in (11) and
(12) as a linear combination of basis elements in BAREH . For Ienl

> 0 we have X(an) =0 and (12) vanishes. For Ienl =0 we have
(13) )\(an) = Xen-t:enEZ Rinl=1 .
Therefore we get for lenl =0 with X; = x(ei)

(14) ha2) = (0" (x L L)@ eyl e 10

n-1

(15) - -0 (eepalxt L X[ '® a0 12 1®a

n-1

If we insexrt (13) in (10) we see that one summand of (10) and (14)
cancel out.- Moreover, we have to write (11) as a linear combination

of basis elements in BA®H . For this we only need the equation

-

da[a l...1a ] =a+B+C+D
1 n

where

n

A= (-1 ¢ [a,l...lde,]l...la_]
j=1 1 3 n’
n-1 j ]
B= T (-1)° [a,l...le,e ~-t(e,e, Dl...le
4m1 1 3%4+1 3%3+1 n

C= a(el)[azl...lan]

n

D= (-1)" e )a f... 12,1 .

Compare the proof of (1.14). For the boundary dej in A we know th
daj =Z niei is a linear combination of cells el in the path comp¢

of ej . Since Ednjso we have
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de, =T n.(el-sel)
i 1

(16)
i

xe Xej
Also ejej_,,.1 =k mie(i) is a linear combination of cells e(i) in the
path cguponent of °j3j+1 . Therefore

_ (1) _ _ (1)

ejej+1-€(ejej+1) -Zmi(e €e )
(17) (i)

Xe = X(ejej+1) = (Xej)(Xej+1) .

Now (16) and (17) show that the summand a—lx—1®(A+ B)®a of (8)
and the summand h((A+B)®a) of hdx in h(l1) cancel out. It
remains to show that the following terms

Il (c+ D) Qa+ (9) +
(18)

n "1 "1 N .
- (-1)a ¥ ®[a1|...lan__1]o< (€e )-a , and
(19) h((C+D)&a) + (15)

are equal. In (18) the last summand and a-'lx-1®(0)®a cancel out.
Also in (19) the summands h(D®a) and (15) cancel out. Now we get

for lell-o the equations:

(18) = a”'x (M2 +ee )@ [ayl... la_1Qa

-1 -1 -1
a X, -e X x1®[a2l...lan]®a

a-ix;l .. .x?@ [a,]...]1a 1®a

h(cQa) = (19)

since ¢(e ) =1 for lellao . This proves the theorem. il
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From (1.14) and (1.17) we derive the following result on the gener-
alized Hochschild (co)homology of a chain algebra, see (C2.1.26) and

(C2.2.15). R denotes a principal ideal domain, see (C1.§0).

(1.18) Theorem: Leét G be a topological growp with classifying space BG

(1.19)

and mw=n G=n.BG . Let C,G be the chain algebra of G over R,
gsee (2.2), and let T be a R[un]-bitmodule. Then there are the

natural isomorphisms

B.(Cc,G,T) = H,(BG, Ry

g(c,,T) =8 (BGT,) .

g

Here 5I‘ and I‘E are the left and right R[n]-modules T with
1

azzoxx - and za= a-lm for a€n , x€T respectively.
Thus, indeed, (co)homology with local coefficients of a space corre

ponds to Hochschild (co)homology. For a discrete group G the theorem

above is exactly the result of Eilenberg - Mac Lane in chapter X, theo:

5.5 in [ 1. In this case C,G=R[m] is the group ring of n=G .

Remark: Let G be a topological group with classifying space BG an¢
let nanoG-RIBG . For left and right R[n]-modules M and N re-
spectively we cbtain the natural equations

Tor,, G()‘*N,A*M) = H, (C,G,MON)

x

= ﬁ*(nc,gm®m) .

Here E(M@N) is the left Z[n]-module M®N defined by a(m®n) =

(om) @ (na™!) . Moreover, A: CyG ——> H G=Z[r] is the canonical p!”
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jection. The first equation is a special case of (**) in (C2.2.16) and
the second equation follows from (1.18) above. The equivalence (1)e (4)
in (C2.2.18) now follows for the special case A=C,G , X=C,G' and

f: G —>» G' , a homomorphism between topological groups. /



(2.1)
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§ 2 The chain algebra of a loop space

We define the homology groups by use of the normalized cubical chair
complex CS, , see [ ]. To fix notation we give an explicit descript-

ion:

Let I"=IX...XI be the n-dimensional cube and I°=* . A map
o: I" ——> X 1is called a singular n -cube in the space X . 0 is
degenerate if it factors over one of the projections pi: In —— In-]
which omites the i - th coordinate. Let (QX,d) be the chain complex
which is the free R - module generated by all singular cubes in X .
The boundary 9 is defined by
(o) = igl (-l)i (0°32 - 0°3i)

where ai: :I:n_1 c I® denotes a face of I" which is defined by settir

the i-th coordinate equal to ¢€ {0,1} . The group DX generated by

dagenerate cubes is a subchain complex. We set
CS,X = QX/ DX .
CS,X is augmented by ¢&: CS, X —> CS_(point) =R .
The (singular) homology of a pair (X,A) of spaces is defined by
H (X,A) = H (CS,X/CS,A) .

Let M be a topological monoid with multiplication u: MXxM —> M

and unit *€M . Then CS_(M) is the (singular) chain algebra of M

the multiplication of which is
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(2.2) CS MBOCS M —> CS, (MX M) TCS*M .

The crossproduct, 0X T , for singular cubes J: I® —> M and

m . .
T: I ———>» M is the singular cube

oxT: IPx®=1"" 5 MxM .

The unit 1 of CS,(M) is the O-cube I°=* —> *EM . The graded

algebra H(CS,M) =H,(M) is the Pontryagin ring of M . The multipli-

cation in H,(M) is given by

HMOHM ——> H, (MX M) > HM .

(2.3) Remark: If M is a CW-monoid, for example if M is a CW-~group as
| in (1.9), then the cellular chain algebra C,M is canonically equiva:
lent to the singular chain algebra CS,M in the category Ho(DA) .'From the
context it will always be clear whether CxM denotes the singular or the

cellular chain algebra of M respectively. We obtain the equivalence
CyM ~ CSM in Ho(DA)

as follows. Let M be the cubical set of all singular cubes " —»
which are cellular maps. The realization |[M| is a CW-monoid and we
have a canonical map |[M| —> M which is cellular. Therefore we

have equivalences
CM «——C, M| S CS,M

of chain algebras. /

For a space X with xo,x1€x let P(x,xo,xl) be the Moore path



(2.4)

(2.5)

space. An element QEP(X,xo,xl) is a pair w= (f,r) where r is

the length of the path f: [0,r] —> X , [0,r]={t€R: Ostsr},

R

with f(O)-xo ' f(::)-x1 . The topology is taken from X XIR ,

(£(t) =X, for t=2rx). The addition of paths
+: P(X,x_,% ) XP(X,X,,x,) —> P(X,X_,X,)

with
(f'r) + (9,8) = (f"‘g,r"'s) 14

(£+g) (£) = £(t) for Ostsr ,

(£+g) (r+t) = g(t) for OsStss
is associative. Therefore the loop space
X=P(X,*,*) (*€X)

is a topological monoid. Clearly, a base point preserving map F: X
—> Y yields a map ¥F: X —> (¥ between topological monoids,

(F) (f,r) = (Ff,r) , which induces the map
(QF) 4: CulIX ——> CQ¥
between chain algebras. This gives us the functor

C,f: Topo —> DA

which we already considered in § 0 of chapter C2. We obtain the

following diagram of functors between homotopy categories:
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Ho (Topo) o » Ho (DA
CW /o, 3 » DFA e
g, 5
. A >
ChamR o = > DFN /e

Here the category Chain; is defined in the same way as ChainA
= Chain;‘ in (A1.1.8) where we replace the group ring Z(w] by the
group algebra R[mw] . The functor é,,, of cellular chains in the uni~

versal covering is defined in (A .§1). The functor

- A -
o: Cha:‘.nR —> DFM

carries the object (n,é) in Chain’ to the object (H,C) in DFM

R
with
H = R[w]

C = 6®H " we?

compare (1.16) and (C2.1.2). Moreover, the functor & carries the

morphism (9,f) to the ¢, -biequivariant map f@w@cp*

Wa call any functor «a for which the upper square in (2.6) commutes

a model functor for C,Q . We could take for a for example the

functoxr §BC,! , compare (C2.0.8).
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A
Remark: Let W be a group which we write additively and let C be a

A
right H-module with H=R[n] . Then H®C 1is an H-bimodule by setting

a ([B]1®x) = [a+B]O®x ,
([a1®x)-8 = [a+B]8x">
A B A
for x€C , a,BEN . Here x denotes the action of BENM on x€EC from

A
the right, For the H -bimodule H®C we have the canonical biequivariant

isomorphism

ue

A A
HOCT C B E* (1 0 5°P)

which maps [a]®x to x®(1 ® [a]™) , compare the notation in (C2.1.2).//

Clearly, we have
* AA ® A A '
eR@H(ac)=€RGH(H8C)=C .

A
This shows that @ is a faithful functor on Chru'.n; . In fact, also the
A
functor & in (2.6) between homotopy categories is faithful since a
A A A *
homotopy A: af~0ag in DFM gives us the homotopy € R'@H A: £2~g in

. A
ChtunR.

Theorem: Z1he diagram of functors (2.6) commutes, that is, there is
a canonical natural equivalence of functors ba ~ aZ‘* in the

homotopy category DFM J

Proof: This is a consequence of theorem (1.17). Let GX be the reali-

zation of the loop group GSingX of Kan [ ]. Here SingX is the
redﬁced simplicial set of singular simplices J: A" ——> x with
O‘(An'o) =* _Then GX is a CW-group and amap £: X —> Y in
Topo induces a cellular homomorphism GX ——>» GY . Moreover, the

functors C, and C,G are canonically equivalent in Ho(DA) . The
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advantage of GX is, that GX is a topological group. We thus can

apply (1.17) and obtain the natural equivalences in DFM e

Ba(X) = BC,X  (a=0BC,Q)

~ BC,GX

('}

aC, (BGX) , see (1.17), (1.14)

~ aC, (X)

In the last step we use the natural equivalence BGX « X in BHo(Top
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§ 3 Cellular models of chain algebras

Let FM(Zl) be the free monoid generated by the set Z1 . We have

the inclusion

FM(Zl) c <zl>

where <Z.> denotes the free group generated by 2

1 . We say a pre-~

1
sentation

A ——f——><z>—-9-> n=<zl>/Nfz

2 1 2

of the group m , see (A.1.40), is admissible if

fzz c FM(ZI) . and

pFM(Zl) =T .

If £ is any presentation of n we obtain easily a presentation £

of n which is admissible. Let Zl be a further copy of the set

z1 . We define

f -
ZZUZ1 —-——-><z1UZ1>

as follows: Let
F(x) = x-x if x€Z1 ’

Here iezl is the element which corresponds to x€Z1 . Moreover,

assume f(y) = Yyt ..oty for y€ 22 is the reduced word in <Z,>

1
with yi€2.'1 or yi€-Z1 . Then we set

fly) = xl"'"'“‘n
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where xiﬂ-y:.L if Yiezl and where X =y, if yie--z1 . The map

q: <21U Zl> -—-—><zl> '

with gx=x , qx=-x for x€2z, , ieil has the property

aFM(Z U Z)) =<Z,> .

This shows that f is in fact an admissible presentation of w=
<Z 1>/ Nfz2 . /
Now let X be a strictly pointed CW - complex and let Z_ be the
set of n~cells in X . The attaching map f of 2 -cells in X gives
us a presentation of the fundamental group n=n1x : See (A.1.40). We
say X is admissible if this presentation w is admissible. For any
complex X in CW it is easy to obtain an admissible complex X to-

gethexr with a homotopy equivalence

(3.4) q

i
E

Proof: We replace each 1 - sphere s1 in the 1 ~skeleton of X by

the 2 - dimensional complex

with one 2-cell and two 1 -cells, y and y . The attaching map of t~

2-cell is y+y . There is an obvious homotopy equivalence
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9
[721]
(]

which is the identity, id, on y and which is -id on § . From the

attaching map of 2~cells in X , £ , we derive the map

/
£: \/ Sl ——-)\/ §1
%, Zy

which is defined for y€ 22 in the same way as f(y) in (3.3).

Clearly, qf-r f , and therefore the mapping cone X =CE is homotopy

equivalent to the 2 - skeleton x2=cf
in the complex )_(2 is £ in (3.3). Now we define X by the push

. The attaching map of 2 - cells

out diagram

x C X
®| < x

ot
—

2 o

ql
where gq' is a homotopy inverse of q . Thus X is an admissible

complex which satisfies (3.4). 0

FPor the -cellular chains of X we have

C1x9C1X , n=1

CnX = C2X @ sclx , n=2
CcCX , nz23 .
n

The construction of X shows that the assumption of admissibility
on a complex X is not restrictive if we want to deal with the homo-
topy classification problems. The great advantage of admissible com-

plexes is the following property:
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(3.6) Proposition: Let X be an admissible complex. Then &E,,X 18 2-reall
zable, see (C2.9.4).

Proof: We consider 5-&*2( in degree =2 . With the convention in

(A .1.16) we have

o
an

C2 'Cl -» C

(1) I | i I
CZ®R[nl CIQR[n] rR(m] .

Here Cn is the free abelian group generated by the set Zn of n-ce

in X . PFor y€z1 we have by (A .1.17):
(2) d ) =1-lyl .

Here [y] denotes the element in % < R[] which is represented by

the 1 ~cell y . We write w=mw X additively and the inclusion @

1
cRlr] =B is denoted by a b—>[a] .

Now let e€ Z2 be a 2 -cell with attaching map
fe = Y, + ...+yn€Ft4(zl) .
In (A.1.52) we have proven

n
(3) 4,(e) = 131 yi®[yi+1+ ...+yn] .
By definition in (2.6) we obtain aC,X by the top row of the followin

diagram:
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R oo, LOL a,®1 .
c,®, (H®H Py < 5 c,®y (HOHEP) ——s B®, (H®H Py

(4) T T T

3 3
H®c2®n _2 a®c1®a -t 5 H®E .

The isomorphisms T are defined in the same way as in (2.7). That is

() T(x& ) @, ((BIONY]) = [y-al®x@[a+8]

for x®[01€ai = Ci®H . @,B,YEN . Since for e€ Z, the word f(e) =

y1+...+yn is a relation for mW we obtain
(6) [y1+...+yi]=[-yn-...-yi+1] (1sisn)

For the H ~biequivariant maps 51 and 52 in (4) (which make (4)

comutative) we derive from (2),(3),(5) and (6) the equations

-~

(7) 81 (x)

101 - [-x]6(x]

(8) | az(y)

Td, (y)

= f [-yn— -yi+1]®yi®[yi+1+ ...+yn]

2 ([YI"‘~--+Yi_1]'[yi])®yi®[yi+1+ .-.+yn] .
i

We now show that -&?:,,x in (4) is in fact 2 - realizable. To see

this we define a chain algebra

-1 -1
(9) A = T(s Cles C2)

with DA being isomoxphic to (4). The differential d in A is

defined by



1 1

C., ——> T(8 c,)

‘d: s 2

(10) -1 -1 -1
d(s " 'e) =1=~(1+s y1)®...®(1+s y)

with fe=y1+...+yn€m(zl) and e€Z2 as above.

There is an isomorphism | of algebras which makes the following

diagram commutative

R
A7
a A > ma = > H=R[n]
o ¥

We set W{s_ly} = {yl-1 for y€z .

By definition of SA we get

-

bA = (H°A® (RO CIOC2)®H°A.d)

T(H®ORSC, &C )¢ H ,I)
) 1 2

(12)

Here we identify H with HA Dby the isomorphism Y in (11). The
‘differential in bA is given by de=-3Ad(s le) for e€2z . By de-
finition of A éui Yy we thus have for 9 in (16)

n
(13) de = 151 [y, +...+y, 1@y ®ly,  +...+y ] .

Similarly we get for yE€ Z1

dy = &1 - 1QNy and

(14) oy = ([yl-1)®1 - 1®@([yl-1)
- [yI@1 - 1&([y] .

Now we set up an isomorphism V between the bottom row in (4) and the
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complex in (12). Let V be the identity in degree #! and let in degree 1
(15) Viy) = [ylay®1 for y€2z, .

Clearly, V in degree 1 is an isomorphism of H - bimodules with inverse

v i) = [-y]loy .

By comparing (13) with (8) and (14) with (7) respectively, we see that

the diagram
H®C2®H ——32—> H®C1®H ———31-—> H®H
/ A
{(16) id ‘ v id

|

HEC,&H ————> AQC, &H ~———> HKH
2 az 1 a1

commutes. This proves the proposition since we have the isomorphism

A o

(17) t=ll)-1V-1T:aC*& = ba

in OFM .
For a CW=-complex X with x°=* we consider the free algebra
T(s-le;x) the generators, s-le , of which are in 1-1 correspondence with

the cells, e , in X-* . In the following theorem we introduce a

differential on this algebra:

(3.7) Theorem: Let X be an admissible CW- complex. Then there is a & ffer—

ential d on T(s-lc':x) together with a weak equivalence

¥ ax) = (0(s7E x),d) —> ¢
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in DA . Moreover, the chain algebra A(X) has the
property that the chain complexes b(AX) and &Z'*X are canonicall,
isomorphic in DFM by the isomorphism t below. For a 2-cell e

in X the differential ds le in A(X) is given by the formula

-1

ds e=1-(1+s-ly1)®...®(1+s-1yn) .

Here f =y +...+y  is the attaching mp of e for which all
y; are 1-cells in X , (compare the defimition of admissibility
above).

The isomorphism t is defined by t-lp-lv-lt as in the proof of (
For convenience of the reader we recall the definition of t as follo

We have the isomorphism
P: H = HAX = H=R([n]

of algebras with w{s-ly} = 1~ [yl for each 1-cell y in X . The

isomorphiam t is obtained by the commutative diagram

-

ac,X = (CX®R) ®H§*(a®n°p)
t] =
7

H®C, Xx®H

~

t Vi =

HECXQH

WAL
v 1T
bA(X) = H @(REC,X)®H

Here we use the identification C,X = CX®H in (A .1 16) and the
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identification C,X = RQE*X . We set P=yP&1®Y . The isomorphism

V is the identity in degree +1 and is defined in degree 1 by
Vy) = [y]1Qy®1

for each 1~cell y in X . Moreover, the isomorphism T is defined

by
Tx®[aD) @, ((BI®NYT) = [v-al@x®la+8]

for x€C,X and q,B,YETW.

(3.8) Remark: Let X be any CW- complex with trivial O - skeleton, xC=*

Then there is a differential 4 on

a=1(sCxo c,x @ s’lclx)

such that (A,d) is a chain algebra which is equivalent to C,{X . We

set (A,d) =A(X) with X constructed in (3.4). Y

Proof of (3.7): We know by (C2.9.6) that the functor

b: UFA(f)-/:—-> DFM(f) (2)/0‘

satisfies the strong sufficiency condition. let

(1) K = (H ® (RoCX)QH_,3)

be the chain complex which is isomorphic to a‘é*x via t above. In the

proof of (3.6) we constructed the algebra A=A(X2) with

(2) ba = K2

This shows that the homotopy equivalence
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(3) K = GC,X = bax , see (2.8),

- ' A
is a map in DFM(ﬂ(Z). By strong sufficiency of b , see (A.8.1), we
thus obtain inductively an object A(X) in DFA

equal to A and with
(4) bA(X) =K .

Moreover, the homotopy equivalence (3) can be realized by a homotopy
equivalence 8: aX > GX . By (4) and (1) we see that the underlying
algebra of A(X) is the free tensor algebra T(s-l'é',,x) . This proves t

theorem. 0

We call a chain algebra A(X) as in (3.7) together with a weak

equivalence
§: AX o QX ———> C,OX

as in the proof of (3.7) a cellular model of CQX . By choosing a ce.

ular model (A(X),8) for each admissible CW-complex X we obtain a

functor A which makes. the following diagram of functors commutative

Ho (Topo) —— Ho(DAf)v

4 ot

R/ (F) /==
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Here cwa denotes the full subcategory of (W consisting of admissible
complexes. The functor A carries the CW-complex X to the chosen
cellular model A(X) and carries the homotopy class of F: X —>» Y
to the unique class {AF} which makes the diagram

ax -——E5 ay

3 ' 8

\'4
C*QX _-_C—*F C*QY
homotopy commute in TUA . Compared with (2.6) the advantage of diagram
(3.10) is the fact that the lower square of this diagram actually commutes
on objects if we identify bAX and &E*x by the isomorphism t in

(3.7).

A cellular model (A(X),3) can be characterized in a different way

by the properties which we describe in the addendum (3.14) below.

To this end we introduce the Hurewicz -map

(3.11) h: n’n(x,A) — Hn (X,Aa) (n21)

as follows: We set s =I/ {0,1} . The quotient map I — =
IA 51/\ ASl {(where O is the base point of I ) represents a cano-

nical generator in cubical homology:

e"ean e, Tz .

An element Q€ L (X,A) is the homotopy class of a pointed pair map

(* H (Enlsn-lc*) —> (X,A,*) .
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We define h in (3.11) by h(@) =a (") . If A=* is a point weo

tain h: nn(x) — gn(X) , N2 0 . The boundary maps, d , satisfy
oh(a) = h(3x)

as follows from the definition of 3 in (2.1). (Here it is important
that O is the basepoint in I .) Clearly, 3a is represented by th

restriction of a to S“-'1 .

We define the adiunction isemorphism

(3.12) o: M, (QX,Q8) ——> T (X,A)

by of{al = {asT} . Here a: s' AP —5 x is the adjoint of a: E

—_— QX and T: (Bn'sn-l) — (s1 AEn-l,sn‘l) is a map of degree

This shows that
90 = -gd ,
(as it should be by the Koszul convention). The homomorphism

(3.13) T=ho l: m (X,A) —> B (OX,QA)
n n~1

satisfies 9T = =13 . For an (n+l) -cell e in a strictly pointed CW

complex X let the element
+1
feewmd(xn ,X7)

be determined by the’characteristic map of e .

(3.14) Addendum: Assume that X is an admissible complex. We can choose AX

(3.9) together with a weak equivalence
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such that the following properties hold:

(a)

(b)

(c)

(d)

U, preserves the filtration of subcomplexes. That is, for any sub-

complex Y in X we have an inclusion of chain algebras
-17 -1~
AY = (T(s cy),d) < (T(s C.X,d) =ax

which is given by the inclusion C o ©CX and we have a commutative

diagram

AX > C.0x
*
Yy
U U
AY » CcQy .
Uy *

By (a) the chain map v induces for all n =21

\¥

. Hn(Ax““,Ax“) —_— un(m“+1,$2x“) .

This map satisfies U*{s-le} = ‘l'(fe) for each (n+l) -cell e in

o, see (3.13).
Each 1 -cell y in X yields the loop y€{x < COQX with
-1
U(s 'y) =y-1E€ COQX .

For a 2-cell e in X the element U(s-le) € CIQX is given by

the singular 1 -cube
u(s-le) = fe: I —> OX .

Here Ee is the adjoint of the characteristic map fe of e , see

(3.12) "/
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(3.15) Remark: Ee in (3.14)(d) satisfies
F = & F =
fe(l) and fe(O) Yy te-- +yn€QX .

Here f e (0) is the attaching map of e for which the loops ¥; (i=!

are 1 ~cells in X . From the definition of 93 in (2.1) follows:
afe=1-y1'...'yn€ COQX .
This shows that with the definition of ds-Ie in (3.9) we have

va(s le)

uit - (1 +s“y1) ®...8(1 +s"yn))

1= (Lay, =1) oo (1 4y =1)
= 1 - yl. e 'Yn

= B'f'e = auis”le) .
Moreover, by (3.14)(c) the map U induces in degree O the map
V=u,: H =H AX ———> H QX = H

which is the isomorphism in (3.7). /

(3.16) Proposition: Let X be an admissible CW-complex and suppose
ui Ax) = (270 x),d) —> C X

i8 a map itn DA which satisfies the properties in (3.14). Then VU

18 a weak equivalence and the isomorphism t 1in (3.7) is an tsomo
A ~ AA .

phism bA(X) = oC X . Thus (A(X),u) s a cellular model. This sh

that we can give an inductive construction of a cellular model: A8

we have congtructed

u,: AlXY) ———sc X"
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satisfying the properties in (3.14), n22 . Then v, 18 a weak equi-

valence which gives us for each (n+l1) -cell, e , the homology class
- -1
{a,} = v, )7 103f,) €0 (aX") .

We choose a cycle z, in this class and we define ds—le =z, . Then

there exists a map v, which extends Vv n and which satisfies the

+1
properties in (3.14) as well. Thus V.1 18 again a weak equivalence

and we can proceed.

1
iRemark: For a complex X with trivial 1 -skeleton, X =% , the inductive
S ——————

construction (3.16) is due to Adams and Hilton [ ]. Their method of proof

.relies on the Moore comparison theorem and cannot be generalized to the

case x1 £* , Our proof of (3.16) is essentially a consequence of the fact

A .
that the functor b satisfies the strong sufficiency condition,. /

Remark: As an example Adams in [ ] computed A([X|) for a simplicial set

X with lxll =% , He showed that
A(lxl) = Q(c.x,8)

is the cobar construction. Here C,X is the coalgebra with the Alexander -
Whitney diagonal. Compare also [ ]. 1t would be of interest to compute

A(TX]) where [|x(°=* and where T[X[ is the construction in (3.4).//



(4.1)

(4. 2)

(4.3)

-40~

§ 4 - The-homology-suspension

We fist recall some well known operators for homology. In this sect
R=Z is the ring of coefficients. The suspension IX of a pointed s

X is the quotient space
IX = (IXX)/(Ix*UQ3IXxX)

where 3I={0,1} . Let p: IXX ——> IX be the quotient map. For th

cubical chains, CS,(X) , on X we define a chain map of degree +1

by

(o) = po(lIXO) , O: I —x .
By the definition of 3 in (2,1) it is clear that I in (4.2) is a:
map of degree +1, that is 9XI =-~I3 . This chain map induces the- suspe

isomorphism in homology, £ , for which the following diagram commute

=1 (X) < po Hn(I .AX,X)
z I P* =
\ y
Hn(zx) — Hn(ap*) .

Here OEI is the basepoint of I and p: I AX —> IX is the quo
map. Moreover, we obtain the following commutative diagram for any P°

pair (X,A) ,*€A,
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m_(X,A) > H_(X,A)
I D
» s
Mot (EXTA) h —> Hn+1(ZX,XA) :

Here h 1is the Hurewicz map defined in (3.8). Since we want this diagram
to be commutative we define the suspension homomorphism on homotopy groups

as follows: For a class (f} €n_(X,A) let £{f} be represented by

1

Tf: T ast astt

I starast ! DA ol xarx

. X 1
where T is the interchange map for I AS1 and where (-1): § ——> 81

is given by (=1)(t) =1-t , £t €I . This definition satisfies the formula
9L = =13
which is valid for homotopy groups and for homology groups.
The adjoint map of f: X —> Y is
£: X ——> Q¥ with f(x) =(0,1) ,e(t) =f(t,x) .

Compare the definition of the Moore loop space in (2.4). Vice versa, the

adjoint of g: X —Y is

g: IX ——> Y with g(t,x) =w(t'r) if gx=(0,r),
This gives us the adjunction isomorphism

o: [Ix,¥] = [x,0¢]

of groups, o{f} = {£} . The group structure is induced by addition of
loops on ¥ . Taking the adjoints of the identities of IX and X

respectively we obtain
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i: X ——» QIX (suspension map) |,

%
(4.7)
Py: X —» X (evaluation map) .
We now define the homology suspension o by the composition
(4.8) g: Hn_l(QX) ——E->~ Hn(mX) -5;: Hn(x) .
Here we can replace X by a pointed pair (X,A) with Q(X,A) = (XS
In analogy to diagram (4.3) the diagram
B (Qx) ——2 H_(PX,QX)
n-1 o L~ n "
(4.9) cl, ' -
¥
Hn(X) — H (x,*)

commutes. Here q: PX -—> X isg the path space fibration, PX =

U P(X,*,x) , compare (2.4). Since PX is contractible the boundary

x€X

in (4.9) is an isomorphism. Thus we can define the homology sus.

sion O by 0=q*3-1 as well.
(4.10) Lemma: Diagram (4.9) commutes.

Proof: There is a mapping Q such that the diagram of pairs

(I AQX,X) i (PX,X)

Q
|
lp q
'
(m") ——t—— (x'*)
Px

is commutative, We can define QO by



Q(t, (w,xr)) = ((-.\t,tr)

where wt(T) =w(t) . Commutativity of (4.9) now is a consequence of (4.3). [

In analogy to (4.4) we get the commutative diagram

ﬁn(X,A)\.. —— Hn(x,A)
TN
(4.11) olz T~ g
h s
m_y (X, 08) — > B _, (3%, Q8)

where h is the Hurewicz homomorphism. Hexre g is defined on either side
by o= (px) *02 . Thus commutativity follows from the naturality of the
Hurewicz map and from (4.4). By (4.7) we see that g for n’n(x,A) is the

adjunction isomorphism. Therefore we can define T with
-1
(4.12) T=hog , ot=h ,
compare (3.12). From (4.5) we derive

(4.13) . 8T=-13 , 30=-g3 ,
compare (3.11) and (3.12).

The exact sequence of J.H.C. Whitehead in (A.§ 3) embeds the Hurewicz
A A
map h: nn(x)———->an (X) into a long exact sequence. We now do the same
A A
for the hamology suspension g¢: Hn_l(m() —> H (X) . To this end we intrc

duce the functor l":_l as follows: Let X be a connected CW -camplex. By

use of the inclusion, 1i: ey , of skeleta we define for n 21

o .

(4.14) o, (X) = image(@),: B _ """ —su



For n=2 we know Hoﬂxl =0 since x1 is a wedge of 1 -spheres. Th

I} =0 . While (4.14) is defined by skeleta of X this is in fact a hom

invariant of X . Clearly, a cellular map F: X —» Y induces

T T
P*: rn_lx — I‘n_lY

and if G is a cellular map homotopic to F then P _=G, . Thus -

is a functor defined on the homotopy category W/~ . In fact, we have

(4.15) Lemma: Let X be an admssible complex in (W and let AX be a cellu
model of C, X . Then we have the natural isomorphism

o (X) = T._ (AX)

where rT

w—-] 18 the homotopy functor defined in (C2.4.3).

Proof: By definition of I':_l this is a corollary of (3.14). 0

The functor I . fits into the following commtative diagram (n 22

A
{ X denotes the universal cover of X ):

Hn+1£ -2, rn}? i, rn)’? h, an:? I rn_lf}
! | j ’
(4.16) lid lr lr *)  ia ‘11
A b A A g A b .t 4
H X -——>1‘;_1x —>H _ X —>HX——> I _,X

In (4.11) we have seen that the square (*) of this diagram is in fact
A A ‘
comutative. By definition of I X in (A.§3) and of [, X the natur
A T
transformation Tt in (4.11) induces the natural map T: I‘nx——-’ I'n-l‘

as well.
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(4.17) Theorem: Diagram (4.16) is welldefined and is natural with respect to
A
basepoint preserving maps X ——> 1'} . The rows of this diagram are

exact.

‘Proof: The upper row is the exact sequence of J.H.C. Whitehead for )? , se
(A.§ 3) . The lower row is the exact sequence in (C2.4.5) which is defined

for a free model of C*Q;(\ . We can derive the result directly from (A.3.13
as well. In this case we have to compute the homology of the chain complex

(Cn' 9) with

c =Hn_1(m'?',m?"1) , n23 .

n

A
Since X is 1 -connected, the homology suspension yields the isomorphism
-1 ~ An -1
a: an_l(m/?’,ﬂ?" ) TH_(X &

A
Therefore Hn(c*,a) = Hn(X) 1

By covering transformations the group nlx =% acts from the right on

A A
For GEM we then have a map X ——>» X , x}»x*a , which, however, is no

A

basepoint preserving for a+0 . Since X is 1 -connected there is up
A A

to homotopy a unique basepoint preserving map # : X ——> X which is

freely homotopic to x|l»x-a with (CHLB)# o B#o (ﬁ‘ . Therefore the

functors in diagram (4.16) have the additional structure that

X, rTex X X and mX ight Z[n] - modul
I‘kx, I‘kﬂx, HX , H and mX are rig n] -m es by

(4.18)
the action x% = (oﬂ).(x) for GE€w .

Clearly, since diagram (4.16) is natural with respect to maps all homomor-
phisms of this diagram are actually homomorphisms of right Z[n] -modules.

A
The covering projection X ——> X gives us the isomorphism of Z([n] -

modules (ne2):
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A A
(4.19) nx=wx , FTx=Tx .
n n n n
Therefore the upper row of diagram (4.16) is isomorphic to the exact
quence of J.H.C. Whitehead for the space X , see (A.§3). In fact, i
non simply connected case we have the following commutative diagram w

nsnoﬂx =%Z(n] and nz22 .

A A A
rx = > X h ~->» H_ (X) —-—b-——>1‘
n n n-1
.t
~ ~! ~
=|p Sip 3;q =11
v . ¥ v v
i j A b
rg » Tt X >»H (X;H) —————> T
n n n n-1
(4.20) T T &,
T\L i v j A ¥ b .
I' . x ———>H X —=>H (X;E888P)—>T_
n-1 n-1 n * n=-1
A A A A
1 5 1~ 5 T lq S

Ly A A A T
BOT X -TgPHOH X —o>HOH (X) ~jo->H er,

The top row of this diagram is the same as the one in diagram (4.16).
isomorphisms p of right H -modules are given by (4.19). Moreover,
denotes homology with local coefficients in a left H -module and q

A
the identity, compare the definition of Hn .

The second row is the exact sequence of J.H.C. Whitehead for X

we described in (A.§3) . This is an exact sequence of right H -modul

The homomorphisms T are defined by T in (4.11). Moreover, E*

the map induced by the homomorphism between coefficient modules §&: F

HOHP , see (1.16).
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The third row is the second sequence in (C2.4.5) for the free chain
algebra A(X) , (we can assume that X is an admissible complex). Here we
use (4.15) and (3.14) (a). This row is an exact sequence of H - bimodules and

via £ the maps T are maps of right H-modules, that is T(x%) = [-al-x-[a]

The bottom row of diagram (4.20) is the bottom row of diagram (4.16)
tensored with H from the left. All modules in the bottom row are H - bi-

modules by (4.18) where we use the convention in (2.7).
The maps p on the bottom row of (4.20) are defined by
(4.21) pl(la] 8x) = a- (p )

A -
where p: X —> X 1is the covering projection. These maps, p , are iso-

morphisms of H -bimodules. The H - biequivariant map q is defined by
(4.22) qtlal@y) = a-E (qx) .

This is an isomorphism of H - bimodules as well, compare the proof of the

following theorem.

(4.23) Theorem: Diagram (4.20) commutes and is natural with respect to maps
X —>Y in CW . All rows of this diagram are exact sequences and
= the composition of maps in a colum of (4.20) satisfies:
7 lp(z) = 18(1x) ad
7 a0y =18y

This shows that diagram (4.20) up to isomorphism is totally determined
by diagrem (4.16) and by (4.18).

A A
Proof: The homeomorphism X = QX , ol->po , shows that the map o™ . X

—> X is homotopic to the map { X ——> QX which carries the loop
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c €9°x to the loop =-a +0+a_ = where aOEG . Thus we see as in (6.
the maps B are isomorphisms of H - bimodules. By naturality of the th
sequence the squares between the third and the bottom row commute. Now

can deduce that all squares in (4.20) commute. 0

Since the maps 1-5 are isomorphsims, by the five lemma, also q is

isomorphism.

Since the map 3j in the third row of (4.20) is induced by the che

map sh of degree +1 in (C2.1.20) we see that the following diagram ¢

mutes (n321):

- P A
HAX = H X = H®H QX
n \9; n n
l}
(4.24) A, {j , ‘ 180
At e L
B bax ¥H _ (X,EHOH") THOH X

If the cellular model AX is known this diagram can be used for t!

effective computation of the map 100 .
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