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§1. Intrcduction
Let X De a path connected CW-space with basepoint and let
% = %1(X). A K(A;n)ffibration cver X 18 a fibration
KA < —X, |
for which the fiber is an Ellenberg - Maclane space K(A,n). It .
1s well known that such a fibration ylelds for n 2 2 the struc-
ture of a zm-module on A and its k- invariant k(Y) 1lies in coho-

mology with twisted coefficients H™*'(X,A). Let n»2 and K; be



the full subcategory of the homotopy category of maps over X,

consisting of the K(A,n) - fibration over X where A ranges over

all ¥ - modules.

| | Baues [2 V111 §2] or (3, 3.4.1 has obtained the following

(weak) linear extension of categories

(1.4). B —— BB

(A,X) where A 1s a % - module and k € H™"'(X,A). Morphisms
E:(A", k') ——(AK)

are %-linear maps £:A' —— A with £ (k') = k. Moreover

| m“:x;‘*"—-mb

and

P K ——l

are functors defined by '
HY(AK) = HY(X, ),

p(K(A,n) ¢ ¥ —— X) = (4, K(Y)).
The linear extension (1.1) represents an element of the abellan

group

(1.2). %K) € B KT, WY,
gee [3]. In the present work we compute the cohomology groups
H*(k§+1,mn) and the element 0™(X) in terms of homological inva-

riants of X (see theorem 4.20 below). We prove for X = K(%,1),

D



where 1s'fin1te group, that

0,1#2,
Hi(klx'1+1’mn) E{
- lz/w), 1=2

Here 0™(X) 18 a generator of the group Hz(k§+1,m“). Fe also con-
slder the category K;,o of orientable Eilenberg-Maclane fibrati-
ons over. X and we shall construct.a nice algebralc model Ior the
category Kn ,(gee 4.26 below).

Note that the cohomology H*(k7™', M) 1in question is the co-
homology of a small category with coefficients given by a func-
tor but our method essentlally uses the more general Baues &

Wirsching cohomology with coefficlents given by naturallsystems,

see ([3].

Note that the cbhomblogies and linear extensions above are
defined only for small categories. But the categories K, ki,
K?,o are not small. Here we mean that all objects of these cate-
gories belong to certaln universe. Since the resulis do not de-
pend on the cholce of universum, we do not menticn it. Similarly
the categorles 1n 4.14-4.19 are considered as small categories.

Main results of this paper were announced in [14]



92. Preliminaries
‘We recall the definition of the cohomology of small catego-
ries with coefficlents in a natural system (see [31), and one
result from(12].
Let I be a category. A natural system of cbellan groups on
I 18 a functor D:PI—— 4b. Here FI 1s the category of jfaciori-
zations in [ : objects in ZI are morphisms d:i— J in I , and

morphisms (g,m):a~—— a' are commutatlive diagrams

B QL S
a o'
I < 1 I'

l.e. a'= £dn. Composition 1is defined by

(£',m") M (8'E, ')
We clearly have (£,n) = (&,1) ) =(1,m) (E,1).We write D(Z) =
D; and £,= D(E,1) , 7 =D(1,n) for the Iinduced maps of the func-
tor D.

We have the functors

EILIOPX I— t 1
for which qq(d:i————+ = (1,3) and q2 (1,])= 3. Hence any func-
tor on I or any bifunctor I°® xI —— 4b defines a natural sys-
tem on 1 by composition with q, and q,.

Let D be a natural system on I. The cohomology of 1 with



PO

coeffictents in D 1s defined by
H*(I,D) = H'(C™(L,D)). |
Here C*(I,D) is the standard cochain complex defined in [3]. We

recall that

n
C(IL,D) = [} D, a....d_,
12 n

a

n o
1 ;' LI ) :- 1 -
n o

where product is taken over all compecsable n-tuples
a

2.1.PROPOSITION. Let I be a small category and 4t the catégory
of functors from L to Ab. Let T,F: [ ——— 4D De junctors..Sup—
pose that T(1) is a free abelian group for every i ¢ Ob(l). Then
B, #on(T,F)) = Ext'((T, F),
A
where the blfunctor
| qom(T, : I X I —— 4
13 defined by
fom(T, F){(1,J) = Hom(T(1), F(J)), 1,] ¢ Ob(i).
The proposition 2.1 follows from [12].
2.2.beftnition. ([Sﬁ). Iet D be a natural system on L. A

linear eztension of the category I by D,
' o)

D + > ——I,
s a functor p with the jollowing properties

1). C and I have the same obfects and p s a full functor which



ts the tdentity on objects.
ti). For each o:1l—— J the abellan group'Da acts transttively

and effectibely on the subset p

(a) of morphisms in C. We wrlte
a_+a for the actlon of a ¢ D, on @, € D (d).
t1t). The acttion satisfles the linear distributivity law :
. _ | X
(ao + a)(ﬁo + D) = aoﬁo + a*b + B a.
Two linear extensions C and C' are equlvalent 1f there 1s
an isomorphism of categories r : C = (' with p'r = p and

r('d.0 +a) = r(dy)

+ a, déé ¥or(g),a € D_, . The extension { is
0

gplit 1f there is a functor 8:l — 0 with‘ps = 1,

2.3. Prbposttion.(tsl) Let D be ¢ natural system on the
category 1 and M(I,D) de the set of eéuiualenae'ciasses of 1i-
near eztensione of I by D. Then there is a canonical .ot fection

oI W(LD) = HA(ID)
which maps the split exiension to the zero element.
2.4.Remark. Let I be a small category and T,F:I—— 4D Dbe
functors. Suppose that T(i) 1s a free abellan group for any
1€0b(1). Let
§ =(0—TF a » L, " > L ° > T )

2 :
be a 1two-fold extension in the category At and let u(l) te a

sectlon of o(1) in the category 4b, 1 ¢ Ob(l). Then by 2.3 the



linear extension |
P
Xon(T,F)+ — & > L

represents‘an element in the group H2(I, %em{T,B)), which cor-

responds to the class of § in Ext? I(T,F) via 2.1. Here E 18 the
4b

category whdse objects are the szame as of'I, and morphisms from
1 to J are pairs (a,x), wnere & 1is a morphism in I and
x:T(1) —> L (J) 13 homomorphism of abelisn groups sztisfying
the following equation

N = L(au) - u(HNa).

o
Composition in E and the functor p are defined by
(B, ¥)(d,%) = (Ba, L, (B)x + yT(a)),
| Dla,X) = d.

2.5.Dej£nitton..Let D be a natural system on L. A weak line-
ar extenslion of the category 1 by D 18 a seguence
(8) D> C £t ]
where p 18 a functor with followlng properties:
1) p ls surfective on obfects;
2) Let G, be any full subcctegory of G, jor which the restricii-
on functor

= . . T

ts bijective on objects, then the inciusion QO cC 1s an equiva-



lence of categories and the sequence )

3 D [ —2 [

i3 a linear eztension of categories. Moreover ithe oorresponding
cohomology class W(8_) € HA(L,D) is tndependent of the cholce
ofthe subcetegory QO; We call this class'a characteristic class
of the weak linear ertension (§).

For examples of weak linear exteslons see §4 telow.

§3. Calculations

The main theorem of this section ie'S.T, we chall use it to
calculefe the cohomology of the categeries In the Introductlon.

Let 1 be a small category and let

| T: I——> Sets
be a functor. Conslder the category 1T, whose objects are pairs
(1,x), with 1 € Ob(l) and x € T(1), while & morphlsm from the
pair (1,x) to (J,x) 1s represented by a morphism dil—— J in -
such that T(a)(x) = y. The category LT is commonly called the
Grothendieck construction of T. By definition we have the
following equality

K7 = wtmod [ OETT(K,-).

8



.3.1.Fropositton. Let 1 be ¢ small category and let
T:]— Sets | |
be an arbitrary functor. For any natural 3ystem D definéd on the
category LT, there exists an isomorphism
LT D) "(1; D)
Here D' 1s the natural system on 1 assigning to every arrow

a:1— J the group

where a, denotes ihe
a:(1,x) — (J, Td)(x))
tn IJT glven by a.
Proof. By definition‘we have
: ) . ]
CHLT D) = M By g
1 n .
where the product is taken over all composable n-tuples
a, | & )
L X )e— (1) e e (1, 1)
in the category I1fT. Here we have
o € L1 0,
k" = T(dk)( k b 1:1{%1].

Hence

n R N .
LT D)= T Dy



where the first product 1s taken over all composable n-tuples

and sscond oneuover a1l xné T{1). But thls double product 1z the
same as C™(I; D'). It is e&éily seen that the coboundary opera-
tor is compatiblz with the eouality above'.i.e;

(IfT;, I) =G l,D),
which proves the proposition.

R

3.2.Remark. let D+ —» E —E >] /T be a linear extension
of- categories. We define the‘ category ¥; obJects are ihe same
as thOSc of I, and 2 morphism from 1 tu J, 1,] ¢ Ob(]) is a
pair (d,f). Here d:i—] 15 a molphism inland 7 15 a function.
assigning to each x € T(1) the morphism
I (14, x)—{], T(a)(x))
in E, such thet pf = . et qi}—l be the functorfdefihed by

a(a, ) = d. Then

D'+ > X > 1
1s the linear extension corresponding to
D+ — E—L— 1T
via the 1somorphism 3.1.

In the following Z[S] will denote the free abellan group
with base S.

10



3.3. Lemmc. Let I be a small additive category and let Ak
be the category whose objects are all functors from 1 to the
category of avelian groups. let I- mod be the jull subcategory
of At whose objects are addttive fﬁnotors. Then the functor
2:1-mod — Ab% defined by -

(ZTY (1) = ZI7(1)],
T ¢ Ob(I-mod), i.é Ob{1), carrtes projective objects to projec-
tive objects.

Proof. It is well known that any projective object of -
the category I-mod 1s a retract of & sum of objects of type
Homl(i,-) while every projective object of AbI 18 a retract of
obJects of type ZHoml(i,-). Hence 1t is sufficlent to show that
7P 18 a projective object of Abl, where -

P =A§AHomI(ik’_)'
The same remark can be applled 1f A 1s 2 singleton. Furthermore,

12 A is finite, then

P=Hom( @ 1., -),
Laepn H

and hence this reduces to the alreedy considered case. Now sup-
pose A 1s an arbitrary set. It is easily'seen that the following

holds

"



(3.4) ZP = @ . Zk(HomI.(i}\l ,-),...
: 1

{11,...,}\. }cA

Here Zu denotes the k-th cross-effect of the functor Z, in the’

.Homl(ihk,-).

sense of Eilenberg & Maclane (8], and the sum 13 faken over all

finite subsets {x1,.;.,xk} c A. Hence 1t.1is sufficient to show

that

Zk(Homl(1K1,—),..., Homl(ilk,-))
ts projective in 4l To this end put A = {A,,...A 2 in 3.2
Since in this case A is.finlte, ZP will be projective, hence
it's direct summand Zk(HomI(1K1,-),...Homl(ilk,-)) will be pro-

Jectlive toq.

3.5..Proposttion. Iet 1 be a small addlitve category and
T,F ¢ Ob{I-mod). Then, the composition
*
ls an isomorphism, where the first map ls tnduced by the ezact
I ,
tnclusion I-mod — 4b , and the second by the augmentation

g: ZT—— T. In partlcular the first map i{s a split monomorphism.

Before giving the proof we need to Justify some notations.
Let X, be a simpliclal object in an &belian category. Then
Ch(X*) ¥111 denocte the chain compleX, whose n-th component is
equal to X , while the boundary operator 1s d = I(-1)* 8,. The



¥oore normalization of X, [13] 1s denoted by NX, . 5o
T K, = B NK, = H Cn(X,).
Proofof 3.5. et Phea componentwise projective simp-
licial object of the category I-mod, such that
if, =T, %P =0, n>0.
Then
Hn(P*(i),Z) =0, m0
and _ |
H (P, (1),2) = 2(T(1)1, 1 € Ob(l).
Here on the left had side one has homology groups of simplicial
3ets P*(i) with integer coefficlents {13]. By the definition of

these we get

Hn(Ch(ZP*)) 0, ma,
| CB_(Ch(ZP,)) = 2T
"By 3.3, ZP* is a componentwlse projective simplicial object in
Abl, hence Ch(ZP*)‘————* ZT 18 a projective resolution and

Bri® [(Z1,F) = K'{Hon (Ch(ZP,, ) =
4 e '

«
| = H (Homl_mod(Ch(P*),F).
Here the second equality holds, since the 3.6 1s valid in di-

mension zero, by direct checking. But H(Ch P) = an*, so that

13



Ch P,— T 18 a projective resolution of T in [-mod. Conse-
quently €,: P, — P, 1induces the 1somofphism

(3.6) Extzbl(ZZT, ) o=Exty (TP

Let Q, —— T be a projectlve resolution in the category a.
Then there exists morphisms a: Ch ZP, —— Q,, B,:Q,— ChP,

such that the dlagrams

oZP— g g o
l X fz r_""’ X
Vil ST, T —L1 7

commute. In'fact, the first and second vertical ﬁaps 8re pro-
jective resolutions in the category‘Abl. Therefore 3. d, and €,
are homotopic and from this fact and 3.6 .follows the
proposition. R

3.7.THECREM. Iet I be a small additive category and let
T,F:1 — 4b be addltive functors. Define the functor

D:IT —— 4
by
D(1,x) = P(1), 1 € Ob(I), x € T(1).

Then there exlsts an ésomorphism

HY(L/T;D) = Brt*y (T

-mod

14



Proof. By 3.1,
| H(LT; D) = HYI; D).
Here D' 1s the natural system on I, assigning to the arrow

g:l—=1 the group
Do) : & = dif{i,x)—s (J,T(a)%).

SRS %’ X
x€T(1i)

By definition of D one has D(ax) = P({J). Hance
D'{arl— J) = [] TF(J) = Hom (ZLT(1)1, F(J)).
' XET{1) 7
50.D" turns out to be the bifunctor of type Hom (ZT,F). Thus by
2. 1.
B*(1JT; D) = Ext;bl(ZT, )
and the theorem follows from 3.5.
3.8. Remark. let

T p I
g =(0 > | > X > ¥ > T —s 0 )

be a twofold extension in the category I-mod and let u(i) be a
section of p(1) in the category Sets. Let D:IfT— 4V be & fun-
ctor for which D(i,x) = F(1). From 2.4, 3.2, 3.5 follows that

the extension

q
D E—— 1T, |
represents (by 2.3) an element in the group HE(I, D) which cor-

responds to the class ofvﬁ in Exti_mod(T,F) via 3.7. Here E is

15



a category with the same objects as in I[T. Morphisms in E from
(1,x) to (J,y),x € T(1),y ¢ T(3), are palrs (a,nh) where
a (i, x)—(1,¥) ig a morphism in IJT and h € X(J) satisfles ine
equation |
UDD + u(d) {y) = Y (u(i)(x)).
The functor g is detined by
q(a,h) = d.

3.9. Ezample. Let A be an abellan category with enough pro-
Jjective objeéts. Let (O*;d) be a coﬁponentwise projectivé chaln
compiex in A end

| | Kn = Coker(d:8n+1-————+ Cn). |
‘Iet I be a small additive full subcategory of A with
Cn,ngOb(l), n20. For any A¢ Ob(A), the cohomology of the cocha-
in complex Homy(C,,A) 1s denoted by R*(C_,A). Tt ig clear that
3.10. 0 — Homﬂ(Kn,-) —_— Hom&(cn,—)-—-—-,

_yynt
n+] ’ —) m—’H ( O

1s exact. Hence 3.10 13 projective resolution of the object

——Homg (K — 0

*3_)
K0, -) in the category I-mod, because Homg (X, -) 1s projec-

tive object in I- mod, 1f X ¢ Ob(I). Therefore 3.7 implies
{O, ifmz3, :

IR

(38.11)  ENIETYO,-), D
| H™( K —>FC ——sFK ),05m<2.
n+1 n n

This holds for any additive funcicr F:l —— 4b where



P

. +1 ' |
| D AN, -)— 4D
1 functor for which D(A,%) = P(A), A€Ob(I),xeH™ H(C ,A).

 §4.Categories of extensions and Eilenberg-Maclane
o fibrations
In this section we #ill be prove Theorem 4.20 which requires
the consideration of "varlous kinds of categories oI
extensions.

4.1.The'catégory of extensions in abelian categories. Let A

be a small abellan category with enough projective objects. let
A ¢ Ob(A). We consider the category of extensions Eztg(A). Ob-
jects of this category are exact sequences 1n &

5 = (0 > B » X > A » 0),

and morphisms Irom § 10§ are pairs (f:B—»B',giX—sX')
with
pfo= gy, 0'g = 0.

Let (7,g) and (f',g') be two morphlsms from % to §' and f = ',
then there exists a unique h ¢ Homm(A,B') with

g -3 =u'ho.
This chows that the segquence
4.2. Hom+—— $xg (A) —B— AfExtp(A,-)

1s weak linear extension of categories. Here p and

AT



Hom: 4 Extg(4,-) ——>db
are functors deflned by
D(8) = (B,cl(8) € Exty(A,B)),
Hom(B,x) = Hom&(A,B}.
By 2.5 the weak linear extension 4.2 determines an element
0(A) €H*(AfEXtq(A,-);Hom) . ¥e

o

nall compute this element. For
this we recall the following definition.

4.3.Definltion. (101. Iet 7,5 : A——B be morphisms in an
abe~- llan category A. We call f and g homotoplc in the sense of
Eckmann - Hilton and write [ = g tff there exisis a profeciive
obfect F and morphisms 8:A——?P, ti:P—— B such that f - g =

ts. Let

| [A,Bly = Homgy(4A,B)/=.
The natural epimorphism Hom&(A,B)———+ [A,B}Q 18 denote by cl.
4.4.Propostition. Let 0(A) be tha characteristlc element of

the weak linear extension 4.2. Then there erists an {somorphism

P . 0,m# 2,
Hmﬂ“ﬂ“”mm)={mAm,m=a
and cl{?A) cbrresponds to O(A) under thls tscmorphisi.

Proof. et P,— A be a projective resolution in A. If
we put In 3.9
_ 6, =F,, =4, F= HomlA,-),
then 3.11 implies the first part of the proposition.

18



Let
| g9
?=0 %K ;P ,A ‘,G

be a short exact sequence with F projective. ¥e denote 1ts class

in Exté(A,K) by u. It follows from the proof of 3.11 that the

2~-fold extension

0 — Homg(A,-) ———sHomg(P,-)——s
(4.5) oA A
| —— Homg (K, -)———> Exi(4,-)——> 0.
corresponds to cl(1,) € [A,Aly via the isomorphism -
Bxtd_  (Extg(A,-); Homp(A,-)) = [A4,Al,.
For each X ¢ Exti(A,B) and

. 8:(0 > B > R > A FO)
we choose mcrphlsms fs,x:<K’u) —»(B,%) 1In ﬂfEXﬁA(A;4) and
(fB clﬁ’gﬁ): P —— % In Ext&(A). Let EZA(A) be a category with
the same objects as in ﬂjExti(A,—i. ¥orphisms from (B,x) 1o
(B',x") are pairs (f,h}, where f:{B,Xx)—(B',x"') 18 a morphism
in AfExty(A,-) and h:P——B' is a morphism with
fB',K' - h}l = ffB_.x .
According to 3.8 the class of the linear extension

Hom + —fg(A)-3— A7Bxty(4,-)

in the group Ha(ﬂjExta(A,—),Hom) corresponds to 4.5 via the

19



1somorphism 3.7. Here gi{f,h) = f. Let T:thi(A)———+5x$(A) Be a .
funcior defined on objects by |

| Ty = (B,cly ¢ Extg(4,B)).
Let (1,g):8—i' be a morphism 1in Sebg(A). Then there
exists a unique h:F —— B' such that

. 0= ggg - gy

Now we deflne the functor T on morohisme by T(f,g) = (f,h). It
18 clear-that the diagram

Hom +—— B¢ j(A)— AEXTR(A,~)

| |
- Hom +—— Sy p(A)—— AfExty(A,-)

conmutes and hence the upper and lower extension determine both
the same slement in HafﬁjExtA(A,—);Hom). This complete the proof
of proposition. _

In case when A = Ab we denote Sxtg(A) by $x4(4). I A is a
finitely generated ahelian group, then EA,AEAD= End(t(A)), where

t{4) 13 the itorsion part of A.

4.6. The category of relative extenslons. Let

i P
A S B 0 , 4

be functors between categories, satisfying the following condli-

tions:

20



a) A and B are small abellan categories with enough projectives;
b) U is exact, full and faithful;
¢) F, is the left adjolnt of L. |

Let P :B——A De the colliection of left derlved functors
of the functor PO, nz0. The conditicns b),c) imply, that Fo car-
ries projéctive objects tc projective objects. Hence c¢) and Grd-
thendiecke spectral sequence for derived functors of compositi-
cns shows that for A€Ob{A), BeOb(E) there exists a spectrél se-
quence

EP? < Extg(Fq(B),A) — Extpéq_cB,UA).

In partlcular one gets an exact sequence

4.7. 0 —Ext (P (B) A‘_?ﬁ_*EkT (p UA)—EL—+HOWA(F (B) A\~—~—w

~————*ExtE(F (B),A) —— ExtZ(B,A).
~Let B € Ob(B) and a(tﬁ B(B) b2 the corresuondinﬁ lUll sub-

category of 8@%%(8) whose objects are exact sequences

4.8. § = ( 0 ——UA ——X »B >(})
whers A'¢ Ob(d). We define functors
1



by

30— A . A » ?(B) — 0) =

= (0 —— VA ——> B — B > 0),
Here % 1s the same as in 4.8, cl($)€ Extp(B,UA) is the characte-
ristic element of §, 81 18 defined by the pullback diagram

Bi—_-____+ 3
o |

| !
UA, » UF (B),

and B —— UFO(B)_is the counit of the adjunction c).
let |
¢:EXIA(FOB,f)——-—,Ext%(B,U(—)),
¢:Ext%(B,U(-))——-+Homm(F1B,—}
be the natural iransformations in 4.7. Then ¢ and ¢ induce the

natural transformatlions

d,:AfExty(F B, -} — AJExtp(B,U(-)],
. [gn! T o
¢*. &metB(B,U(—))~—~——+ ﬂjHomm(FqB,-).
It 1s clear that there exlsis & commuiative diagram of wesk

linear exiensions

22



4.9,  Hom +——— gvfﬂ(“ B} ———A[Ext A(F 8,-)

N

P |

)

| | ~ - :
HOm +———> ,gxtg\ g(B) ——— AfEXtg(B,U(-)).

The upper and lower extsnslon determine the element
 0,(FB) € H*A[Ext1(FB,-),Hom)
and
0g, BB € HE(AJEXtg(B,U(-)), Hom).
respectively. From commutativity of 4.9 follows that
4.10. | ¢‘*(na p(B)) = 04(F.B),
Here 6, :H2(A[ExtA(3,U(-)), Hom) ——— HZ(A[Ext](F_B,U(-)), Hom
1s Induced by ¢.. Lei P, D2 a projective resolution. If we take
in 3.9
C, =%, P, , F=Homy(FB,-),
3.11 yulds
H™(A[Extg(B,U(-));Hom ) = 0, 1 m #2,
= [FB,FBly, ifm=2

Now we compare this equation with 4.4. Then we conclude that ¢,

hen

¥
D

1s isomorphism end therefore we proved the fclicwlng proposition



corresponds via thts tsomorphlsm to i1, B).
07 .
4.12.Proposttion. Suppose that the projective homological
dimension.p,d.(FoB) < 1. Then there erlsts the functor
Q:EH‘A [B(B) —— 3?5%;&(?0(8))

for which Q0 = 1. Moreover the dlagram

sty p(B) LS R

Q I p
| !
| irig(F(B)) —— &
15 egsentially o pullback with
D(F, (B)—A) = A
and
q0—— A — A, 7 (B)——0) = A.
4.13. Remark. Ve call a commuiative square

L——C

]
£ > o

of categoriss and funcicrs essentially o pullback 1ff the natu-

ral funcior [ —— DxC 13 an equivalsnce of categories.
E



Proot of 4.12. It tollows from 4.7 that there exists a
natural transformstlon |
'm:Exté{B,U -))———Exty (R B,-)
Tor wnich wd = 1 since ExtmrF B, -)= 0 and since Hom&(FOB,—) is a
proJective object in A-mod. Then w 1nducés‘the natural transforé
matlon |
0,3 At B,Ul-))——— AfExty (P B,-).

e snowed above, that ¢,  1is an 1somorphism Therefore w,, 1s an
isomorphism_,too since o = 1. Hence 4.10 lmplies that
0,(84(Fg(B)) = g p(B).

Therefore thore exists O Ez%& B (B) ————s ExtA(FOB) such that

**q)**

LhE dJ.auI'cﬂ'l ‘
Hc”am — . gg;f,;\,[gg B) > AfExte(B,U{-))
!\! >' Q l | . | m
1 - |
Hom ————— x4 (F _(B)) > AJExtg(P.B,-)).

commutes and hence the second square in thls dlagram 1s essenti-

ally & pullback. This completes the proof of the proposition



o wets maean

| § |
AfExtg(B,U(-)) ———> AJHomy(F.B,-)

o, | D
., q v
Af Bxtp(F B,-) — > A&
1s pullback and &fHomg(F1B,-) = H1B¢ﬂ.

4.14. Remark. The conditicns of proposition 4.12 are satlis--

fied if .
A=, B=Gmod, B, = H(G,-),
where G 18 an arbltrary group. In this case objects of the cate-
gory Ezta,B(B) are called G-central eztensicnes 16].

Let G be & group and f2x4{G) be the category of central &x-
tensions of.G. The study of this category 1s analogous to 4.6.
The role of 4.7 is played by the well K10Wn universal coeffici-
ent formula

O——Ext(G i ¢

orm) —> HE(6,-) —— Hom(H G, -)—> 0.
The arguments in the proof of 4.12 are still true and hence
we obtaln the following propasitioﬁ.
4.15.Proposition. Iet |
T:Bont () —— HG | 4,
p: HG | A —— 4D,
q:824(G,,) — 4D,

D:8x4 (G ) — Seut(G),



be functors defined as follows
U(8) = (cl(d)),

PHG —— A) = A,

q(0— A -+ X

> G,y > 0) = A,
and @ is gluen by the pullback along the natural morphism
G — G_,.
Then there exist a functor Q:fext(G) — 3”*(Gab)’ such that
Q= 1 and such that the folloﬁtng dlagram ls essentlally a

pullback

. g
text (G) ———— HG{4D

SN

8t (G 4.

ab)
For & different descriptlon of the category 8e¢t(G) see [11].

4.16.The category of abellan extensions of groups. Let G be -

a group and dext(G) be the category of abelian extensions of G.

Objects of thls category are exact sequences of groups

$ = 0—A——> B > G > 1, |
where A 1s gbellan. As in 4.6 we have the week line&r extension
4.17. Der +— dont(G) —— G-mod[H2(G,-),
where |

Der: G-mod[H%(G,-)— 4b
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1s defined by

Der(4A,x) = Der(G,4).

4.18. Proposition. If G 1 finite group then

HO(G-mod [H7(G,-); Der) = 2/ |6, 1t m =2,
=0, ifme#l

£2

IR

. and the characteristic element 0™(G) of 4.17 is a generator of
this group.

Prooc f. Let I{G)= Ker(Z[Gl——2Z) be the augmentation
ideal. It 1s well known that

HZ(G = Bxt1(1(8),-), Deri,-) = Hom (I(G),-),
pi8ut (I(Gi) = dext(G),
whers |
o
w0 » M —— N > 1{{3) »0) =
= (0 > ¥ >7 - el 1),

Here X = {(x,8) € X x G, ox = g - 1} 1s & group with theopera-
tion (x,g)(¥,8) = (X + gy, g8), X,y € X, £,8 ¢ G. Hence the weak
linear extensions 4.17 is isomorphic to 4.2 1in case B = LG},

A = G-mod. Thereiore 4.4 lmplles that

H™(G-mod [H%(6,-),Der) = [1(G),1(6)],, 1fm=2,
20, 1fmg2
and 27(G) = c1(1I(G)‘ Let
0 > Q » P G ——— G




be an exact seQuence of G-modules wiih projectiive P. Then
Hom(1(B),P) —> Hom,(1(8),1(6))—Ext { 1(G),Q)— Ext (I(G)(P)
1s an exact sequénce. Since 1Gi<w we get
-0 = BMG,P) = Extg(I(G),P},
m-0 {51, Therefore | |
L@, U8, = Bxt)(1(0),Q) = HA(G,Q) =
= H'(G,1(6)) = Ext(Z,1(6)).

2

i

Prom the exact sequence

0 — I(G) ——> 2[G) — Z

4
O

follows that the sequences

Hom, (Z(G], 1(6)) —> HomG(I(G),I(G))—§—+ Ext(Z,1(6))~—>

Fom(Z,200}) —— Hem (2,2) -2 Ext1(Z,1(6)) —> ©

P | |
z 7/16)

" .y

are exact. By [4, Cor.t of prep.5 in §6.71 we have

6(11(6))
Y = 6(1

= - 6(1zj.,

 Hence 0%(G) = cl(1 ) 1s a generator of [1(G),1(G)1,.

I(G) I(G)
4.19. The category of Ellenberg-HacLane fibratilons. Now we

consider the category K; and the element an(X)gHa(K;+1,m”) (see

§1). We assume ihat X = BG,, where G, is a component wise Iree

simplicial group. lLet % = % {G,) = % (BG,). PFor every G -module

A* we denote Ch(A* @*Z%) by ?(A*). Let I[G*]E Ob(G*—mod) be the



>

augmentation ideal of G, and 1=t C = ?(ILle). we recall that
H™(26,,4) = B 'Hon (C,,¥), MeOb(x-mod), m»2,
(see appenaix). Hence from 3.11 follows

EGTLEY = 0, m# 0,2,

I
2
)
=
[¢8]
=3

-
o'
Ca>

>
pag -

-

-
c2

-—

.
O
C
=
!
n

>

It 1s clear that the nntur 1 projsciion § poq—> G _, /40 18

420 1/ch . We denote by 1 1its class in the
. n
,C / an).

cocycle in Hom%(

>

catiomology H™(BG,

4.20. Theorem. There exists an er1act sequence

H(BG,, 6 _)— BYB,,C_/ d6 )-E__+ (RS, ) —9,
and in the group K2(KXT',B%) holds E(1) = 0™(BG,). |
4.2%. Remork. Let C be the chain complex with 1

(3,0, = 2,(36,) ,, = C, a2 =0, & = (-)7C,
n+ i n’ 0 n+1
then there exists a %-equivariant homotopy equivalence betwsen
26* and 6*(X). Here a*(X) 13 the cellular chain complex of
universal covering of 4.
Prooiof 4.26. The first part of the theorem 1s proved
above. For any avellan group é we dencte by K(A,n) the "standard
Ellenberg-Maclane spece", this is the simplicial abellan group

whose normalization satisfied



(NK(A,H))i =0, 1 #01n,
=4, 1 =0

If A 18 a %~module then K{A,n) 18 considered &as & G*-nodule via

the natural sugrentation G¥————am. Then we have the natural fun-

Ri— 1)t T-mad ——— G, -mod.
This functor has a left adjoint which cerries A €6 -mod 1o

FLAL)y d ( B

A =g-mod, B = G -mod, U= K(-,n-1}, B = TG,
w2 obtaln the weak livear extension
4.22.Hom + —— Ex%;;s (I{G*]) — x—modjExt; cmogt HLE, 1, K(-n-1).
: G, . | |
By Al(s3ee appendj‘{ below) i, ,q*(I[G 1) 1s equivalent to the
category of short exact secuences of sumpliclal groups of type
0 > K(A,n—1) > X > G, > 1,

A ranges in the category of w-modules and

. - Ve 'l
Hom : %—mUd?ELt ATIG 1, K{-,n-1)) — 40,
o G -mods 4 o ’
»
. ) Eal a3
18 tre functor defined by HomiA,¥) = don. (0 /A0 L A).
‘ > n~1 ""n’ "
By 4.11 foliows thal ihe characieristic slement 4_ SLILG]
Ly ::*_ X
0f the weak linear (tension 4.2¢ in



e

Hz(s[—modurExtl (116, 1,K(-,n-1))

I\

=[C 1/JC 1/ qcll
corresponds 1o ¢l 1 /dC ) By theorem A2 belcw we have a ca-
.. honical isomorphism | o _
oyt : w w0t e
‘ ExtG crod L[G , K(-,n-1) = B (BG,,-).

Let B:m; :, (116,)) —— Ki. be the functor induced by

BG,

the classifying space funcTor Then the diagram

Hom +—— a4y 5 (106 ) —— zomod JExt] (16,,K(-,n-1))
. . t

H

8 B

n n : . +1
L > KBG* > ng* !
18 -commutative. Here B 1s induced by B. In parficularD?(BG*) =
= B (0g G\L G,1)). From 3.11 follows that the following diagram
| A an A el 2, ond
Homg{ Gy, /0,y G /6C,) —==> HE(ige Hom) —> 0
| T, )

(B3, ,C pe1/3C) ———> xgg‘ M)

1is commutative. Hence |

n —_— a— - ~ ~ -
0B = B0y o (16,0) = 8,011 5 ) = £(1).
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4.23.Corotlary. If X = K(7,1) with ¢ finite, then
Hz(k?'t,ﬂ‘{n) = ZZ/ITM
and 0°(¥) 1s genera*or of this group.
In this case C ,— 1[%] 18 a projective resolution and
HYX,-) = 3%(x,-). It 1s well known that for finite T one has
ﬁ*(x,a*) =0, Where 1*(%,-) denctes the Tate cohomology [5).

Therefore

{1

2,0+ -~ 1n 2 A
HE(KD*) ) = B(x,C /i )

112

Z/|xl.

= i (5,0 /00 .Y =... B(%,2)

4.24. The category of orientable Filenberg-Haclane

fitrations. Let n»i. A fibration K(A,n)——s E—s X 15 cal- -

led orientable 1ff A is abelian and if % = %, X acts trivially

on A. Let KQ’O e the full subcategory of KP whose

objects sre orlentable fibraiions. The resiriction of 1.4

gives the following weak linear extension

4.25. o+ — Kx N
The study of this weak linear exienslons is simiiar 1o 4.6

and the proof of the following proposition 1s analocgous to

4.12.

()
0>



4.26.Propostiton. There axiste an tsomorphlsm
2 n+1 - '
H(ApfH™ T (X, =), H) = (H X, H X3 o

which carries the class of 4.27 to cl{iH x) et
1

§x¢(H X) @ Exi(H__ X,-)
be the following category. Objects are the same as tin §xt(H X)

and morphlsms from

§ =0 > A » X » H X ——0 _
to &' are triplee (i,g,h) where (I,g):8—8'ls a morphlsm in
zxt(HnX) and aeExt(Hn_1X,A'); the composttion 18 defined by

(',8",a")(£,8,8) = (£'1,8'g,a'+T(a)).
Then the category K; o 18 equivalent to the pulldback of the fol-
Zowing_diagram

X} 4D
: 1

Rk (H X)OBRE(H, %, ) > 4

where p(Hg X——~+‘A} = A,q(%) = A,q{f,g,a) = .

Appendix.
In this appendix we prove tineorem A2 Dbelow, which
plays a crucial role in the proof of 4.20.

Let Gi——— Groups ©be a functor from a small category 1



to the category of groups and 1let A be a G-module. 4 crossed
homomorphism from G to A is a natural transformatlon of set val-
ued funciors f:— A such that f(i) ig a usual crossed homo-
morphism for each 1¢Ob(]). Let Der(G,A) be the set of all cros-
ced homomorphism from G to A. The followlng theorem Isproved by
Basistov [1] (see alsc [8] for analcgons facts aboul algebré

valued functors).

A1. Theorem. et G:I——Groups be an arbltra

=3
(€any
4
5
o
ot
O
=3
g

A be a G-module. Let P, —— G be cn augmented simplicial ob-

Ject in (C?roug:)s)'-L such thet P t3 ¢ profective object In
il
(_Groups)l and
i m(P*(i)) = 0, m>0,
= G(1), m=0.

Then there azists a natural bijection
¥ R, LR '.t.‘\ "
ExtG_mod (IIG1,A) =2 % mer(r*fA),
where I(G] denotes the augmentaation ldeal of G. The left hand

side denoies the cohomology groups of a cosimplictal abellan

group wit

and ths set of equivalence classes of all short ezact sequences

in (Groups)l:
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G ’A "X ;G ;'1,

such that jor each x€X{1), acA(l) the following equality holds,
| u(a(x)a) = xp(a)x“*.

The main thecrem of thls appendix i3

AZ.Theorem. et G, be a componentwise free simplicial group,

: ' an Y . - - e —~ne B . e B - vpamey T X
R =7 G* and A be o w-module. Then there exists a natural iso-

Extg*_mod(I[G*], K(&,n)) = ¥ "(BG ,4), mo,

vhere K(A,n) 13 a "standard Ellenberg - kacLane space” (see the
proof of 4.20).

Before we prove the theorem we recall some basic facts about
H*(BG*,A). It follows from the classical. Eilenberg—Ziiber—
Cartier theorem (71 that H*(BG*,A) 1s isomorphic to the homology
of the total compiex of the blcomplex C*(G*,A). Its (m,K) compo-
nent is Maps(Gz,A) and its horizdniél coboundaries are defined
frcm the theory of cohomology oI groups and iis vertical cobo-
undaries are induced from G;. In case G, 1s component wise free
the speciral sequence of this bicomplex is degenerat and we ob-
tain the isomorphism
A3. FYBG,,A) = 2™Der(G,,A), m0.

We recall thal the projeciive objecis In the category of

(On}
ch



e s e a s

simplicial groups are retracts of sums of obJects of the type
Fralnl, n;O,-whose m component 13 a free .group generated by m
simplexes of Alnl. Therefore for any projective object P, (in
the category of simplicilal groups) 1P, 1s a Iree group and
P,—% P, 18 a contractible augmenied simpliclal group.

Also recall that the simpiicial mapa from G* to K(A,n) are

1somorphic to n-dimensional cocycles [13]. Therefore one geis

d
Ad. Der(G,,K(A,n)) = Ker(Der(G yA)—— Der(G

i
where d = )(-1) ai.

o),

Proo? of A2. let P, —— G, be a simplicial projective
resolution in the category of simplicial groups This means that

P13 8 bﬂsimplicial group such that

4

a) for every mz20 P P is & projective cbject 1n the EZOTY O
simplicial groups and
D) for eachmz0 one has * F = = G, TP = 0.
o m¥ m’ Tk mx

Slnce P, 18 a projective object T,Ps, 18 @ Iree group and
TP = 0, K50. I1 follows from Quillens spectral seguences IOT
pigimplicial groups t151 that simpliclal groups G, and
m—s %P, are weak homotopy equivalent.

Since P, ——% P, 18 a weak homotopy equivalence with free

W)
-3



e b ae

xOP*m we have (by A3)

T“Der(P, ,A) = H<"Y(BP, ,4) = H<*'(Bx P, ,A) =0, kO,

0" *m’
Therefore A4 Implies that there exlsts an isomorphism
Der(P, ,K(A,0)) = Der(x P, .A), m0,
and an exact sequences
Ab. 0——Der(F  ,X(A,n-1)) —— Der(P_ = ,A)——
~&m : n=-1,m
—Ter(F, ,K(4,n))———0.
It follows from A3 and b) that
Der(P ., A) = BB ) = B¥F(BG ,4) = 0, O,
since G 1s free. Therefore A5 ghows that for k>0 we have
natural isomorphisms:
TDer((P,),, K(A,n)) = o¥"'Der((P ), K(A,n-1))

L =Der((P,) |, K(4,0)) ¢ T Der( n—s 1P, A

n

*)*!

[}
R

T (B(m——s 7P, ), &) = Hk+n+1(BG*,A).

Hence theorem A2 1s an immediate consequence of At.
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