John Lott

Department of Mathematics
University of Michigan
Ann Arbor

MI 48109

USA

Alain Connes

IHES

35 Route de Chartres
Bures-sur-Yvette
F-91440

France

The Metric Aspect of
Noncommutative Geometry

John Lott and
Alain Connes

MPI1 / 92-14

Max-Planck-Institut fiir Mathematik
Gottfried-Claren-Stralle 26
D-5300 Bonn 3

Germany






To appear in the Proceedings of the 1991 Summer Cargese Conference

THE METRIC ASPECT OF NONCOMMUTATIVE GEOMETRY

Alain Connes John Lott*

IHES and Department of Mathematics
35 Route de Chartres Unlversity of Michigan
Bures-sur-Yvette Ann Arbor, Ml 48109
F-91440 France USA

Most of the previous work on "noncommutative geometry” could more accurately
be labeled as noncommutative differential topology, in that it deals with the homology of
differential forms on noncommutative spaces (cyclic homology) and vector bundles on
noncommutative spaces (K-theory) [Col]. However, the essence of geometry has to do
with the metric properties of spaces.

in this paper we shall begin to investigate metric properties of noncommutative
spaces. First, we shall show that the metric data of differential geometry can be
reformulated in operator theoretic terms. This will be done using a familiar
differential operator, the Dirac operator D. We shall see how the metric structureon a
Riemannian manifold, namely the geodesic distance

(1) d(p,q) = Infimum of the length of paths ¥ from p to q,

can be recaovered from the selfadjoint operator D, acting in the Hilbert space h of L2
spinors, together with the representation in h of the algebra of functions on the
manifold.

Our data of a noncommutative metric space will consist of a triple (&4, h, D) of
a Hilbert space h, an involutive algebra & of operators on h and a selfadjoint
unbounded operator D on h. This new notion of a metric space includes as examples the
following list of spaces, besides Riemannian manifalds:
) Finite spaces.

B8) Spaces of non integral Hausdor ff dimension.

¥) Group rings of discrete subgroups of Lie groups.

6) Configuration spaces in supersymmetric quantum field theory.
g) "Quantum™ tori.

Qur task will be to show that this new class of spaces still deserves the name of
geometry. For this, we shall replace the tools of the differential and integral calculus by
operator theoretic tools. We shall develop a differential calculus on noncommutative
spaces which, on a Riemannian manifold, reproduces the calculus of differential forms.
The main tool of integration will be a nonstandard trace on operators, the Dixmier
trace. It will aliow us to develop the analogue of the Yang Mills action. (As an indication
that we have the correct mathematical notion of the noncommutative Yang Mills action,
we shall give a very general lower bound of the action in terms of a topological
quantity.)

*Supported in part by MPI-Bonn, the Humbeldt Foundation and NSF Grant DMS-9101920



The main example of a space to which all these considerations will be applied is
an extended Euclidean space time. We shall give a geometric interpretation of the
experimentally confirmed (at least at present energies) model of particle physics,
namely the standard model. Our geometric interpretation of this model is as a pure
gauge theory, but on a space time E' = £ x F, the product of ordinary Euclidean space
time by a finite space. The geometry of the finite space 1s specified by a pair (h, D)
as above, where h is finite dimensional and the self adjoint operator D encodes the
fermion masses and the Kabayashi-Maskawa mixing paramsters of the standard model.

Qur analysis is limited to the classical level, and does not adress at the moment
the questions related to renormatization. Nevertheless our geometric interpretation of
the standard model gives an indication that particle physics is saying something about
the small-scals geometric structure of space time.

Most of the results of this paper appeared in [CL], and will appear as a chapter
n [Co2].

1. RIEMANNIAN MANIFOLDS AND THE DIRAC OPERATOR.

Let X be acompact Riemannian spin manifold and D = 8, the corresponding
Dirac operator (cf {LM]). Thus D is an unbounded self adjoint operator acting on the
Hilbert space h of L2 spinors on the manifold X.

To fix notation, we can write D = zf Vj , where the matrices {yj} are
skew -Hermitian. Then if f is a function an X, also regarded as a multiplication operator
on h, we have [D, f] = zf' 9;, an operator of Clifford multiplication which we shall
denote by y(df). '

We shall give 4 formulae below which show how to reconstruct the metric
spece (X, d) with d being the geodesic distance, the volume measure dv on X,

the space of gauge potentials and finally the Yang- Mflls action functional, from
the followmg purely operator theoretic data:

(4, h,D),

where D is the Dirac operator on the Hilbert space h and & is the abelian algebra of
continuous functions on. X .

By Gelfand's theorem, we can recover the compact topological space X from &£.
Namely, a point p of X givesa = homomorphism p: & — € by setting p(a) = a(p)
for all a € &. And conversely, any such homomorphism g is given by evaiuation at
some point p, so X can be identified with the space of all such homomorphisms.

This is somewhat qualitative information, and we now come to the first
interesting formula, giving us a natural distance function.

Formula 1.
For any pair of points p ,q € X, their geodssic distance is given by:

(2) d(p.a) = Sup {1a(p) -a(q)];aed | [Da]lll< 1}
The proof is straightforward, but is worth going through. The‘operator [D,a],
which is bounded iff a is Lipschitz, is given by the Clifford multiplication y(da) by

the differential of a. This differential is a section of the cotangent bundle T*X of X .and
one has :

| [D,a] | = Essential Sup |l da |l = Lipschitz norm of a

So in (2), we are imposing that |grad | is everywhere < 1, and then upon expressing
a(p) - a(q) as a line integral, it follows that the right hand side of (2) is < the geodesic



distance d(p,q). But fixing the point p and considering the function

a(q) = d(g,p),

one checks that a is Lipschitz with constant one, so that || [D,a] ]l < 1 and one gets the
desired equality. Note that (2) is in essencs dual to the original formula (1) in that
instead of involving arcs, namely copies of R inside the manifold X, it involves
functions, i.e. maps from X to R {or C).

This is an essential point for us, since in the case of discrete spaces or of
noncommutative spaces X there may be no interesting arcs in X, but nevertheless
there are plenty of functions, namely the elements a € & of the defining algebra. We
note rightaway that the right hand side of (2) makes sense in that general context, and
technically defines a distance on the space of states of the C* algebra A:

d(g,w) = Sup {|ea) -w(a)|;I{Dallls1}.

We have now recovered from our original data (&, h, D) the metric space
(X,d), with d being the geodesic distance. We still need tools of Riemannian geometry
which are not immediately implied by the metric structure, the first being the measure
given by the volume form :

fe [, Tav,
where in local coordinates, one has :
172 41
_dv=(det(g,,)) ldx' A ... Adx"}
This takes us to our second formula, which is nothing but a restatement of the H.
Weyl theorem about the asymptotic behaviour of eigenvalues of elliptic differential
operators. 1t dogs, however, involve a new tool, the Dixmier trace Tr,, which,

unlike asymptotic expansions, will make sense in full gensralfty, and w"fll be the
correct operator theoretic replacement for integration,

Formula 2.
Forany fe & anehas:

(3) [y fav = const.(d) Tr_ (f|D|"), d = dim X.

For the detailed definition and propertiss of the Dixmiser trace Tr, werefer to

[Di, Co2]. For the time being we can interpret the right hand side as the limit of the
sequence :

1
LogN

A

oMz

where the X 's are the eigenvalues of the compact operator f|D | - or equivalently, as
the residue of the function

t(s) = Trace (f|D] %) Res> |
at the paint s= 1.

For us, the crucial fact is that the Dixmier trace is defined for operators on any

Hilbert space, and that properties of the integral 'Jx f dv become corollaries of the

general properties of the Dixmier trace

A) Positivity : Tr _(T) > 0 if T isa positive operator.

PN
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N
B) Finiteness: Tr (T) < if the characteristic values of T satisfy % U (T) =

0(Log N).
c) Covariance: Tr, (UTU*) =Tr (T) for any unitary U
D) Vanishing : Tr (T) vanishes if T has finite trace in the usual sense.

Property D is the counterpart of locality in our framework. it shows that the
Dixmier trace of an operator is unaffected by a finite rank perturbation.

One can see more clearly the locality of the Dixmier trace for a special class of
operators, namely the pssudodifferential operators of order -d, acting on a vector
bundle over X. If P is such an operator then, up to an overall constant which we shall
neglect, the Dixmier trace is the integral, over the cosphere bundle of X, of the local
trace of the symbol of P. Equation (3) is a special case of this last statement.

We shall now focus on defining the noncommutative Yang-Mills action. Before
doing so, it may be worth making some general comments. First, the usual Yang-Mills
action involves zeroth order information about the metric, i.e. no derivatives. We do not
address the question of noncommutative Riemannian geometry, in the sense of
Riemannian curvature, in this paper. Second, we shall shortly define a differential
algebra on a noncommutative space, and use this to do gauge theory on the
noncommutative space. If one is only interested in the differential calculus of gauge
theory, it is enough to have a differential Lie algebra, such as, for example, the graded
Lie algebra of g-vaiued differential forms for some Lie algebra g. (One still needs an
inner product on the curvature forms, for which we shall use the Dixmier trace.) This
fact was used to construct physical models in [CES]. However, one then loses the notion
of an underlying space, which corresponds to an algebra. Given an algebra, one obtainsa
Lie algebra by putting [x,u] = xy - yx, but not every Lie algebra arises in this way. In
this paper we base everything on algebras, which, as we shall ses, corresponds to a
generalization of electrodynamics. However, we cannot say for & priori reasons that
either approach is physically right or wrong.

Let us then clearly state our aim; it is to recover the Yang Mills functional
making use only of the fallowing data :

Definition 1.
A K cycls '(h, D) over an Iinvolutive elgebre A Is given by a
representation of &£ on a Hilbert space h and a (possibly unbounded)
selfadjoint operator D such thet (1 + D2y is compeact and [D,a] fs
bounded for all ae £. We shall say that a K cycle is even If, In addition,
there is a self-adjoint opsrator Ton h, the Z/2 grading-operetor, such
thatr® = 1, ™ +Dr=0endTa=al for allac X.

If the eigenvalues X of | D| are of the order of n'd as n > «, we say that

the K cycle is (d, =) summable. On the algebra of smooth functions on a compact
Riemannian spin manifold, the Dirac operator determines a K cycle which is (d,=)
summable where d = dim X. If X is even-dimensional then the K cycle is even, with T
being the chirality operator. We shall call this the Dirac K cycle. (The term K cycle
comes from K-homology theory.) :

The value of the following construction is that it will also apply when the =
algebra & is not commutative, or when D is no longer the Dirac operator. The reader
can have in mind both the Riemannian case and the slightly more involved case where
the algebra & isthe = algebra of matrix-valued functions on a Riemannian manifold,

pa—



just in order to have in mind that the usual notion of exterior product doss not make
sense in the latter case.

We shatl begin by the notion of a connection on the trivial bundle, i.e. the case of
"electromagnetism”, and define the vector potentials and Yang Mills action. We shall
then treat the case of arbitrary hermitian bundles.

We want to define k-formsover & asoperatorson h of the form

w=I af,[D,a{]... (0.4 ]
where the a,j are elements of &, represenied as operators on h . This idea arises
because although theopsrator D fails to be invariant under the representation on h of
the unitary group W of & :

U={ued ;u"u=uu*=1}

the following equality shows that the failure of invariance is govérned by a t-form in
the above sense :

ubDu*=D+w,, w,=ulD,u*]

Note that w is self adjoint as an operator on h and it is thus natural to adopt
the following definition :

Definition 2.

A vector potential V Is a self adjoint element of the space of
I-forms: Z a[D,al], alesk.

One can immediately check that in the basic example of the Dirac operator on a
spin Riemannian manifold X, a vector potential in the above sense is exactly given by an
imaginary 1-form v on X, the corresponding operator on spinors being V = y(v).

The action of the unitary group 9L on vector potentials is such that it replaces
the operator D +V by u(D + V) u* It is thus given by the algebraic formula:

YY) =u[D,u*] +uvu® u€ U

Note that it is not true in general that u Y u* =V, as happens in the case of
Riemannian manifolds.

We now just need to define the curvature or field strength 8 for a vector
potential, and use the analogue of equation (3) above to integrate the.square of 8. So

YM(V) = Tr (871D |7
should give us the Yang Mills action.
The formula for 8 should be of the form :
8 =dv +V?

and the only difficulty is to define properly the "differential" dyY of a vector potential,
-as an operator on h. The naive formula is:

If V=1 of[D,a}] thendv=2[D, 5] (D, 4]
Before we point out what the difficulty is, let us check that if we replace V by ¥, (),
Y,V =uD,u"]+2Z uaf,[D.a’; Ju*



then the curvature transforms in a covariant way .
d(y, (V) + ¥, (V% = u(av + V) u®

This computation is instructive so we shall do it in detail. First, towrite (V)
in the same form as V, we use:

(D,a Ju*=[0,alu*] -4l (D, u)
Thus
¥, (V) =u[D,u*]+Z u aé [D,a{ u*}-Zu af}ajI [D, u*]
and one has :
dy (V) = [O,u] [Du*] + Z [D,u ag] [D.ajl u*] -z (D, uaf,ajl ]1{D, u*].

Now we can see that the following operators on h are equal :
o) dy, (V) + g, (V)7
B) u(dv + v2) u*,

Indeed, the operator «) isequalto:
dy, (V) + (uDu*} +uvus)?= |
d ¥, (V) + ufD, u*] u[D,u*] +u[D,u*]uVu* +uVu* u[D,u*] +uviu* =
dy, (V) - [D,u] [D.u*] - [D,u] Vu™ + uV[D,u*] +uV?u* =
Z(D,ual]1[D, 8l u*) -2 (D, ualel ] [D,u*]-[Du)vu*+uv [Du*] +
. u veu* =
u(dV)u® +uv?ur,
where the last equatity follows from :
I [D,u] ag,[D, a’; u*] - I [D, u] aéaj,[D. u*] = [D,u] Vu*,
Tu [D.af)] [D,a’;u"] -Zu [D,aé]ai[D.u"] =udVu®*,
Zu aé (D, aJ; ][0, u*}=uVv[D, u*].
However, there is a big difficulty that we overlooked, namely that the same vector

pbtential Y might be written in several waysasY = Z a? [D,aj’] , and so the definition
of dV asZ [D.aj°] [D,aajl ] is ambiguous.

To understand the nature of the problem, lst us introduce some algebraic
notation. We let Q*(&) be the universal differential graded algebra over &. Itisa
formal object equal to &4 in degree O and generated by symbols da, a € &4, of degree
1 with the following relations : '

o) d(ab) =(da)b +adb Va,bed
8) dl =0
The involution = of & extends uniquelg to an invelution on 0*(4) by therule:

Y) (da)* = - da*



‘ have d2 = 0, it is cbvious that J is then a differential ideal. Let w € J

The differential d on Q*(&) isdefined unambiguously by
d°(%da’ ... da") =da’da' ..da" , forall ae &
and it satisfies:
6) Pw =0 forall weQ*(4)
e) dw, 0,) = (dw,) w, + (-1 w, dw, forall w; € 0%(A).
We will abbreviate Q*(&) by Q*, and Q* (£) by Q*.

Proposition 3.
1) The following equelity defines an involutive representation n
of the algebre Q* on ;

n(lda'..da")=a[D,a']...[D,a"] forall & e .

2) Let J, = Ker m c O* be the two sided Ideal of QF given by
J¥ - (wea", MW =0). Then J=J, +dJ, Isa two sided ideal of Q~,
inverient under d.

The first statement is easy to see. Using it, we can define the Yang-Mills action
unambiguously for any self-adjoint element of Q' Let us discuss 2). Bu construction,
Jo 1s a two sided ideal, but it is not in general a differentie] ideal e if we 0
and m(w) = 0 one does not have in general n(dw) = 0 . This is exactly the reason why
the above definition of T (D, aj°] [D, aj'] as the differential of the 1-form £ aj0 (D, a;]
was ambiguous.

Let us show, however, that J = J, + dJ, is still a two sided ideal. Since we
) o a
homogenous element of J. Then w can be written in the form w = w, + dw,, where
W, €Jy N a¥, W, €Jy N Q%" Choose w' € OX and let us show that ww' € J***7,
One has

W'z w,w +(dw,) W =w, 0 +dw, w) - (= 1)k w,dw' =

(W,w' + (=1 W, dw') + dw, w'). ‘
But the first term belongs to J, N Q***  and W, W €Jy N qk+k-1, Similarly, one
shaws that @' @ isin J %) QED

Now using proposition 3, we can introduce the following graded differential
algebra:

Qz = Q*/J.

(Quotienting out by J has the effect of eliminating the spurtous fields of [CL], and makes
the comparison easier with other treatments, such as [CES].)

Let us look at Qg , Qf and QF .



We have J N Q% = Jo N 0% = {0} if we assume, as we shall, that & is
embedded in £ (h), the bounded operators on h. Thus QS =& . Next,
Jna'=y, na'+dyNa®r=y,na'.
Thus O,; is the quotient of ok by the kernel of T, and so it is exactly the spacs
n(Q') of operators w of the form :

w=I a?[D,aj'] ; a;eaél.

Now J N Q% = Jo N 0%+ d(Jy N 0') and the representation T gives us an
isomorphism :

(4) Qf=n(Q? /Y, Nna".

More precisely, this means that we can view an slement w of Og as a class of
eglements ¢ of the form :

p=12 aj°[D.aj'][D,a.2] ; a;‘e.ﬂ

modulo the subspace of elements of the form :

0 1 ) 3 0 1y _
6 =Z[D,b;1[D,b;1 ; bjesd , Tb/[D,bj]=0.

It is clear now that because we work modulo the subspace mn(d(J, N a')), the
guestion of the ambiguity in the definition of dw for w € Q" no longer arises.

Note that equality (4) makes sense for ali k :
(5) Qf = n(Q* )/ ndy N 0 "))

and allows us to define an inner product on 0'5 . for each k, let hk be the Hilbert
space completion of (%) with respact to the inner product

<T,,T,>, :Tru(T5T1|D|-d) Y Tjen(ok)_

Let P be the orthogonal projection from hk onto the orthogonal of the subspace
l't(d(d0 na* 'y, By construction, for w; € rt(()k ), the inner product < Pw,,Pw,>
only depends upon the classes of the W, in Qg . We let A* be the Hilbert space
completion of Ql'; for this inner product; it is of course equal to Phk.

Proposition 4. :

1) The actions of & on A* by left and right multiplicetion define
commuting unitary representations of & on AX.

2) The functional YM(V) = <dv + V2 | dv + V2 > {is positive, quertic
and Inveriant under gauge transformations,

¥ (¥) = udu* +uVu* VYV ue W)

3)  The functional (o) =Tr (82D ), 8= n(dx + x?) 13 positivs,



quertic and geuge inveriant on {x € Q' o = «* ).
4) One hes YM(V) = Inf { {); m{x) =V}

Let us say a few words about the easy proof. Since m(d(J, N o'y e na*)y
1s invariant under left and right multiplication by &, and since the left and right
actions of & on h, areunitary, it follows that P(atb) = aP(E)b for all a,b ¢ & and
[ € hk. So 1) follows. For 2), one just notes that by the above calculation, with dv
unambiguous now, 8 =dV + v2 is covariant under gauge transformations. For 3), one
uses again the above calculation to show that dx + o? transforms covariantly under
gauge transformations. Finally, to see 4), note that if n(x) =V thendV + V2, as an
element of AZ, is equal to P(m(dx + ?)). Thus I(x) > YM(V). To see that the
infimum is attained, fix V and taks any o such that m{o) = V. We have that
n(do + oc? Y- (ady + v2 ) is an element of t(d(J, na' )),say do. Put B=x -o.
Then n(B) = ¥ and TL(dB + B2 ) = d¥ + V2, 50 I(B) = YM(V). QED

Stated in simpler terms the meaning of proposition 4 is that the ambiguity that

we met above in the definition of the Yang-Mills action can be resolved by taking the
infimum over all possibilities. The obtained action is nevertheless quartic by 4.2.

Example 1: We shall now check that in the case of Riemannian manifolds, with the
Dirac K cycle, the graded differential algebra Qg is the same as the de Rham algebra
of diffsrential forms on X, with its usual prehilbert spacs structure. We now specialize
to the Riemannian case, where & is the algebra of functions (with some regularity)
on an even-dimensional compact spin manifold X and D.= 8, is the Dirac operator on
the Hilbert space L2(X,S) of spinors. We let C be the bundls over X whosse fiber at
each p € X is the complexified Clifford algebra Cliff (T;(X)) of the cotangent space
at p € X . Any measurable bounded section p of C defines a bounded operator ¥(p) on
h=L%(X,8). Forany f°, .., f"e &, f,df,..df isanelement of Q*(A) and one has
n(f,df,..df) = f,df, ... - df , where on the right hand side, the usual differential df
is considered as a section [D, f] of C, and - denotes the product in C.

For each p € X, the Clifford algebra G, has a filtration by { C1}, where € is
the subspace spanned by products of <k elements of T;(X). The associated graded
algebra { C;“)/ C;"‘”} s isomorphic to the complexified exterior algebra
Ag(T2(X)) and we shall let o, : C* = AKT*) be the quotient map.

Using the inner product on C given by the trace in the spinor representation,
one can also identify /\:: with the orthogonal complement of ctk=1 yp C“‘), or
equivalently, if we let c* be the subspace of ¢tk

then

of elements of the same parity as k

k k k-2
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Lemma 5.
Let (h,D) be the Direc K cycle on the algsbra s of functions on X. For
k € N, a pair T, ,T, of opgrators on h isof the form T, = n(w), T, = n(dw)
for some w € QX Iff there exist sections o, .0, of C*and C**' such that :
T.i = ‘J(Oj). i=1,2, dUk([I_J') =0, (@2 ).

Here Uk(g,) is an ordinary k-form on X and d is its ardinary differential.
Note that for k > d =dim X, one has o0,(p) = 0. We shall omit the proof of Lemma S.

We can now easily determine the graded differentiail algebra Qp. First, let us
identify n(()") with the space of sections of C“". Then lemma S shows that :

n(dJy N Q")) = Ker o,

(If p isasection of c* with 0,(p) = O then the pair p, =0, p, = p in k-
and C* fulfills the condition of lemma S, and so p = n(dw) for some w with m(w) = 0.)

Thus g, isan isomorphism : O; = Sections of /\:‘: (T*), which again by Lemma
S commutes with the differential. We can then state :

Formula 3.

The map a°da' .. da" - &% da' an... A da" from Q*to AK(X) extends to
an Isomorphism of the differential graded algebra Qg wrfth the de Rham
algsbra of diffgrentlai forms on X . Under this isomorphism, the Inner
product on Qg fs the Riemannfan Inner product of k-forms :

<w,;.)'>=jx WA

~

The 1last equality follows from the computation of the Dixmier trace for the
operator on h = L2(X,S) associated to a section ¢ of the bundle C of Clifford algebras:

Tr, (1D ?) = [, trace (o(p)) dv(p)
As an immediate corollary of formula 3 we get :
YMV) = [, lavif? dv
for any vector potential V on X. End of Example 1.

‘Let us now consider the generalized fermionic action. A fermion field will
simply be an element of the Hilbert space h. The operator D + V is self-adjoint.

Definition 6.
The fermionic action is <y, (D + V) y>, foryehandv e Q[‘,.

By construction, the fermionic action is gauge invariant in that for any u € U(&H), 1t is
invariant under the transformations

y—=> Uy, VY > XU(V)
_Example 2: Massless chiral electrodynemics.

We can call the following the action for a generalized "massless chiral
electrodynamics™:



LY, w) =972 YM(YV) + <y, (D + V) y> for y € handVeOé,

The reason that the name is appropriate is that if we use the Dirac K cycle on a
4-dimensional spin manifold, then we obtain exactly the usual Euclidean action of
massiess electrodynamics with one fermion field, and with g being the physical coupling
constant. We should note that one cannot reslly write a Euclidean action for chiral
fermions, and the y field above is @ 4-component spinor figld. The reason to call it
“chiral” electrodynamics is that one can Wick-rotate to Minkowski space, and then

impose Ty = y.

Similarly, to obtatn the action of massless electrodynamics with N,
right-handed fermions and N_ lsft-handed fermions, we would take the Hilbert space to
beh =h, @h_, where h, consists of N, copiss of L2(X,S) and h_ consists of N_
copies. With the grading operator given by T'=(y5 ® Iy,) ® (- y5 ® Iy_ ), we can then
write out L(V, y), Wick-rotate and impose 'y = .

End of Example 2.

Let us now extend the definition of the Yang Mills action to connections on
arbitrary hermitian vector bundles.

First of all, we need to express in algebraic terms, i.e. usingonly the
invelutive algebra & = C(X), the notion of a hermitian vector bundle over X. A vector
bundle E is entirely characterized by the vector space & of its sections.
Furthermore, this vector space has an &8-action, which we shall take to be on the right.
In other words, & isaright &-module. The local triviality of E and the finite

dimensionality of its fibers translate algebraically to saying that there is an &' such .

that € ® &' is &N for some finite N, or in more fancy terms, that & is a finite
projective module over & .

The Hermitian structure on E, i.e. the inner product (% , ﬂ)p on each fiber
Ep, allows us to construct a sesquilingar map :

():éx&>4&4
given by (&, n) (p) = (&(p), n(p)), .
Thismap (,) satisfies the foﬂowing conditions :
1) (Ea,nb) =a*(E ,Mb forall £, Ne& ,a,bed
2) (£.8)>0 forall'E€¢ &
3) & 1s self dual for ().

Thus the hermitian vector bundles over X correspond to the hermitian finite
projective modules over & in the following sense :

Definition 7.
Let & be an algebre with sn involution = end & unit. Then @
hermitian structure on & finite projective module & over & Is

given by a sesquilinear mep (,) : &§x & —» & satisfying 1,2 and 3.

One can show that all hermitian structures on a given finite projective module
@ over & can be obtained as follows: one writes & as egd" for appropriate s and N,
where e, an NxN matrix with entries in &, is selfadjoint and satisfies g2 = e. One then
restricts to € the hermitian structure on &M given by : '



(¢, M=ZE ned forallE=(g) , n=(n).

The algebra Endg (&) of endomorphisms of &, that is, linear maps T from & to
&€ which commute with the s8~-action, has a natural involution, given by :

(T*E,n)=(E,Tn) forallk ,neé.
With this involution, Endg (&) 1s isomorphic to the algebra of matrices eM,(&)s.
As before, we let (h , D) beaK cycleover &.
Definition 8.
The Hilbert space of “gauged spinors” is & ® ¢ h. [Its Inner product
is given by
<E) @ﬂl,E2®ﬂ2>:<ﬂ1,(£ ],Ez)n2>.

iIf h has a grading operator T, it extends to a grading operstor on &€ @ ¢ h.

Definition 9.
Let & be e hermitien rinite projective module over & . Then &

connection on & Is given by a linger map V: & > & ey og such that
V(Ea) =(VE)a+Eeda forall £e&,aed
A connection V Is compatible (with the metric) iff :
<E,VN>-<VE N>=d<E,N> forallfg,Nneg.
Both sides of the last equation lie in 05. (In computations, one shoulg
remember that (da)* = -da* forallae &, and if VE=ZIE @ w;, with w,€Q,
then < VE , N>= T w' < ,N>)

Such connections always exist, for with & expressed as e aﬂ". one may take V
to be:

Vb =edE
Two connections V' and V' on € differ by anelementof Homg (&, 804 0[1, ).
Any compatible connection can be written as VE = e df + p £, where p is a self-adjoint
NxN matrix of 1-forms satisfyingep =pe =p.

As in proposition 4 we shail now give two equivalent definitions of the action
functional YM (V) on the affine space C(&) of compatible connections.

The group “U(&) of unitary automorphismsof &,
U8 ={ue Endg (&) ;uu® =u*u = 1}
will be‘the unitary gauge group, in that it acts by gauge-transformations (explicitly,
Y,(V) =u ¥V u*) onthespace C(&). Todefine the curvature 8 of aconnection V, we
first need to define the covariant derivative of a vector-valued form. Put :

&'=80g0y,

- the space of vector-valued forms. Extend ¥ to a unigue linear map from &' to &', -

which we shall also denote by V, by
ViEow)=(VE)w+E e dw forall E€€ , we



One finds that this linear map V satisfies:
T (M) =(Y M) w +(-1)9371N ndy
for any homogeneous M € ¢ and W € Q.

It follows that ¥2 (Nw) = (V2 1N) w, i.e. V2 is an endomorphism of the right
Qp module &'. It is determined by its restriction to &, which we shall denote by 8.

BeHomg (8,804 Q[;').
If we use the representation &€ = ed" then 8 will be a self-adjoint NxN matrix of
2-forms such thatef = Be = 6.
Next, using the inner product on Og and the hermitian structureon &, one gets
a natural inner product on
Homg (&,8 04 02).
Using this we define
Deflnition 10. YM(V)=<86,0 >
By construction, this action is gauge invariant, positive and quartic.
Formula 4.
Let X be s Riemannian spin manifold with its Dirac K cycle (h , D).
Then the notion of connection (Def. 9) Is the usual one, and one has :
YM(V) = [, 1812 v,
where 0 Is the usual curveture of V.
This follows immediately from Formula 3.

Thus we recover in this case the usual Yang Mills action. For the fermionic
action, we define the gauged Dirac operator on & ® & h by

DfE@MN)=Fo DN+ (VDN forallE € & andN ¢ h.

Definition 11.
The fermionic action is <y, Dg y>, forye & o g h and V a compatible
connection.

Example 3: U(N) gauge theory with chirel fermions.

Given an even (4,=)-summable K cycle, take & tobe A", Then & @ h is
simply N copias of h. Let ¥ be a compatible connection on €. Consider the action

LAV, ¢) =g72 YM( V) + <y, Dy y> forye&ogh

Its group of gauge invariances consists of the unitary NxN matrices over &.

In the case of the Dirac K cycle on a 4-dimensional spin manifold, we obtain the
usual Euclidean action of a U(N)-gauge theory with ane N-tuple of fermion fields in the
fundamental representation of U(N). End of Example 3.

We shall now mention the easy adaptation of proposition 4.4 to the general case.
First of all, any compatible connection in the sense of Definition 9 is the composition
with mn of a universal compatible connection, 1i.e. alinsar map

-



Vig>80gh Q'
fulfilling exactly the conditions of Definition 9.
To see the surjectivity of the map :
T : CC(&) - C(&)
(where CC(&) is the space of universal compatible connections), it is enough to note
that'the. specia1I “Grassrpannian“ coqnection Vo ‘is of this form, andthat nm isa
surjection of Q" onto Qp. Next, auniversal compatible connection extends uniquely to
a linear map :
V:i€og Q"> 804 QF
such that
V(nw) = (V) w + (-1 " ndw
for any homogeneous 1 € § @ g Q" and w € O™
The curvature 8 = V2 is then an endomorphism of the module &' = & ®g QF

over *, and m(B) makes sense as a bounded operator on the Hilbert space € ® & h.
Then the analggue of the action | of proposition 4 is given by:

(V) =T, (n(8)?] Dg | ™)

One proves in the same way as before that for a given compatible connection V € C(&),
one has :

YM(V) = Inf { (V) ; (V)=V},

Let us briefly state the insquality between the Yang-Mills action and a
topological quantity. For the background notions and notations, we refer to [Col].
Suppose that we have an even (4 ) -summable K cycle. Define a Hochschild cocycle by

o(a%da' .. da®) = r, (re° D,6']..[D,2*10*) forall de &

Let B be the operator :
B:HY&, &%) - HCY ().
Then one can show that B® = 0. We shall, however, need :
Hypothesis 12 B® = 0 as a cochain.
(In the case of the Dirac operator on a 4-dimensional manifold one has :
e, )= [ Cd AdP AL A,
which satisfies the hypothesis.)
Since B,P is already cyclic:
BOCP(a0 a' 8%, a%) =2 (1,a%,a' ,a%,a%) :Tru(r[D,ao] .. [D,a%1D0™%

the condition B® = 0 means that in fact, B,® = O. This, together with b® = O, implies
that @ is acyclic cocycle.



Theorem 13.
For any hermitien finite projective module & over & one has :

YM(V) 2 <[&].9> for all V € C(&)

The right hand side is the pairing between K theory and cyclic cohomaology. In
the case of the Dirac operator on a compact 4-dimensional spin manifold X, one
recovers.the usual lower bound for the Yang-Mills action in terms of the topological
charge of the vector bundle.

2. PRODUCT OF CONTINUUM BY DISCRETE AND THE SYMMETRY
BREAKING MECHANISM.

We have shown how to extend the notions of gauge potentials and Yang Mills
action to finitely summable K cycles (h, D) over an algebra &, and we have also
defined the fermion action.

In this section we shall give two examples of computations of these actions:
a) The case of a discrete 2 pt space.
b) The case of a product of a 4 dimensional manifold by case a).

We first need a brief discussion of product spaces. Suppose that we have two triples .
(£13h1)D1) ] (°ﬁ2'h2' Dz)-

We assume that one of them is even , i.e. wearegivena Z/2 grading, say Iy, on
h,. We define the product to be the triple (&, h, D) :

f=H,¢4, , h=h,eh, .
D=D,e1+T,©0,.

One can check that if our two triples are Dirac K cycles coming from two
Riemannian manifolds, then the product K-cycle corresponds to the Dirac K cycle of the
product manifold. |f we have finite harmitian projective modules cS‘ over the 5& then

€, ® &, Isafinite hermitian projective module over 4.

Next, the formula _02 ol +1e® D , which follows from the
anticommutation of D, with I‘1 shows that dimensions add up, that is, if theD
are (pj , =) summable then D is (p, +p, , =) summable. Moreover, one can show
that

Tr, (T, @ T,) DI 7®r P2y = Tr (T |D,|™") Tr,(T,ID,] "2),

for all T;¢ i?,(hj).

Mors precisely, this is true provided that p, = 1, but in the case of interest
(Example S), we have p, =4 andp, = 0. Thecorresponding formula turns out to be:

Tr, (T, @T,) IDIP) = Tr, (T, 1D, ) Tr(T,)

Thus in the O-dimensional case, we should replace the Dixmier trace by the ordinary
trace, and the Yang-Mills action YM(V) is justgivenby Tr (62).

Example 4.

The space we are dealing with has two points a and b . Thus the algebra
& is just € @ C, the direct sum of two copies of €. An element f e & isgiven by
two complex numbers f(a) ,f(b) € €. Let (h,D,r) bea O-dimensional K cycle over
&A. Then h is finite dimensional and the representation of & on h corresponds
to a decomposition of h asadirect sum h = h, ® h,, with the action of & given by :



fa) O
0 f(b)

fed —»

Ifwewrite D asa 2 x 2 matrix in this decomposition :

Daa Dab

D=
Dba Dbh

we can ignore the diagonal elements since they commute with the action of 8. We shall
thus take D to be of the form :

0O D
ab
D=
Dys 0
where D, * and D,, isa linear map from h, to h We shall denote by M this
linear map ?\s will become clear, a standara geometrg on qur 2-point space

corresponds to M = 0. Thus, although our algebra in this example is commutative,
our more general notion of geometry allows us to consider nonstandard geometries on

this "commutative” space.

We shall take for T' the Z/2 gradinggiven by the matrix

1 0
r=
0 -1
So the geometry of our 2-point space is given by :
0 M 1 0
A=CeC , h=h,eh, , D= , L=
' M* 0 0 -1

Let us first compute the metric on the space F = {a , b}, using Formula 1.
Given fe€ &, onehas:

grov—

0 M f(a) O

(D.f] = :
M* 0 0 f(b)
0 M(f(b)-(a)) , ’ 0 M
= = (f(b)-f(a))
-M*(f(b)-1(3)) 0 -M* 0

Thus the norm of this commutator is | f(b) - f(a) | | M ||, where || M|l is the
largest characteristic value of M. Hence :

d(a,b) =Sup {|f(a)-f(b)| , I[DfIls1}=1/]IM]

Let us now determine the space of gauge potentials, the curvature and the
action in two cases :

o) ¢ =4 (i.e. thetrivial bundleover F).

First, let e be the idempotent e € & given bye(a) = | and e(b) = 0. For notational
simplicity, let us write e' for the idempotent 1 - e. Then &4 is spanned by e ande’, and



de = — de'. Thus the space Q' of universal 1-formsover & isa 2 dimensional spacs,
with the basis {e de, e’ de}. So every element of Q' can be written in the form §, e de
+ §, e'de for some complex numbers &, and 6,. We shall denote this t-form by the
pair (6,, 8,). Using the identities

ede = (de) e', e de = de (e),
one finds that the action of & on Q' is given by
f(8,,8,) = (f(a) §,, f(b) 6,); (8,,8,) 1= (8,f(b), 8, f(a)).

We see that although the algebra & is commutative, the algsbra Q" 1s not

graded-commutative. \
The differential d: & - QO is essentially a finite difference operator:

df = (Af, Af) , Af=1(a) - f(b).
One computes:

0 -§M

n((8,,8,)) = e 2(h).
gyM* 0
So provided M =z 0O, the representation n:Q* - £(h) is 1-1on Q' andQ' = Q[;.
Next, let us find what Q) 1s. Recall that Q2 = =(Q?)/a(d(Jg A Q"). Now any
element of (% can be written as h, € de de + h, &' de de, which we shall denote by the
pair of complex numbers (h, , h,). One computes:

~h,MM* 0
0 -h, MM

S0 if M = O then the representation m: Q" — 2(h) is 1-1o0n Q% Andsince 1 is 1 -1
on Q',Jg Q' =0. Thus Q2 = Q% The differential

d:Q' > 0% isgiven by d(8,, 6,) = (6, - 8,) de de = (8, - B, 8, - ).
And the multiplication

a'xq' > 0%isgiven by (s,, 8,) (8, ,8,) = (8,8, 85,6,

We now have enough of the differential calculus on the 2-point space to compute
the gauge theory. A vector potential is given by a sslf adjoint element of Q[', , or inour
case, by V = (-@,9*), with® a complex number. Its curvature is:

B=dv+Via-(l@ 11, |®+112-1)
This gives the following formula for the Yang Mills action :
YM(V) = 2([® + 1 2= 1) Trace ((M*M)?)

The action of the gauge group U = U(1) x U(1) on the space of vector potentials, i.e.
on @, isgiven by ¥, (V) = udu® + uV u®, which, withu=u, 8 + uge’, gives:



Y (V) = (1 —ugup™ (@ + 1), =1 + upug™ (™ + 1)),
On the variable ¢ + 1, this just means multipiication by ugup*.
Thus in this very simple case, our action YM(Y) reproduces the
symmetry-breaking Higgs potential. It has nonunique minima, given by |® + 1 | =1,
which are acted upon non trivially by the gauge group.

The fermionic action is given by <y , (D + V) v >, where the operator D +V
is equal to:

0 M 0 *M 0 (1 +®)M
M* 0 P*M* 0 (1+P)*M* 0 .
Writingw as (y,,w_)T, we see that the fermionic action is
<y, D+ V)y>=y,*(1+P)My_ + (complex conjugate),

which is a sort of a primitive Yukawa coupling. Let us note that for the "standard"
geometry with M = O, the two points are infinitely far apart, and the Yang-Mills action
vanishes,

B) Let us take for & the non trivial bundle over F = {a , b} with fibers of

dimension n, and n,1<on a and b respectively. (This does not affect the differential

calculus that we worked out before.) The bundle is nontrivial iff n,  n, and we shall

consider the simple case of n, = 1 and n, = 2. The finite projective module € is of the
form :

&= f 42
where the idempotent f € M,(&) isgiven in terms of the notation of o« by the formula
(1,1) 0 10
f = =
0 (0,1) 0 €
To the idempotent f corresponds a particular compatible connection on &,
given by V& = fdf with obvious notations. An arbitrary compatible connection on &
has the form :
VE=V,4E +0E

where p is a self adjoint element of Mz(og) such that fp = pf = p. If wewrite p asa
matrix,

these cond1t1oné are:
(6) 8091 =0p1 » €02 =022 0228 . 0128 =043
Thus we get :
P,y =-P, ede+P," ede , 0, =P,"ede , p0,,= ~P,ede , g,, =0,

where ¢, and®, are arhitrary complex numbers.



The curvature 8 isgiven by 6 = fdfdf + f(do)f + o2

0 0 doy, (doyp)e Q11 @41 + 042024 011012
0 e'dede &' do,, 0 01 04y 021 042
Explicitly, the components of 6 are:
8,,=(1 - 1@, + 17~ {2, edede + (1 - |®, + 1 [°) e'deds,

B, = - P,(P, + 1)* e'dede,

B8, = - P,7(P, + 1) e'dede,
By, = (1 - |, ?) e'dede.

An easy calculation then gives the action YM(V) in terms of the variables ¢, and ¢,

YM(T) = (1 + 201 (]2, + 122, P N?) Tr (M),
It is by construction invariant under the gauge group U(1) x U(2). We see that the
minimum of YM(V) is strictly positive, and so the bundle & does not admit any
compatible connection with vanishing curvature. We also see, aftl{ the fact, that there

is nothing special about V, ; any connection with I‘P + 1%+ |<P2 I'Z = 1 also
minimizes the Yang-Mills action.

To write the fermionic action, note that § @ ¢ h is T8 @ g h = fh?. Letus
write a tgpi'cal element of § @ g hasy = ((ey,e), (0, vL))T. Then the fermionic
action is

<y ,Dyy>=<y,Dolz+py>=e*(1+®)Me +6,"P, My
+ (complex conjugate),

which is like the leptonic Yukawa coupling. End of Example 4.

Example 5. 4 dim. Riemannian manifold x (2-point space)

To fix notations, we let X be a compact Riemannian Spin 4 manifold, &, the
algebra of functions on X and (h D,, T, ) the Dirac K-cycle on &,. We shall Iet the
triple (&4,, h D,) tobeas in example 4 above, i.e.

0 M
A, =CoC h,=h, ® h D, =
2 ’ 2 2, 2b 2
? M * 0
Weput =&, 04, , h=h,eh, , D=D,e1+T,©D,.

The algebra & is commutative. It is the algebra of complex valued functions on
the space Y = X x F, which is the union of twa copies of the manifold X: Y = Xq U Xy

Let us first compute the metricon Y associated to the K-cycle (h, D) :

d(p,@ = Sup {[f(p)-f@|;N[D, <1}
fed

Every f € & isapair (fa . fb) of functionson X. Also, to the decomposition of



h, as:
hy=h,, 0Ny

corresponds a decomposition h=h, @ h,, on which the actionof f=(f,,f,) € & fis
diagonal :

f 0

f > e 2(h)
0o f,

In this decomposition, the operator D becomes:

0y @ | s M
D=
¥g ® M” 0y ® |
where 0, isthe Dirac operator on X and yg the Z/2 gradingof its spinor bundie.
This gives us the following formula for the "differential” [D,f] of a function f :
y(df,) e | (f,-f)¥s®M
[D.f]=
(fy-f,)yso ™M . y(df,) e
Thus the differential [D,f] contains three parts :
) The usual differential df; of the restriction of f tothe copy X, of X.
8) The usual differential dfy of the restriction of f tothscopy X, of X.

¥) The finite difference Af=1f(p,) - f(p,) where p, and p, are the points of X,
and X, above a given point p of X.

One can then show:
Proposition 14.

1) The restriction of the metric don X, U X, to each copy (X, or X, )
of X [Is the Riemennian geodesic distance of” X.

2) For sach point p =p, of X,, the distance d(p, , X, )equals M)~ and
Is atteined at the unique pa?nt pb

Let us now pass to the computation of the space ()1 of I-formsonY. As a
{—form is 8 sum of terms of the}form n(f, df,), the above computation of [D,f] = m(df)
shows that an element o of Qg isgiven bg
®)  Acomplex 1-form W, on X,

B) Acomplex 1-form w, on X,
Y) A pair of complex valued functions 8, , 8, on X.
The corresponding operator on h is given by :

Y(w,)el -6,y 0 M

Bo¥s @ M*  y(wy) el

20
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The action of & on Ql; is given, with obvious notations, by :
(fﬂ'fb)(wﬂ'mb'Bﬂ'sb):(fawa'fbwb'fasa'fbsb)
(wa’wb'SG'sb)(fa'fh)=(fgma'fbwb'f8 th)

b s’ 'a

H]

The involution on O,; ts given by (w, ., w,.8,,8,)" = - (w,", w,*, 87, 86,%).

a ]

The differential f: &4 — QJ is given by:
f=(f,,f,) > (df, ,df , f -f,.f,-f)e€Qq,

When we write things in terms only of X, we can visw O[; as a 10

dimensional bundle over X, given by two copies of the complexified cotangent bundle
and a trivial 2 dimensional bundle, so that over a point p in X, the fiber consists of

TXceT,X)goCoC

But we have to keep in mind the nontrivial multiplication structure in the last two
terms.

As in the case of the Dirac operator on Riemannian manifolds (Lemma 6). let us
compute the pairs of operators of the form n(p) =T, , n(dp) =T, for p € Q'(A).

Given g =% fj dgj € Q'(aﬂ), with fj , 9y € & , one has:
Y(w,) el -6,¥s @ M
n(p) = v
6, ¥5 © M~ Y(w,) el
with w, =1 fja dg, Wy =1Z fj dg;, and
80= Z fjﬂ (gja"gjb) ) Sb:Z fjb (gn-gjb)
One has m(dp) = Z l't'(dfj ) (dgj ), which gives the 2 x 2 matrix:
Y(E,)® |+ (§,-86,) @ MM* -y(M)ys @M

n(dp) =
¥(n) 5 © M* ¥E D) @1+ (6, -86,) @ MM

~where E, = Zdf,-dg, and E, = Zdf, -dg, are sections of the Clifford algebra
bundle C? over X , while

Using the equalities :
o= L fj (dgja - dgjh) + (gja ~ Oy ) df},
dSb Z fjb (dgja - w]b ) + (gjB - gjb ) dfjb

w,= 2 f,dg;, , w,= I f,dg,

dé

we can rewrite N, and N, as follows :

N, = W, - W, +d6a

nb:wb—(0° +d8b.



Thus knowing T, fixes §,, 6,, M, and N,. As in the Riemannian case (Lemma S), the
sections E,, E, of c? are arbitrary except for o o(E,) =dw, and 0,(E, ) =duw,,

This shows that the subspace T (d(J, N Q') of n(Q?) isthe spaceof 2 x 2
matrices of operators of the form :

¥(E, ) o1 0
T=
0 ¥(E ) ©
where E, and g, are sections of c® , le. are justarbitrary scalar valued functions

on X.
A general element of n(Qz) tsa 2 x 2 matrix of operators of the form :

¥(o,) ® 1 -h, @ MM* -¥(8)ys 0 M
T=
¥(By) ¥s @ M* ¥(x,) ® 1 -h, & M*M

where o, and &, are arbitrary sections of1C2 h, and h, are arbitrary functions on
X and B, and ﬁb are arbitrary sectionsof C' (i.e. % forms) We thus get :

Lemma 15.
Assume that M*M is not a scalar multiple of the identity matrix.
Then an element of QZ is given by
1) apair ofcomplex2 forms g, , 0, on X
2) apair of complex 1-forms B8, ﬁ on X
3) apair of complex functions h h on X

The hypothesis M*M =z const. |d enters because otherwise the functfons h, and
h, are eliminated when we quotient out by rt(d{J, N Q" )).

Using the abave oom putation of n(dg) we can compute the differential dw of an
element @ =(w,,w,.6,,8,) of Q. Wegst:

1) 0,=dw, , 0,=dw,

2)  B,zwp-w,+d5,, B =w,-w,+db,
3) hB:SG—Sh » hb=83—8h'

So we see that the differential d w € QS involves both the differential terms
dw,, dwy, d6, and d8,, and the finite difference terms w, - w, and §, - &, but in
combmat1ons imposed by d{df) =

Next, let us computs the product Www e Qg of elements w = (w, , W, , §, , Sh)
and w' =(w, ,w,,8,,8;) of Q. Weget:

D 0,=w, AW, Op = Wy A Wy
2) B, = - 6, W, + 6,0, By, = - 8, W, + B, w,
3)  h,=8,6, h, = 8, 6.,

Comparing these formulae with those of Example 4, one can summarize the results by
saying that the differential algebra on Y is simply the graded tensor product of the
differential algebras on X and f.



The next step is to determine the inner product on the space Qg of 2-forms given in
section 1. By definition we take the orthogonal of T(d(J, N a')) in n(Q?), gifted
with the inner product < T, ,T,>= Tr (T7T,|D =4

An easy calculation then gives:

Lemma 16.

Let P(M*M) be the orthogonal projection of the metrix M*M on the
scaler metrices const. |d. Than the squere norm of an element
(0,,0,.8,.8,.h,.0y)0f QF isgiven by

Jx (NJHa P+ Nylla, 1) dv + tr (M*M) y (Il 8,7 + 18, 17 ) dv +
tr ((M*M = P(M*MN2) [, CIh 12 + 10, 17 dv
where N,=dim h,, N, =dim h.

We are now ready to compute the action YM(V). For &, we shall take the
space of sections of the hermitian vector bundle Eon Y = X, U X, which has fiber € on
the copy X, of X, and fiber €2 on the copy X, of X.In other words we consider the
product of Example 2 and Example 4 B. We can say immediately that the gauge group

U = Endg (&) of our gauge theory is the unitary gauge group of the vector bundle E
over Y =X, UX, , or equivalently the group :

U = Map (X, U(1) x U(2)).

As in Example 4 B, we can write & as &%, where f € M, (&) is the idempotent
2

1 0

f= and e =(0,1)e .
0 e'

Then a compatible connection V has the form

VE=TdE+0E € CogQp , forall E€&,
where ¢ is a self adjoint element of Mz(oé) which satisfiss the conditions (6). Using

the description of an element w of Qg as a quadruple (w,, w,, §,, §,), we find that the
entries of the 2 x 2 matrix p have the form:

b .
0 =(wi . @y, -9, @5)
012=0 0 '“'132 , =%, 0)
0= 0 . wyy . O"q’z‘)
b
gzzz( O ] (‘)22 ] O ] 0 ))

where w®is au(1)-valued 1-form on X, w® is a u(2)-valued 1 -form on X and where
(tP, ,@2) is a pair of complex-valued functions on X. In other words, a compatible
connection on & consists of

)  Au(1)-connection V, on the restrictionof E to X,

PO
U



B) A u(2)- connection V. on the restrictionof E to X,
¥)  Alinear map (®, ,®,) from E over X, to E over X,

The action of the gauge group on V_ and V, is the obvious one, and the action on
(®,,®,) is given by composition.

Next, the curvature 8 is the following etementof fM, (Og IR
§=fdfdf +fdof+ o
which is easily computed using the above formulae for
d: Qg > 02 and A:Qpx Q) > Q2

Let us write an element of Q2 as a sextuple (g, , 0, , 8, . B, , h, , h,). Then one finds
that the components of 8 are

By, = (F1,, Fo, . =D(1 +@),D(1 +® )", 1 = |@, « 1 - |9, P, 1 - ]2, + 1)

8,,=(0 ,F},, -D®, , O . 0 = ®,(@, 4 1))
b . "
821:(0 ,F21. 0 ' Dpz ' 0 ,—@2 (@1+1))
By, =(0 ,Fpp, O , O . 0 AR IST N
Here F® and F® are the curvatures of w® and w° respectively, and
b b
Wy - WY W2
D(1+‘P‘,CP2)= d(l+@1,@2)—(1+¢'1,¢2) b 6 \
Wy Way = Wy,

(Note that the calculation of the (h, , h))'s is exactly the same as in Example 4 B.)

Applying Lemma 16 gives that the Yang-Mills action is the integral of a
Lagrangian density £5 over X, with

2y =¢ IF°IP +c, NFPIZ v c5 TR (M*M)ID(T + @, @, ) | +
Cq TP ((M*M = P(M*™MN?) (1 +2(1 (1@, + 1 P+ ]2, P N?).

The c, 's are various positive constants; we shall come back to their meaning in the next
section.

The fermionic action is even easier to compute. Note that q ®ghis fh 2 Let
us write a typical elementof € @ g hasy =((e,,¢), (0,v))". Then the fermionic
action is

<y ,Dgy>=<y ,(Dolp+g)y>,
which is the integral of a Lagrangian density £, over X, with
L. =e" 0,8y + (e, v)* 3, (e,v) +
{eg* (1 +® )My g +63"P, MYyg v + (complex conjugate)].

Here 8, is the Dirac operator on X, when coupled to the u( 1) -gaugs field w®, and
similarty 8, is the Dirac operator on X, when coupled to the u(2)-gauge field w".

It should now be clear that the total Lagrangian density £, + £ of our
noncommutative gauge theory 1is almost the same as that of the



Glashow-Weinberg-Salam (GWS) model of leptons [GWS]. In fact, there are only two
differences. First, the global gauge group of the GWS model is not U(1) x U(2), but
U(1) x SU(2). Inorder to reduce our gauge group, we impose the

Ad Hog Condition :  tr(w?) = "

We shall give a less ad hoc formulation of this condition in Section 4 . The
second difference is that we need for the fermions to be chiral. To achieve this, we
simply Wick-rotate to Minkowski space and impose the condition Ty = .

End of Example 5.

3. BIMODULES

In the discussion so far, we have had a singls algebra & acting on the Hilbert
space h. tn fact, it turns out to be natural to extend this to having two algebras & and 3
acting on h, whose actions commute. We can express this by saying that & acts on hon
the left, and B acts on h on the right. Alternatively, we can say that 8 @ @ actson h on
the left. Given the first description, we get the second description by putting

(ae@b)N=anb forallae L, beB andNe h. '

This situation of having two algebras acting arises when one want to extend
Poincaré duality to an algebraic setting. We shall not need the details of this, for which
we refer to [CS,Ka,Co2], and will only broadly state the ideas . Recall that if X is a
closed oriented manifold then Poincaré duality gives an isomorphism between the
cohomology and homology of X. Similarly, if X is a spin® manifold then X is K-oriented
and there is an isomorphism between the K-theory K*(X) and K-homology K (X) of X.

Let us consider what the analogous statement would be for general algebras. On
the level of K-groups, it wouId be an isomorphism between K (&) and K*(B). (Inthe
special case that X is a spin® manifold, we can take both &8 and B to be C(X).) Of course,
one needs additional structure to have such an isomorphism. The essential piece of
information needed is a K cycle (4 @ 3, h, D) for the algebra & © 3.

On the level of homology, we want a map from the homology of the complex
0p(4) to the periodic cyclic cohomology of 3. It turns out that such a map cen defined
prov1ded that one has certain relations, one of which is

(7) [[D,a],b]=0 forallae Aand be B
We note that this relation is actually symmetric in a and b, as they commute.

The point of this general discussion is that it is natural to look at a K cycle for
the tensor product £ ® B of two algebras, which satisfies (7). We can apply the
constructions of section 1 to such a K cycle, and in particular ths notions of a vector
potential ¥ and its Yang Mills action YM(Y). The gauge group of such a gauge theory
would be the group U(HA ® B) of unitaries of & © B. However, we can use the fact that
we have two algebras {0 single out a class of vector potentials which is invariant under
the action of the subroup U g x Ug.

Proposition 17.
Let V' =V g + Vg be the subspace of the vector potentlals V' o 3 Wwhich
consists of sums of vector potentials reletive to £ end B. Then IV Is
Invarfant under the action of U g x Wg , and for every V€ 9, the
operator D +V still satifies equation (7).

To see this, recall that the action of the unitary group of & ® 3 on vector
potentials is determined by

gD +V¥)g* =D + \gq(V),

5



Let us specialize this equation to elements g=uv € Ug x Ug. Take V = Vvl e
Vg + Vg . Then

uv(D + V® + V®) v* u* = UVD V' U* +uViu® +vVPye,

since by (7), every element V* of 9 (resp. VP of 9°) commutes with B (resp. ).
Next,

uvDv*u* =uD+v[D,v*Du*=D +u[D,u"] +v[D,v*],
again using (7). Sowe get:
¥y, (V2 +V0) =y, (V) + x, (YD),

which shows that the space 4” is invariant under the action of U g x Ug. Finally, we
compute:

[[D+V‘+V",a] ,bl= [[V‘,a].b]:[[V‘,b],a]:O.

4. The standard U(1) x SU(2) x SU(3) model

In this section we shall build on the computation of the action functional in
Example 5 i.e. in the case of the product of a continuum by a discrete 2-point space. We
saw that almost by accident, we recovered the GWS model for leptons from a simple
modification of the 4-D continuum. The question which we address in this section is:
can one by a similar procedure incorporate the quarks as well as strong interactions?

Let us make some preliminary remarks. First, there is presently (1991) no doubt
that the standard model of electroweak and strong interactions gives a remarkably accurate
description of the known elementary particles. We refer to other works, such as [El], for
a survey of the standard model, and will only give a skeleton description in order to fix
notation.

The goal is to find a modification of the continuum spacetime geometry such that
the bosonic part of the standard model becomes a pure gauge theory on this modified
spacetime. (The fermionic part will be straightforward.) That is, we wish to find a new
geometry such that the gauge fields and the Higgs fields of the continuum geometry
become unified into a gauge field on the new geomewry. In itself this is not a new idea,
and most previous attempts to do such a unification used a new geometry consisting of
R* x F, where F is a compact homogeneous space [CJ]. However, none of these
attempts were able to succesfully rcpréduce realistic particle models, partly because of
problems in producing chiral fermions on R* from fermions on R x F [Wi]. What is
new in our approach is to take F to be a finite set, albeit with a nonstandard geometry.
Then.the problems with producing chiral fermions immediately go away.

We wish, then, to find a finite space F such that when one computes the analog of
the classical Lagrangian of eléctrodynamics, but instead on R*x F, one finds the classical



Lagrangian of the standard model. Once the structure of this finite space F is given, we
just apply our general method of computing the Yang-Mills action to R4 x F, and will
find the bosonic terms of the standard model action. The Higgs boson will be part of a
gauge field, but coming from a finite difference, rather than a differential. The fermionic
action will be straightforward to derive, and will give the fermionic terms of the standard
model action.

a) The standard model

The Lagrangian density of the standard model contains five different terms:

£=£G+£\P+J: +.‘BY+£V

¢
which we now describe in a Euclidean version of the model. _

1) The pure gauge boson part &,
_ 1 2 1 .2 pwy, 1 .2 v
zc = Z g (Fuv F'-LV) + Z g (Gu\pa Ga ) + Z 4 (Huvb Htl: )

where Fuv is the field strength tensor of a U(1)-gauge field Au, Guv is the field
strength tensor of an SU(2)-gauge field Wu, and Hp.v is the field strength tensor of an
SU(3)-gauge field Vu, the gluon field.

2) The Fermion kinetic term B,
By=¥ DY Y,

where W is a'spinorial field consisting of N copies, or generations, of a certain cls

representation of U(1) x SU(2) x SU(3). Here Dp. is the covariant derivative of the

spinor field:

DU- VY= [au + n(Au) + n'(Wu) + n:"(Vu)] ¥,

and «t, ' and ©t" are the respective representations of the Lie algebras of U(1), SU(2) and
SU@3) on ¥. The decomposition of the € 15_representation into its irreducible
components, listed by the particles of the first generation, is as follows:

Particle % A ¢

e C®C ®C 2
(e, v,) CRC2®C 1

dg cecoc® 3

17



Ly

ug cecC ®c? 43

(dp,up) o c?ecl 113

The hypercharge Y, when multiplied by 3, labels the U(1) representation m.
Hereafter we will write the fermion fields as N-vectors, labelled by their first-generation
particle. For example, with the three known generations, using the standard particle

names we have

e d

e=(@ D, v=(0V, V), u=@c1, d=@s,b).

3) The kinetic terms for the Higgs fields

-

5,=(D,9) D",

2

where ¢ = ( isan SU(2) doublet of complek scalar fields with hypercharge Y =- 1.

¢
4) The Yukawa coupling of Higgs fields with Fermions
Ty=er M 0ye +eg M4,V + dr My, dp + dg My,
+ ug M, (- az)dL + ug Mu$1 u + complex conjugate.
Here M,, My and M are N x N matrices whose singuiar values are, up to a
1) is involved in the

%,
Yukawa couplings to the electron e, and down quark d, its conjugate

constant, the masses of the fermions. Let us note that while ¢ = (

~ [-0a|

8 ¢
®) )
is in the Yukawa coupling to the up quark ug,.

5) The Higgs self interaction
' g dolesf
By=-1 ¢ ¢+5Mo ¢

has exactly the same form as in the GWS model.

Thus we see that there are essentially three néw features of the complete standard
model as compared to the GWS model: )



A. The new SU(3) gauge symmetry, whose gauge fields are responsible for the strong
interaction.

B. The new fermions, the quarks, with their new hypercharges.
C. The new Yukawa coupling terms involving the quarks.

We shall now briefly explain how these new features motivate a modification of
Example 5, which lead us above to the GWS model for leptons. First, our model will still
be a product of an ordinary Euclidean continuum by a finite space.

In example 4 B, our algebra & of functions on the finite space,was € ® C. But

since we then considered a bundle on {a,b} with fiber € on a and c? on b, we
could have equally well used € =T @ M,(T), and taken the module & to be the same

as . Let us see how point C. leads us to replace T ® My(C) by & =C ® H where H
is the Hamilton algebra of quaternions. The point is simply that the equation (8) which

relates ¢ and 3} is the same as the unitary equivalence 2 ~ 2 between the
fundamental representation 2 of SU(2) and its complex conjugate or contragredient
representation, i.e. one has :

geUQR),lgl! =g o ge SUQ),

0-1
where J = 1 0}
We remark that :

(xe My@),IxJ1=%)
defines an algebra, the quaternion algebra H.

Next let us see how point A, leads us to the formalism of bimodules of Section 3.

u .
Indeed, look at any isodoublet of the form ( d::) of left handed quarks. It appears in 3

colors:

r y b
up up up

b
dy df d;

which makes it clear that the corresponding representation of SU(2) x SU(3) is the
tensor product €2 ® @3 of their fundamental representations. It is easy to convince

oneself that even if one neglects the difference between U(n) and SU(n), there is no
way to obtain such groups and representations from a single algebra and its unitary

v

\



group. The solution that we found is to take (&, B) bimodules, with & =C ® H and
B = C @ My(C).

We are now ready to describe the geometric structure of a finite space F which,
when crossed by R?, gives the standard model.

b) Geometric structure of the finite space F

The structure is given by an € - B bimodule (h, D, ') where €& is the
involutive algebra € ® H while % is the involutive algebra € ® M;(CT). Unlike

W, the algebra & is only an algebra over R . The involutive representations ® of ¢

in a finite dimensional Hilbert space are characterized (up to unitary equivalence) by three
multiplicities: n_,n_, m, where

b, = CteC o™,
andif a=(\, q)e C @ H, n(a) is the block diagonal matrix:

a=(re1, ) e(re1,) e %g ®1,

Here we are writing the quaternion q as q=a +pj, with o,fe C € H.

The representation of the complex involutive algebra ® in b gives a

decomposition:
b=b0° (bl ® 0:3)

in which b= (b, b)) € Ceo M3(GI) acts by m(b) =b, @ (1 @ b,). It follows that the

representation of & (which commutes with the representation of B) is given by a pair
my, 7, of representations of & in Hilbert spaces B, and H,. The & - B bimodule
0

is thus completely described by the six multiplicities, namely (ng ,n, rno) for &, and

1

(n,, n} , ml) for T,. We shall take them to be of the form:

(ng , 0y, mgy) = N(L,0,1)

(ny , 0, m) = N(L11),

where N will eventually be the number of generators. That is,

| h=[(CoH)e (T oCeH)e T3} eRN



We shall take the 2/2 grading I" in H to be given by the element I' = (1, -1) of the
center of Q. Finally, for D we shall take the most general selfadjoint operator in b
which anticommutes with I” and commutes with € @ B, where € C ¢ is the diagonal
subalgebra: {(A,A), A € @ }. (As we shall see, D encodes both the fermion masses and

the Kobayaski-Maskawa mixing parameters.) It follows that the action of & and the
operator D in B, (resp. B, ) have the following general form: (with q=a +Bje H)

f00 OMeO7
nyif.d=] 0 a B Dy= M:O 0
o-BE 0 00

000 0 0 M0

0foo 00 0M,

™ ifa)= 00ap P1= M;0 0 0

00-Ba |0 M;0 0

where M,,, M, M, are arbitrary complex N % N matrices.

¢) Gauge Theory on the finite space F

We shall take the modules for € and 8 to be & =& and &F = B respectively.
Then the Hilbert space & ® o h ® 3 F of gauged fermions is the same as ). The

unitary gauge groups are ’LI.Q = UQ) x SU(2) and ’LI.B = U(1) x U(3). The gauge
fields are simply given by vector potentials, i.e. self-adjoint elements of QB(Q) and

Ql])(B). As B commutes with D, QIIJ(IB) vanishes, and so B will play no role in the
finite geometry.

Let us look at QIID(Cl). Write an element p of Ql(Cl) asp=2 3 da'j, with 3, a'j e &;
a; = OLj’ qj), a = O"j’ qj); q; = 0 +-Bj hoQj=oaf+ Bj j. (One can simplify the
calculations by noting that (1:0, DO) is essentially the degenerate case Mll =0of (nl, Dl)).
One finds
0 ;M. o,M,
»
(P =] ¢'; M, 0 0 ,
-¢';M; 0 0



p2A

( 0 0 o, Mg ¢, My \

0 0 -6;M, &M
nl(p)= Coal® , .
¢ 1Md ¢2Mu 0 0
\-¢'2M; ¢'1M; 0 0 }

where
Ma-ay) e =EABy
o =Za(hj-ar)+ BBy ¢,=% B(Ay-a )-ayp
Thus QL(C) = (¢, 0y, 0, ¢,) € T4, the differential d: & — Q[(€Q1) being given
by

dA, o, B)=(a -2, B, A -, - P).

If p is a vector potential then ¢y = ¢; and ¢', = - ¢,. Simila:ly, one computes that

0, +0')) MM, 0
%(dp)=((l ) )
0 P
d+0", +Y ¢,+¢', +2Z
i P=1 - - s T T | 9MIM
with 2 ~02-0'2+Z O +¢, -Y e ¢
and nl(dp)=(8g)
. (¢t+¢'1) MdM; (¢2+¢'2) Mg M,
with Q= - - . = - .
(" ¢2—¢'2) MMy (¢1+¢'1) MM,
¢1+¢'1 ¢2+¢
and R= 172 — 6, ¢2 ¢1"‘¢1 ®(MdM+M M)

- Y Z
+1/2(Z Y)@(MdM -M*M).

Here Y and Z are new fields given by

Y =X(o-A)(A-0) ~BBY and Z=Z- (@-a Y +Byla-1).



We see that {n{dp): p e Jp n Qll)((‘l)} = {n(dp): (9> 95, ¢4’ 0,)) = 0} consists
of the Y and Z fields. Then the quotienting used to define 012)((‘1) amounts to quotienting

out the Y and Z fields. Considering the products T(p,) T(p,), we see that QZD(Q) = (E4,

with the product Q.;)(Q) x Q:)(Q) - 912)((11) given by

(0 050 0", 9') X M, Ny M M) =
(¢1111' - ¢27_12” ¢1ﬂ2' + ¢251|, ¢'1T11 - ¢"2;2' ¢'1ﬂ2 + .¢"27_11)

and the differential d: QIID(C{) N Q%(Q) given by

@y, s By By) = (@) + 0, Oyt 0 &) + B, Oyt 0,0,

It follows that the curvature 6 =dV + V2 of V= (¢1, ¢2, 61, - ¢2) has image in
2 .
(@) given by

2 2 ,
tp®={ [ 1+0,] +lo)] - 1] .0.1,0e Q.

Then the Yang-Mills action is

2 2 )
YM=<9,9>=const.( |1+¢1| +| ¢2| - 1)

Up to a shift of the ¢, variable, this is the symmetry-breaking potential for the Higgs
field, with (¢, ¢,) = 0 being a minimum.

Writing a fermion field ¥ € b as
¥ =(eg. e, V) @ (dg, ug, dp, vy ),
the fermionic action
By=¥D+V)¥

gives exactly the Yukawa couplings of the standard model, after a shift of the ¢, field.
When (¢,, 9,) is frozen.at its minimum (0, 0), .'Bq, becomes

er M e, + dg Myd; + ug M, u +complex conjugate



The "normal modes" of ‘¥ are given by the eigenstates of the matrices
»* * * * * *
(MeMe ’ Me Me’ 0), (MdM ’ MuMu ’ Md Md' Mu Mu)'

and the corresponding fermion masses are the square roots of the eigenvalues. In this
finite geometry, the fermion masses are the only physical information in the matrices M,

Md and Mu, but in the full standard model, to be described next, there is also a physically

relevant N x N unitary matrix, the mixing matrix U. This matrix comes from the

discrepancy between the eigenstates of the mass matrices and the weak curent interaction
(El]. Explicitly, suppose that Mu* M, and Md* M, are diagonalized by unitary matrices
V,and Vg

* _ " -1 * _ . -1
M, M,=V Diag V=~ and M;" M, =V, Diag, V"

Then U = Vu'1 V4 We can easily describe U in terms of our finite-geometry. There are
orthonormal bases for the vector spaces of d; s and u 's given by the eigenstates of the
matrices Md* M, and Mu* M. Asd; +u; j lies in H, multiplication by the unit

quaternion j maps the vector space of dL's to the vector space of u; 's. Then U is simply

the writing of this multiplication operator in terms of the preferred bases. As the
eigenstates are only defined up to a phase, U is only defined up to right and left
multiplication by U()N.

Before leaving the ﬁnite-poixit geometry, we remark that there is a compact way to
write its differential algebra. First, Q0(Q) =0 =C® H C H ® H. Next,

al @) = (6, 9,), 0, 0,) e €2 ® T2} = {(q,, q,) € H D H).

With the identification q; = ¢; + ¢, jand q, = ¢'| + ¢, j, the bimodule structure on

Q]g(Cl) is given by
(A, 9) (@}, 95) = (Xq;, 9q,) vq.qe H
@pa) A 9=(; 9.9 M Ae C,qe H

and the differential d being again the finite difference:
dA,qQ)=(q-AA-qQ)c Ho® H.

The involution on Qll)((il) is given by:

* » %
(ql, qz) = (q2’ ql) Vql, q2 e H.



The space V' of vector potentials is thus naturally isomorphic to H.

Finally, Q.zD(Cl) =H ® H with an &-bimodule structure given by:

(A, Q) (g5, 9,) A, q)=(q, A, qq,q9) VA, AMe C,qse H.
The product: Qll) x Qll) - le) is given by:

Q9 @,9%)=0Q;,95,9,9))

and the differential d: Q.ll) - Qrz) is given by

d(Q,9)=(q; + 95, q; +y) -
The curvature 6 of a vector potential V =(q, q') is then
’ 2 * * * - 2
0=dV+V“=(q+q +qq ,q+q +q q@=(1+ql*-1) (1,1).
d) Geometric structure of the standard model

For the full standard model, we take the product geometry of the finite space (b)

and the Riemannian geometry of a spin 4-manifold X, where the product is in the sense of
Section 2. So we have an & - B bimodule (h, D, I') with

& =C (M R)® (T 8 H), B =C (M, R) & (T & My(C))

The corresponding unitary gauge groups are

‘I.I,Q = Map(X, U(1) x SU(2)), ‘U.B = Map(X, U(1) x U(3))

The Hilbert space is ) = h, @ (h, ® @3), with

bo=LAX.$)® (C e Hye RN b =LA XS e (CeCeHeRN

The representations T, and T, of Q are the same as in (b). Letting z denote the element
(1, -1) of the center of C, the grading operatoron hisT = Y5 ® n(z). The self-adjoint
operator D =D, ® D, is given by

e —

ax ® IN 'Ys ® Me 0
Do=vs ® M, 95 ® Iy 0




1= »

Here M, M and M, are complex N x N matrices.

The computation of the gauge theory on this space is similar to that done in
Example 5, so we shall only state the results. First, consider the & algebra. One finds

that a universal 1-form p is represented by

nA) @ Iy %, Ys @M, ¢,7s ®M,
no@=| 0,75 @M, YWpely ywpely | .,
-0'27s OM: YWy eIy YWpely

( YA) @Iy 0 $,7s®My 0,7 % My
0 Y(A) @ Ty 02758 M, 9,759 M,
¢ Ys@ My 0',Ys@ M, YW@ Iy yWoely

\—¢'275@Md 01O M, Y-Wpely YW, ely

T, (P) =

Here (A, W, W,) are complex-valued 1-forms on X, and (¢, ¢,, ¢';. ¢'5) are complex-
valued functions on X. So Q@) = (A!(X, ©))° @ (A%X, ©)*. The differential map

da-— QJID(Q) is given by

d(h, o+ B j) = (@), doe, dB) @ (-1, B, A -0, —B) e QL().



If p is a vector potential then A is u(1)-valued, W is su(2)-valued and ¢', = ¢, ,
¢'y =- ¢,. Thus a vector potential consists of a u(1) gauge field A, an su(2) gauge field
W and a Higgs doublet ¢. '

In order to compute Q%(Q), it is enough to just consider 7t,(dp), as m,(dp) is then

obtained by taking M, = 0. Separating the various _tcnﬁs with respect to their differential-
form grading on M, one finds

YdA) ® Iy 0 0 0
, Y(dA) ® Iy 0 0
r, (dp) =
0 0 HAW ) @ Iy 1AW, @ Iy
0 0 - dW,) @ Iy YdW) @ Iy
( 0 0 D¢, vs® My  Do,Y5® My \
N 0 0 -Dovs® M, Do;Ys® M,
D¢',7s® My D¢',¥s ® M, 0 0
- L I »
\—an'mwd Do’ 75 ® M, 0 o
A®Iy 0 0 0
0 A®ly 0 0
+ ~ .
0 W, ey W,oIy
0 -W,ely W, eIy
QO
* OR)
, (¢1+¢'1) MyMy (¢2+ ¢'7_) MygM,
with = - - - . [— - .
(‘ ¢2—¢'2)MuMd (4’1"‘4"1) MM,
o+, 9,+9, .
and R=12|_7 = = . 7 |®M*M+M* M)

—02-02 01+0

Y Z .
12\ 7 3| ® M*M;-M*M).

= .f



W, W ~
Here D(¢17 ¢2) = d(¢1, ¢2) + A (¢l, ¢2) - (¢1! ¢2) (_ le Wj ) N and A, W, Y and Z are

new scalar fields. We see that

(m(dp): p e Jy N QNQ)} = (n(dp): A =W = (0, ¢, ¢, 6,) = 0)
consists of the A, W, Y and Z fields. Then the quotienting used to define le)((’i)

amounts to quotienting out the new scalar fields. Let us assume, for example, that the
matrix M d* M, + Mu"' M, is not a multiple of the N x N identity matrix; then we find that

Q2D(Cl) comes from the tensor product of the differential algebra of the finite-point space

by the exterior algebra of X. Namely, an element of Q%(Q) consists of

a. A C-valued 2-form on X and an H-valued 2-form on X.

b. Two H-valued 1-forms on X.

¢. Two H-valued 0-forms on X.
IfV(:l is a vector potential then its curvature e(’,l = dVCl + le2 € Q%(Cl), a self-

adjoint element, consists of the following components:

a. The curvature F A of the u(1)-gauge field A and the curvature Fw of the su(2) gauge
field W.

b. The covariant derivative D¢ of the Higgs field ¢, and its conjugate.

2 2
c. The function (’|1+¢1| +| ¢2| - 1{ times (1,1).

The story with the T3 algebra is much simpler. As B commutes with the off-
- diagonal terms of D, it is easy to see that Q.B(US) isjust 3 @ A*(X, C), with the obvious

multiplican'on- and differentiation. Then a vector potential Vg is the sum of a u(1) gauge

field K and a u(3) gauge field V, and its curvature 91[3 € Q%(B) is same as the usual
field strength (dK, dV + V) e (u(1) @ u(3)) ® AZ(X).

The gauge group of our theory is Map(X, U(l)(.1 X SU(Z)Q X U(I)B X U(3)n3).
In order to correctly reduce the gauge fields to take values in u(l) @ su(2) @ su(3), we
must impose following condition on the gauge fields :

9 A=K=-TrV.



Then the contributions to the net hypercharges of the fermions are as shown:

A K. V¥ Y

er -1 -1 0 -2
€.vy) 0 -1 0 -1

dg -1 0 173 an
ug 1 0 13 43
dp,up) 0 0 13 1/3,

We show in the Appendix that (9) has a natural interpretation as a unimodularity
condition on the gauge fields, of the same general type as the reduction from a U(N)
gauge theory to an SU(N) gauge theory. In particular, equation (9) is an infinitesimal
version of equation (12) of the Appendix. '

We shall now compute the action. Let us start with the fermionic part. If we write
a fermion field ¥ € b as

Y = (cR, er, VL) o (dR’ UR» dL’ UL).

then ¥ D+ Ve +Vp) ¥ becomes the terms B, and B, of the standard model, after a
shift of the ¢, field.

We now must compute the Yang-Mills action. If we were to follow the prévious
discussion, we would simply take

(10) YM=<0Q,9Q>+<GB,BU3>.

However, this would be physically wrong, as our Hilbert spaces of fermions are not
irreducible under the action of the gauge group. Consequently, using (10) would have
the effect of artificially imposing relations among coupling constants. A more general
gauge invariant bosonic action is given by

(11) B =Try (z; 02Dy~ + Try, (z, 02Dy,

where z; and z, are arbitrary positive operators on f which commute with the actions of

Q& and B, and with the operator D. With this freedom, the Lagrangian (11) reproduces
~ theterms B, + 1’.¢ + 8y of the standard model, with arbitrary constants in &, and By,

(after a rescaling of the Higgs field). Thus we recover the standard model on the nose,
with the same number of arbitrary coupling constants. On the other hand, one could
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require in addition that the operators z; and z, lie in the center of & @ W. In this case

we find one mlationship among the coupling constants of the standard model. We will not
write out this relationship here, but will simply note that it gives the Higgs mass in terms
of the W mass and the fermion masses. In particular, if the top quark mass is of the same
order of magnitude as the W mass, then the relationship implies that the Higgs mass
would be, also. However, this relationship is not preserved by the usual renormalization
flow, and we do not know if it is physically meaningful.

Let us summarize some of the improvements of the present paper over our
previous paper. In [CL] we had the following :

1. The complex conjugate of the up quark in the Hilbert space, and a charge
conjugation in the operator D.

2. An (€, B) bimodule structure.
3. Equation (9) relating the U(1) factors.

In the present paper, we simplified the first point by changing the action of the ¢ algebra.
(This simplification was noticed independently by D. Kastler.) We again have the
bimodule structure, but Section 3 of the present paper puts this into a more general
context. And equation (9) is now interpreted in the Appendix as a special case of a
unimodularity condition which makes sense in noncommutative geometry.

5. Appendix

We discuss a notion of unimodularity which makes sense in a general algebraic
setting. First, suppose that one has a C*-algcbra C and a self-adjoint trace T on C. That

is, t(x*) = 1(x) for all x € C. Then one can define the phase of a unitary element of C By

Phase, ) = — [ ') u®™ s
2ni J,

where u(t) is a smooth path of unitaries joining 1 to u. So this phase is only defined in

- the connected component of the identity in the group U(C) of unitaries, and is ambiguous
up to a countable subgroup of R, namely the image <T, Ko(C)> of Ky(C) by the trace

[CK].

The condition Phase_(u) = 0 defines a normal subgroup of the connected
component of the identity, which we will denote by S:(C).

Now let & and B be involutive algebras, and (b, D) a (d, a)-sumt.nablc'

bimodule over QU and 13. We shall apply the above considerations to the C*-algebra C
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generated by & and B in ), with a family of traces Ty 0n C constructed from self-adjoint

elements p = p* of the center of Q :

-
‘l:p(x)r-Trm(pxIDl ) forallx e C.

We thus get a normal subgroup SQ(C) of the unitary group of C by intersecting
all of the Se (C)'s. Since W(Q) x W (M) is a subgroup of U(C), its intersection with
p

8¢ (C) gives a normal subgroup S(&, B) of U(C) x U(B).
Example 6: Let X be a Riemannian spin manifold. Take ¢ = MN(C°°(X)), B=C,
b= (LZ,(X,S))N and D to be the Dirac operator. Then the space of self-adjoint elements

of the center of U is [fIN: f e C*°(X) real}, and one finds S(Q, B) = Map(X, SUN)).
This is why in general, one can think of S(&, %) as a sort of unimodular unitary group.

Example 7: Take &, B, ) and D as in Section 4b above. A self-adjoint element of the
center of ¢ can be written as lle + 1.2(1 - ¢) for some real numbers ?Ll and lz, with

e=(1,0)e C@ Hand1-e=(0, )& € ® H. It follows that
S(@, B) = (U(Q) x W(B)) N (SUEH) x SU(( - &)h). -
Let then U be an element of U(C) x U(W). Itis given by a quadruple:
U= @v); AeUl),qe SUQR),ue Ul),ve UB).

We have =, @ (h, ® @3), with the action of U given by

(A, @) ® u) ® (m;(A, q) @ V).

This operator restricts to both eh and (1- e)h, and we must compute the determinants of

these restrictions. We get
der(Up) = (u (det)D)N,  det(Uy ) = (b u (@detw)DN.
So the unimodularity condition is
(12) A =u = (det(v)),
and S(¢, B) = U(1) x SU(2) x SU3).

Example 8: Take €, B, b and D as in Section 4d above. Then it is easy to-see that

S(Q, B) consists of maps from X to the unimodular unitary group of Example 7, that is
Map(X, U(1) x SU(2) x SU(3)).
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