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Abstract

We prove the finite generation of canonical rings of projective va­
rieties of general type and thc flip conjccture in all dimension. As a
consequence we prove the minimal model conjecturc up to dimension
4 which is previously known to be true up to dimension 3 by Mori
([10]).

1 Introduction

The classification theory 0/ algebraic varielies is the attempt to study all
algebraic varieties by decomposing theIn into 3 kinds of particles :

1. varieties with negative ](x,

2. varieties with numerically trivial J(x,

3. varieties with positive J<x



and their fibre spaces. As for the particles of the l-st kind, S. Mori invented
his cone theorem ({lI]) to single out these particles. The purpose of this
article is to single out the particles of the 3-rd kind globally (the existence o[
canonical model) and locally (the flip conjecture). In comparison with Mori's
theory, the method in the present paper is quite transcendental in nature.
In rny opinion it seems to be hopeless to obtain the results in this paper by
a purely algebraic method because the canonical ring of an algebraic variety
seelns to be a quite transcendental object.

As for the 2nd particles, there are no essential ways to single out these
particles at present. This problem is called the abundance conjecture. Dur
method does not work to single out tbe particles of 2nd kind.

The following conjecture is one of the central problem in the classification
theory of algebraic varieties.

Conjecture 1.1 (Minimal Model Conjeeture) Let X be anormal projeetive
va1'iety. Assume that X is not uni~uled. Then there exists a minimal projec­
tive variety X min (cf. Definition 2.5) which is birational to X.

This conjecture is trivial in the case of algebraic curve and is known to be true
classically in the case of dirn X = 2. Recently S. Mori solved the conjecture
in the case of dirn X = 3({10]). His method depends on the elose study of 3­
dimensional terminal singularities and it seerns to be difficult to generalize his
Inethod to the case of higher dimensional varieties. I hope that the present
paper will give a perspective of the conjecture in all dinlension because our
Inethod is independent of the dimension of the variety. In fact, we prove
Flip Conjectu1'e(existence of flip) in all dimension in this paper. Hence to
prove the minimal model conjecture , we only need to prove the tennination
of flips. In particular since the termination of flips is known in the case of
dirn X ::; 4 ([8]), we have a solution of Minimal Model Conjecture in the case
of dirn X ::; 4.

In this paper all varieties and morphisrns are defined over C.
The the following theorems are main results in this paper.

Theorem 1.1 Let X be a smooth projeetive variety 0/ general type. Then
the canonical ring

is finitely gene1'ated. Hence the canonical model

X can = ProjR(X, J<x)

exists.

In the case of dirn X = 2, this theorem was proved by D. Mumford((17,
appendix]) and recently S. Mori proved Theorm 1.1 in the case of dirn X = 3
in terms of tbe existence of Ininimal models of 3-folds ([10]).

The following conjecture is essential in the construction of minimallnodel
in the case of dimension greater than 2.

Conjecture 1.2 (Flip Cony"eetu1'e) Let X be a projective variety with only
teMninal singularities. Let <.p : X ------+ X' be abirational contraetion 0/ an
exlremal ray (cf.{7, 11}). Then

R(XjX', J(x) = EBv~o<.p.Ox({vJ(x])

is finitely generated as an Ox,-algebra.



As a corollary of Theorem 1.1, we have:

Theorem 1.2 Flip conjecture holds in all dimension.

This theorem implies the existence of minimal model in the case of dirn X :::;
4.

Theorem 1.3 Let X he anormal projective variety 01 dimension:::; 4. If X
is not uniruled, then there existsa minimal algehraic variety X min which is
birational to X.

The proof of Theorem 1.1 is closely related to the cone theorem af Mari
and Kawamata([ll, 6]) although it is purely analytic in nature. Mori praved
his cone theorem by hIs method bend and break curves. Instead of curves we
bend and break j(ähler f01ms by Hamilton's heat flow.

2 Preliminaries

Let X be anormal prajective vareity of diluension n. We denote by Zn-l(X)
(resp. Div(X)), the group of Weil (resp. Cartier) divisor on X. The canon­
ical divisor ]{x is defined by

]{x = i.On
x ,

reg

where i : X reg ---+ X is the canonical injection. ](x is an elenlent of Zn-l(X),
An R-divisor D is an element of Zn-dX)C9R, i.e. D = L: djDj (finite sum).
where dj E Rand the Dj are mutually distinct prime divisor on X.

If D E Div(X) C9 R, we say that D is R-Cartier. We define raund up
rDl, the integral part [D], the fractional part {D} and the round off (D) by

rDl = EfdjlDj, {D] = E{dj]Dj,

{D} = E{dj}Dj, (D) = E{dj}Dj,

where rr1, [r] and (r) for r E Rare integers such that

r - 1 < [,] ~ r :::; rr1< r +1

1 1
r - - < (r) < r + -2 - 2

and
{r} = r - [r].

Definition 2.1 D E Div(X) 0 R is said to be nef if D . C 2:: 0 holds fOT
every effective CU1've on X.

Definition 2.2 Let X be anormal projective variety. We say that X has
only canonical (resp. terminal) singularity, if !(x is Q-Ca1,tier, i.e. J{x E
Div(X) ~ Q and there is aresolution 01 singularity J-L : Y ---+ X such that
the exceptional locus F 01 J-L is a divisor wilh nOllnal crossings and

where aj 2:: 0 (resp aj > 0).



The following definition is more general.

Definition 2.3 A pair (X,~) for 6 E Zn-t(X)®Q is said to be logcanonical
(resp. logterminal) if the following conditions are satisfied.

1. {~] = 0 and !(x +~ E Div(X) @ Q.

2. There is aresolution of singularity J.l : Y ~ X such that the union F
of the exceptional locus of J.1. and the inverse image opf the support 01
6 is a divisor with normal crossings and

Definition 2.4 Anormal projective variely X is said to be Q-factorial, if
every Weil divisor is Q-Cartier.

In this paper, we use the notion of minimal varieties in the following
sense.

Definition 2.5 Let X be anormal projective variety. X is said 10 be mini­
mal, if the following condition is satisfied.

1. X has only terminal singularities.

2. K x is nef.

3. X is Q-factorial.

Definition 2.6 D E Div(X) 0 Q is said to be big, if K(X, D) = dimX

Now we shall define Zariski decomposition.

Definition 2.7 And expression D = P + N, (D, P, N E Div(X) ® R) is
called a Zariski decomposition 01 D if the following conditions a1'e satisfied.

1. D is big.

2. P is nef.

3. N is effective.

4. The natural homomorphisms

are bijective for all positive integer m.

Conjecture 2.1 Let X be a smooth projective variety 01 genera/type. Then
there exists a modification

f:X--+X

such that f* J(x has a Zariski decomposition.

By {6] to prove Theorem 1.1 it is sufficient to solve Conjecture 2.1. In
this paper we shall prove Theorem 1.1 by solving Conjecture 2.1. To solve
Conjecture 2.1, we shall use the theory of currents which is considered to be
a generalization of the notion of subvarieties.

Let M be a complex manifold of dimension n.



Definition 2.8 The current VP,q(M) 0/ type (p, q) are the continuous lin­
ear /unetional on the compactly supported Cco fOlms 0/ type (n - p, n - q),
A~-p,n-q(M) with the CCO-topology.

are defined by

for T E Vp,q(M) and we set d = a+ 8. A (p, p) current T is real in case
T = l' in the sense that T( 'P) = T( ep)v for all 'P E A~-p,n-p(M) and areal
current T is positive in case

Let V be a subvariety of codimension p in M. Then

is a d-closed positive (p, p)-current. Hence we can consider subvarieties as
d-closed positive currents. On the other hand, every CCO(p, p)-form 'lj; on A1
defines a (p, p)-current TtJ; by

The current of this type is called a smooth current. As we explain below, a
general d-closed positive current is basically somewhere between the smooth
currents and those supported by analytic varieties. Let T be a d-closed
positive (p, p)-current on M. For each point x E M we define a nUlnber

8(T,x)

defined as follows. Let (U, z) be a local coordinate around x (z(x) = 0). We
set

B[r] = {y E U III z(y) 11< I},

An _
w = -2- L:dz; A dz;,

;=1 .

x[r] : the characteristic function of B[r].
We define 8(T, x) by

8(T, x) = lim \. 2 T(x[r]wn
-

p
)

T 10 7r n - Pr n- p

and call it the Lelong number of T at x. The Lelong number exists and
finite for all d-closed positive (p, p)-current (cL [4, pp.390-391]) and it is
independent of the choice of the coordinate ([13]). It is easy to see that
8(T, x) = 0 for every x E M, if T is a sInooth current. On the other hand
we have:



Theorem 2.1 ([4, p. 391}) Let V c M be a subvariety 0/ codimension p in
M. Then we have

E>(Tv,'x) = muUxV.

The following theorem is fundamental for our purpose.

Theorem 2.2 ([lS}). Let T be a d-closed positive (p,p)-current on M. Then
for every positive number e

S~(T) = {x E MI 8(T, x) ~ e}

is a subvariety 0/ codimension ~ p.

For the later use, we need the following lemma.

Lemma 2.1 Let T be a d-closed positive (l,l)-current on a smooth quasi­
projective variety X such that

1. There exists a nonempty Zariski open subset Y 0/ X such that T 1 Y
is smooth.

2. 8(T, x) = 0 tor every x E X.

Then tor every complele irreducible reduced curve C in X,

T( C) "2: o.
Froof Let p E C be a smooth point of C and let (U, Zt, .. . 1 Zn) be a Ioeal
eoordinate of X sueh that

1. (Zl(P),"" Zn(P)) = O.

2. V n C = {q E X I Zz (q) = ... = Zn (q) = O}.

Then
T I V = (R)n-18uncdzz A dzz A ... A dZn A dZn,

where 8une is a positive measure supported on unC. Let {8~} (e E [0,1]) be
a smoothing of 8vne by positive smooth funetions (for example moIify 8une
by a Friedrichs molifier). Then we have

(T I U)(C) = lim(T IU)(( R)n-18~dz2 /\ dZ2 /\ ... /\ dZn A dZn)
~!O

limJ(R)n-18~ . T A dZ2 /\ dzz /\ ... /\ dZn A dzn .
~!O u

Sinee 8(T, x) = 0 for every x E X, we have

If C is smooth this eompletes the proof of the lemIna. Ir C is not smooth,
we take an embedded resolution 7f : X -----7 X of C. Then by eonsidering the
pullback 7f*T, the same argument is valid (note that 8(7f*T, x) ~ 8(T,1r(x))
in general). Q.E.D.



3 Deformation of Kähler form I
Let X be a smooth projective variety of general type and let n = dirn X. Let
Wo be a Coo-Kähler form on X. We consider the initial value problem:

~~ = -lliew - W on X x [O,T)

W = Wo on X X {O},

(1)

(2)

where

a
8t(dw) = -dw on X x [O,T)

dwo = 0 on X X {O},
we have that dw = 0 on X X [0, T), i.e. ,the equation preserves the Kähler
condition. Let w denote the de Rham cohoITIology dass of w in Hbn(X, R).
Since _(27r)-lRiew is a first ehern form of ](x, we have

Riew = -J=Iaalogwn

and T is the maximal existence time for Coo-solution.
Since

[w] = (1 - exp( -t))27fCt(](x l +exp( -t){wo].

Let n be a Coo-volume form on X and let

W oo = -Rief! = J=Iaalogf!.

(3)

We set
Wt = (1 - exp(-t) )woo + exp(-t )wo. (4)

Sinee {wj = rWt] on X X {t} for every t E [0, T), there exists a COO-function u
on X X 0, t) such that

W= Wt + J=I8[)u. (5)
By (1), we have

%t(Wt + J=Iß8u) = J=Iß81og(wt + J=Ia8ut - (Wl + J=Ia8u).

Hence

11 - 8u
exp( -t)(woo - wo) + V -188( Bt)

= J=Iaalog(wt + J=Iaau)n - Woo +exp( -t)(woo - wo).

Then (1) is equivalent to the initial value problem:

8u I (Wt + Aaau)n
og - u on X X [0, T)

8t f!
u - 0 on X X {O}. (6)

Let
A(X) = {[77] I 7] : Kähler form on X} C Hbn(X, R)

be the Kähler cone of X. Since [w] moves on the segument connecting [wo]
and [woo] = 27rCl(J{X), we cannot expect T La be 00, unless 27fCl(J(X) is on
the closure of A(X) in' H'bR(X, R). We shall determine T. It is standard to
see that T > 0 ([5]).



Proof

Theorem 3.1 1f Wo - W oo is a I(ähle1' form, then T is equal to

To = sup{t > 0 I [Wtl E A(X)}.

The proof of Theorem 3.1 is almost parallel to that of [14],

Lemma 3.1 11 Wo - Woo is a I(ähler form, then there exists a constant Co
such that

8uat ~ Co exp( -t).

8 8u 8u Du
Gt ( Gt ) = ~w Bt - Di - trw(wo -:- woo )

holds by defferentiating (5) by t. By the maximum principle, we have

Bu wn

Bt ~ (1nax log ~) exp( -t).

Q.E.D.
Ta estimate u from below, we modify (6) as

Du. I (Wt + Aa8u)n f
Bt

= og + t - U. on X x [0, Tt}
wt

u 0 on X x {O}, (7)

where

(8)

and
Tl = min{sup{t > 0 I Wt > O}, T}

If t E [0, Td, we have

I (Wt + ABau)n _ 11 d I (Wt + As8ßu)n d _ in1
A d

og - -d og s - u"u s,Wt 0 S Wt 0

(9)

where ~" is the Laplacian with respect to the Kähler form Wt + AsBau.
Then by the minimum principle, (7) and Lemma 2.2, we have

Lemma 3.2

u ~ -Co exp(-t) + mjn ft on X x {t}, t E [0, Tl)

We note that this estimate is depending on t and Co is independent of the
choice of n.

For the next we shall obtain a C2-estimate of u..

Lemma 3.3 Let M be a compact l(ähler 1nanifold and let w, w be I<ähle7'
forms on M. Assume that there exists a Coo-function ep such that

w=W+ RDaep.



We set wn

f = log-,
wn

R : curvature tensor of w, Then for every positive constanl C

exp(Cep)~(exp( -Cep)(n + ~ep)) ~

(~f - n
2
~~f RiIlr - Cn(n + ~ep)

+(c + \~f R;;/r)(n + 6<p) n':t exp( - n ~ 1)

holds

Applying this lemma to Wt and W = Wt + Aaau, we have:

Lemma 3.4 For every C > 0, t E [0, Tl),

a
exp(Cu)(~w - 8l)(exp(-Cu)trWt w) 2::

n

-(~t log ri + n2 ii~f RillT{t) + n)

1 Du 11 ~
-C(n - C - Bt )trw1w - exp( -t)trWI(wQ - woo ) • v -lDDu

1 Du w~ Tl

+(C + ~~f Ril1r{t)) exp( n _ 1(- Dt - u + log n ))(t7'Wt W);=J

holdsJ where
~t : Laplacian wilh 1'especl lo Wt,

Rit1r{ t) : the biseclional curvature oIwt.

Proof Let
Wn Du wn

f = log wf = Dt +u - log ~ .

Then by Lemma 2.3, we have

exp(Cu)~W(exp(-Cu)lrwtw)

~ (~tf - n2
~~f Rit1r{t)) - Cn(n + ~tu)

+(C + ii~f Rmr)(trw,w) n~' exp( - n ~ 1 ).

Since

and

OU wn

~tf = D.. t ( ot +u - log ~ )

OU wn

=~t- + tr W - n - ~t log _tot Wt n



Bu Bw 8wt
= -c Bt trWtw + trWt at - trWt Bt . w

Bu 8u
= -c 8t trWtw + ~t 8t - exp( -t)trWt(wo - woo ) + exp( -t)trWt(wo - woo ) . w,

we obtain the lemma. Q.E.D.
Let e be an arbitrary small positive number. We set

Tt(e) = min{sup{t > 0 IWt > O} - e, T}

and let C be a positive number such that

C + inf Ri"i(Jt) > 0
iil l\

for all t E [0, Tl (e )]. Then since the function x exp(-x) is bounded on [0, 00),
by tbe maximum principle and Lelnma 3.4, we have that if (xo, to) E X x
[0, To(e)] is a maximal point of exp( -Cu)trWtw, we have

trWtw(xo, to) < Cf! '

for some Cf! > 0 depending only on e. Then by the CO-estimate of U j Lemlna
3.1 and Lemma 3.2, we have that there exists a positive constant C~ f! such
that '

trWtw < C~,t:'

Hence we obtain:

Lemnla 3.5 There exists a positive conslant CI,f! depending only on Tl (e)
such that

I1 U Ilc2(x):::; C2 ,t:

for every t E [0, TI(e)), where 11 Ilcr(x) is ihe C2-norm with repsect Lo wo.

11 ulIcr (x):S Or,t:.

Letting e tend to 0, we have that

Now by [15], for every r ~ 2 there exists a positive constant Gr,t: depending
only on Tl (e) such that

T ?:. Tl

holds. Since [WTo] is on the closure of the Kähler cone A(X), by changing n
properly, we can make To- Tl > 0 arbitarary small. Hence we conclude that
T = To. This completes the proof of Theorem 3.1.

4 Deformation of Kähler form 11
In this section we use tbe same notation as in the last section. In the laset
section, we gave the Inaximal existence time of for the Sll100th solution of
the initial value problem (1). In this section, we shall prove the long time
existence of the current solution of (1) which is smooth on a Zariski open
subset of X.

Theorem 4.1 There exists a Zariski open subset U 0/ X and a d-closed
positive curre nt solution wo/ (1) such that



1. W is smooth on U .

.2. WE = 1imt-+oo W exists as a d-closed positive (1,1 )-current and WE is a
smooth I(ähler- Einstein form on U, i. e.,

RiCwE = -21rWE

on U.

The following lemma is fundamental in the proof of Theorem 4.1.

Lemma 4.1 (I(odaira 's lemma) Let D be a big divisor (cf. Definition 2.6)
on a smooth projeetive variety M. Then there exists a effeetive Q-divisor E
such that D - E is an ample Q-divisor.

Proof Let H be a very ample divisor on M. Then

is exact. Since D is big, for a sufficiently large m, I mD - If 1 is nonempty.
This completes the proof of the lemma. Q.E.D.

By Lemma 4.1, there exists an efTective Q-divisor F such that !(x - F is
ample. Let .

F = LaiFi

be the decomoposition of E into the irreducible components. Let hi be the
hermitian metric of the line bundle Ox(Fi ) and let O"i be a nontrivial global
section of Ox{Fd. We consider the degenerate voltnne form

nF = (II 11 O"i 11
2

a
i .)n,

i

where 11 O"i 11 denotes the norm of (J"i with respect to hi respectivcly. By the
definition or F, if we take hi properly, we may assulne that

is a Kähler form on X. We set

and
UF = U - Lai log 11 O"i 11

2
•

Then UF satisfies the partial differential cqation:

aUF 1 (WF,t + AaaUF)n (.,r F) [0 T )m = og n
F

- UF on A - X , F

UF = - L: ai log 11 (J"i 11
2 on (X - F) x {O}, (10)

where

TF = the maximal existence time for the smooth solution UF E COO(X - F) of (10).



OUFA,
=Bt

uF,A =

Proposition 4.1 TF = 00.

Because we consider the solution only on X - F , we would like to forget the
boundary F. By a suitable blow up of X, we mayassurne that SuppF is a
divisor with simple normal crossings. Let A be a smooth aInple divisor on X
such that A + F is a divisor with normal crossings and A + F is also ample.
Let p be aglobai holomorphic section of 0 X (A) and let I1 I1 be a hermi tian
norm on Ox(A) such that

is a Kähler form on X. Then

v = - L: adog 1I Ui 11
2 -log 11 p 11

2

is a smooth strongly plurisubharmonic exhaustion function on X - F - A.
For every nonegative number c, we set

WA,t = Wt +Rc L:aalog(log 11 Gi 11
2)2 + Rcaalog(1og 11 P 11

2)2
i

and
WF,A,t = WA,t +RL: aioalog 11 Gi 11

2
•

If we take c sufficiently small by direct cOinputation, we see that WA,D , WF,A,t
are complete Kähler forms of logarithmic growth on X - F - A and WF,A,t

have uniformly bounded curvarure with respect to t as in [9]. We set

OF,A = (log 11 P 11
2)-2e: Il(log 11 Ui 11

2)-2e:OF
i

To prove Proposition 4.1, we consider the following perturbed equation:

I (WF,A,t + ROaUF,A)n (X F A) [0 T )og 0 - 'UF,A on - - X , F,A
F,A

- L: ai log 11 Gi 11
2 -c log(log 11 p 11

2? - cL: log(log I1 Ui 11
2?

1

on (X - F - A) x {O}, (11)

where TFA is the maximal existence time of the smooth solution 'l.lF A. We
note that' this purturbed equation is essentially thc same equation ~ (6) 01'

(10) on (X - F - A) x [0, T).

Proposition 4.2 TF,A is 00.

Proof of Proposition 4.2. Let!( be a strongly psecloconvex subdomain in
X - F - A with smooth boundary 81(. We consider the following initial
value problem with the Dirichlet boundary condition.

8UK,A
=

8t

UK,A =

UK,A =

I (WK,A,t + R8aUF,A)n }f [0 T )
og 0 - uK,Aon \ x , K,A

F,A

- L: ai log 11 Ui 11
2 -c log(log 11 P 11

2
)2 - L c log(log 11 O"i 1I

2? on fJ1( X [0, Tg,..t}

- L adog 11 O"i 11
2

-6 log(log 11 P [1
2

)2 - L 6 log(1og 1I O"i 11
2

)2 on J( X {O},



where TK.A is the maximal existence time for the smooth solution on i?( the
topological closure of j(). By the standard implicit funtion theorem and the
boundary regularity of complex Monge-Ampere equations in [2], we sec that
TK,A > O. We note that for every sufficiently small positive number co 1

](x - F - coA is ample. Then we have the following CO-estilnate

8UK A& ~ Coexp(-t)

and
UK,A 2: -Co + co log 11 P 11 2

by the maximum principle as Lemma 3.1, where Co is a constant independent
of J(. Let {j(v}~l be an exhaustion of X - F - A by a sequence of strongly
pseudoconvex subdomains with smooth boundary. We would like to show
that {UK,....A} converges unifonnly on every compact subset of X - F - A.
We set

H =11 P 1I2~o (-log 11 P 112)2~ TI I1 Gi 11 2a
i (-log 11 Gi 112?~.

i

We need the following lemma.

Lemma 4.2 ([14J Lemma 3.2J)

-c a c
11 exp(CuK,A)(.6wK ,A - 8t)(exp(-CuK,A)H trwF',tWK,A)

wn

2: (-~WF'A t log :,A,t - n 2 i.n( ~,jJ(F, A, t) - n)
, , HF.A IcFJ

1 8UK A
+C(n - C - & )trWF',A,t WK•A - exp( -t)tr'WF,A,I(WO - woo ) . W/{,A

. 1 8UK A wFA t -.!l.-
+(C + Inf R·"T·-.(F A t))exp(--(---' - UKA + log -'-' ))(tr WL"A)n-lii=i ttJ] " n _ 1 8t ' n WF',A,1 n., 1

where infii=i ~li;(F, A, t) denotes the infimum 0/ the biseciional curvature of
th J(ähler form WF.A.t and C is a positive constant such that C+infii=i R"tj)(F, A, t) >
ofor all t.

The proof of Lemma 4.2 is the same as the proof of Lemma 3.4. Hence we
omit it. Let us take J(v as

Without loss of generality, we mayassurne that J{", has a smooth boundary.
We note that the second fundamental form of 8J(", is of polynomial growth
with respect to H-1 • Then Lemma 4.3 and the C2-estimate on the boundary
by [2], if we take C sufficiently large, by the maximum principle, we obtain
that there exists a positive constant C2 independent of v such that

holds. Hence by the CO-estirnate of UK,A above, we have

(12)



This implies that on every compact subset of X - F the C 2-norms of {'lLK~A}
is uniformly bounded. Again by [15], we obtain the uniform estimate of the
higher derivatives of {UKJ',A} on every compact subset of X - F - A. Then

is a solution of (11) on (X - F - A) x [0, CXJ). This completes the proof of
Proposition 4.2. Q.E.D.

Since the equation (11) is essentially the same as (10) 01' (6) on (X - F-
A) X [0, T), we mayassurne that

WF,A,t + R8aUF,A = W on (X - F - A) x [0, T).

Then by the real analyticity of the solution UF,A , by moving A, we can define
UF by

U F I (X - F - A) x [0, 00) = U F,A'

This completes the proof of Proposition 4.1.
By the construction of UF we have

Lemma 4.3 There exists a constant Co such that

aUF7ft ::; Co exp(-t)

and
UF 2:: -Co.

By Lemma 4.4,

W = WF,t + R88uF

defines a d-closed positive (1, 1)-current on X (where aa i8 the derivation as
a current). Since W satisfies the equation

aW R'- = - lCw-W
Bt

on X x [0, (0) as a d-closed positive (1, 1)-current, we see that

[W] = exp( -t)[wo] + (1 - exp( -t))21rCl(J(X)'

Moereover by the above estimate

WE = liln w
(-00

exists as a d-closed positive (1, 1)-current and WE is smooth on X - F.

Definition 4.1 Let M be a compaet complex mani/old and let w be a d­
closed positive (1, 1)-current. W is said to be a J(ähler· Einstein current if
there exists a constant c and a none1npty Zariski open subsel U of M such
that

1. w is smooth on U.

2. Ricw = C1..JJ on U.



Definition 4.2 Let D E Div(X)0R be an R Cartier divisor on a projeclive
variety Y. Then the stable base loeus 01 D is defined by :

SBs(D) = nv>oSuppBs 1 (vD] 1 .

Definition 4.3 Let D be a a Cartie1' divisor on a projective variety V and
let <PlvDI : V - ... ~ pN(v) be the rational map assoeiated with I v D I. Let

Iv : X~ X be aresolution 0/ the base loeus oll vD 1 and let <i>lvDI : X -----+

p N (v) be the assoeiated morphism. Let E(vD) deno te the exceptional locus

0/ <i- 1vD1 . We set

E(vD) = fv(E(vD))

and call it the exceptional locus 01 I v D I. It is easily be seen that E (v D) is
independent 01 the choiee 0/ the resolution 0/ the base locus. We set

SE(D) = nv>oE(vD)

and call it the stahle exceptional locus 0/ D.

Lemma 4.4 We set S = SBs(I<x) U SE(I<x). Then there exists a 1nodifi­
cation p : Y ~ X such that

1. pi Y - p-l(S) : Y - j.l-l(S) -----+ X - S is bi7'egular.

2. The exceptional locus E 0/ j.l is a divisor with normal crossings.

3. There exists an effeetive Q-divisor D such that SuppD ~ E and 1'-!<x­
D is ample on Y.

Proof Elementary. Q.E.D.
Hence by the proof of TheoretTI 4.1, we obtain :

Theoren1 4.2 Let X be a smooth p1'ojeetive va1'iety 0/ generallype. Let
S = SBs(!<x) U SE(!<x). Then there exists a I(ähle1'-Einstein current WE
on X which is smooth on X - S.

5 L2-vanishing theorem

In the last section we constructed a Kähler-Einstein current WE on X. In
this section we shall prove the following theorCITI.

Theorem 5.1 {8(WE, x) 1 x E X} is a finite set.

The following Ielnma is the starting point of aur argument.

Lemn1a 5.1 Let S = SBsl!(x) U SE(!(x). Then X - S is pseudoconcave
in the sense 0/ Andreotti({l]).

Proof Unless SBs(I(x) contains a divisor, we have nothing to prove. Let
D ~ SBs(I(x) be an irreducible divisor. We clain that D is contained in
SE(!(x). Let <I>'V : X - .,. ~ pN(v) be the rational map associated with

I v!(x I and let 1rv : X ~ X be the resolution of Bs 1 v!(x 1 and let
<I>v : X ~ pN(v)be the assaciated morphism. Let iJ be the strict transform
of D. If we take v properly, we mayassurne that ~v : X -----+ <I>v(X) is



birational and ~y(D) is a divisor. Ir we take some positive multiple of v if
necessary, we mayassurne that ~&I(X) is normal. Then ~&I(X)regn <I>v(D) is
nonempty. On the other hand D is in the branched locus of 4>&1 because D
is in Es 1v](x I. Since <I>v is birational, we see that codim <I>y(D) 2: 2. This
is a contradiction. Q.E.D.

Now we shall briefty review the L2-estimate on a complete Kähler mani­
fold.

Let (M, w) be a complete Kähler manifold of dimension m and let (L, h)
be a hermitian line bundle on M. Let A~,P(M, L)(O ::; p ~ 1n) denote the
space of L-valued smooth (0, p) form on M with compact support. Let

[) . AO,P(M L) ---+ AO,P+l(M L). c, c ,

be the natural [) operator and let

{) : A~,P(M, L) ---+ A~,P-l(M,L)

be the formal adjoint of [) Let L:0'P( M, L) denote the space obtained by taking
the form closure with respect to the graph norm

A~,P(M,L) => f ~Il f 11
2 + 11 [)f 11

2 + 11 {}f 11
2

•

'vVe define the L 2-cohomology group lIJ;,(M, OM(L)) by

HP (M.OM(L)) = ker8 I L:0,P(M, L),
(2) aA~,p-l(M.L)

where the closure is taken with respect to thc graph norm. By Hönnander's
L2-estimate, we obtain:

Theoren1 5.2 Assurne that there exists a volume form D in M and a positive
constant c such that

RieD - yCIaalogh 2: cw.

Then we have
If(2)(M, OM(L)) = 0 for p > 0,

where the L2-cohomology is taken with respeet to the volume form n and h.

First we shall prove the following proposition.

Proposition 5.1

{x E X I 8(WE, x) = O} n SBs(J<x) = ljJ.

Proof 0/ Proposition 5.1 . The following lemma is well known.

Lemlna 5.2 ([19, p.95, Lemma 7.5}). Let T he a d-closed positive (1,1)
current on B(r) = {z E C n 11I z 11< r} for some r > O. Let us consider pn-l
as a parameter space which parametrizes c01npiex line thl'ough the origin O.
Then for almost all L E pn-l,

8(T, 0) = 8(T I Ln B(r))

holds. And for every L E pn-l such that T I L n B( r) is weIl defined,

8(T, 0) ~ 8(T 1 Ln B(r))

halds.



Lemma 5.3 Let p be a point on X such that 8(WE' x) = 0 and let B p :

X p ----+ X be the blowing up with centre p. Let Ep denote the exceptional
divisor of Bp • Then for every x E EpJ

holds.

Proof 01 Lemma 5.3. By Lemma 5.2, we have that

holds for almost all x E E. We note that B;(!<x) is numerically trivial on
Ep • Let.C be an irreducible reduced curve in Ep ~ pn-l then by the same
augument as in the proof of Lemma 2.1, we see that 8 (W E, x) = 0 for all
x E C since (B;!<x)' C = O. This completes the proof of the lemma. Q.E.D.

Let p be a point on X such that 8(WE' p) = 0 and let Bp : X p ~ X
be as in Lemma 5.3. Let B denote the strict transform of SBs(I<x). Let
r : W~ Bp(X) be a modification such that r-1(B) is a.divisor with normal
crossings. Let F be a reduced divisor such that SuppF = r-1(B) and let
W = W - F. Let E be the strict transfonTI of Ep in W. We set 7f = r 0 B p

and D = 7f*(I<x). We consider the exact sequence :

Since DIE is trivial, HO(E, OE(vD)) ~ C. Let us consider the hOmOITIOr­
phism

If Im u = 0, we are done by the above exact sequence since because of
the pseudoconcavity and the property of canonical singularity, we have the
isomorphism:

To prove that Im u = 0, we shall use the L 2-estimate. First we construct
a complete Kähler metric on W. Let F = Li Fi be the decomposition of F
into the irreducible components. Let Ui be a nontrivial global holomorphic
section of Ow( Fi ) with divisor Pi. Let Ww be a smooth Kähler form and let
11 11 be hermitian metrics on 0W(Fi ) We set

Ww = ww + vCfaä(I: log(log 11 (J"i 11)2).
I

Then by a direct caIculation as in [3, p.565, Proposition 2.1], if we multiply
a sufficiently large positive number to Ww , ww is a complete Kähler form
on W. Let L denote Ow(vD 1 W). Since E>(1T*WE) is 0 on W, there exists a
singular hermitian metric h on L such that

1. V1T*WE 1 W = -A8älogh.

2. Let ho be any smooth hermitian metric on Ow(vD), then 'Pc = (hf ho)C
is locally integrable on W for all c > O(cf. Lenlma 5.3 and Lemma 5.5
below).



We note that h is unique up to positive constant multiple because of the
pseudoconcavity of W (cf. Lemma 5.1).

By the upper semicontinuity of Lelong numbers and Theorem 2.3, Lemma
5.3, 5.5, we have

Lemma 5.4 For every c > 0, <.pe is locally integrable on a neighbourhood 01
E.

Let T be a nontrivial globa.l section of Ow(E). Then since OE(-E)(~
Opn-l(l)) is ample and in Div(W)

vD - E - !(w = (v - l)D - nE - LbiFi
i

for some bi > 0, if we ta.ke positive numbers dil hermitian metrics 11 11 of
Ow(Fi ) and OE properly, we may assume that thcre exists a positive number
Co and a smooth volume form Ow such that

Ricflw + V1r*WE + L: pdiaälog 11 O"i 11 2 +pa810g I1 T 112~ CoWW
i

holds for every sufficiently large v. Hence if we replace !1w by

!1 w = (II(log I1 O"i 112?)-~!1w
i

for a sufficiently small positive nunlber c, we see that there exists a singular
hermitian metric hv on L ® Ow( - E n W) and a positive constant Cl such
that

Ric!1w + Paaloghv ~ CtWW

holds for every sufficiently large v. Then by a minor modification of Hörmander's
L 2-estima.te for 8, we obta.in

where L 2-cohomologies are taken with respect to the volume form !1w and
the hermitian metric hv . By Lemma 5.5 and the construction of hv we see
that if we take dis' sufficiently small

Imu ~ Hl2)(W, Ow(vD - E I W)) = o.

Hence we completes the proof of Proposition 5.1. Q.E.D.
Now we shall relate the Lelong number of WE and the multiplicity of the

base scheme Es 1 v!(x 1. The following lenlma is essential for the purpose.

Lemma 5.5 ([13, p.85J Lemma 5.3/) Let <.p be an arbitrary plurisubharmonic
funciion on an open suhset U 0/ eh and let x be a point in U. Let T =
~aäep. Then the /ollowings are true.

11"

1. 11 8(T, x) < 2, then e-<P is locally intcgrable at x.

2. lf G(T, x) ~ 2n, then e-<P is not locally integrable at x.



Lemma 5.6 There exists a positive integer Vo such that for every positive
integer v and x EX,

multrBs I v](x I~ V8(WE, x)

holds.

PToof Let «I>v : X - ... ~ pN(v) denote the rational map associated with
t vf{x I· Let Vo be a positive integer such that <I- v is birational for every
v ~ vo. We fix v such that v ~ vo. Let 7rv: Xv ~ X be the resolution of
Es I vf(x I such that 1r;l(Bs I v]<x I) is a divisor with nonnal crossings.
Let Fv = L qFi be the fixed eomponent of I v7r~D I. Then there exists an
effective Q-divisor Rv = Li TiFi such that

is ample. We note that für every c > 0, we ean take R", such that 0 ::; Ti ::; c.
Then by the prüof of Theorem 4.2 (cL Lemma 4.3) and Lemma 5.5, we have

V8(7r~WE,x) ::; nai (x E (Fv,red)reg n Fi ).

This is not enough for our purpose, but by eonsidering (loeal) holomorphic
eurves through x, by slicing the current 1f:WE (cL Lemma 5.3), we have

Since
8(WEl 7rv (x)) :S 8(1f:WE, x)

holds for every x E Xv again by Lemma 5.3, we have

V8(WE' x) :S multrBs I vf(x I
for every x E X and v ~ vo. Q.E.D.

Proposition 5.2 We set

S(WE) = {x E X I 8(WE, x) > O}.

Then S(WE) = SBs(]<x).

Proof of Proposition 5.2. By Lemma 5.6, we have that S(WE) ~ SBs(]<x).
On the other hand, by Proposition 5.1, we have that SBs(]<x) ~ S(WE).
Q.E.D. Let

0/

be the deeomposition of S(WE) into the irreducible components. Let

eO/= inf 8(WE,X).
xEBa

By Proposition 5.1, we see that ea > 0 for cvery a.

Lemma 5.7 G(WE' x) = ea for almost all x E BOI'



Proof Let 7ra : Xa ---+ X be the blowing up with center Ba and let Ea be
the excepsional divisor. By slicing lemma (Lemma 5.3), we have

for an x E Xa,rey and the equality holds for almost an x E Ea n Xa,reg. Then
the lemma fonows from f13, p.89 Lemma 6.3J. Q.E.D.

Let 7ra : Xa ---+ X be as in the proo of Lemma 5.7 above and let
P.a : Xa ---+ X a be a modifaication such that (Pa 0 7ra)-l(B) is a divisor
with normal crossings. Let Ba be the strict transform of Ea(= 7r;;l(Ba)) and
let W = fl'a 07ra . Let p be a point on Ea such that 8(W·WE, p) = ea . Let
Bp : Y~ Xa be the blowing up at p and let E be the exceptional di visor.
Let F be the strict transform of w-l(B) We set Y = Y - F. Then by the
same argument as in the proof of Proposition 5.1, we obtain:

Proposition 5.3

Proposition 5.3 implies that there exists a zariski open subset UQ of BQ
such that

8(W·WE, x) = eQ

for an x E Ua' Hence we have :

Then by Noetherian induction, we conclude that

{8(WE' x) I x E X}

is a finite set. This completes the praof af Theorem 5.1.

6 Zariski Decomposition of Canonical Divi­
sor

f : X = X m ~ X m - l ~ ... ~ Xl ~ Xo = X

he a successive blowing up such that

In this section we shan prove Conjecture 2.1. Let X, WE be as in ThoereIn
5.1. Let

1. Let Zi denote the centre of the blowing up

Then Zi is smaoth far each 1 ::; i ::; m. We set ft : Xi ~ X hc thc
composition of the blowing ups.

2. 8(ft_lWE) is constant and positive on Zi.

3. Nred = /-1 (S(WE )red is a divisor with normal crassings.



4. Let N red = Lj N j be the decomposition of Nred into the irreducible
components. Then 8(f*wE) is constant on N j n (Nred)reg for every j.
We denote the constant by nj.

5. Let p E X m . Then
8(f*wE, p) = L nj.

pENj

The existence of such successive blowing ups follows from Theorem 5.1 and
the fact that WE has finite order along S by Lemma 4.3 and the estilnate
(12).

Now we set
N = I:njNj.

j

By the definition nj are nonnegative real number. And let

Then we have :

Theorem 6.1 The expression

is a Zariski deeomposition 0/ f* J<x. Heuee Conjeeture 2.1 is true.

Proo! 0/ Theorem 6.1. By the definition of N, N is effective. For the next,
we shall prove that P is numerically effective.

Lemma 6.1 ([19, p. 87,Lemma 6.2J). Suppose T is a d·closed positive
(1,1 )-current on an open subset U 0/ Cn and V is a a comp/ex submani/old
0/ condimension 1 in U. Suppose c > 0 and 8(T, x) 2:: c for every x E V.
Then T - cV is positive.

By Lemma 6.1, we see that /*WE - N is a d·closed positive (1,1 )·current on
X. Hence P is numerically effective by Lemma 2.1.

On the other hand by Lemma 5.6, we have a natural inclusion:

for all v 2:: O. Because of the converse inclusion is trivial, we see that

HO{X, Og{{vP))) ~ HO{X, Ox{v/*(J(x )))

holds for all positive integer v. This completes the proof of Theorem 6.1.
Q.E.D.

Now Theorem 1.1 follows from the following theorem.

Theorem 6.2 ([6, p.425J Theorem 1}) Let f : X --. S be a proper sur­
jective morphism 0/ normal algeb1'aic varietiesJ let 6. be a Q-divisor on X
such that the pair (X, 6.) is log-terminal. Assume that J<x + 6. is f-big,
i.e. I\:{X'1l J(XTj + 6.'1) = dimX7]J where X'1 is the generic fihre 0/ / and
.6.7] = 6. I X1]J and that there exists the Zariski decomposition

J<X + 6. = P + N in Div{X) 0 R



0/ [(X + ß relative to /. Then the positive part P is /-semiample. z.e.,
mP E Div(X) and the natural homomorphism

is surjective for sorne positive integer m. Thus the relative log-canonical ring

R(Xj S, ](x + 6.) = E f*Ox([m(Kx + ß)])
m;::O

is finitely generated as an Os-algebra.

Theorem 1.2 follows from Theorem 1.1 easily because the problem is
completely Ioeal (for the proof see [12, pA79,Prop-osition 4.4]). Since the
termination of flips is known up to dimension 4 (l8, p.337,Theorem 5.15]),
we have Theorem 1.3.
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