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Abstract

We prove the finite generation of canonical rings of projective va-
rieties of general type and the flip conjecture in all dimension. As a
consequence we prove the minimal model conjecture up to dimension
4 which is previously known to be true up to dimension 3 by Mori

([10)).

1 Introduction

The classification theory of algebraic varieties is the attempt to study all
algebraic varieties by decomposing them into 3 kinds of particles :

1. varieties with negative K,
2. varieties with numerically trivial Ky,

3. varieties with positive Kx



and their fibre spaces. As for the particles of the 1-st kind, S. Mori invented
his cone theorem ([11]) to single out these particles. The purpose of this
article is to single out the particles of the 3-rd kind globally (the existence of
canonical model& and locally (the flip conjecture). In comparison with Mori’s
theory, the method in the present paper is quite transcendental in nature.
In my opinion it seems to be hopeless to obtain the results in this paper by
a purely algebraic method because the canonical ring of an algebraic variety
seems to be a quite transcendental object.

As for the 2nd particles, there are no essential ways to single out these
particles at present. This problem is called the abundance conjecture. Our
method does not work to single out the particles of 2nd kind.

The following conjecture is one of the central problem in the classification
theory of algebraic varieties.

Conjecture 1.1 (Minimal Model Conjecture) Let X be a normal projective
variety. Assume that X is not uniruled. Then there ezists a minimal projec-

tive variety Xmin (¢f. Definition 2.5) which is birational to X.

This conjecture is trivial in the case of algebraic curve and is known to be true
classically in the case of dim X = 2. Recently S. Mori solved the conjecture
in the case of dim X = 3([10]). His method depends on the close study of 3-
dimensional terminal singularities and it seems to be difficult to generalize his
method to the case of higher dimensional varieties. I hope that the present
paper will give a perspective of the conjecture in all dimension because our
method is independent of the dimension of the variety. In fact, we prove
Flip Conjecture(existence of flip) in all dimension in this paper. Hence to
prove the minimal model conjecture , we only need to prove the termination
of flips. In particular since the termination of flips is known in the case of
dim X < 4 ([8]), we have a solution of Minimal Model Conjecture in the case
of dim X < 4.

In this paper all varieties and morphisms are defined over C.

The the following theorems are main results in this paper.

Theorem 1.1 Let X be a smooth projective variety of general type. Then
the canonical ring

R(X, Kx) = @,50H°(X, Ox(vKx))
is finttely generated. Hence the canonical model
Xean = Proj R(X, Kx)
exists.

In the case of dimX = 2, this theorem was proved by D. Mumford({17,
appendix]) and recently 5. Mori proved Theorm 1.1 in the case of dim X = 3
in terms of the existence of minimal models of 3-folds ([10]).

The following conjecture is essential in the construction of minimal model
in the case of dimension greater than 2.

Conjecture 1.2 (Flip Conjecture) Let X be a projective variety with only
terminal singularities. Let ¢ : X — X' be a birational contraction of an

extremal ray (cf.[7, 11]). Then

R(X/X',Kx) = ®,500.0x([vKx])

is finitely generated as an Oy -algebra.



As a corollary of Theorem 1.1, we have:
Theorem 1.2 Flip conjecture holds in all dimension.

This theorem implies the existence of minimal model in the case of dim X <
4,

Theorem 1.3 Let X be a normal projective variety of dimension < 4. If X

is not uniruled, then there exists a minimal algebraic variety X,,;n which is
birational to X

The proof of Theorem 1.1 is closely related to the cone theorem of Mori
and Kawamata([11, 6]) although it is purely analytic in nature. Mori proved
his cone theorem by his method bend and break curves. Instead of curves we
bend and break Kahler forms by Hamilton’s heat flow.

2 Preliminaries

Let X be a normal projective vareity of dimension n. We denote by Z,_{(X)
(resp. Div(X)), the group of Weil (resp. Cartier) divisor on X. The canon-
ical divisor Ky is defined by

I(x-———zQ

f\reg

where 7 : X;., — X is the canonical injection. Kx is an element of Z,,_; (X).
An R—divisor D is an element of Z,,_,(X)®R, i.e. D =Y d;D; (finite sum).
where d; € R and the D; are mutually distinct prime divisor on X.

If D € Div(X) ® R, we say that D is R-Cartier. We define round up
[ D], the integral part [D], the fractional part { D} and the round off {D) by

[D] =Y _[d;1D;,{D] = > [d;]D;,

{D} = 3 {d;}D;, (D) = 3 (d;) D,

where [r],[r] and (r} for r € R are integers such that
r—l<[r]€r<r]<r+1

1
S(r)<r+-2-

1
"3
tr}=r-1]

Definition 2.1 D € Div(X) ® R is said to be nef if D - C > 0 holds for
every effective curve on X.

and

Definition 2.2 Let X" be a normal projective variety. We say that X has
only canonical (resp. terminal) singularity, if Kx is Q-Carlier, i.e. Kx €
Div(X) ® Q and there is a resolution of singularity p: Y — X “such that
the exceptional locus F' of p is a divisor with normal crossings and

Ky = ,u'(K,\) + z a,ij,

where a; > 0 (resp a; > 0).



The following definition is more general.

Definition 2.3 A pair (X, ) for A € Z,_1(X)®Q is said to be logcanonical
(resp. logterminal) if the following conditions are satisfied.

1. {A]=0and Kx + A € Div(X)®Q.

2. There is a resolution of singularity p: Y — X such that the union F
of the exceptional locus of i and the inverse image opf the support of
A is a divisor with normal crossings and

Ky = }L'(KX + A) +Eaij,aJv > -*1(7‘88}). > ——-1).

Definition 2.4 A normal projective variely X is said to be Q-factorial, if
every Weil divisor is Q-Cartier.

In this paper, we use the notion of minimal varieties in the following
sense.

Definition 2.5 Let X be a normal projective variety. X is said to be mini-
mal, if the following condition is satisfied.

1. X has only terminal singularities.
2. Kx is nef.
3. X is Q-factorial.
Definition 2.6 D € Div(X) ® Q s said to be big, if s(X,D) = dim X
Now we shall define Zariski decomposition.

Definition 2.7 And expression D = P+ N, (D,P N € Div(X)® R) ts
called a Zariski decomposition of D if the following conditions are satisfied.

1. D is big.
2. P is nef.
3. N 1is effective.

4. The natural homomorphisms
H°(X, Ox([mP))) — H(X, Ox([mD]))
are bijective for all positive integer m.

Conjecture 2.1 Let X be a smooth projective ﬁariety of general type. Then
there ezists a modification

fiX—X
such that f*Kyx has a Zariski decomposition.

By [6] to prove Theorem 1.1 it is sufficient to solve Conjecture 2.1. In
this paper we shall prove Theorem 1.1 by solving Conjecture 2.1. To solve
Conjecture 2.1, we shall use the theory of currents which is considered to be
a generalization of the notion of subvarieties.

Let M be a complex manifold of dimension n.



Definition 2.8 The current D™(M) of type (p,q) are the continuous lin-
ear functional on the compactly supported C*® forms of type (n — p,n — q)
APPRI( M) with the C®-topology.

’

8: DPIM) — DPTY(M), 8 : DP(M) — DP9 (M)
are defined by | |
T (p) = (—1)PHHT (D), OT (i) = (—=1)PH+1T(9e)

for T € DP9(M) and we set d = & + 0. A (p,p) current T is real in case

T = T in the sense that T(p) = T(@)v for all ¢ € AP"P""P(M) and a real
current T is positive in case

(V=1)PED2T(n A§) > 0,9 € AZPO(M).

Let V be a subvariety of codimension p in M. Then
Vip = [ peAremr(M)

is a d-closed positive (p, p)-current. Hence we can consider subvarieties as
d-closed positive currents. On the other hand, every C*(p, p)-form 3 on M
defines a (p, p)-current Ty, by

To(p) = [, ¥ N, o€ AT(00),

The current of this type is called a smooth current. As we explain below, a
general d-closed positive current is basically somewhere between the smooth
currents and those supported by analytic varieties. Let T be a d-closed
positive (p, p)-current on M. For each point z € M we define a number

O(T, )
defined as follows. Let (U, z) be a local coordinate around z (2(z) = O). We

set
Blr]={y e U||l =(y) i< 1},
V=T

W = T;dz,/\di,,

x[r] : the characteristic function of B[r].
We define O(T, ) by

O(T,z) = lim ;T(x['r]w“"’)

rl0 gn—Ppin—2p

and call it the Lelong number of 7' at z. The Lelong number exists and
finite for all d-closed positive (p, p)-current (cf. [4, pp.390-391}]) and it is
independent of the choice of the coordinate ([13]). Tt is easy to see that
O(T,z) = 0 for every z € M, if T is a smooth current. On the other hand
we have:



Theorem 2.1 ([4, p. 391]) Let V C M be a subvariely of codimension p in
M. Then we have ‘
O(Tv,z) = mult, V.

The following theorem is fundamental for our purpose.

Theorem 2.2 ([19]). LetT be a d-closed positive (p, p)-current on M. Then
for every positive number €

SAT) = {z € M| O(T}3) > ¢}
s a subvariety of codimension > p.

For the later use, we need the following lemma.

Lemma 2.1 Let T be a d-closed positive (1,1)-current on a smooth quasi-
projective variety X such that

1. There ezists a nonempty Zariski open subset Y of X such that T | Y
is smooth.

2. O(T,2) =0 for every z € X.
Then for every complete irreducible reduced curve C in X,
T(C)=0.

Proof. Let p € C be a smooth point of C and let (U, zy,...,2,) be a local
coordinate of X such that

L. (z1(p),--->2a(p)) = O. ,
2.VNC={qe X | z(q)=...=2z.q) =0}

Then
T|V =(V=1)""6yncdza AdZy A ... Adzy A dZ,,

where 8ync is a positive measure supported on UNC. Let {é.} (¢ € [0,1]) be
a smoothing of dyne by positive smooth functions (for example molify éync
by a Friedrichs molifier). Then we have

(T|U)C) = lim(T| D(V=1)"""6,dzy AdZy A -+ A dz, A dZ,,)

- 1if9/ (Vo)™ 16, - T Adzy AdZy A+ Adzy A dZ,.
e U

Since O(T,z) = 0 for every z € X, we have

(T'10U)(C) =lim \(V—l)“_lﬁs-TA(lngdng-/\dzn/\d:?n20.
£ U\NC

If C is smooth this completes the proof of the lemma. If C is not smooth,

we take an embedded resolution 7 : X — X of C. Then by considering the
pullback #*T, the same argument is valid (note that O(=*T, ) > O(T, n(%))
in general). Q.E.D.



3 Deformation of Kahler form 1

Let X be a smooth projective variety of general type and let n = dim X. Let
wg be a C=-Kahler form on X. We consider the initial value problem:

@u—:—Rij—w on X x [0,7) (1)

ot
w=wp on X x {0}, (2)

where ~
Ric, = —vV/—-100logw™
and T is the maximal existence time for C*-solution.

S.
mnce a

a(dw) = —dw on X x [0,T)
dLAJ(]:O ODXX{O},

we have that dw = 0 on X x [0,7), i.e. ,the equation preserves the Kahler
condition. Let w denote the de Rham cohomology class of w in Hz(X, R).
Since —(27)~'Ric, is a first Chern form of Ky, we have

[w] = (1 — exp(—t))2mci(Kx ) + exp(—1){wo]. (3)
Let 2 be a C*°-volume form on X and let

We = —RIc = \/—laglog Q.

We set
w; = (1 — exp(—t))weo + exp(—t)uwo. (4)
Since [w =7Lwt] on X x {t} for every t € [0,T), there exists a C®-function u
on X x |0,7") such that
w = wy + V=100u. (5)

By (1), we have
9
ot

Hence

(wi + V—=100u) = V=100 log(w; + V=180u)" — (w; + V=100u).

exp(—1)(weo — wo) + \/——185(%—?)
= /=180 log(w; + vV=100u)" — we, + exp(—1t)(weo — wo)-

Then (1) is equivalent to the initial value problem:

% = log (e + s——zlﬂau)“ —u on X x[0,7)

u = 0 onX x{0}. (6)

Let
A(X) = {[n] | n: Kahler form on X} C Hjp(X,R)

be the Kahler cone of X. Since {w] moves on the segument connecting [wp)
and [we] = 2m¢; (K x), we cannot expect T’ to be oo, unless 27 ¢, (K x) is on
the closure of A(X) in’ H3x(X,R). We shall determine T'. It is standard to
see that 7' > 0 ([5)).



Theorem 3.1 [f wy — wy s a Kdhler form, then T is equal to
To =sup{t > 0] [w] € A(X)}.
The proof of Theorem 3.1 is almost parallel to that of [14].

Lemma 3.1 [f wy — we, is a Kahler form, then there ezists a constant Cy
such that

Ju
< —1).
at = CoeXP( t)
Proof.
2Ty = A e —wee)
g T Tar T gr T e T e
holds by defferentiating (5) by t. By the maximum principle, we have
2 < (maxlog ) exp(~1)
5; < (maxlog =x)exp(—t).
Q.E.D.

To estimate u from below, we modify (6) as

QE = log (w¢+\/—133u)n+ﬂ_u on X x [0,T})

ot wp
u = 0 onX x {0}, (7)
where n
fi = log - (8)
and
Ty = min{sup{t > 0| w, > 0}, T} (9)

If t € {0,T}), we have

(u.u + \/—165'&)“ _ 1 i

wy o ds

log

log

—_ n 1
(we +V/ nlsaau) ds = / A, uds,
@ o}

where A, is the Laplacian with respect to the Kahler form w, + v/—1s00u.

Then by the minimum principle, (7) and Lemma 2.2, we have

Lemma 3.2

u > —Chexp(—t) + nl\i,n fi on X x {t},te [0,T1)

We note that this estimate is depending on ¢ and Cy is independent of the
choice of (1.
For the next we shall obtain a C?-estimate of u.

Lemma 3.3 Let M be a compact Kahler manifold and let w, & be Kahler
forms on M. Assume that there exists a C™®-function ¢ such that

@ = w+ V=19dp.



|

We set
[= log

R : curvature tensor of w, Then for every positive constant C

exp(Cp)Alexp(—Cop)(n + Agp)) >

(Af—n? 111;‘1&1!' Rar— Cn(n + Ap)

+(C + inf Ran)(n + Ap)™ exp(~—2)

-1
holds

Applying this lemma to w; and w = w, + v/—190u, we have:

Lemma 3.4 For every C > 0,t € [0,T1),
exp(Cu)(Bo — o )(exp(~Cuira) >

—(A, log ﬁ_ +n mf Rgi(t) + n)

1 Jdu

—-C(n-— C " 3 —— )try,w — exp(—t)iry, (wo — Weo) - vV—100u
) 1 Ou wy _n_
+(C + inf Rin(t)) exp(~— 1(—*-3—{ —u+log - o ) (tru,w) =

holds, where
Ay : Laplacian with respect to wy,
Rii(t) : the bisectional curvature of wy.

Proof Let 5
n u wﬂ
f=log wy ot Fu—log Q

Then by Lemma 2.3, we have

exp(Cu)A,(exp(—Cu)tr,w)
> (Af —n? i.nl" Rai(t)) — Cn(n + Asu)

HC +in] Rap)(irue) 7 op(~ L),

1
Since 5 .
ALY L oe YL
A‘f—At(a "I“'U. log Q)
Ju wp
= A= 5 + iryw — A¢log ?;—
and 5
exp(Cu) = (exp(—Cu)tr,w)

ot



Ju 0 d
= —C=tr,w + try, Bt t’"w:%

ot
Ju du
= ——C'Etrw(w + Atﬁ? —exp(—1t)tr,, (wWo — Weo ) + exp(~1t )7y, (wo — weo ) - w,

we obtain the lemma. Q.E.D.
Let £ be an arbitrary small positive number. We set

W

Ti(e) = min{sup{t > 0| w, > 0} — &, T'}
and let C be a positive number such that

C + ll?g R,",'l[(t) >0

for all t € [0, T1(€)). Then since the function z exp(—=z) is bounded on (0, c0),
by the maximum principle and Lemma 3.4, we have that if (zo,%0) € X X
[0, To(€)] is a maximal point of exp(— Cu)trw,w we have

trw'W(:l:(),tg) < Cg :

for some C, > 0 depending only on ¢. Then by the C%estimate of u ; Lemma
3.1 and Lemma 3.2, we have that there exists a positive constant C;, such

that
tryw < Ci ..

Hence we obtain:

Lemma 3.5 There ezists a positive constant Cy, depending only on Ty(e)

such that
v lle2)S Caee
for every t € [0,Ty(€)), where || ||cr(x) is the C*-norm with repsect to wy.

Now by [15], for every r > 2 there exists a positive constant C,,. depending
only on Ty(e) such that
I uller )< Ce

Letting € tend to 0, we have that
T>1T

holds. Since [wr,] is on the closure of the Kahler cone A(X), by chanfm Q
properly, we can make Ty — 7} > 0 arbitarary small. Hence we conclude that
T = Tp. This completes the proof of Theorem 3.1.

4 Deformation of Kahler form II

In this section we use the same notation as in the last section. In the laset
section, we gave the maximal existence time of for the smooth solution of
the initial value problem (1). In this section, we shall prove the long time

existence of the current solution of (1) which is smooth on a Zariski open
subset of X.

Theorem 4.1 There exists a Zariski open subset U of X and a d-closed
positive current solution w of (1) such that



1. w is smooth on U.

2. wg = limy,,w exists as a d-closed positive (1,1)-current and wg is a
smooth Kdhler- Einstein form on U, i.e.,

Ric,, = —2mwg
on U.
8. [wg] = 2ra(K x).
The following lemma is fundamental in the proof of Theorem 4.1.

Lemma 4.1 (Kodaira’s lemma) Let D be a big divisor (cf. Definition 2.6)
on a smooth projective variety M. Then there exists a effective Q-divisor E
such that D — F is an ample Q-divisor.

Proof. Let H be a very ample divisor on M. Then
0 — HY(M,Op(mD — H)) — H(M,Op(mD)) — H°(H,Oy(mD | H))
is exact. Since D is big, for a sufficiently large m, | mD — H | is nonempty.

This completes the proof of the lemma. Q.E.D.
By Lemma 4.1, there exists an effective Q-divisor F' such that Ky — F is

ample. Let
F= Za;Fi
be the decomoposition of E into the irreducible components. Let h; be the

hermitian metric of the line bundle Ox(F;) and let o; be a nontrivial global
section of Ox(F;). We consider the degenerate volume form

= ([ Il o P2,

where || o; |J denotes the norm of o; with respect to h; respectively. By the
definition of F', if we take h; properly, we may assume that

—RicQr = V—-100log Qr
is a Kahler form on X. We set
Wg e = Wy + vV -1 ZG,aglog ” a,; ”2 .

and \
Up = U — Za;log | o ||* -

Then up satisfies the partial differential eqation:

Oup _ log (wrs + V=188up)"

ot Qp
up=— ailog) o:||* on (X - F)x {0}, (10)

—up on (X —F)x[0,TF)

where

Tr = the maximal existence time for the smooth solution up € C®(X — F) of (10).



Proposition 4.1 Tr = 00

Because we consider the solution only on X — I, we would like to forget the
boundary F. By a suitable blow up of X, we may assume that SuppF is a
divisor with simple normal crossings. Let A be a smooth ample divisor on X
such that A+ F is a divisor with normal crossings and A + F' is also ample.
Let p be a global holomorphic section of Ox(A) and let || || be a hermitian
norm on Ox(A) such that

—V=1Y " a;88log || o; || —V~1881og || p ||?
is a Kahler form on X. Then
v=—2 alog| o |* —log || o ||’

is a smooth strongly plurisubharmonic exhaustion function on X — F — A.
For every nonegative number ¢, we set

wan = we+V=Te 3 98 log(log || o [|P)? + V=Teddlog(log ||  |*)?

and

If we take ¢ sufficiently small by direct computation, we see that wa o, wra,
are complete Kahler forms of logarithmic growth on X — F — A and wr 4,

have uniformly bounded curvarure with respect to ¢ as in [9]. We set

Qra = (log || p ") [I(log || o¢ I*)7*Qr

To prove Proposition 4.1, we consider the following perturbed equation:

OQupa _ log (Wr st V=190ur4) —ups on (X — F— A)x [0, Tp )
dt Qra '
up4 = —Za log || o; ||* —¢log(log || o ||*) -szlog (log || i |)?

on (X— F— A) x {0}, (11)

where Tp 4 is the maximal existence time of the smooth solution up 4. We

note that this purturbed equation is essentially the same equation as (6) or
(10) on (X — FF— A) x [0,T).

Proposition 4.2 T4 is oo.
Proof of Proposition 4.2. Let K be a strongly psedoconvex subdomain in

X — F — A with smooth boundary 0K. We consider the following initial
value problem with the Dirichlet boundary condition.

- V=100 n
auK'A = lOg (wh At + aauRA) — ug 400 f X [U, Ty A)
ot Q}:‘A ! !
UK A = — Za, log || o ||2 —elog(log || p || Zalog log || o3 ]| ) on K x [0,Tx )

UK, A

—za,logn i |I* —¢ log(log || p |I*)? Zslog (log || ¢ 1 on K x {0},



where Ty 4 is the maximal existence time for the smooth solution on /{(the

topological closure of K). By the standard implicit funtion theorem and the
boundary regularity of complex Monge-Ampere equations in [2], we see that
Tk,a > 0. We note that for every sufficiently small positive number ¢, ,
Kx — F — oA is ample. Then we have the following C%estimate

311}{',4
at

< Coexp(—t)

and \
ug,a > ~Co+eolog || p||

by the maximum principle as Lemma 3.1, where Cj is a constant independent
of K. Let {K,}22, be an exhaustion of X — F'— A by a sequence of strongly
pseudoconvex subdomains with smooth boundary. We would like to show

that {ug, 4} converges uniformly on every compact subset of X — F — A.
We set

H=| p | (=log || p I*)* IT Nl o II* (= log || o: |I*)*.

We need the following lemma.

Lemma 4.2 ([14, Lemma 3.2])
)

HC¢ exp(Cug,a)(Dug s — -a—t)(exp(—CuK_A)Hctrw..,w,\»‘A)
> (—Bupa, log ShAt_ n? inf &?j}'(Fa A,t)—n)
A Qra 1#]
1 BuK,A

+C(n - 6 - T)ter,A,sz'A - exp(—t)t'r‘wF’M (wo - wm) T WA

. 1 aUK.A wEA‘
+H(C +inf Rag5(F, A, ) exp(~—— (= =57 — uxa + log _Q—t))(trwp,,q,;w!\'.f")"_i_la

where infiz; Ri;;(F, A, t) denotes the infimum of the bisectional curvature of

th Kihler form wr 4, and C is a positive constant such that C+infiyg; Ri;5(F, A, t) >
0 for all ¢.

The proof of Lemma 4.2 is the same as the proof of Lemma 3.4. Hence we
omit it. Let us take K, as

K, ={ze X |v(z) L2}
Without loss of generality, we may assume that K, has a smooth boundary.
We note that the second fundamental form of 9K, is of polynomial growth
with respect to H~!. Then Lemma 4.3 and the C%-estimate on the boundary

by [2], if we take C sufficiently large, by the maximum principle, we obtain
that there exists a positive constant C, independent of v such that

HotTWF,A,twKwA <Gy
holds. Hence by the C%estimate of ux 4 above, we have

ter,A,leVrA S CQH_ac. (12)



This implies that on every compact subset of X — F' the C*-norms of {uy, 4}
is uniformly bounded. Again by [15], we obtain the uniform estimate of the
higher derivatives of {uk, 4} on every compact subset of X — F' — A. Then

upa = lim ug, 4.

is a solution of (11) on (X — F — A) x [0,00). This completes the proof of
Proposition 4.2. Q.E.D.

Since the equation (11) is essentially the same as (10) or (6) on (X — F —
A) x [0,T), we may assume that

wrat+V—100ups =won (X — F — A) x [0,T).

Then by the real analyticity of the solution ug 4 , by moving A, we can define
U by
ugp I (X— F— A) X [0,00) = UFA-

This completes the proof of Proposition 4.1.
By the construction of ur we have

Lemma 4.3 There ezxists a constant Cy such that

Ouyp
Bt < Coexp(—t)

and
Uup 2 —Co.

By Lemma 4.4, )
w=wr; + V—100up

defines a d-closed positive (1,1)-current on X (where 99 is the derivation as
a current). Since w satisfies the equation

on X x [0,00) as a d-closed positive (1,1)-current, we see that
[w] = exp(—t)[wo] + (1 — exp(—1))2mei (K x).
Moereover by the above estimate

wp = limw
{00

exists as a d-closed positive (1, 1)-current and wg is smooth on X — F.

Definition 4.1 Let M be a compact complez manifold and let w be a d-
closed positive (1,1)-current. w s said to be a Kdhler-Einstein current if

there exists a constant ¢ and a nonemply Zariski open subset U of M such
that

1. w ts smooth on U.

2. Ric, =cw on U.



Definition 4.2 Let D € Div(X)QR be an R Cartier divisor on a projective
variety Y. Then the stable base locus of D is defined by :

SBs(D) = N,seSuppBs | [vD] | .

Definition 4.3 Let D be a a Cartier divisor on a projective variety V and
let ®py: V—--— PN®) be the rational map associated with | vD |. Let

f,: X — X be a resolution of the base locus of | vD | and let (j?h,pl X —

PNE") be the associated morphism. Let E(VD) denote the exceptional locus
of ®,p|. We set
E(vD) = f,(£(vD))

and call it the ezceptional locus of | vD |. It is easily be seen that E(vD) is
independent of the choice of the resolution of the base locus. We set

SE(D) = N,5E(vD)
and call it the stable exceptional locus of D.

Lemma 4.4 We set S = SBs(Kx)U SE(Kx). Then there exists a modifi-
cation p: Y — X such that

LoplY—=pY8):Y —puY(S) — X — S is biregular.
2. The exceptional locus E of u is a divisor with normal crossings.

3. There exists an effective Q-divisor D such that SuppD C E and " Kx—
D is ample on Y.

Proof. Elementary. Q.E.D.
Hence by the proof of Theorem 4.1, we obtain :

Theorem 4.2 Let X be a smooth projective variely of general type. Let
S = SBs(Kx)U SE(Kx). Then there ezists a Kahler-Einstein current wg
on X which is smooth on X — 5.

5 L’-vanishing theorem

In the last section we constructed a Kahler-Einstein current wg on X. In
this section we shall prove the following theorem.

Theorem 5.1 {O(wg,z) | z € X} is a finite set.

The following lemma is the starting point of our argument.

Lemma 5.1 Let § = SBs(Kx)USE(Kx). Then X — S is pseudoconcave
in the sense of Andreotti([1]).

Proof. Unless SBs(Kx) contains a divisor, we have nothing to prove. Let
D C SBs(Kx) be an irreducible divisor. We clain that D is contained in

SE(Kx). Let ®,: X — ... — PV be the rational map associated with
| vKx | and let 7, : X — X be the resolution of Bs | vKx | and let
$, : X —» PNMpe the associated morphism. Let D be the strict transform
of D. If we take v properly, we may assume that &, : X — &,(X) is



birational and ®,(D) is a divisor. If we take some positive multiple of v if
necessary, we may assume that ®,(X) is normal. Then ®,(X),., N ®,(D) is
nonempty. On the other hand D is in the branched locus of ®, because D

isin Bs | vKx |. Since &, is birational, we see that codim ®,(D) > 2. This
is a contradiction. Q.E.D.

Now we shall briefly review the L%-estimate on a complete Kahler mani-
fold.

Let (M,w) be a complete Kahler manifold of dimension m and let (L, &)

be a hermitian line bundle on M. Let A2?(M, L)(0 < p < m) denote the
space of L-valued smooth (0, p) form on M with compact support. Let

d: A%(M, L) — A" M, L)
be the natural @ operator and let
U Ag'p(M’ L) - Ag'p-l(Ma L)

be the formal adjoint of 9 Let CO"’SM, L) denote the space obtained by taking
the form closure with respect to the graph norm

APML)S f ol FIP+NOF I+ Of 1"
We define the L2-cohomology group HE(M, Op(L)) by
kerd | £LOP(M, L)
AP (M.L)

where the closure is taken with respect to the graph norm. By Hormander’s
L*-estimate, we obtain:

HF?)(M-OM(L)) =

Theorem 5.2 Assume that there ezists a volume form {0 in M and a posilive
constant ¢ such that

RicQ — +/=100log h > cw.

Then we have
H{y (M, 0pm(L)) =0 for p >0,

where the L*-cohomology is taken with respect to the volume form Q and h.

First we shall prove the following proposition.
Proposition 5.1

{z € X | O(wg,z) =0} NSBs(Kx) = ¢.
Proof of Proposition 5.1 . The following lemma is well known.

Lemma 5.2 ([18, p.95, Lemma 7.5]). Let T be a d-closed positive (1,1)

current on B(r) = {z € C* ||| z ||< r} for somer > 0. Let us consider P™!
as a parameter space which parametrizes complex line through the origin O.
Then for almost all L € P71,

O(T,0)=0(T | Ln B(r))

holds. And for every L € P™! such that T | LN B(r) is well defined,
O(T,0) < O(T'| Ln B(r))

holds.



Lemma 5.3 Let p be a point on X such that O(wg, z) = 0 and let B,
X, — X be the blowing up with centre p. Let E, denote the e:rceptzonal
dtmsor of B,. Then for every z € E,,

O(B,wg, z) = 0.
holds.

Proof of Lemma 5.9. By Lemma 5.2, we have that
O(B,wg,z) =0

holds for almost all z € E. We note that B;(Kx) is numerically trivial on

E,. Let C be an irreducible reduced curve in E, ~ P*~! then by the same
augument as in the proof of Lemma 2.1, we see that O(wg,z) = 0 for all
x € C since (B; Kx)-C = 0. This completes the proof of the lemma. Q.E.D.

Let p be a point on X such that @(wg,p) = 0 and let B, : X, — X
be as in Lemma 5.3. Let B denote the strict transform of SBs(/(x). Let
7 : W — B,(X) be a modification such that 7=!( B) is a.divisor with normal
crossings. Let F be a reduced divisor such that SuppF = 77!(B) and let
W =W — F. Let E be the strict transform of E, in W. We set 7 = 70 B,
and D = 7*(Kx). We consider the exact sequence :

HY(W,0w(vD | W)) = HY(ENW, Ogaw(vD | ENW)) —» HY(W, Ow(vD—-E | W)).

Since D | E is trivial, H°(E, Og(vD)) ~ C. Let us consider the homomor-
phism

u: HYE,Og(vD)) — H(ENW, Opaw(vD | END)) —» HY (W, Ow(vD-E | W)).

If Im v = 0, we are done by the above exact sequence since because of
the pseudoconcavity and the property of canonical singularity, we have the
isomorphism:

HO(X,, O, (vD)) ~ HYW, Ow(vD | W)).

To prove that Im u = 0, we shall use the L?-estimate. First we construct
a complete Kahler metric on W. Let F' = }; F; be the decomposition of F
into the irreducible components. Let o; be a nontrivial global holomorphic
section of Oy (F;) with divisor F;. Let wy be a smooth Kahler form and let
Il || be hermitian metrics on Ow( ;) We set

ww = wiy + V=T03(Y log(log || o 1)?).

Then by a direct calculation as in [3, p.565, Proposition 2. 1], if we multiply
a sufficiently large positive number to wy , ww is a complete Kahler form
on W. Let L denote Ow(vD | W). Since @(w wg) 1s 0 on W, there exists a
singular hermitian metric A on L such that

1. vr*wg | W = —/=180log h.

2. Let ho be any smooth hermitian metric on Oy (v D), then @, = (h/ho)°
is locally integrable on W for all ¢ > 0(cf. Lemma 5.3 and Lemma 5.5
below).



We note that h is unique up to positive constant multiple because of the
pseudoconcavity of W (cf. Lemma 5.1).

By the upper semicontinuity of Lelong numbers and Theorem 2.3, Lemma
5.3, 5.5, we have

Lemma 5.4 For every ¢ > 0, @, is locally integrable on a neighbourhood of
E.

Let 7 be a nontrivial global section of Oy (E). Then since Op(—E)(~
Opn-1(1)) is ample and in Div(W)

uD—E—KW=(u—1)D—nE—Zb,-F;

for some b; > 0, if we take positive numbers d;, hermitian metrics || || of
Ow(F;) and Ok properly, we may assume that there exists a positive number
¢o and a smooth volume form Qy such that

RicQy + vr*wg + Y V—1d;801og || 0; ||* +v/=188log || 7 ||*> coww

holds for every sufficiently large v. Hence if we replace 2y by
Qw = ([[(log || o [I1)) ™y

for a sufficiently small positive number ¢, we see that there exists a singular
hermitian metric h, on L ® Ow(—E N W) and a positive constant ¢; such

that
RiCQw -+ V—laa log hu Z i Www

holds for every sufficiently large v. Then by a minor modification of Hérmander's
L*-estimate for 0, we obtain

HE (W, Ow(vL ® O(~E)) = 0(p > 0),

where L?-cohomologies are taken with respect to the volume form Qi and

the hermitian metric h,. By Lemma 5.5 and the construction of h, we see
that if we take d;s’ sufficiently small

Imu C Hiy(W,0w(vD — E|W)) =
Hence we completes the proof of Proposition 5.1. Q.E.D.

Now we shall relate the Lelong number of wg and the multiplicity of the
base scheme Bs | vKx |. The following lemma is essential for the purpose.

Lemma 5.5 ([18, p.85, Lemma 5.3]) Let ¢ be an arbitrary plurisubharmonic
function on an open subset U of C™ and let = be a point in U. Let T =

@agtp. Then the followings are true.
1. IfO(T,z) < 2, then ¢™% is locally integrable at .
2. If O(T,z) > 2n, then =% is not locally integrable at .



Lemma 5.6 There ezists a positive inleger vy such that for every positive
integer v and z € X,

mult,Bs | vKx |2 vO(wE, )
holds.

Proof. Let ®, : X — --- — PN denote the rational map associated with
| vKx |. Let vy be a positive integer such that ®, is birational for every

v > vy. We fix v such that v > vy, Let Ty X, — X be the resolution of
Bs | vKx | such that n71(Bs | vKx |) is a divisor with normal crossings.
Let F, = 3 ¢;F; be the fixed component of | vx}D |. Then there exists an
effective Q-divisor R, = Y, r; F; such that

v, Ky — F, - R,

is ample. We note that for every € > 0, we can take R, such that 0 < r; <e.
Then by the proof of Theorem 4.2 (c¢f. Lemma 4.3) and Lemma 5.5, we have

vO(miwg, ) S na; (2 € (Fred)reg N F).

This is not enough for our purpose, but by considering (local) holomorphic
curves through z, by slicing the current 7 wg (cf. Lemma 5.3), we have

V@(W:wg, ) < g (l' € ( ured)rcg n F)

Since

O(wg, 7, () < O(7lwg, z)
holds for every z € X, again by Lemma 5.3, we have
vO(wp,z) £ mult,Bs | vKx |
for every z € X and v 2 1. Q.E.D.
Proposition 5.2 We set
S(wg) = {z € X | O(wg, z) > 0}.
Then S(wg) = SBs(Kx).

Proof of Proposition 5.2. By Lemma 5.6, we have that guE) C SBs KX
On the other hand, by Proposition 5.1, we have that SBs(Kx) C

Q.E.D. Let
S(we) =) Ba
be the decomposition of S(wg) into the irreducible components. Let

e = zlenl;; O(wg, ).

By Proposition 5.1, we see that e, > 0 for cvery c.

Lemma 5.7 O(wg,z) = e, for almost all z € B,.



Proof. Let 7, : X, — X be the blowing up with center B, and let £, be
the excepsional divisor. By slicing lemma (Lemma 5.3), we have

O(mowe, ©) 2 Ofwe, Ta(2))

for all z € X, .y and the equality holds for almost all z € £, N X, ;.. Then
the lemma follows from [13, p.89 Lemma 6.3{1. Q.E.D.
LeE T @ Xo — be as in the proof of Lemma 5.7 above and let

ko : Xo — X, be a modifaication such that (s o 7,)'(B) is a divisor

with normal crossings. Let E, be the strict transform of E,(= 7;!(B,)) and

let @ = pq 0 m,. Let p be a point on £, such that O(w*wg,p) = e, Let

~

B, : Y — X, be the blowing up at p and let E be the exceptional divisor.

Let F be the strict transform of w=!(B) We set Y = Y — F. Then by the
same argument as in the proof of Proposition 5.1, we obtain:

Proposition 5.3
{p€ Ea| O(wwg, p) = e} N SBs(@" Kx — eakla) = ¢.

Proposition 5.3 implies that there exists a zariski open subset U, of £,
such that
O(w'wg, z) = €4

for all x € U,. Hence we have :
O(wg, z) = e, for z € w(U,).
Then by Noetherian induction, we conclude that
{6(wg, 2) | z € X}

is a finite set. This completes the proof of Theorem 5.1.

6 Zariski Decomposition of Canonical Divi-
sor

In this section we shall prove Conjecture 2.1. Let X wg be as in Thoerem
5.1. Let _
[ X=X, 29 Xpaa—= 2 X2 X=X

be a successive blowing up such that
1. Let Z; denote the centre of the blowing up
wis Xi — Xy,

Then Z; is smooth for each 1 <7 < m. We set f; : X; — X be the
composition of the blowing ups.

2. O(f;_,wE) is constant and positive on Z;.

3. Niea = f7Y(S(wE)red is a divisor with normal crossings.



4. Let N,.4 = 3°; N; be the decomposition of N, into the irreducible
components. Then O(f*wg) is constant on N; N (N,eq)re, for every j.

We denote the constant by n;.
5. Let p € X,,. Then
O(f'wg,p) = ) nj.

pEN;

The existence of such successive blowing ups follows from Theorem 5.1 and
the fact that wg has finite order along S by Lemma 4.3 and the estimate
(12).

Now we set

N =) n;N;
3
By the definition n; are nonnegative real number. And let
P=fKx—N.
Then we have :
Theorem 6.1 The expression
f'Kx =P+ N(P,N € Div(X)®R)
is a Zariski decomposition of f*Kx. Hence Conjecture 2.1 is true.

Proof of Theorem 6.1. By the definition of N, N is effective. For the next,
we shall prove that P is numerically effective.

Lemma 6.1 (18, p. 87,Lemma 6.2]). Suppose T is a d-closed positive
(1,1)-current on an open subset U of C* and V is a a complex submanifold
of condimension 1 in U. Suppose ¢ > 0 and O(T,x) > c for every z € V.
Then T' — cV is positive.

By Lemma 6.1, we see that f*wg — N is a d-closed positive (1,1)-current on

X. Hence P is numerically effective by Lemma 2.1.
On the other hand by Lemma 5.6, we have a natural inclusion:

0= HYX,03(vf*Kx)) = H'(X,Ox([vP)))
for all ¥ > 0. Because of the converse inclusion is trivial, we see that
HO(X,03([vP))) = H(X, Ox(vf*(Kx)))

holds for all positive integer v. This completes the proof of Theorem 6.1.
Q.E.D.
Now Theorem 1.1 follows from the following theorem.

Theorem 6.2 ({6, p.425, Theorem 1]) Let f : X — S be a proper sur-
jective morphism of normal algebraic varieties, let A be a Q-divisor on X
such that the pair (X, A) is log-terminal. Assume that Ky + A is f-big,
e KXy Kx, + 8,) = dimX,, where X, is the generic fibre of f and
AN, = A | X, and that there exists the Zariski decomposition

Kx+A=P+N inDiv(X)®R



of Kx + A relative to f. Then the posilive part P is f-semiample. i.e.,
mP € Diw(X) and the natural homomorphism

f*£.0x(mP) — Ox(mP)

is surjective for some positive integer m. Thus the relative log-canonical ring

R(X/S, Kx + D)= f.Ox([m(Kx + D)])

m>0
is finitely generated as an Og-algebra.

Theorem 1.2 follows from Theorem 1.1 easily because the problem is
completely local (for the proof see [12, p.479,Proposition 4.4]). Since the
termination of flips is known up to dimension 4 (|8, p.337,Theorem 5.15)),
we have Theorem 1.3.
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