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ABSTRACT. The purpose of this paper is to discuss the constant term appearing in the BFK-gluing
formula for the zeta-determinants of Laplacians on a complete Riemannian manifold when the warped
product metric is given on a collar neighborhood of a cutting hypersurface. If the dimension of a
hypersurface is odd, generally this constant is known to be zero. In this paper we describe this constant
by using the heat kernel asymptotics and compute it explicitly when the dimension of a hypersurface
is 2 and 4. As a byproduct we obtain some results for the value of relative zeta functions at s = 0.

§1. Introduction

The gluing formula for zeta-determinants of Laplacians on a compact Riemannnian manifold
with boundary had been given by Burghelea, Friedlander and Kappeler in [2] and later was extended
by Carron in [3]. Their formula, however, contains a constant term which is expressed by the zero
coefficient of some asymptotic expansions ([2], [8]). If the dimension of a cutting hypersurface is
odd, this constant is known to be zero ([7]). If the product metric is given on a collar neighborhood
of a cutting hypersurface, this constant was computed explicitly in [3] and [9]. The BFK-gluing
formula also contains some informations about the value of relative zeta functions at s = 0. In
this paper we discuss this constant term when the warped product metric is given on a collar
neighborhood of a cutting hypersurface. More precisely, we describe this constant in terms of heat
kernel asymptotics and compute it explicitly when the dimension of a cutting hypersurface is 2
and 4. As a byproduct we obtain some informations about the value of relative zeta functions at
s = 0, which we discuss in the last section.

Let (M, g) be either a complete oriented Riemannian manifold or a compact oriented Riemannian
manifold with boundary W (W is possibly empty) with dimension m + 1. Suppose that YV is a
hypersurface of M with Y N W = {). Choose a collar neighborhood N_; 1 of ¥ such that N_; 1 is
diffeomorphic to ([—1,1] x Y) with N_; 1 N W = 0 and Y is identified with {0} x Y. We assume
that g is a warped product metric on N_; 1, i.e.,

g|N—1,1 = (du2 + eh(u)gY)a (11)
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where gy is a Riemannian metric on Y, w is the normal direction to Y and h : [-1,1] — Ris a
smooth function with h(0) = 0. We denote by % the unit vecror field on N_; ; which is normal
to Y, :={u} xY. Let E — M be a complex vector bundle on M having the product structure
on N_11, which means that E|y_, , = p*El|y, where p: [-1,1] x Y — [~1,1] is the projection on
the first component. Then the Laplacian A corresponding to the metric ¢ is described on N_ ;
as follows. o2 5
m
ApIn_,, = “uz Eh/(u)% +e MWAy, (1.2)

where m = dimY and Ay is a Laplacian on Y. We impose a boundary condition Py on W so
that Ajps can be extended to a non-negative self-adjoint operator. We denote by M,,: the manifold
with boundary W UY UY obtained by cutting M along Y (= Yp). We also denote by Yp1 (Y0,2)
the component of the boundary of M.,; which is the copy of Y and a% points outward (inward).
We impose the Dirichlet boundary condition on Yy ; UYp 2 and denote by Ajy,,, ~, the realization
of Az, with respect to Py on W and the Dirichlet boundary condition on Yy 1 U Yj 2, where
Ay, is the natural extension of Ay to Mey:. Then (e’t(AM“) — eft(AMcumOH‘)) is a trace

class operator (see [3]) and we define the relative zeta function and relative zeta-determinant for
(AM + A7 AMcut7'YO + >\) by

1 L)
C (s; AM + )\’ AMcut;'YD + )\) — m/ tS_lTT‘ (e—t(AM-i-)\) _ e*t(AMcutwoJF)\)) dt
$)Jo

IOg Det (AM + )\a AMcut,’Yo + )\) = _C/ (07 A1\/1 + )\a AMcut770 + )\) . (13)

Throughout this paper we assume that for A € R the Dirichlet boundary value problem for
Anpr,,, + A has a unique solution, i.e. for (f,g) € C*(Yp,1 U Yy,2) there exists a unique solution ¢
such that

(AMCut + )‘)(b = 07 ¢|Y0,1 = fa ¢|Yo,2 =49, PW(¢)|W =0.

Then Burghelea, Friedlander and Kappeler ([2]) had studied log Det (Aar + A, Angoy, o + ) for
A € Rt on a compact manifold and later Carron ([3]) extended their result to the case of a
complete non-compact manifold.

To state their results, we introduce elliptic YDO’s Q1(\), Q2(A) and R(A) acting on C*°(Y),
smooth sections on Y, as follows. For f € C*°(Y), we choose unique sections ¢, 1 € C°(Me )
satisfying

(AMcut + )\)(b = 07 ¢|Y0,1 = fa ¢|Y0,2 = Oa PW(¢)|W = 07
(AMcut =+ /\)w =0, ¢‘YO,1 =0, w|Y0,2 = fa PW(¢)|W = 0.

Then we define
0 0 0 0
A = (550) bas = (0] e @) = (550) s = (50) o (1)
and define the Dirichlet-to-Neumann operator R(\) : C°(Y) — C*(Y) by

R(\) = Q1(A) + Q2(N). (1.5)

It is a well-known fact that for A € R*, R()) is a positive elliptic ¥DO of order 1. Then they
proved the following equality. For some real coefficients a; (0 < j < [%]),

(2]
log Det (Anr + A, Antoyio +A) = Y N + log DetR(\). (1.6)
j=0

NE
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When M is compact, it is known in [2] that log Det (Ayr + X, Anr,,, o + A) and log Det R(X) have
asymptotic expansions as A — 0o, whose coefficients can be computed by integral of some densities
determined by the symbols of operators. Moreover, the zero coefficient in the asymptotic expansion
of log Det (Anr + A, Angey, o + A) 18 zero (Lemma 3.2 or [21]). Hence —mg in (1.6) is, in fact, the
zero coefficient in the asymptotic expansion of log DetR(A). This fact enables us to comput ¢ in
some cases. It is known that mo = 0 when dimM is even ([7]). If the metric g is a product one on
N_1 1 so that Ay = —92 + Ay, it is known that mp = log2 - (Ca, (0) + dimkerAy) ([3], [9]).

On the other hand, if M is compact or the essential spectrum oess(Aps) of Aps has a positive
lower bound, the coefficient of log A in the asymptotic expansion of log Det (Anr + A, A,y vo + A)
is C(0; Anr, Angoy, o) + dimkerAps (Lemma 3.2). Hence, the comparison of the log A-coefficients
in the asymptotic expansions of (1.6) gives some informations about the value of the relative zeta
functions at zero.

In this paper we are going to discuss the constant mp in (1.6), or equivalently the polynomial

Zﬁé m; M, and the value of relative zeta functions at s = 0 when the Laplacian is given by (1.2)
on N_j1. We next discuss, using the result in [12], the value of the zeta function at s = 0 for
a compatible Dirac Laplacian with the Atiyah-Patodi-Singer (APS) boundary condition, which

extends the result given by the author in the Appendix of [17].

§2. Description of the Dirichlet-to-Neumann operator R()\)

In this section we are going to describe the Dirichlet-to-Neumann operator R()A) into a more
useful form by using the variations of Q1(X), Q2(X). To do this we first define the operator @Q; ()
(1t =1,2) onY, := {u} xY for each u, —1 < uw < 1, in the same way as Q;(\) on Yy. More
precisely, let My, be the manifold with boundary obtained by cutting M along Y, and Y,
(Yy,2) be the boundary of My, such that % points outward (inward). For f € C*°(Y,) choose
Gu, Yu € C°(Meyr,) satistying

(AMcut + )\) ¢u - 07 ¢u|Yu,1 = f7 ¢U|Yg = 07 PW(¢’LL)|W = 07
(AMCut + A) wu = 07 (bu'Yo = 01 ¢U|Y/u”2 = f7 PW(wu)|W =0.

Then we define

Q) = (560) b = (g ) b = Q) + ¥,

@) = (500 ) o = (o) s = Vau D) + QaVA 2)

where Q1,.(\)(f) == (Z6u) v,y and U1, (AN(f) i= — (2 0u) lvo- Q2.u(N)(f) and ¥o, (N)(f) are
defined similarly.

Now for f € C*®(Yy), choose ¢(u,y) € C°(Meyt) such that

(AMcut + )‘) (b(u,y) = 07 ¢|Y0,1 = fa ¢|Y0,2 = Oa PW(¢)|W = 0.

Then for each u, —1 < u < 1, we have

(0000 . = Qa0 G0l
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Taking the derivative with respect to w,

<%¢(u’y)) |Y“ = (%216,7;(/\) (¢(u3y)|Yu) + @1,74(/\) (8(;5(81’: y) |Yu)

(520100 + @) (S0l (2:2)

Since ¢ satisfies (Apr,,, +A) ¢ =0, (1.2) leads to

cut

(~ 57 @Q1u) + Ay + 1) (s(uy)ly,,) = (a%@l,uw + él,u(xf) (6w, 9)lv.)

which shows that

(@) + 2w w) = e 08y £ 2+ Ty - 23,0 (23)
Similarly, we have
~ m 2 m? 0 ~
(@2 = 0 (@) = "M Ay + 2+ Toh (W) + 5-Qau(N). (2.4)

We next note that ¥y, (\) (¢(u,y)|y,) = — (Zé(w,y)) |vo.,. Taking the derivative, we have

(2100 ) sl + 91,0 (Qru )l ) = 0, (25)

which shows that a%‘h,u(/\) + \Ill,u()\)él,u(/\) = 0. Since %\Ill,u(/\) and U4 ,(\) are operators
of same order and (1,,(\) is an elliptic operator of order 1, this equality implies that ¥y ,()) is
a smoothing operator. As the same way, Vs, () is also a smoothing operator. Setting R, (\) =
Q1.u(N) + Q2,4(N), we have the following lemma.

Lemma 2.1. Let Q,(\) = Q1,u(A) — Q2,u(X) + 21/ (u). Then R, (N)? is expressed as follows.

2
R,(\)? = 4 (e_h(“)Ay + A+ Tln—Gh’(u)2 + %h”(u)) -2

+ a smoothing operator.

Remark : Tt is well-known ([2], [3]) that R(A)™' = 40 (Ax +A) "' (- ® dy) and this fact implies
that R(\) is positive definite for A € RT, where 7y is the restriction map to Y.

We now discuss the asymptotic symbols of 20, () and Q,())2. The equations (2.3), (2.4) and
(2.5) show that

Qru(N)? = e "WAy + A - %h’(u)@l)u()\) — (,%QLU(/\) + a smoothing operator,
(2.6)
Qau(N)? = e "WAy £ A+ %h’(u)Qg)u(A) + %Q27u(/\) + a smoothing operator.

We denote the asymptotic symbols of Q1 ,()), Q2. (A) and e ™Ay + X as follows.

U(Ql,u(/\))(yv 5’ /\) ~ O‘l,u(ya 57 >‘) + O‘O,u(y7 55 /\) + a—l,u(yv 57 >‘) 4
G(Q2,u(/\))(yv gu )‘) ~ ﬁLu(ya 57 )‘) + 507u(y7 fa )‘) + /Bfl,u(ya 57 )‘) +o

ole™ ™Ay +X) = (eI + ) + e "Wpy(y, ) + e " Wpg(y, €).
4



Then the asymptotic symbols of Q1 ,(A\)? and Q2 (\)? are given by

M@ EN ~ 3 Y e 6N Diar (€N,

k=0 |w|+it+j=Fk
4,7>0

(2.7)

1

Q)N ~ Y Y 2 Briu (Y. 6 N) - Dy By, €0,
k= 0|w|+z+j k '
i,j>0
which leads to
Al = ﬂl,u = \/e_h(u)|€|2+/\
I —h(u) m., W (u)e "W ¢|?
u — 5 - uD u - 5 u

" 2al’u< Aottt Dyt = et 5 e FIE2 + X (2.8)

1 m B (u)e=Mw|¢|?
60# = 56]:1:5, <_d£ﬁl,u : Dyﬁl,u + €_h(u)p1 + Eh/(u)ﬂl,u — ( ) |§| .

TR + A

Using the relation (2.7) we can compute the homogeneous components o, and 51—, for any
k > 1, and hence the asymptotic symbols of Q «(A\) and Q,(\)2. For instance, the principal
symbols of ‘19 (\) and Q,(\)? are given as follows

9 B (h”(u) o h’(u)2) e*h(u)|§|2 h/(u)2672h(u)|€|4
oy, <2%QU(A)) - efh(u)|§|2 + A\ + (e*h(u)|§|2 T A)Qa
h/(u)2672h(u)|€|4
Q.(\)?) = : 2.9
7 () = A (2.9)

Corollary 2.2. %Qu(/\) and Q,(N)? are WDO’s of order 0 and each homogeneous part of the
asymptotic symbol tends to 0 pointwisely as A — oo.

We next discuss the heat kernel asymptotics of R, (\)? at u = 0. We assume that h(0) = 0 and
denote by

2
m-.y 2 mo 9 2
_m m = 270, (W) o — (V2. 2.1

= ToHOP + TH0). S0l = 22 (Mo ~ () (2.10)

We suppose that as t — 0T,
Tre—t(Av+co) ajt_%”,
=0
Tre~t(Avteoti®o) a;(\) t7 2 4 Z br(\) t*log t. (2.11)

~
Il

Then each coefficient a;(A\) and a; in (2.11) can be computed by the following formula (cf. [5],
[20]). Let I" be a contour in the complex plane C defined by

I = {re™joo>r>e} U {eelr>¢>—7} U {re ™le<r< oo} (2.12)
)



for sufficiently small € > 0 and oriented counterclockwise. Let us fix a finite number of local
coordinate charts covering Y, local trivializations for F, and a partition of unity subordinate to
this covering. In each coordinate chart we denote the asymptotic symbol of (Ay + ¢y + 1&o(N))
by

o (Ay +co+ EGO(A)) ~ p2(y,§) +p1(y,8) + (po(y, &) + 20 (y, &, N) +q-1(y,§A) +---, (2.13)

where pa(y, &) = |£]? and Z? 0 Pi (Y, ), Z;OO g;(y,&, A) are the (asymptotic) symbols of Ay +
co and %60(/\) respectively. Then the asymptotic symbol Z o T—2—j(y, & A, ) of the resolvent

(n— (Ay +co+ }160(/\)))_1 is given recursively as follows.

roa(y, &0 ) = (p— €)1,

1 ~ w
roaj(y, & A ) = —(u— €))7 Z > —0¢P2-1(y: & 0) - Dyra—k(y, & A ),
k=0 |w|+l+k=j (2.14)
where _
pi(y,§) for j=1,2
ﬁj (y7 é.a A) = pO(ya 5) + QO(y7 é.a A) for .7 =0
HURIPY) for j <O0.

Then aj(\) (0 < j < [%]) can be computed by the following integral (cf. Formula (12) in [5] or
Theorem 13.1 in [20]).

r(m- _ Cm
() = { (2»227”']) Jy dvol(Y f|§| 1 271' Gl Jopm oy (y, & N p)dp for 0<j < B
j = o
3 [y dvol(Y) flélzl Wdf Jo reo—m(y, &N, —v)dv for j=12 €(Z+,)
2.15

where d¢’ is the usual surface element of the sphere |¢| = 1. Similarly, let us denote the asymp-
totic symbol of (1 — (Ay +¢))~" by

a(( — (Ay + o)) 1) Zagjygu (2.16)

where d_o_;(y,&, 1) is defined recursively by the same formula as (2.14). Then a; can be
computed by the integral (2.15) with the integrand d_o—;(y,§, ). We here note that

r727j(y7fa )‘7/1“) = 6,2,j(y,f,ﬂ) + 7,\:727j(y7fa )‘7/1“)a (217)

where 7_o_;(y,&, A, 1) tends to 0 pointwisely as A — oo. Inparticular, r—a(y, &, A, 1) = d—a(y, &, 1).
Then we have the following result.

Lemma 2.3. FEach a;j()\), 0 < j < [F], has an asymptotic expansion for A — oo of the following
form.

aj(/\) ~ aj+ Zaj’g)\ig.

In particular,
ap(A) =ao and lim aj(N) =aqa;, 1<j< [%])

A—o00
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Proof :  In view of (2.14), r_2_;(y,&, A, i) can be expressed by

ey, & 1)
a2 (Y, &\ 1) s
o g;:wélﬂf

where fi(y, &, p) is a homogeneous polynomial of degree k — 2 — j with respect to £ and p. Hence,
(2.15) shows that for 0 < j < %

1 1
aj(A) —;mz.zm/ydm(y) /Igl_l o) €’ / T fily, & pdp,

from which the result follows. The case of j = % can be treated in the same way. [

§3. The main results and their proofs

We begin this section with the following lemma, which is straightforward (cf. [8] or [21]).

Lemma 3.1. Let P be an elliptic VDO of order > 0 on a compact manifold and {c;}, {B;} be
increasing sequences with By > 0, and tending to oo. Suppose that

00 0o
Tre™ ~ % ajt™ + 3 bit™logt for t— 0%,
j=0 Jj=0

Then, as A\ — oo,

log Det (P + \) Zaj e ( 8—:)%)) AT +Zaﬂ <Laﬂ)) “AT% log A
s=0 s=0

+ ijr(ﬂj).xﬂf log\ — ij/O P e " logz dr - AP 4+ O (e7).
— —

In particular, the constant term does not appear and the coefficient of log X is ((p(0) + dimkerP).

We next consider the asymptotic expansions of log Det (Ayr + A, Anr,,, o + A) and log DetR(N)
as A — o0o. Let K be a collar neighborhood of Y whose closure is a compact subset of M. Then
it is shown in [1] (see also [3]) that for some positive constant C,

Q

| Tr (Lp—i (e7AM — et 8Meurno) 13 i) | < e

It is a well-known fact that for ¢ — 0,

Tr (11{ (eftAM — e*tAMcumO) 1x

Hence, for ¢t — 0,

Ty (e—tAM _ e—tAMcutwo) ~ ZajtjiTm, (31)

where dimM = m + 1. This fact together with Lemma 3.1 yields the following result.

7



Lemma 3.2. As A — oo, we have the following asymptotic expansion.

= (4 (T =
log Det (An + A, Aeypyo +A) ~ — Zaj ds \  T(s) o
s=0

=0

G P(S_ %) m—j —cA
+ ) a <T 70/\ Jlog A + O(e=).

Jj=0

In particular, the constant term does not appear. If M is compact or complete with cess(Anr)
having a positive lower bound, the coefficient of log A is ¢ (0; Apr, Apr,y, o) + dimkerApy.

The above lemma shows that —mg in (1.6) is, in fact, the zero coefficient in the asymptotic expansion
of log DetR(\) as A — oo. If dimY is odd, this zero coefficient is known to be zero ([7]) and hence
we need to discuss the case of dim Y even. By Lemma 2.1 and Lemma 3.1 with (2.11) we have
the following result.

Lemma 3.3. Let m be the dimension of Y. Then :

1 d (T(s—2+7) m_
log DetR()\) = log2 - C(Ay+eot2&o(A)+A) (0) — 3 a;( )E < F(z) Az
j=0 s=0
(%] .
1< [(s— 2+ j) o _
- A 2 Az Jlog A A€
+ 2 a]( ) < F(S) 0 0og + O ( ) ) (C > 0),

where
if m is odd

0
C(AY+°0+i60(>‘)+>‘)(O) - { 2 (*1)%7_j aj(N)AZ7 if m s even.

Specially, if dimY is even, Lemma 3.3 together with Lemma 2.3 leads to the following corollary.

Corollary 3.4. Let m = dimY be even. Then log DetR(\) has the following asymptotic expan-
sion for A — oo.

log DetR(\) ~ > p, A" + D q;A"7 log A,
=0 J=0

where

1 G (—1)F
Gm = 5 Zw%%*

On the other hand, let P(n) be a non-negative classical ¥DO of order k with parameter n of
weight x (x > 0) on a d-dimensional compact closed manifold X. We refer to [2] or [20] for the
definitions. Suppose that the asymptotic symbol of P(n) is given as follows.

G(P(n)) = ZPk—j(%%f%
7=0
8



where for 7 > 0, py_; (7%, 2, 7€) = 7 Ipp_;(n, ,€). Then it was shown in the Appendix of [2]
that log DetP(n) has the following asymptotic expansion as |n| — oco.

log DetP(n Z/ij|77| <o Z@ |77|X log |n], (3.2)

where each k; and 6; can be computed in terms of the symbol of P(%) Specially, k4 and 6y can

be computes as follows. Let us denote the symbol of (1 — P(n))”" by

U((H—P(W)) ) (1,7, 2, €) ZT h—i (11, 2, §).

We define Jy(s, %,x) by

Tas, o) = 5 /R d / “rimalit T, i (3.3)

where T is a contour in C defind in (2.12). Then,

ka = di(@ [ dato, ) dvolta )) o o = (ﬁ% [ duten ) dvol(m)) Jozo.

(3.4)
If the symbol of P(n) satisfies the following property

pk—j(nvmv_g) = (_1)jpk—j(nvmv§)7 (35)

and d = dimX is odd, then Jy(s, %, z) = 0 and hence kg = 69 = 0. It is known that the Dirichlet-
to-Neumann operator R()) is a classical ¥DO of order 1 with parameter A of weight 2 and satisfies
(3.5) (¢f. [7]). This fact with Corollary 3.4 leads to the following result.

Corollary 3.5. Suppose that dimM = m+1 and either M is compact or oess(Apr) has a positive
lower bound, then

0 if m is odd

C(O;AM, AMC'ut;'YD) + dimkerAy = {

N|—=
Q.
SE
an
I~
~[7
o3|~
=
<
=

ajm_; if m is even.

Since —mp in (1.6) is the zero coefficient in the asymptotic expansion of log Det(R())), Corollary
3.4 leads to the following result, which is the main result of this paper.

Theorem 3.6. Let dimM =m+1, ¢y = %h’(0)2 + Zh"(0) and | = dimker (Ay + co). Then
the constant o in (1.6) is the following.

(1) If m is odd, then my = 0.

(2) If m =2, then mo = —10g 2+ ({(Ay+e0)(0) +1).

(3) If m =4, mg = —log 2 ({(Ay+eo)(0) +1) — (log2 — 1) Ugig:;) (R"(0) — K (0)%), where vol(Y') is
the volume of Y.

(4) Generally, if m > 4 and even, then we have

T = —Pm

(-1)%—J ( 1( 1 1 ))
—log2- (¢ ) (0)+1) — ————rajm_j;log2 — 1+ -+ -+ - - .
(Cay+e) (0) +1) = (59 72 2 2 B



Proof :  The assertion (4) follows from Corollary 3.4. It’s enough to prove the assertion (3). If
m = 4, the assertion (4) shows that

mo = —10g2 (Ciay ter)(0) +1) +ar, (log2 - %) :
By (2.15) and Lemma 2.3, a1,; can be computed as follows. We note that
roa—1(y, & A ) = da1(y, & 1)
roa—a (Y, &M 1) = Gama(y, &) — (0 —1€°) 7% oy, €M)

e [ 1O - WO [ 5 )2

Then by (2.15) we have

3\ — Lwol(Y) -vol(S®) (1R"(0) —R'(0)2 5 R'(0)?
u@d) = -3 1674 (Z (A +1) 1_6(/\+1)2>
~ = SO (L 01O - K0P 5+ 15 (40 9 0P) 5+ ).

which shows that a1 1 = —vgig) (r”(0) — A'(0)?). This completes the proof of Theorem 3.6. [0

Remark : Replacing Ay and Apy,, ~, by An + v and Ay, 4, + v for v € RT, we can rewrite
(1.6) as follows.
(%] .
log Det (Apr + v+ A, Anfpiyo TV +A) = ij(u)/\j + log DetR(v + A). (3.6)
§=0
Since Anr + v, A,y + v and R(v) are invertible operators, we have
log Det (At + v, A,y vo V) = mo(v) + log DetR(v), (3.7

where 7o (v) is the polynomial part in (1.6). Similarly, we can express mo(v) in terms of coefficients
in Lemma 2.3. For instance, mo(v) = 0 when dimM is even.

We next discuss what data determines my. We consider the collar neighborhood N_;; of Y and
denote by Anx_,,, An_, 4, AnN,, the restrictions of Aps to N_11, N_1,9, No,1. We impose the
Dirichlet boundary condition on each boundary and denote the realizations by An_, | ~o, AN_ 0,70
ANy v~ In this case (1.6) can be written by

log Det (AN_, 14y +A) —log Det (An_, oo +A) —log Det (A, 4o + A)
(%] _
= Y ®N +logDetRy_,,()), (3.8)
3=0
where Ry_, ,(A) = Qn_, ,(A) + Qn,,(A) is defined as follows. For f € C*(Y), choose ¢ €
C>*(N_1,), ¥ € C*°(Np,1) such that
(AN,LO + )\) (b = Ou (ANQJ + A) dj = 07 ¢|Y71 = w|Y1 = 07 ¢|Yo = ¢|Yo = f
We define
Q]\LLO()‘)JC = (au¢) |Y07 QNO,I()\)f = (audj) |Yo' (39)
Then Qn_, ,(A) and Qn, , (A) satisfy the equations (2.3) and (2.4), respectively, which shows that
QN_,0(A) (N, (M) has the same asymptotic symbol as Q1 () (Q2())) and hence R(A\)—Rn_, , ()
is a smoothing operator. This fact shows that log DetR(\) and log DetRy_, ,(A) have the same
asymptotic expansions as A\ — oo. In particular, they have the same zero- and log A- coefficients,
which leads to the following result.
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Corollary 3.7. The coefficients p,, and q,, in Corollary 3.4 are determined by the data on a
collar neighborhood of Y .

Finally, we discuss the behaviors of log Det(Ayr + A, Aoy + ) and log DetR(X) as A —
0 when oess(Aps) has a positive lower bound. Let {¢1,---,¢} be an orthonormal basis for
kerAn N L2(M) with | = dim kerApy N L*(M). We put ai;; = (¢ily, ¢jly)y and Ag = (a;j).
Then, Lemma 2.2 in [15] shows that

log Det(Anr + A, Arfoiyo T A) = L-log A +1log Det(Anr, Anroyiiyo) +0(N), (3.10)

as A — 0. We assume that dim kerR = [, equivalently kerR = {¢|y | ¢ € kerAp N L?(M)}. This
is the case when M is compact. Then, the following equality can be shown as the same way as
Theorem 2.4 in [11].

log DetR(A) = 1-log A —logdetAg + log DetR(0) + o(A). (3.11)

Combining these two equalities we have the following result.

Theorem 3.8. We assume that 0.ss(Anr) has a positive lower bound and dim kerAy NL? (M) =
dim kerR. Then,

log Det(Anr, Anoy,vo) = o — logdetAg + log DetR(0).

§4. The value of relative zeta functions at s =0

Theorem 3.6 gives some informations about the value of relative zeta functions at s = 0 and in
this section we discuss this fact. Corollary 3.5, Theorem 3.6 and Corollary 3.7 lead to the following
result.

Theorem 4.1. Let (M, g), Mcy: be as above and g, Apr be given by (1.1), (1.2) on N. Suppose
that dimM =m+ 1, ¢o = %h’(())2 + Zh"(0) and | = dimker(Ay + co). We assume that either
M is compact or complete with oess(Arr) having a positive lower bound. Then :

(1) If dimM is even, ¢ (0; Anrr, Ay, o) + dimkerAy = 0.

(2) If dimM s odd, ¢ (0; Anr, An,ye ) +dimkerAy = 5 E E)%J),Jaj m _j, which is deter-
mined by the data on a collar neighborhood of Y .

(8) If dimM =3, ¢ (0; Anr, Anoyyyo) T dimkerAnr = 5 (CAy4¢,(0) +1).

1
2
(4) I dimM = 5, € (0 Aty Antyyy0)+dimberAns = 3 (Cayres (0) +1+ 2552 (17(0) = H'(0)?)).

Remark : Since the coefficient 6y in (3.2) vanishes when dimY is odd, the assertion (1) holds
generally.

As an application of Theorem 4.1 we consider the case of h(u) = 0, i.e. the product metric on
N and Ap|y = =02 + Ay. Then it is known that mp = —log2 - (Ca, (0) + dimkerAy) and it is
not difficult to check that aj=_; =0 for 1 <j <3 — 1, which gives the following result.
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Corollary 4.2. Suppose that M is a compact closed manifold and the metric g is the product one
on N so that Ay = —02 + Ay. Then :

(1) C(0; Ans, Antoyi o) + dimkerAny = 3 (Cay (0) + dimkerAy).

(2) If dimM is odd, a,,, . (0) = =3 (Cay (0) + dimkerAy).

(8) If dimM is even, Ca,y, ., (0) = i (CA% (0) + dimkerAﬁl), where M, is the double of M, and

AMI is the natural extension of Any, to M.

Let M be the compact manifold with boundary Y and Mi . = M; Uy [0,00) X Y. We give
the product metric on the cylinder part of M; o so that on the cylinder part A Mo = —65 + Ay
Suppose that pg > 0 is the smallest positive eigenvalue of Ay and we denote the scattering matrix
by

S(s) : kerAy — kerAy, [s| < /-

Then it was shown in [16] that
_+(_~n2
Tr <etAM1,oe —e t( aquAY)[O,oo)XY,’YQ) = by 4.0(15*/))7 (4.1)

where by = dimkerAyy, .+ 1 (TrS(0) + dimkerAy) and p > 0. Then we have the following result.
Theorem 4.3.

C(Ov A1\/11,007 (_83 + AY) [07oo)><Y,’Yo)

) 1 )
= (A (0) — dimkerAyy, o + 5 (Cay (0) + dimkerAy) — by

1 1
= (A, o (0) — 2dimkerAny, . + §CAY (0) + §dimker (Id+ 5(0)).

We next discuss the case of the Neumann boundary condition. We still assume the product
metric and product structure near the boundary. Let 91 be the Neumann boundary condition
imposed on the boundary of M; and Aus o be the realization. Then it can be shown by the
method presented in [12] (¢f. [18]) that

(3]
log Det (Anr,,;m + A) — log Det (Ang, vo +A) = ap\F + log DetQ (), (4.2)
k=0

where Q1 () differs from /Ay + A by a smoothing operator and hence log Det of these two op-
erators have the same asymptotic expansions. Since the coefficient of log A in the asymptotic
expansion of log Det (v/Ay + X) is & (Ca, (0) + dimkerAy ), this fact together with Corollary 4.2
leads to the following result.

Theorem 4.4. Let (My,g) be a compact manifold with boundary and the metric g is the product
one near the boundary so that Ay = —02 + Ay . Then :

(1) Cang, 0 (0) + dimkerAns, ;m — Cayy, 4, (0) = % (Cay (0) + dimkerAy).

(2) If dimMy is odd, (A, 5 (0) + dimkerApy, o = 1 (Cay (0) + dimkerAy).

(3) If dimMy is even, Cayy, 5 (0) + dimker Ay, ;= Cay, -, (0).

Finally, we discuss the value of the zeta function associated with a compatible Dirac Laplacian
with the Atiyah-Patodi-Singer (APS) boundary condition on a compact manifold with boundary.
12



Let (M,g) be a compact oriented (m + 1)-dimensional Riemannian manifold and £ — M be
a Clifford module bundle. Suppose that Y is a hypersurface of M such that M — Y has two
components whose closures are denoted by M;, M;. We denote by M.,; the compact manifold
with boundary obtained by cutting M along Y as before, i.e. M., = M; Uy Ms. We choose a
collar neighborhood N_; 1 of ¥ which is diffeomorphic to [-1,1] x ¥ and assume that the metric
g is the product one on N and the bundle E has the product structure on N. Suppose that D,y is
a compatible Dirac operator acting on smooth sections of E, having the following form on N_; ;

Dy = G(0, + B),
where G : Ely — Ely is a bundle automorphism, 9, is the outward normal derivative to M; on
N_1,; and B is a Dirac operator on Y. We further assume that G and B are independent of the

normal coordinate u and satisfy

G'=-G, G*=-1, B*=B, GB=-BG,
dim (ker(G —i) NkerB) = dim (ker(G + i) NkerB). (4.3)

Then we have, on N, the Dirac Laplacian

D3, = -0 + B2
We also denote by Dyys,.,, Dy, (i = 1,2) the extension and restriction of Dy to My, and M.
We denote by II. (IIs) the orthogonal projection onto the space spanned by negative (positive)
eigensections of B and by o : ker B — kerB a unitary operator satisfying

oG =—Go, 0% =Idgerp.

We define the generalized APS boundary condition Il ,-, II5 ,+ by
1 1
H<,a‘ = 1_I< + 5(1 - U)|k€TB7 H>,a+ = 1_I> + 5(1 + U)|kerB

and denote by Dasym_ DJ2\417H<,U— (Do, s D%/IQ’H%#) the realizations of Dyy,, D3, with
respect to the boundary condition I ,- (IIs ,+). Then it was shown in [12] that

%

log Det (D3, rr__ +A) —log Det (D3, 5, +A) = D a1V
j=1
+ log Det (s 5+ (Q1(A) + |B|) s 5+),

%

log Det (D3 xr_ _, +2) —log Det (D3, o, +A) = > azj
j=1

+ IOg Det (H<,U* (QZ(/\) + |B|) H<,U*) 9 (44)

where Q1 () and Q2(A) are defined by the same way as in (1.4). We now consider the first equation

of (4.4) and we can treat the second equation in the same way. As before, log Det (D12\41,H<,(,_ + )\) ,

log Det (D3, ., + A) and log Det (Il 5+ (Q1(A) + |B|) II5 5+ ) have asymptotic expansions for A —

00. Moreover, the coefficients of log A in the asymptotic expansions of log Det (D%/IMHQ,* + /\)
13



and log Det (D3, |+ A) are <<D?\4 (0) + dimkerD%hHQU) and (pz, (0). Now let us

1,H<’U_

consider the asymptotic expansion of log Det (I, ,+ (Q1(A) + |B|) L5 ,+). It was shown in [9]
that
Q:(A) = vV/BZ4+ )X + a smoothing operator, =12,

which shows that log Det (II5 ,+ (Q1(A) + |B|) s ,+) and ilog Det (v/B2+ X+ |B|) have the
same asymptotic expansions. We compute the log A-coefficient in the asymptotic expansion of
log Det (VB2 + A + |B|) as follows.

Lemma 4.5. For 1 <k € Z let us denote fr(s,\) by

_ i % etk g k_—t(B2+))
Fe(s,0) = F(S)/O R (|B| e )dt.

Then the coefficients of log A in the asymptotic expansions of fr(0,X) and —f(0,X), as A — oo,
are zero.

Proof :  We first note that T'r (|B |ke_“32) has the following asymptotic expansion for ¢ — 07
(Theorem 2.7 in [4]).

Tr (|B|keft32) Zb e it i(é’“ 1ogt+d§k))tj. (4.5)

=0

Then direct computation shows that the coefﬁcients of log X in the asymptotic expansions of fj(0, A)
and —(.(0,\) for A — oo are zero and b'%). On the other hand, we note that

1 ik 2
GBI(s) = =% /0 t 1T7‘(|B|ke tB)dt- (4.6)

The equation (4.5) shows that the RHS of (4.6) has a pole at s = 0 with residue 2 F( ) Since ¢||(s)

has a regular value at s = 0, this fact implies that each b,(n) = 0 for k£ > 1, which completes the
proof of the lemma. [

Lemma 4.6. The coefficient of log A in the asymptotic expansion of log Det (v B2 + X + |B|) for
A — o0 is 3 ((p2(0) + dimkerB).

Proof :  We first note that

1 >
C(\/BT,-)\HB\)(S) = m/o 13571 T t(WB*+2+BI) 1t
_ L Nt Ty ot /BTEX
_ F(s)/o t ;}q!TT((\/B pY |B|) )dt
= Zli/ gsta-t Tr((\/BTH—IBI)qe—Qt\/m) dt.
20T Jy

We now set

G(s,A) = L /OO tstatp ((\/BT—F)\— |B|)qe—2t\/32i+k) dt.
0
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In case of ¢ = 0, the coefficient of log A in the asymptotic expansion of —¢}(0,\) for A — oo is
% (¢p2(0) + dimkerB) (cf. Lemma 3.1). For ¢ > 1,

Cals: ) = i(—l)k (D)5 [ e o (VEFR) e ™) a

=0
e () gty [ e

Then Lemma 4.5 shows that each log A-coefficient of —CQ(O, A) is zero, which completes the proof
of the lemma. O

Remark : In the asymptotic expansion of log Det (v B2 + A + | B|), the computation of the con-
stant term given in Section 3 in [10] has some error and we can correct it as follows. In Lemma 4.5,
the constant terms in the asymptotic expansions of fx(0,A) and —f}(0, ), as A — oo, are zero.
Using this fact, we can show that the constant termb in the asymptotic expansions of —({(0, A)
and —(;(0,A) are log2 - (Cp2(0) + dimker B) and — =7 - ((p2(0) + dimkerB), respectively, which

shows that the constant term in the asymptotic expanmon of log Det (v B2 + XA+ |BY) is zero.

We can say the similar assertions for D2 Mo, T1 The comparison of log A-coefficients in the

>0t
asymptotic expansions of (4.4) and Corollary 4 2 leads to the following result.

Theorem 4.7. Let M, My and My be as above. We denote dimkerD3;, dimkerD3; ,

dimkerD]QWQ’H> Loyl I o I, Tespectively. Then :
(1) Cpz, O+l —Cpz, (0) = 7(Cp2(0) + dimkerB).
L 170
(2) If dimM, is odd, CD2 - 0)+lmu_, = 0.
<,07

(8) If dimM is even, CD2 0 )—|—lM1 _ = (p2 (0).
AT o My ,vo
(4) Cpz,(0) =Cpz, . (0 ) CD%V, - +(0) = —lw+imn_ - +lwn, -
<,0 >,0

Remark : (1) The second assertion was proved earlier in the appendix of [17] by the author.
(2) The zeta-determinant of a compatible Dirac operator is defined by

1 i _ mi _
DetDyy — o 452,03 (o3, @10y, @) _ Dotz ¢ (03, © nDM«J))’ an

where np,, (0) is the eta-invariant for Dys (¢f. [19]). The gluing formula for the eta-invariant of a
Dirac operator with respect to the APS boundary condition is given in [6] (or [13]) and the gluing
formula for the zeta-determinant of a Dirac Laplacian with respect to the APS boundary condition
is given in [12] (or [13]). Hence, the assertion (4) together with the results in [6] and [12] completes
the gluing formula for the zeta-determinant of a compatible Dirac operator.

In view of Theorem 4.3 we conclude this section with the computation of the value of relative
zeta function for Dirac Laplacian with the APS boundary condition on a manifold with cylindrical
end. As before, we denote by M o := M1 Uy [0,00) X Y and by Dy, . the natural extension of
Dy, to My . Then,

¢(8, Dy o (=05 + B o,0)xvi, 1)
= C(S’ DJ2\41,oo’ (_63 + Bz)[O,OO)XYfYo) + C(S (_82 + Bz)[O,oo)xY,'yoa (_83 + Bg)[o,oo)xY,H>’a+)

S ) (4.8)

= (5, D3 oo (=00 + B)(0,00)xir0) = 4\/‘r(s+ 1)



Here we used the fact (¢f. [12]) that

1 D(s+3)

—mmgﬂ (s). (4.9)

C(sv (_85 + B2)[0,oo)><Y,’yoa (_83 + B2)[0,00)XY,H>YU+) =

Since dimker (Id + S(0)) = SdimkerB on a manifold with cylindrical end ([14]), Theorem 4.3

together with (4.8) yields the following result.
Corollary 4.8.

¢(0, Dy, o (=05 + B*)o,00)xvmr. 1)

1 1
= Cpz, _ (0) =2 dimkerD3y, _ + = (p2(0) + 5 dimker (Id + 5(0))
1,70 0 4 2
1
= Cpz, _ (0) =2 dimkerD}, _ + = ((p2(0) + dimkerB).
1,70 ) 4
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