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Abstract

The pseudodifferential calculus on a wedge in the form developed by the first au-
thor provides a general framework for the analysis on manifolds with edges. Its
components are (1) wedge Sobolev spaces; (2) wedge algebra of pseudodifferential
operators; and (3) the corresponding space of residual operators. One of the draw-
backs of the theory so far has been that all constructions are performed in a fixed
set of coordinates. While it could, of course, be conjectured that the actual choice
of coordinates was irrelevant, this has never been shown. The present paper is first
in the series of papers intended to examine the invariance. We show that there are
diffeomorphisms of a coordinate wedge which don’t leave weighted Sobolev spaces
invariant, even if they keep the edge. We also indicate a reasonable class of diffeo-
morphisms of a coordinate wedge under which the weighted Sobolev are invariant.
Consequently, our main result just amounts to saying that these weighted Sobolev
spaces make sense on a manifold with edge-like singularities, provided that its tran-
sition diffeomorphisms belong to the above class.
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Introduction

This work presents a first step in a series of forthcoming papers in which we are
going to establish the invariance of the calculus of pseudodifferential operators on
manifolds with edges in the form developed by Schulze [15, 16]. It is devoted to
examining the weighted Sobolev spaces on manifolds with edges which enter the
calculus.

Let L be a Banach space with a fixed Ry action («1)ser, on L. Given any s € R,
the Sobolev space W?(R?, L) is defined to consists of all L-valued distributions u on
R? such that F,_,u € L} (R?, L) and

”671) fy,..,,u“z dr)) i < oo0.

_ 2s
lellwecaey = ([ ()

The function n — (n) entering this definition is a so-called smooth norm func-
tion. This means, it is positive, smooth and equal to |g| for n large enough. The
particular choice of this function does not affect the definition up to an equivalent
norm.

This spaces were introduced by Schulze (see [15] and the references given there)
for constructing algebras of pseudodifferential operators on manifolds with edges.

In order to localize the spaces W*(R?, L) to open subsets of R? we invoke the
standard construction of “loc” and “comp” spaces. Namely, given an open set
U C R?, we denote by W} (R, L) the space of all distributions v € T/(U, L) such
that pu € W*(R?, L) for any ¢ € D(U). And by W;,,,. (U, L) we denote the space of
all L-valued distributions on U of the form u, where ¢ € D(U) and u € W*(R?, L).
Since W*(R?, L) is a module over D(RY), it follows that W¢,. (U, L) consists of all
u € W*(R?, L) supported on U.

The spaces W*(R?, L) are natural generalizations of the usual Sobolev spaces
and possess many common properties. In particular, it is a simple matter to see that
if § : Uy — U, is a diffeomorphism of open sets in R?, then the pull-back operator
8* on distributions induces the isomorphisms

6" : Wi‘oc(UZ! L) - Wfoc(Ul,L),
6%t Wi mp(Uay L) = W2, (U, L)

(see, for instance, Behm [2, p.57]).

In the wedge theory, however, L is considered to be a weighted Sobolev space
on a stretched cone X" = R, x X, where X is either R* or a compact manifold
of dimension n. If it is the case, then W*(RY L) is in fact a function space on

3



4 Introduction

the product X© x R?. (In this way we obtain what we shall call the model wedge
with edge Y = R? and basic cone XU.) Hence one may ask whether W*(R?, L) is
still locally invariant under diffeomorphisms of X© x R?. The answer is negative
in general because the diffeomorphisms of the model wedge “mix” up the variables.
On the other hand, it might be expected that W*(RY, L) is locally invariant if we
restrict our attention to the diffeomorphisms of X© x R? which preserve the edge
Re.

In this paper we first construct a diffeomorphism é of the model wedge such
that & preserves the edge R? while §* does not preserve the Sobolev spaces on
XU x R?. The idea consists of “mixing” up the variables of X and Y, namely
§(t,z,y) = (t,y,z). In spite of this explicit form of &, the proof of the non-invariance
of Sobolev spaces is not obvious because the group action occuring in the definition
of W*(RY, L) evokes many technical troubles.

On the other hand, there is a reasonable class of diffeomorphisms of the model
wedge consisting of those which preserve the typical differential operators on the
wedge (so-called edge-degenerate operators). Roughly speaking, these diffeomor-
phisms are close to those acting separately in (¢,z) and y. More precisely, they are
of the form

(t,z,y) = (r(t,z,y),x(t, z,¥),v(t, 2,¥)),
where
7(0,z,y) = 0,
v(0,z,y) does not depend on x.

For such diffeomorphisms, we prove the local invariance of Sobolev spaces on
the wedge under changing the variables.

It is worth pointing out that the wedge theory contains the theory of boundary
value problems as a special case corresponding to n = 0. Namely, in the case of
boundary value problems the edge is just the boundary, and the model cone R, is
the “inner normal” to the boundary. By the above, the Sobolev spaces entering this
special case are locally invariant under all diffeomorphisms of the model cone. So,
these spaces make sense on any manifold with boundary.



Chapter 1

Cone Sobolev Spaces

1.1 Sobolev Spaces on a Coordinate Cone

1.1.1 Model cone

Let X be an open subset of the unit sphere S™ in R!*". We tacitly assume that X is
different from the whole sphere S™, and write z = (z1,...,z,) for local coordinates
in X.

By a model cone is meant the geometrical cone in R'*" given by

X2={Ap: 120, pe X}.

(Here A p denotes the A multiple of the vector p under the standard vector structure
on R'*".)

In the sequel, int X2 stands for the set of the interior points of X2 in R!*",
e, mtX2={Ap: A>0, pe X}.

The natural volume form on X2 is that induced by the Lebesgue measure
dv=dz A...ANdz, on R!t",

1.1.2 Polar coordinates

Given any point z € X2, the pair (¢,p), where t = |z| and p = {p can be considered
as polar coordinates of z.
Under the polar coordinates, the cone X# can be identified with the cylinder

XU =R, x X.

(One should however have kept in mind that the vertex of the cone is blown up to
the base {0} x X of the cylinder.) This is a local description of what we call the
passage to the “stretched object.”
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We write int X© for the set of the interior points of X© on R x 5%, i.e., int X© =

Ry x X. Then
(t,z) = tp(z)

is a diffeomorphism of int XB — int X2,

For a distribution u in the interior of X2, we denote by m*u € D’(int XU) the
pull-back of u under .

Thus, instead of analyzing functions in Euclidean coordinates of the cone X4
whose boundary is

{0yu{ip: A >0, pe dX},

we may analyze those in the polar coordinates of the cylinder X® whose boundary
is
({0} x X)U (R4 x 3X).

To have inherited the Riemannian structure on X under this passage, we need
the following elementary result.

Lemma 1.1.1 We have dv = t" dt dz, where dz is the area form on X induced
by the standard area form on the unit sphere.

Proof. Indeed,

dzy A ... ANdzyyp

=d (|z|€-|) A...Ad (|z| zltlﬂ)

= (ﬂ d|z| + |zldz—‘) A A (Z“" d|z| + |z|dz‘+")
|| 2]

2] Ef

14n

= |z|" dl2| 2 "’ Er |m

|z

where dﬁ[[_]] 1s the wedge product of the differentials dl‘-le, ceey d%—;"ﬁ one after another

excepting dlfzjl-. Hence our statement follows.
a

1.1.3 PFuchs-type operators

Given a differential operator M(z, D) = ZM(,,._ M,(z)D* of order m with C* coef-
ficients on X &, we are going to write it in the coordinates (t, z).

Lemma 1.1.2 For every j =1,...,1 +n, we have
d g 1 0
— =p, =+ - — 1.1.1
9z; ot ot;’ (1.1.1)

where % is a tangential vector field on S™ with C* coefficients independent of t.
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Proof. Let p = p(z),...,2,) be local coordinates on the sphere S™. Here, p is
a smooth function from an open set U/ in R" to 5",
We have 2z =t p(z), whence

Moreover, it follows from p? + ...p,, = 1 that p' 22 = 0, where p! Ls the

transpose line to the row vector p. By Cramer’s rule, the inverse matrix for FTem) is

of the form

ap\ 1. . 3
where (55) - 1s the left inverse for -55.

Thus, the chain rule yields

a a 1 .
— =p; =+ = 1 =1,...
3Zj pJ at + i J(I:’DI)& J 19 ,1 +Tl,

t;(z, D;) being a first order differential operator on U whose coeflicients are inde-
pendent of ?.

The proof above gives more, namely ¢; is actually independent of which local
coordinates on 5™ we choose to define it. Hence the lemma follows.

a

Lemma 1.1.2 shows that the differential operator M(z, D) transforms into an
operator of the form '

PM (2,00 D) = Y Fagaltin) Dpe (0.)

ap+lal<m

on the cylinder 2(‘_:'. (This operator m#M is called the pull-back of M under =.)

The coefficients M, can be computed from (1.1.1) and M,. Notice that they are
smooth up to ¢t = 0, provided that M, are.

Lemma 1.1.3 For every non-negative integer N, there are (unique) constants
cn; and cy; such that

(D) = N:lcle 'Dj,
INDY = TN & (LD,

=1

Proof. Use induction on N and the obvious equality

(tD)) (¢ Di) = /DI + /T DIt
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Using this lemma we may also write

Y 1 ¢} Cr
WHM((t7z)r(Dh D;)) = +|z:|< Masa(t, ) t00+|c~|(tDt) ° D,
oo+|a|<m

the coefficients Hao,o, having been slightly modified.

Definition 1.1.4 By Fuchs-type operators on X° are meant differential op-
erators of the form & YTL, M;(t)(—t0:) with operator-valued coefficients M; €

Cea(Rs, Di [ (X).
(Here Di ff™7(X) is the Fréchet space of all differential operators of order m—j
on X.)

As above, the analysis of differential operators in polar coordinates leads to
Fuchs-type operators.

1.1.4 Transformation of Sobolev spaces

In a similar way we may look at the function spaces. On the whole, we are interested
in Sobolev spaces H*(X%) on the cone X2,

We assume that X lies in a coordinate patch on S$™ with local coordinates
p = p(z). We begin with an example.

Example 1.1.5 Let n = 1. Use the standard polar coordinates

P1(¢) = cos ¢,
{ p2(p) =sin¢ (¢ € [0,2r))

on the unit circle. Then

B _p 8 _ 1,8 8 _ N 9
8z, _plat rang’ hil rar - 21321 +223z2’
B % w8 while § & %8
3z — P23 Ty P13g 36 23z, l5z;°

Given any u € H?(X%), we denote by i(r, ¢) = u(rp(¢)) the corresponding pull-back
function on the cylinder XC. An easy calculation shows that

“u”iﬂ(xﬁ) = _/;,A (Z IDQUIQ) dv
|or|<2
—_ ~12
= [ (Il
1 ~ ~
+= (D) + | D)

1 - ~ ~ ~ ~ -
+- (D, Y@~ (r D)l + 2|(r D) Dgiii— Diil* + | Dii+(r D, )al?) ) rdrds
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while

1 oo ruor |2
SGeta) |(TD,) °D¢u| ) rdrd¢

e = [ | £

ogta<2
= [ (W

Xa
oul’  |ouf
+ 821 322
T T WL
022 |z|? 021 |2]* 0=
+

vz Ou 2z, Ou
023  |2|?0z1  |2|* 0z

2

2 2
d*u z9 Ou 21 Ou

9707 2P 0m | |2} 05

)

Hence it follows that for any £ > 0 there are positive constants ¢; and ¢; depending
on g, such that

e flillyzxoy < ullrexey < e fullpa(xe)

whenever u € H?(X%) has its support away from B(0,e)N X, where B(0,¢) is the
ball of center 0 and radius ¢ in R?.
O

(Given two norms || - ||y and || - ||2 on a vector space L, we say that these norms
are equivalent (written ||-||1 ~ || - [|2), if the ratio H%Hf is bounded uniformly inu € L
both from below and above by positive constants .)

We conclude therefore that the norm ||7*u||42(xo) sharply catches the behavior
of Sobolev functions u € H*(X#) away from any neighborhood of the vertex t = 0.

It is clear that this example is of general character.

Definition 1.1.6 Given any s € Z,., denote by H*(XD) the set of all distribu-
tions u in the interior of XU whose derivatives up to the order s are locally integrable
with respect to the measure t"dtdz and satisfy

1 . .
Nullzexo) = ]XU ( 3 prrveeed [O20) °Dgu|'~’)t dtdz < oo.

agtla|<a

For integer s < 0, we define the space H*(X"Y) by duality as H*(X®) =
Ho2p(XT) where the subscript “comp” refers to functions of compact support in

the cylinder. Further, for fractional s, the space H*(X%) is defined by (complex)
interpolation.

Lemma 1.1.7 Let s € R. To any € > 0, there correspond positive constants ¢,
and c; depending on ¢, such that

cr |m ullye xoy S Hullasxay < 2 llmull3o(xoy

whenever u € H*(X?®) satisfies supp u C X2 \ B(0,¢).
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Proof. For non-negative integer s, the proof is similar to that given in Example
1.1.5. All of we need in addition is Lemma 1.1.2.

If we proof the statement for negative integers s, the lemma follows by interpo-
lation properties.

Let f € H*(X#) vanish for t < €. Pick a function x € C2(R) with x(t) = 0
for t < e and x(t) = 1for t > 2e. Then f = x(|z[)f in X2,

Given any function u € HZ?,,(X*?), the product x(|z|)u is supported away from

the ball B(0,%) in X2. From what has already been proved, it follows that there
are constants c;, ¢ > 0 independent of u, such that

e llx 7 ullyxoy < lIx(lzDullgax ey < c2llx 7 ullye(x0)-

By definition,

[{f,u)]
| fllgexay = Sup )
wEH omp (X 2) ”u”H—'(X“)
C o ap  x(zbul

UEH mp (X 2) ||u||H-'(xc-) '

Since ||x({z)ull g-s(x 2y < ¢ ||u)jr-s(x 2y with some constant ¢’ depending only on x,
we conclude that

”f”ﬂa(xA) < c sup l(f}X(|Z|)u)|
uEH Gmp(X 2) ||X(|Z])UI|H_,(XA)
¢y lrrxmu)

€l ueMt, (X 8) lIx 7wl 30 xy
d . .
< = i7" fllnsxoys

7* f being the pull-back of f in int X under the polar coordinates.
Interchanging H*(X®) and H*(X"), we can see in the same manner that

li=* /1

where ¢” depends only on y. This is the desired conclusion.

nox0y < e | fllasxay,

1.1.5 Mellin transform

We leave it to the reader to verify to what extent the norm ||7*u||3.(x0) controls
the behavior of Sobolev functions u € H*(X?) near the vertex t = 0. Our next goal
is to present a general technique for testing the behavior of functions on X© close
tot =0.

On the real axis R, the local regularity of a function u(t) near t = 0 can be
characterized by the order of growth of the Fourier transformation of wu at infinity,
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where w(t) is a cut-off function near zero. However, the Fourier transform is no
longer applicable if u is given on the half-axis R, only.

Nevertheless, we could pass to the new coordinate ¢ = ¢~ to obtain a function
u(e~7) that is already defined on the whole line R. OQur task consists then of testing
the regularity of u{e™") at infinity r = +oo. To this end, we may again invoke the
Fourier transform F,,., on R.

The change of variables e~

r

— ¢ implies

[o e

Fomsile™) = [ e/ Tru(e)ar

-0

- fwtmpu(t)%.

0

In this way we obtain what is known as the Mellin transform. Namely,

dt

? C’
r z €

Mo (u(t)) = jﬁ “ ()

where we first assume u € CZ, (R,). Obviously, Mu is an entire function in the
complex plane.

Fortunately, the Mellin transform is related to Fuchs-type operators in the same
manner as the Fourier transform is to the usual differentiation operator.

Lemma 1.1.8 For anyu € C2, (Ry), it follows that

comp
M (—td)u = z Mu.

Proof. Indeed, integrating by parts yields

= dt
Mor((—tB)u) = /0 e (—t0)u
= —tule+ [ (@) ud
= zM,..(u),

as desired.

a
The second basic property is that multiplication of u by the weight function ¢7
is interpreted under the Mellin transform as the displacement of the reference line

by .

Lemma 1.1.9 For any vy € R, we have

M(Ow) (V=Tp) = M(w) (v +V=Tp), peR.
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Proof. Indeed,

M) (2) = [ () 5 = M) (= +),

as desired.
O
Givenavy € R,set I, = {z € C: Rez = v} and consider the “weighted Mellin
transform” M,u = Mu |r*‘

Lemma 1.1.10 For any v € R, the M, extends by continuity to a unitary
isomorphism

My o LRy, t727dt) S L* (T ). (1.1.2)
Note that by the unitary property of M., is meant that

(M.,u, M.,U)Lz([** ) = 27 (u U)Lz(g+ t=27dt)

for all u, v € L*(Ry,t™27dt).
Proof. From u € C%,

comp

(R,) it follows that

sup (1 + J21)" [Mqu ()] < o0
zer*_ﬁ

for all v € Z,. Hence (1.1.2) is an easy consequence of the relation between M and

the Fourier transform on R, via the substitution ¢ — e~7, and of Parseval’s formula.

a

The following is actually an equivalent formulation of the Fourier inversion
formula.

Lemma 1.1.11 The inverse of (1.1.2) is given by the formula

lf(t) = o ‘/—— ﬁzf(z

Proof. Indeed, given any u € L*(Ry, t‘z"’dt), we have

oo dt
Mu(p) = / Ty () =
0
= Frp (e u(e™)),
whence by Fourier’s inversion formula

M (M) ()

~

— t-@-ﬂ

% / V-t (—(%—1)ru(e-r))dp

= u.
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This proves the lemma.
O
Lemmas 1.1.8 and 1.1.10 imply that M(—t8,) = zM, defined, for instance, on
all u € L*(R,) with td;u € L*(R4). This leads to the notion of Mellin pseudodiffer-

ential operators
opm(P)u (t) = ML p(t, 2)Mozu(t)
(see Schulze [15, 16]).

1.1.6 Sobolev spaces based on the Mellin transform

We want to define function spaces on X© based on the Mellin transform along R,
and the Fourier transform locally along X.

Definition 1.1.12 Let s € Z, and v € R. Denote by H*"(X") the set of all
distributions u on int X© whose derivatives up to order s are locally integrable with
respect to the measure t"dtdz and satisfy

] [= ] o n
el x ) :=j0t27 ( S |(tDy) °Dzu|2)t ditdz < oco.

X og+fo|<s

For integer s < 0, we define the space H*”(XP) by duality as H*"(XP) =
H2(XT) where the subscript “comp” refers to functions of compact support in
the cylinder. Further, for fractional s, the space H>7(XP) is defined by (complex)
interpolation.

Lemma 1.1.13 For any v € H*"(XY) whose support projects onto a compact
subset of X, we have

1 _
ell3n(xo) = = fr e fn (L [z + (1) | Mo s Forgil]” dzdé

up to a factor in the range [% (2_,)11'4—” W]

Proof. A familiar argument shows that it is sufficient to prove the statement
for integer s > 0 only.

If s € Z,, we transform the norm || - ”31-.-1()(0) by using the Mellin transform.
Namely, Lemmas 1.1.10 and 1.1.8 imply
llBoxey = X [ do [ I(tD)™Dzuf*+70-Day
ao+ja|<s L 0
|

= ¥ j dz [ IMea(tD) Deul dz

aotialcs BT 2TV =1 Ty
1 / 2

_ dz / 12°° My, D%ul? d.

0‘0+|0|SJ 277 \/ _l Fl_.;ﬂ_ﬁ Rn £
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Thus, applying Parseval’s formula yields

2 . 1 - 1 ag pa|2 ~12
Iliesces) = Gy 77 / - / ( T | I)IM:.-.zfz._.guI dzde.

aot|a|<s

Since

1 s < s
SAFP+EN < 30 2206 < (L + [l + [e)’,
: aptlal<s

we conclude that

! ! ! 2 2\a 2
8! (21T)1+n =1 /rl—tﬂ_-y '/n,,(l + ]Zl + |€| ) lMtHzfa:o—bEul dde
S ”u”‘ita,'r(xﬂ)
1

1
. (2m)1+n /-1 [‘ /p“ + 212 + 1€7)” |Mh—~z}‘:m-.ful2 dzdf.
H4n oy

This is precisely the assertion of the lemma.

1.1.7 The space K*"(X5)

The analysis on the cone employs the Mellin transform and weights only near the
vertex that corresponds to a neighborhood of { = 0. The weight factor =27 in
Definition 1.1.12 affects the space also for t — oo. It will be advantageous to
introduce another variant of spaces on X© that refers to the Mellin transform and
to weight factors only near ¢ = 0.

The idea is to multiply H>7(X"Y) by a cut-off function w and then to add
(1 —w)H(XD).

Here, by a cut-off function is meant any w € C*(R,) with w(t) = 1 close to
t =0 and w(¢) = 0 away from a neighborhood of t = 0.

Lemma 1.1.14 Let w € C%, (Ry). Then the multiplication operator u — wu

is a continuous mapping of H*(XY) — H*7(XO).

Proof. The proof is straightforward.
O
If w is a cut-off function, then the difference x = 1 — w belongs to C=(R),
vanishes near t = 0 and is equal to 1 away from a neighborhood of ¢ = 0. In this
way we obtain what will be referred to as the ezcision function.

Lemma 1.1.15 Let x € C*(R,) vanish near t = 0, and let the derivatives of
X be bounded at infinity. Then the multiplication operator u — x u is a continuous
mapping of H*(X®) —» H*(XD).
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Proof. The proof is straightforward.
O

Having disposed of this preliminary step, we can now define our main Sobolev

space K*7(X0).

Definition 1.1.16 For s,y € R and w € CZ,,(Ry) a cut-off function, let
KY(XP) = wH(XP) + (1 —w) H(XOD).

We topologize £*7(X®) by the norm

lullcagxey = inf - (lwleaqeo) + (1= @)uallexa) -

Lemma 1.1.17 The space K*7(X®) is independent of the particular choice of
the cut-off function w up to an equivalent norm.

Proof. By the above, it is sufficient to prove the statement for integer s > 0
only.

To this end, let w; and w; be two cut-off functions. Let w;(t) =1 for ¢t < a; and
wi(t) =0 for t > A;, with 0 < a; < A; < 0.

We assume that v = wu; + (1 — w)u, for some functions u; € H*7(X") and
uy € H*(XP). Fix a cut-off function w which is equal to 1 in a neighborhood of
[0, A3), and an excision function x which is equal to 1 in a neighborhood of [a3, 00).

Then

u = wu+(l —wyu
wa(wu) + (1 — we)(xu).

We have
||‘-”“||wn(x0) < ||w°-’1“1||w-v(x0) + f|lw (1 = wl)“?"wn(xﬂ)-
By Lemma 1.1.14,

'
! ”wlul"wn(xu)a

llw wiu|lpemxoy <
lw (1 —w)uallpenxay < € (1 = wi)uallyga(xoy,

where ¢| depends only on w, while ¢}, depends on w and a; (but not on u).

On the other hand,

Ixullyoxoy < Hxwrtllyaxoy + lIx (1 = wi)uallyexo),

and Lemma 1.1.15 shows that

¢f llwiwy ll#s.v(x D)5

¢z (1 = wi)ug|lps(xay,

||X°-’1“1||u=(xﬂ)
lIx (1 ~ wi)uq|

IA A

H2(XT)



16 1 Cone Sobolev Spaces

where ¢ depends on x and Aj;, while ¢ depends only on y.
We have thus proved that wu € H*7(X") and xu € H*(X"Y). Moreover, we get

inf (v llagenxoy + (2 = w2)vallagexoy)

uz=wp v +{1~w2)v;
< lwz(wu)llyoaxoy + (1 = w2)(xw)li3s(x0)
< const(w;) ((0'1 + ) lwrus |lgegx oy + (€ + ) (1 — wa)ug|

He(x9)) 5

the constant ¢ being independent on u.
Interchanging w, and w; we obtain a reverse estimate, and the proof is complete.
a
It is worth pointing out that the topology of X*7(XD) is again generated by
the Hilbert inner product

(u,v))cm(xn) = (wu,wv)u.n(XU) +((1 = wju, (1 - w)”)Ho(xD)-

1.1.8 Weight shift operators

By a weight shift operator of order p € R, is meant any positive function on Ry of
the form s,(t) = t?w(t) + x(t), where w is a cut-off function, and x is an excision
function.

In this subsection we show that the weight shift operators form an algebra, i.e.,
they are kept under multiplication and division.

Lemma 1.1.18 If s, is a weight shift operator of order p; (1 = 1,2), then s,,s,,
ts a weight shift operator of order py + p,.

Proof. Fori = 1,2 let s,, = t?w; + x;. Then s,,s,, = t**1%2w 4 x, where

w = wws,
X = tPwix + tPwrxt + Xixa-

It is evident that w is a cut-off function, and x is an excision function. This
completes the proof.
0

Lemma 1.1.19 If s, is a weight shift operator of order p € R, then i is a

weight shift operator of order —p.

Proof. By definition, there are a, A > 0 with a < A, such that s,(¢) = ¢ for
t € [0,a], and s,(t) =1 for ¢t € [A,00). Pick a cut-off function w with a support on
[0, A), such that w(t) =1 for t < a. Let x be defined by

Sp(i) = t-pw(t) + X(t), te R+'
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We check at once that y is infinitely differentiable on R, vanishes on the
interval (0,a], and is equal to 1 on the interval [A,c0). In other words, x is an
excision function. This completes the proof.

O

1.1.9 Properties of K*7(XD)

Here are some elementary properties of the space K*7(X®). They go back to the
books of Schulze [15, 16].

Proposition 1.1.20 Let s,y € R. For any £ > 0, there are positive constants
¢, and ¢y depending on €, such that

c1 ||ullygexay < lullconxoy £ callllysxoy

whenever u € H*(XO) is supported away from [0,¢) x X.

Proof. Pick a cut-off function w with a support on [0,¢). Then
u=wu+(l—wu=(1-wpu on X"

To complete the proof, it suffices to use Lemma 1.1.17.

O

Our next result justifies the term “weight shift operator” to some degree.

Proposition 1.1.21 Let s, be a weight shift operator of order p € R. Gliven any
3,7 € R, the operator s, acts continuously in the following mapping:

s, 0 KPM(XEY S Kot (x9), (1.1.3)

Proof. By interpolation and duality arguments, we need only consider the case
when s € Z,. For such s’s, however, the proof of the continuity of the mapping
(1.1.3) is straightforward by Lemma 1.1.17. The only point remaining concerns the
invertibility of this mapping, which is a consequence of Lemma 1.1.19 and what has
already been proved. '

a

The following result shows that the norm || - {|3s+(x0y controls the behavior of
functions u € X*7(XO) near t = 0 only to a limited extent.

Proposition 1.1.22 For any u € K*"(X9) whose support projects onto a com-
pact subset of X, there is a sequence {u,} in C2_ (int XO) such that

comp

lu—wflconxmy =0  asv— oo
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Proof. Pick a cut-off function w which is equal to 1 on the interval [0, 1). Write
u=1u +u" where v’ = wu and v"’ = (1 — w)u.

We first approximate the function v” in K*7(X") by elements of C3, (int XO).
Since u” is supported on the set [1,00) x K, where K is a compact subset of X, we can
invoke the fact that C* functions of compact support are dense in the usual Sobolev
space H*(R'*"). Using Lemma 1.1.7 we find a sequence {u} in CZ,(int XO) such
that each u! vanishes for ¢t < ; and |lu” — Uy |lys(xo) — 0 as v — oco. Proposition
1.1.20 now shows that {u”} converges to u” in the norm of K*7(X"), as desired.

It is a more delicate problem to approximate the function u’ in the norm of
K*7(XB) by C* functions of compact support. Proposition 1.1.21 enables us to
assume without loss of generality that v = 0.

By Lemma 1.1.13,

s ~ln. o, 2
/2 0y ~ /n% /n?a + 02+ KB | Frropmtogy (5w (e, )| dpdg, (1.1.4)
with the symbol ~ denoting here the equivalence of norms. Hence it follows that
e u(e™", z) € H*(R! x RY).

As C*°

comp
converging to e~ 3 w/(e™", z) in H(R} x R?). We invoke equality (1.1.4) again to
see that the sequence

(R'™) is dense in H*(R'*"), there is a sequence {v,} in C%, (R x X)

comp

u(t,z) = A v(—Int,z}, v=12,...,
converges to u’ in the norm of H*°(X") as v — oo.
Ast > —Intis a proper mapping of Ry — R, it follows that u}, € CZ,(int X7)
for all ». This completes the proof.
O

1.2 Invariance under Automorphisms of the Cone

What we want to treat in this section is whether the cone Sobolev spaces K*(X©5)
are invariant under automorphisms of X2, which preserve the vertex. To this end,
we first look carefully at the properties of such automorphisms.

1.2.1 Properties of the automorphisms of the cone

Let X2 and Y2 be two model cones in R'*", with X and Y open subsets of the
unite sphere.

By a diffeomorphism of these cones is meant any diffeomorphism w = é(z) of a
neighborhood of X2 to a neighborhood of Y2 in R'*", such that §(X2) = Y2,
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If w = 6(z) is a diffeomorphism of X® — Y2, then § acts smoothly near the
vertex of X©. Moreover, a familiar topological argument shows that § maps the
vertex of X2 to that of Y2, i.e., §(0) = 0.

Composing & with polar coordinates z = tp(z) in X® and w = 7¢(x) in Y&,
we obtain a diffeomorphism

|
-..‘
—
L
8

{ ; ; x(t,x)),

of int XO — int Y9, where

7(t,z) = |6(tp(=))l,

F) x
g(x(t,z)) = peEal

Since the polar coordinates are “singular” at the origin, it may happen (?)
that this diffeomorphism (denoted by 5) does not extend to a diffeomorphism of
neighborhoods of the stretched cones on R x 5". However, it is clear from the
construction that gpreserves the base of the cylinder, i.e., 7(0,z) = 0 for all p(z) €
X.

By a diffeomorphism of the stretched cones, we shall now mean any diffeomor-
phism & of a neighborhood of X9 to a neighborhood of ¥2 in R x S™, such that
6(X9) = YO,

Fix a diffeomorphism § = (r,x) of X% — YO. By definition, & acts smoothly
in a neighborhood of the base of XU. Moreover, it is clear by topological reasons
that & maps the base of X7 to the base of YU,

Lemma 1.2.1 Given any R > 0 and compact set K C X, there ezists a constant
¢ > 0 such that

c<|J(t,z)| <

[T Bl

for all (t,p(z)) € [0,R] x K,

where J = det g(::i‘ is the Jacobian of §.
Proof. By condition, %&%} extends continuously to a non-singular matrix in a
neighborhood of the compact set [0, R] x K on R x S™. Hence the lemma follows
by a familiar argument.
a
We now invoke the condition “r(0,z) = 0 for ell p(z) € X” in deriving the
following main property of 3

Lemma 1.2.2 Assume that K is a compact subset of X. There are an R > 0
and a C* function F with bounded derivatives on [0, R] X K such that

r(t,z) =teFD  for all (t,p(z)) €0, R] x K.
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Proof. Indeed, 7(0,z) = 0 implies

"(t2) = [ or(0t,z)do
t/ol %(ﬂt,m)d(?.

I

We are going to set

F(t,2) = In /0' ‘?;(eu z) do. (1.2.1)

The only point remaining concerns the behavior of the derivative 22 3¢ for ¢t > 0 small
enough. The task is to show that this derivative is bounded from below by a positive
constant.

As the Jacobian matrix
is non-singular in a neighborhood of X% on R x S" and ¢ (0 z) = 0, we deduce
that a" L # 0 for all p(z) in a neighborhood of K on 5™. Even 52(0,z) > 0, since the
R+-d1rectxon is preserved. Hence it follows by the compactness of K that there are
positive constants R and ¢ such that

>
SRR

ar
5<—a—t-(t$)

<1
€
Thus, the function F given by (1.2.1) possesses all the desired properties, and
the proof is complete.

for all (¢,p(x)) € [0, R] x K.

O

1.2.2 The invariance

Every function u € K*7(Y?) defines a continuous linear functional on €2, (int Y7,
and so is a distribution in the interior of Y. For this reason, given any diffeomor-
phism §: X9 > YY, we may define the pull-back 6*w = u o0& of u under & in the
usual way. The 6" is a distribution on int X9, and the question arises whether it
still belongs to K*7(XU).

The following simple result seems to be first proved in Schrohe {14].

Theorem 1.2.3 Let & be a diffeomorphism of X2 — YO. Then §*u € K*7(X9)
for any u € K*V(YD) vanishing away from a compact subset of YO.

Proof. In view of interpolation and duality we may assume that s € Z,..

Given a function u € IC"'(Y':') of compact support, we pick a compact set
K C X such that §~ Ysuppu) C Ry x K. Hence it follows that the pull-back §*u of
u is compactly supported in R, x K.
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Let § = (7,Xx), and let R > 0 be the number of Lemma 1.2.2. Thereisan A > 0
such that from (t,g(a:)) € Ry x K and 7(¢,p(z)) € [0, A] it follows that t € [0, R).

Indeed, since & is continuous on X7, there is an A’ > 0 such that 7(¢,p(z)) €
[0, A] for all (¢,p(z)) € [0,R] x K. As §~ -1 is also continuous, we deduce that there
is an R’ > R such that from (¢,p(z)) € Ry x K and 7(t,p(z)) € [0, A"] it follows
that t € [0, R']. Denote by A” the infimum of the function 7(¢,p(z)) on [R, R'] x K.
Clearly, A” > 0, since otherwise we had 7(¢,p(z)) = 0 for some t # 0 and p(z) € K.
If A” > A’, we take A = A’; otherwise we let A be any positive number less than
A”. Now it is a simple matter to see that A possesses the desired property.

Pick a cut-off function w which is equal to 1 for 7 < a and to 0 for 7 > A, where
0 <a< A. Write u = uy + u with u; = wu and u; = (1 —w)u.

The function u; € H*(Y®) is supported away from [0,a) x Y. Since the invari-
ance of the usual Sobolev spaces is well-known, it follows from Lemma 1.1.7 that
g‘u_g € H*(XY), provided that either u vanishes outside of a compact subset of YT
or § behaves well at the infinity of XO. If it is the case, then Lemma 1.1.17 shows
that in fact §*u; € K*7(XU) because 8*u, vanishes for ¢ > 0 small enough.

It remains to prove that 6*u; € K*7(XP). For this purpose, we shall write u
instead of u; and assume that u is supported on [0, A] x Y.

The change of variables (t,z) = §~!(r, x) enables us to write

lluo 5”31..-;()(0)
1 ~ 2
= [ | X |@D)eDs (uod)| | trdtde

- 2
(6-1).y08 t aot|a]|<s

~ |2
= 0.AlxY 1-21( '1) (|J|-le(2‘v—n)F Z I(tDt)aoD: (u05)| ) drdy,

op+|of<s

the last equality being a consequence of Lemma 1.2.2.
On the other hand, applying the chain rule and Lemma 1.2.2 yields

t%(u 08) = (1 +t%1ti) (ra%u) 08+ Z‘aa? (g—;) 08,
am'(uoﬁ) = g—i (r%u) 5+Z o (aa;) 03,

for t = 1,...,n. Therefore,
(tD)™Dg (uod)= Y cgi(t,z) ((rD.)*Dlu) o8,

Po+1BlSao+lal
the coefficients cp)'; being bounded on [0, B] x K.
Summarizing we see that
e 0 82nixo) < c /[0 ey % ( S |(1~D,)ﬁopgju|2) rdrdy
' Bo+|Bi<s

= C |]u|I$1:.'r(yD)>
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where the constant ¢ can be estimated via the sup-norms of |J|~! and the derivatives
of & up to order s+ 1 on [0,R] x K.
We have thus proved that §"u € H*7(X"). Since this function is supported on
[0, R} x K, Lemma 1.1.17 gives §*u € KX*7(X©). This is the desired conclusion.
O

1.3 Sobolev Spaces on a Manifold with Conical
Singularities

Now let us pass to the weighted Sobolev spaces on arbitrary manifolds with conical
singularities.

1.3.1 The topological cone over a space

Given a topological space T" and a closed subset ¥ of T', we denote by % the quotient
space of T over the equivalence relation corresponding to the decomposition of T'
into the set £ and the singletons formed from the points of the complement 7'\ Z.

Example 1.3.1 Let X be any topological space. Consider the topological prod-
uct T =[0,1) x X and the closed subset £ = {0} x X. The quotient space

~ 0, x X
C(X) = 0 xX

is known as the topological cone over the space X.

1.3.2 Manifolds with conical singularities

An (14 n)-dimensional manifold is a topological (second countable) Hausdorff space
M such that each point p € M has a neighborhood which is diffeomorphic to R!*".

Definition 1.3.2 By a manifold with conical singularities of dimension 1 + n,
we mean a topological (second countable) Hausdorff space K with a finite subset
V C K (“singularities”) such that

o K\V isan (1 + n)-dimensional manifold;

e for each point v € V there ezxist a neighborhood N of v in K, a compact
manifold X of dimension n and a homeomorphism z : N' — %1})%(’! such that

z(v) = {%li—i and the restriction z : N\ {v} — (0,1) x X is a diffeomorphism.



1.3 Sobolev Spaces on a Manifold with Conical Singularities 23

We may always think of X embedded to the unit sphere SV for N large enough,
even for N = n if we consider local embeddings. If it is the case, the quotient [%)xl%
is identified with the model cone {Ap: A € [0,1), p € X} in the obvious way.

Our next goal is to determine a “cone structure” on K close to each point v € V.

Given any two diffeomorphisms

é1: N\ {v} - (0,1) x X,
gbg:N\{v}—»(O,l)xX,

the composition ¢; o ¢7! is a diffeomorphism of (0,1) x X — (0,1) x X. We say
that ¢, and ¢, are equivalent if ¢, o ¢7' is the restriction of some diffeomorphism
(-,1) x X = (-1,1) x X.

The equivalence class of such diffeomorphisms is regarded as a part of the struc-
ture of K \ V in a neighborhood of v. It is kept fixed and determines the “cone
structure” on K close to v € V via the local R, action on (t,z) € (0,1) x X, i.e.,
At,z) = (A, z) for all XA € Ry with At € (0,1).

Example 1.3.3 If X is a submanifold of S¥ of dimension n < N, then the
geometric cone X2 = {Ap: XA >0, p € X} is a manifold with conical singularity
v=20.

O

1.3.3 Stretched manifolds

The analysis on a manifold with conical singularity has always referred to the cor-
responding “stretched manifold.”

Proposition 1.3.4 For any manifold K with conical singularities V there is a
smooth manifold with boundary K such that
1) K\ 'V is diffeomorphic to K\ OK; and
2) there is a neighborhood N of V in K and a collar neighborhood N ~ dKx[0,1)
of K in K such that N\ 'V is diffeomorphic to 0K x (0,1).

Proof. We construct K by replacing, for every singularity v, the neighborhood
N in Definition 1.3.2 by (0,1) x X via gluing with any one of the diffeomorphisms
¢. We even get 9K = U,ev X, the subscript v pointing to the dependence of X on
v.
a
This manifold K is called the “stretched object” associated with K. It is worth
pointing out that the idea of invoking stretched objects is of general character for
the analysis on manifolds with singularities.
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1.3.4 Definition of Sobolev spaces

Assume that K is a compact manifold with conical singularities of dimension 1+ n,
and K is the corresponding “stretched object.”

The definition of weighted Sobolev spaces (or Mellin-Sobolev spaces) KX*7(K)
is based, as usually, on the standard localization procedure.

By the definition of K, each interior point of K has a neighborhood which is
diffeomorphic to R!*". And every point of JK possesses a neighborhood which is
diffeomorphic to K, x R™.

Since K is compact, there exists a finite covering {VN,} of K by open subsets
each of them lies in a coordinate patch on K. It follows that, for A, N 9K = @,
we have a diffeomorphism ¢, : N, — R If A, N K # 0, then we have a
diffeomorphism ¢, : N, — R, x R™.

Let {¢,} be a C* partition of unity on K subordinated to the covering {V,}.

As expected, given any s,y € R, the space K*7(K) is defined to consist of all
distributions u in the interior of K such that, for every v, the product (¢, u) o ¢!
belongs to either H*(R'*"), if M, N JK = 0, or H*"(Ry x R™), if M, NIK # 0.

Proposition 1.3.5 As defined above, the space K*7(K) is independent of the
particular choice of the covering {N,}, diffeomorphisms {@,}, and the partition of
unity {¢,}.

Proof. Let

T' = (N, 8., ¢},
TV = (N, $, o)
be two triples as above.

We introduce the temporary notation K*7(K,T”) or K*"(K,T") for the space
K*7(K) corresponding to either triple. We shall have established the proposition if
we prove the following: if u € K*7(K,T"), then v € K*7(K, T").

To this end, pick a u € K*7(K,T'). Given any number v, write

o)™ = (o(Tet)u) o™
m
’ =1} "o -1

2 (¢u °(¢.) l) (("’V"’u) “) © (‘75:4) :
u

The task is now to show that every summand on the right-hand side here is in
H*(R™™), if N NIK = 0, or in H*"(R; x R"), if NN IK # §. We give the proof
only for the latter case, i.e., when N NJK # 0. Similar considerations apply to the
first case, and will only refer to the invariance of the usual Sobolev spaces.

We can certainly assume that M, N A} # @, since otherwise ¢}/, = 0 and so
the corresponding (zero!) sumnmand is obviously in H*"(R, x R").

Suppose that A, N 0K = §. By condition, ((cpﬁgai‘) u) 0 (qﬁi‘)_l belongs to
He, (R™™). As ¢, o (4)”" is a diffeomorphism of

(Ry x R™) n gy (N, NY) - R,
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it follows that the pull-back of ((‘P:"PL) 'u) 0 (é:‘)_l under this diffeomorphism be-
longs to HZ,, (R, x R"). Applying Lemmas 1.1.7 and 1.1.17 we can assert that

“N\*// ! e —
(810 607) ((elwh) w) o (8,) € (RS x R,
as desired.
It remains to consider the case when A, N 0K # §. By condition, the function
((‘P'J‘PL) U) o (451,)—1 belongs to H>"(R; x R"). Moreover, it vanishes away from a

compact subset of R} x R™. Since ¢, 0 (q.’»’u’)" is a diffeomorphism of
(RY xR*) gy (M, NAN)) > R xR™,

it follows from Theorem 1.2.3 that the pull-back of ((c,oﬁnp:‘) u) o (¢>L)_1 under this

diffeomorphism belongs to H*¥(K, x R"). This completes the proof.
a
Another way of stating Proposition 1.3.5 is to say that these weighted Sobolev
spaces make sense on a manifold with conical singularities.
The space K*7(K), when endowed with the norm

||“||:c'-v(x)

= ( Z l(wou) 0 45;1”3{-.1(’3:;,(3-1) + E HERDE ¢:1|

v NLNOK#£8 v NN3K=0

1
7
2
HJ(R]+1I)) ’
is a Banach space and even a Hilbert space.
Moreover, analysis similar to that in the proof of Proposition 1.3.5 shows that
the norm || - ||cs+(k) is independent, up to an equivalent norm, of the particular
choice of the covering {V, }, diffeomorphisms {¢,}, and the partition of unity {¢,}.

1.3.5 Order reduction

In order to give a global description of the norm in X*7(K), we shall need £ (X; A),
for A = R with | € Z, which is the space of all A-dependent classical pseudodiffer-
ential operators on a compact manifold X.

A family M(X) of operators in L™(X) is called dependent on the parameter A €
A if its symbol depends on (z,£, A), where A is treated as an additional covariable.
We write M(A) € L™(X; A). The family Af()) is said to be classical, and we write
M(X) € L3(X; A), if its symbol is classical in (£, A).

Generally speaking, a parameter-dependent theory of operators gives more in-
formation about the corresponding theory of operators not depending on a param-
eter. For example, it 1s an important tool in spectral theory.

The principal symbol of M(X) € LZ(X; A) is defined to be the component of its
symbol which is homogeneous in (£, A) of order m (written o™ (M)).
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An operator M(X) € LT X; A) is called parameter-dependent elliptic if
o"(M)(2,6,0) £ 0 on (T(X) x A)\ {0},

If it is the case, then there exists a TI(A) € £™(X; A) with both 1 —II(A)M())
and 1 — M(MI(A) in L3°(X; A). (Any such TI(}) is called a parameter-dependent
parametriz of M(}).)

Let us denote by {H*(X)},er the scale of classical Sobolev spaces on X. If
M()) is parameter-dependent elliptic, then there exists an R > 0 such that M(X) :
H*(X) — H*~™(X) is an isomorphism for all s € R and all A € A with [A| > R (cf.
Shubin [20, 11.9.2]).

Lemma 1.3.6 Given any m € R and | € Z,., there is a parameler-dependent
elliptic operator A™ € LT (X;R') such that

A™(N): HY(X) - H™™(X)
is an isomorphism for all s € R and A € R'.

Proof. See, for instance, Schulze [16].
O
Pseudodifferential operators of this kind will also be called order reductions (for
the scale {H*(X)}.,er of Sobolev spaces over X).
For many purposes the algebra £L°(X) of pseudodifferential operators of order
0 is more accessible. Order reductions “reduce” the analysis of £™(X) to that of
L£°(X). They induce isomorphisms A™ L°(X) = L™(X) and LO(X)A™ = L™(X),

which preserve elliptic operators.

1.3.6 Globalization of the norm

Let K be a manifold with conical singularities, and let K be the corresponding
stretched object. For simplicity, we assume that there is only one singularity with
cross-section X.

In the sequel, A® (s € R) stands for a fixed family of order reductions on X,
which depends on a parameter A € R. For every such A®; we have the equivalence
of norms

ell oy ~ 1A% ullL2xy,  u € H(X).

By Proposition 1.3.4, there is a collar neighborhood A of K which is diffeo-
morphic to [0,1) x X. Denote by ¢: & — [0,1) x X one of such diffeomorphisms.

Given a distribution u in the interior of K, we say that u is supported close to
the boundary of K if it vanishes away from a compact subset of A.

If w is a cut-off function with a support in [0,1), then the pull-back ¢*w yields
a C'* function on K which is supported close to the boundary of K and equal to 1
near 0K. We still call ¢*w the cut-off function with respect to 9K.

Fix a cut-off function w € C*°(K) with respect to the boundary of K.
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Proposition 1.3.7 For any s,v € R, we have the equivalence of norms

sl vy
%
~ (_l\/-;f jl:%_ |A*(Im 2) M(wu o ¢™1) (2)||72(xydz + II(1 —W)UHL-(K)) :

(Here H*(K) stands for the usual Sobolev space on the compact manifold with
boundary K. The norm in H*(K) is defined by using some finite coordinate covering
of K. It is independent of the covering up to an equivalent norm.)

Proof. This follows from Lemma 1.1.13 by the same method as in the proof of
Lemma 1.1.17.

a

1.3.7 Properties

In this subsection we briefly sketch only those new properties of the space K*7(K)
which differ from the corresponding properties of X*7(X©).

Proposition 1.3.8 For any s,y € R, the subspace Cg,, (intK) is dense in
K+ (K).

Proof. Use the standard localization procedure and Proposition 1.1.22.

O
Thus, the space K*7(K) could be also defined as the completion of Cg, (int K)
in the norm || - |[cs(k)-

Proposition 1.3.9 Assume that s,y € R. The K°°(K)-scalar product (u,v),
for u,v € CZ,. (intK), extends to a non-degenerate sesqui-linear pairing
K*'(K) x K=(K) - C,
under which K=*~7(K) is topologically isomorphic to the dual of K*7(K).

Proof. It is sufficient to prove that

to

P&

K~ (K) = LK)
for s € Z,. The general case follows from here by interpolation and duality because
the space K*7(K) is reflexive.

That every function v € KX~*~7(K) defines a continuous linear functional F,
on K*7(K) by F,(u) = (u,v), is a direct consequence of the definition of the space
K*7(K) and the equality K=*"7(XP) = K& (XOY for the corresponding local

comp
spaces.
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Conversely, let F be a continuous linear functional on K*7(K). As CZ,, . (int K)

is dense in this space, there is a unique distribution v € D’'(int K) such that
F(u) = (v,u) forall u € Cg, (intK), (1.3.1)
U being the complex conjugate to v.

We claim that v € K=*~7(K). To see this, we have to verify, by Proposition
1.3.5, that the restrictions of v to coordinate patches in K belong the the corre-
sponding local spaces K=*~7(XT). But this is just the case, as follows from (1.3.1)
and the equality X=*=7(XP) = K277 (X") having already been mentioned.

This finishes the proof, the detailed verification being left to the reader.

O

1.4 Group Action

Group actions are necessary auxiliary tools for defining weighted Sobolev spaces on
manifolds with edges.

1.4.1 Definition

Let L be a Banach space, and L(L) the space of all continuous linear operators in
L. Unless otherwise stated we assume that £(L) is equipped with the topology of
uniform convergence on bounded subsets of L (i.e., with the norm || - ||z(z)).

By L£,(L) we denote the space £(L) endowed with the topology of pointwise
convergence (i.e., with the system of seminorms £(L) 3 M — ||Mu|l., where u
varies over L).

Definition 1.4.1 By an R, -action on L, is meant any continuous mapping & :
R; 3 A &y € L,(L) satisfying

KaKky = Kxu,
271 = Ky

(1.4.1)

forall A\, p e R,.

This definition just amounts to saying that {xi}ier, is a commutative group
of operators in L(E), and limy_; xxu = u for all u € L. For this reason, we also
write {£1}er, instead of x and call it a group action on L.

The simplest example of an R-action on L is the so-called trivial R -action,
e, ky :=1dy, for all A € R;. Let us mention another example to be paradigmatic
for the sequel.
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Example 1.4.2 Let L = L2(R,). Then one can take (sxyu)(t) = AFu(At) for
A € R,.. Here k) is unitary for every A.

O

The following simple result is often of use.

Proposition 1.4.3 For any group action {k)}rer, on L, there are constants
¢> 0, R>0 such that

cAR  for X > 1,
H=xlleqry < { AR forA< 1.

Proof. See Hirschmann [9].

1.4.2 Continuity

In the previous sections we defined the spaces H*(X7), H*7(X®) and K*7(X") for
the case when X was an open subset of the unit sphere S in R!*%,

Now let X be an arbitrary compact manifold of dimension n. Without loss of
generality we can assume that X is a submanifold of S¥ for N large enough.

As above, we denote by X2 the geometrical cone in R'*" which consists of the
points Ap, with A > 0 and z € X.

There is a finite open covering of X by coordinate patches { X, } each of which
is diffeomorphic to an open subset of S". Then the family {X2} covers X2, and
every X2 can be identified with a model cone in R!*".

Using such coverings we can define, in the standard manner, the spaces H*(X9),
H*7(XP) and K*7(XP) on the cylinder X¥ = R, x X for any compact manifold
X, too.

In the sequel, (¢,z) stands for the coordinates in the cylinder X©, where 1 is
the global coordinate in Ry and z = (z),...,%,) are local coordinates in X.

Given any s € Z, and v € R, we have

lullzexoy = Taotics Jo° mmm 1D ulliyiix) thdt,

o 2 1.4.2
lulldenixoy = Tootics Jo al7|1(tDt)°°u||in(x)t dt (1.4:2)

up to equivalent norms.
In K*7(X") the norm is defined just in the same way as in Subsection 1.1.7.
If n = 0, then H°(XY) = LYR,) and H*'(XO) = L*(R,,t">dt). We are
going to generalize the R -action of Example 1.4.2 to the spaces K*7(X©).
To this end, we consider the Ri-action & on K*7(XP) given by

kau(t,z) = A u(M,z) for u € K*(XT). (1.4.3)
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Lemma 1.4.4 For any s,y € R, it follows that
l%all ccem(xoyy < € max(1,X°, A7) for all A >0,
the constant ¢ being independent of A.

Proof. By interpolation and duality, it is sufficient to prove the lemma for
s€Z,.

Let w be a fixed cut-off function, and let w(t) =1 for t < a and w(t) = 0 for
t> A

Given a function u € K*7(XU), assume that v = wu; + (1 — w)u, with some

u; € H*Y(XO) and u,; € H*(XP). By definition,

l&xullcomxoy < lwesullpsaxay + (1 — w)raullys(xoy
< ||U'°A(Uul)||w--r(xﬂ) + flwra((1 - w)uz) |l x0)
+1(1 = w)rs(wur)llysxoy + (1 = w)rA((1 = w)uz)ll3s(x0)-

Having disposed of this preliminary step, we can now change the variables
7 = At and observe that tD; = 7D,. This leads to

lwsa(wu)ll7. 7(xn,

f t‘)-y tD, ) (w(t) Auzl(wul)(/\t )) ||H (X)t"dt

ag+1<s
2
= / (D (&) @u)(r, )| rnar
ao§<s 1-2'7 Hi(X)
S( ) A2‘y Ilwul"-}.{:.-{(xu)) . (144)

the constant ¢’ being estimated by max,,<, |(1D;)*w].
Similarly,

lwra((l = w)u)ll3gnnxo)

=\ 2(0: +i—7) o _ n
oy [ et Dy (o) (1~ @), )| o, ™
< ()2 AY GE%L(T—M’ r’“"’),...,rz("")) (1 _w)uznip(xu) (1.4.5)
with the same constant ¢’ as in (1.4.4).
In the same manner we can see that
(1 = w)rawun) Iz xoy
2
= % ety [T r0eed Ny (1 - w5 wun)(r, )|
ao+i<s T3 A Hi(X)

< (cu)2 Afé?i(A(Tz‘y! A2T2('7—-l), e 1\231_2(‘7-3)) ”wul”ipn(xD)v (146)



1.4 Group Action 31

where the constant ¢ can be estimated by the sup-norm of the derivatives (1D;)*°w
up to order s on Rj.
Likewise,

102 = w)ra((1 = w)ua)l[3s xo)

1

) ﬂo+zi$s Az(am)/o r2(a0+3) (D) ((1 _“’(X))((l — w)uz)(7, -)) m(X)T"dT

< (¢ max(1, X, A%) (1 = w)ualZ oy, (1.4.7)

2

the constant ¢” being the same as in (1.4.6).
Combining (1.4.4) - (1.4.7) we can assert that

l|&xet]lcrnxoy £ € max(1, A%, A7) (HWUIHHm(xD) +I(1 —w)uzun-(xn)) )

with ¢ a constant independent of u and A. Hence
[£xtllcov(xoy € € max(1, A%, A7) |lul|cen(x ),

which is our assertion.

O
It is also a simple matter to see that £ is a continuous mapping of Ry —

LK (XD)).

1.4.3 Invariance under Fuchs-type operators

The following result is basic in the theory of pseudodifferential operators on mani-
folds with conical singularities (see Schulze [15]).

Lemma 1.4.5 Let M be a Fuchs-type operator of order m, with coefficients in-
dependent of t for t > ¢ where ¢ > 0. Given any s,y € R, the operator M induces
a continuous linear mapping

M: K*(XP) o Koo m(X0),

Proof. We give the proof only for the case when s is an integer > m; the other
cases are left to the reader.

Pick a cut-off function w on Ry. Given any u € K*?(XD), we assume that
u = wu + (1 — w)up where uy € H*'(XP) and u; € H*(X"). Then

[Mu]|go-ma-mxoy S [WMullpommammxoy + [|(1 = @) Mu||po-mxo)
< lwM(wtn)llsgs-ma-m(xo) + [lwM (1 = @)usz)|lpsmmr-mx0)
(1 = w)M(wur)lle-m(xoy + (1 = W) M((1 = w)uz)|[e-m(x0)-




32 1 Cone Sobolev Spaces

Analysis similar to that in the proof of Lemma 1.4.4 shows that

||°-’M(°-’“1)||H-—mn—m(x0) < q Ilwullln..ﬁ(xu),
loM((1 = w)u)llpa-ma-mxoy < & [[(1 = w)uzllpe(xo)

as well as

(1 - W)M(wul)”w-m(xﬂ) < q ||w“1||nc.~(xu),
(1 —w)M((1 —U)“2)[|H'~m(x0) < 4 (1 —w)uzl H2(XO)»

where the constants ¢}, ¢, and ¢, ¢; depend only on M and w.
Let us check, for instance, the first of these estimates. Since

=ti fj Mi(2) (—td)*

with some M, € C2(Ry, Diff™ *(X)), it follows that

llw M (wrer)|12.- mv-m(xﬂ)

m  ao
- aohz(:,_m/ t2(‘v—m) tm gaz_oM’m ) (tD1)F* (wuy) HJ(X)t"dt,
where Mo € CZ, (R4, Diff™*(X)). Therefore,
(R
FED VDS if = Do) +"(wu1)|2j+(m_k)(x)t“dt

ao+i<e—m k=0 a=0
< (‘31)2 ”uuluwm(xn)a

as desired.
Summarizing we get

“M“”m—mn-m(xﬂ) <c (||wu1||wn(xﬂ) + (1 = w)“?“ﬂ-'(xﬂ)) )

with ¢ a constant independent of u. From this the lemma follows.

o

As follows, the Fuchs-type operators are invariant under the Ry-action & on

K*7(X9) given by (1.4.3).

Proposition 1.4.6 For any Fuchs-type operator M with coefficients independent

of t, we have
r;;anA=ﬂ1, A>0.

Proof. Use the equality tD; = pD,, where p = Ar.
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1.4.4 Unaitary property

Fix a density dz on X based on some Riemannian metric. It follows immediately
that the normed spaces K®%(X9) and L?(XP,t7dt dz) are isomorphic. We shall fix
once and for all the scalar product on £%°(X5) induced under this identification.

Proposition 1.4.7 For any A > 0, the operator k5 on K®°(XD) is unitary.

Proof. The proof is straightforward.



Chapter 2

Wedge Sobolev Spaces

The role of conical singularities in the present discussion is that manifolds with edges
are locally close to an edge of dimension ¢ of the form of a wedge X2 x U with open
UCRs.

2.1 Sobolev Spaces on a Coordinate Wedge

2.1.1 Model wedge

By a model wedge is meant a direct product X2 x U, where X% is a model cone in
R and U is an open subset of RY.

More generally, we consider the products X& x U/, with X an n-dimensional
submanifold of the unit sphere SV in RV, They will also be referred to as model
wedges.

The natural volume form on X2 x U is induced by embedding this wedge
(locally) to R+n+e,

If ¢ =0, then U = {0}, and so X2 x U is identified with X2. This is precisely
how the wedge theory encompasses the cone theory.

Another extreme case is obtained by setting n = 0. Then the cone X2 degen-
erates into the semiaxis Ry (or into the disjoint union of two copies of K} ), and so
the wedge X2 x U is identified with the cylinder Ry x U (or with the disjoint union
of two copies of R} x U).

2.1.2 Stretched object

Write z = (z1, 23) for the variable in R!¥™*? where z; € R'*" stands for the “cone
variable,” and z; € R runs over the edge.

Set
{ Z = tp(:l?),

22=Y,

34
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Fig. 2.1: In this way we obtain what we shall call the “stretched wedge.”

which gives a diffeomorphism 7 : int XU x U — int X® x U.
For a distribution u in the interior of X2 x U, we denote by 7*u the pull-back
of u under #. This is a distribution in the interior of X5 x U.
Thus, the analysis on a model wedge X2 x U will refer to the open stretched
wedge
XOxU=Ry xX xU.

In the sequel, (¢, z,y) stands for the coordinates in X® x U, where t is the global
coordinate in Ry, z = (21,...,%,) are local coordinates in X, and y = (y1,-.-,,)
are coordinates in U.

From what has already been said, it follows that the natural volume form on
X® x U is t"dt dz dy, where dz is a volume form on X related to some Riemannian
metric on this manifold, and dy is that on U.

2.1.3 Typical differential operators

Let (t,z) € XO be polar coordinates in the cone X2, i.e., t = |p| and z are the
coordinates of the point 'I;LI in X, for p e X4.

Given a differential operator M of order m on X2 x U, we are going to write
it in the coordinates (t, z, y).

Using Lemma 1.1.2 we can assert that M transforms into an operator of the
form

— 1 o
M ((t,z,¥), (D1, Dzy D)) = Z Megap(t, z,y) DY° (—DI) Df
aotHlalFil<m t

on the stretched wedge XU x U. The coefficients Mao'a'p can be computed from
(1.1.1) and the coefficients of M. Notice that they are smooth up to ¢t = 0, provided
that the coefficients of A are.
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Definition 2.1.1 By edge-degenerate operators on X© x U are meant differential
operators of the form

1

- z M;5(t,y) (—tal)j(tDy)‘B
J+|BlEm

with operator-valued coefficients M;5 € C2(Ry x U, Diffm-U+IED(x),

As above, the analysis of differential operators in polar coordinates on a wedge
leads to edge-degenerate operators.

Let us mention yet another important example motivating the introduction of
the edge-degenerate operators.

Example 2.1.2 Let A(t,y)} (t > 0, y € U) be a (t,y)-dependent Riemannian
metric on X which is C® up to t = 0. Then the Laplace-Beltrami operator on
XB x U associated to the metric of the “geometric wedge” dt? + t2h(t,y) + dy? is
Just edge-degenerate, of order m = 2.

a

2.1.4 Transformation of Sobolev spaces

As in Example 1.1.5, we can see in what way Sobolev spaces
H(X® xU)= H'R"™ xR |xaxu

on the model wedge X2 x U C R*" x R transforms under polar coordinates in
the cone X4.

Definition 2.1.3 Given any s € Z,,, denote by H*(XY x U) the set of all dis-
tributions u in the interior of XU x U whose derivatives up to the order s are locally
integrable with respect to the measure t"dtdzdy and satisfy

o0 1 -2 n
Ilexonn = = [ e (00Dl tdtdady < co.
aotitlolgs 70 7Y

For integer s < 0, we define the space H*(X" x U) by duality as H*(XC x U) =
Hoonp(X® x UY. Further, for fractional s, the space H*(XY x U) is defined by
(complex) interpolation.

As follows, the norm ||7*u||y.(xayy) sharply catches the behavior of Sobolev
functions u € H*(X® x U) away from any neighborhood of the wedge t = 0 under
the correspondence n*u (¢, z,y) = u(i p(z),y).
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Lemma 2.1.4 Let s € R. To any € > 0, there correspond positive constants ¢,
and c; depending on €, such that

a1 |7 ullyexoxuy < lullaxaxvy < e |lm*ullysxoxw)
whenever u € H*(X® x U) satisfies supp u C (X4 \ B(0,¢)) x U.

Proof. The proof is similar to that in Lemma 1.1.7.
O

QOur next concern will be to find a suitable abstract framework for the spaces

H(XP x U).

2.1.5 Vector-valued distributions

Given a locally convex space F of distributions on R?, we denote by F, the dual
space to J with Mackey’s topology.

Let L be an arbitrary locally convex C-vector space. Denote by L (F! — L)
the space of all continuous linear mappings of F, to L equipped with the topology
of uniform convergence on equicontinuous sets of functionals in F,. After Schwartz
(18, 19], the elements of F(R?, L) := L (F, — L) are said to be distributions of
class F on R? with values in L.

The following result was proved by Grothendieck [8, Ch.2,Theorem 6].

Proposition 2.1.5 If F and L are complete locally convez spaces and one of
them is nuclear, then the canonical mapping L @ F — F(RY, L) may be extended to
a topological isomorphism F(RI, L) = L ®, F. ‘

(Here L ®< F stands for the completed projective tensor product of L and F.)

In particular, we have the Schwartz space S(R?, L) of rapidly decreasing L-
valued functions on R, the space §'(R?, L) of temperate L-valued distributions on
RY, the space A(O, L) of L-valued holomorphic functions on an open set O C C,
and so on.

2.1.6 Abstract Sobolev spaces

Assume that L is a Banach space, and (x3)er, is an Ri-action on L.

Fix a strictly positive C* function 7 — (1) on R? such that {n) = |5| for all
|n] > ¢ with some ¢ > 0. (In this way we obtain what will be referred to as the
smoothed norm function.)

The following property of the smoothed norm functions proves extremely useful
in the sequel.
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Lemma 2.1.6 (Peetre’s inequality) There is a constant C > 0 such that,
given any 8 € R, we have

(n)* < C¥ (n—6)F1 (6)°  for all n,6 € R".

Proof. The proof is elementary.
O
A motivation to introducing the abstract Sobolev spaces in Schulze [15] was that

H*(R?, H*(RY™) #£ H*(R!17™19), unless s = 0.

Definition 2.1.7 Given any s € R, the space W*(R?, L) is defined to be the set
of all u € 8'(R™, L) such that Fu € L} (R%, L) and

1
- 2 7
lelhweaoy = ([ |5 Fomntd] dn) " < o0.

If we replace || - ||z by another equivalent norm on L, then we get an equivalent
norm on W*(R? L). Furthermore, this norm is independent on the concrete choice
of (n) modulo equivalence of norms.

Here are some basic properties of this concept. They may be found in Schulze
[15].

The space W?(R?, L) does depend on the particular choice of the group action
K.

Example 2.1.8 Let x5 = 1 be the trivial Ry-action on L. Then W*(R?, L) coin-
cides with the usual Sobolev space I{*(R?, L) of L-valued distributions of smoothness
s on RY.

a
For general «, the mapping
i Frl ko Fuegt
is easily verified to be an isometrical isomorphism of W*(R?, L) — H*(RY, L).
Proposition 2.1.9 The space W*(R?, L) is a Banach space.
Proof. See Proposition 2.4 in Hirschmann [9].
O

If L is a Hilbert space, then W*(R?, L) is even a Hilbert space with respect to
the inner product

(%, V)weqme L) = /;q(q)z‘ (n('nl)fy._.,,u, n[nl)fy._.,,v)L dg, uw,v € W/(R'L). (2.1.1)
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Proposition 2.1.10 For any s € R, the bilinear form
(v, u) = fn (RaFovs Ky Fonu) i, v €W (R, L), w € W/(RY, L),

defines a pairing of W™*(R%, L') x W*(R?, L) — C, under which W™*(R, L') is
topologically isomorphic to the dual of W*(RY, L).

Proof. This repeats the proof of an analogous result for the usual Sobolev
spaces.

O

Rapidly decreasing functions on R? are multipliers of W*(R?, L). It is the point

at which there originates pseudodifferential calculus in the spaces W?*(R?, L) (see

[15], [9}).

Proposition 2.1.11 Let ¢ € S(R?). For any s € R, the multiplication operator
M, : u— u is a continuous mapping of W*(R", L) — W*(RY, L). Moreover, the
operator ¢ — M, is a continuous mapping of S(R*) - L(W*(R?, L)).

Proof. See Hirschmann [9, Theorem 3.2]. Behm [2] observed that even

1Ml < [1{m)"** Fymnollzrqae),

where R is the number of Proposition 1.4.3.

O

Proposition 2.1.12 Given any s € R, the subspace Cg (R L) is dense in
Wi (R4, L).

Proof. If u € W*(RY, L), then the function

n— ()’ “(-r;l)fy*—-nu
belongs to L*(R? L). Hence there is a sequence {f,} of functions in CZ5(R?, L)
such that
(n)’ "z-,,l)fv - (n)’ ""‘(-,71)-7:11*-7)“ in L*(R?, L),

It is evident that f, € S(R? L) are the Fourier transforms of functions u, €
S(RY, L), and ||u — u,||wsgme,L) = 0 as v — oo.

It remains to verify that Cg,. (RY L) is dense in S(R?, L) in the norm of
W(R?, L).

To this end, pick a function w € CZ, (R?) with w(y) = 1 for |y| < 1. If
u € S(RY L), then w(e-)u € Cg,,,(R?% L). Moreover, an easy verification shows
that w(e -)u — u in W*(RY, L) as € — 0, because w(e y)u(y) # u(y) only for |y| > L.

This completes the proof.

g

The following embedding theorem is a direct generalization of the Rellich The-

orem.
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Proposition 2.1.13 Let Ly C Ly be Banach spaces with a group action k on L,
which restricts to a group action on Ly. If the embedding L, — L, is compact and
if s > sy, then the embedding

Wige(R?, L2) — Wi (R?, L)
18 compact.

Proof. See Behm (2, p.57).

2.1.7 Interpolation

A couple of Banach spaces (Lo, L;) is called a Banach couple if there is a Hausdorff
topological vector space L such that both Ly and L, are continuously embedded
subspaces of L.

If (Lo, L1) is a Banach couple and 8 € [0,1], then we denote by [Lo, L1]s the
corresponding interpolation space defined by the complex interpolation method (see
Bergh and Lofstrom [3)).

Theorem 2.1.14 Let (Lo, L1) be a Banach couple with a group action on Lo® L,
which restricts to group actions on both the subspaces. Then

[W*(R?, L), W™ (R, L1)]s = W00+ (R, [Lo, L1]o)

holds isometrically for all sp,s5, € BbbR and 0 < 6 < 1.

Proof. See Hirschmann [9].

2.1.8 Sobolev spaces on the wedge

In the present calculus it is sufficient to deal with Hilbert spaces L. Such a case is
L = K*7(XP) with (k) given in (1.4.3).
Definition 2.1.15 Given any s,y € R, the space
W (XD x R?) := W*(R?, K*(XD))

is said to be the weighted Sobolev space of smoothness s and weight 4 on the stretched
wedge XY x RY.
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The remainder of this section will be devoted to some specific properties of this

concept, which are different of those listed in the previous subsection. Until further
notice we assume that X is either R" or a compact manifold of dimension n.

Proposition 2.1.16 The subspace CZ,,,(int XU xRY) is dense in W*7 (X xR7)
for each s,y € R.

Proof. Pick a u € W*7(XDE x R9). By Proposition 2.1.12, there is a sequence
u, € CS,

2 np{R%, K*7(XB)) converging to u in the norm of W*7(X" x R9).
On the other hand, C®

P (13 XB) is dense in K*?(XDP) by Proposition 1.3.8,
which remains still valid with K replaced by X©. Proposition 2.1.5 now shows that

C;':mp(int XB x RY) = Cf:mp(int XD) Rx Cf;’mp(R")
is dense in

Coomp(R%, K (XD)) = K*(XT) @ Oy (R).

Thus, for any v, there exists a function u, € CZ,,(int X7 x R?) such that

1
llu;, — Uu||w-.-y(x0an) < v

Obviously, u, — u in the norm of W*7(XUY x R?), and the proof is complete.

O
Our next result extends Proposition 1.3.9 to the case of wedge Sobolev spaces.

Proposition 2.1.17 Assume that 5,7 € R. The W*°(X® x R?)-product (u,v),
first taken for u,v € CZ, (int XO x R?), extends to a non-degenerate sesqui-linear

pairing W*7(XP x R?) x W™*~7(XC x R?) — C, under which W™*~7(X® x RY) is
topologically isomorphic to the dual of W*(X® x RY).

Proof. Use Propositions 2.1.10 and 1.3.9, the latter being still true with K
replaced by the stretched cone X©.

d
Note that

(",U)woﬂ(xﬂxw) = /;q(fy'—*n“afwnv)mﬁ(xo) dn

because & is unitary on X%°(X5).

Proposition 2.1.18 Let sg,s, € R and v9,7 € R satisfy so < s; and 90 < 711.
Then

[W:o.%(xl:! % Rq)’ Wa;m(XD X Rq)]e = W(l-a).o+aa, ,(1-9)-m+9-n(XD w Rq)

holds up to an equivalent norm for all 0 < 0 < 1.
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Proof. It follows from Proposition 1.3.8 that K*™(XU) is embedded to
K2 (XY continuously and densely. Consequently, Theorem 2.1.14 shows that

[Wom(XO x R?), W™ (XT x R,
= WO-Omtin (e, [cwm(XO), K07 (XO))y)

is fulfilled isometrically for all 0 < 8 < 1.
To complete the proof it remains to note that

[)Cm (XU), X "“(XD)]Q = K (1=0)30+031,(1=0)v0+6m (XD)

holds up to an equivalent norm for all 0 < 0 < 1.
O

Proposition 2.1.19 Let s € R. For each € > 0, there are positive constants ¢,
and ¢; depending on €, such that

¢1 |lullysxaxme < ullwerxoxrg < 2 Jullysxoxre (2.1.2)
whenever u € H*(XY x RY) is supported away from the band [0,€) x X x RY.

Proof. By Propositions 2.1.17 and 2.1.18, we may assume without loss of
generality that s is a non-negative integer. Moreover, Proposition 2.1.16 shows
that it suffices to prove estimate (2.1.2) for u € C% __(int X© x R?) only. Since

comp
X is compact, the standard localization argument reduces the matter to the case

X =R"
Pickaue C%®

comp

(int XO x RY) which vanishes for ¢ < €. By definition,

- 2 H
fulbwencxorn = ([ 00 [i5 Fomrt e o 1)
Set § = min,er«(n). By definition, § > 0. As u(t,z,y) = 0 for t < ¢, we
conclude that t
) (

Koy Fyontt (t,2,7) = () et (75 37)

vanishes for t < ée.
Applying Proposition 1.1.20 we can assert that there exist positive constants ¢,
and ¢g depending on d¢, such that

e1 |6y Fumntille(xoy S N&iy Fomntilliconxmy < €2 165 Fymenttllzeqxay

for all 7 € RY. Multiplying this estimate by ()* and integrating in n € R? therefore
yield
c1 l|ullws@enms(xoy) < ullwsvxoxre < e lluflwemens(xoy (2.1.3)

for all u € C,,(int X2 x RY) supported away from [0,€) x X x Re.
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It remains to evaluate the norm |[u|lyys(gas(x0)). To do this, we may invoke
the first equality of (1.4.2) because s € Z,;. Changing the variables t = ()7 and
taking the equality tD; = 7D, into account, we deduce that

el nescxay = [ ™ na,i I WL

2
L] t n
Z / t’o‘(ao+3} (tD)® (( )" fw—»n“(msmaﬂ)) . t"dtdn
ao-I-J(a Hi(X)
= 2, f fz(am) (Lq(”f{'_%_” Do) Fyrlxy ) 7
ap+i<s
Since (7D,)r"¥l = |B|7lPl, Parseval’s formula gives, as in the proof of Lemma
1.1.13,
”“”3\): R, H?(X D))
~ = D ap D.ﬂ d nd
o°§< '/ T?(ao+3) (l "an _/Rq T Hi(X) y) Ter
~ "u”'}{-(xﬂan)- (2.1.4)
Combining (2.1.3) with (2.1.4) yields (2.1.2), as desired.
a

2.2 Invariance under Automorphisms of the Wed-
ge

The analytical framework above allows one also to distinguish a reasonable class of
automorphisms of the wedge, which keep invariant the wedge Sobolev spaces.

2.2.1 An auziliary result

Proposition 2.1.19 gives a satisfactory description of the norm || - [|yy.~(xoxne for
functions with supports away from the edge. What is still lacking is an explicit
description of this norm on functions supported close to the singularity.

In this subsection we are aimed in removing the cut-off function w which enters
the definition of || - ||yy.(x0xra) through the norm || - ||c...(xa). More precisely, it
is shown that w can be replaced by the characteristic function of any interval [0, a],
where a > 0.
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Lemma 2.2.1 Let s € Z,, v € R. Given any a > 0, it follows that

||“||§v- (X OxR9)

23
o T B e F sy

ao+j<s (t(m))*
_ o0 .
+./,,)> (t(q))2{°o+1) “(tD‘) fr—’nu”]{:(x) t"dt
for u € W (X9 x RY).

Proof. By Proposition 2.1.16, it is sufficient to prove the desired estimate for
u € C2, (int XO x R) only.

comp

To define a norm in K*7(X9), we fix a cut-off function w on R with w(t) = 1
for t € [0,a] and w(t) = 0 for ¢ € [A,00). We claim that

”u"&:,-'(xﬂ) ~ ”wu"H.n(xn) + ”(1 - W)u"'}{s(xﬂ) fOI' u € K"‘Y(XD). (2.2.1)
Indeed, by definition,
lullgcomixey < Nwtllyerxoy + 11 = w)ullyyxoy for all v € £*7(XO).

On the other hand, if u = wu; + (1 —w)u, for some u; € H*7(X7) and u, € H*(XD),
then

lwullpomxay + I(1 = w)ullysxoy

< flwwuillpan(xoy + lw(l = w)uallyexa)
(1 = w)wur[lexoy + (1 = @)(1 = w)uallys(xo).

Applying Lemmas 1.1.14 and 1.1.15 thus yields
lwullpgsxmy + (1 = w)ullssxoy

<€) lwwr|lpamxoy + ¢ [(1 = w)uallyexoy
+ey fwir|lpsaxoy + ¢ 11 = w)ugflysxa

< ¢ (llwmllpemcxoy + (1 = w)uallyoixa)) ,
the constant ¢ depending on w only. Hence
”w“”wn(xﬂ) +(|(1 = “J)u”’H'(XD} Sc ”“”w--v(xﬂ):
which implies (2.2.1).
Thus,

2 2s
lelynnixoxme = [0

~ Jre () ("w K(-"l) }-”’H"u‘ :-tm()(':')

2
Ko 1(XO) dn

_ 2
+ (l - f.IJ) K’(nl) fy'"ﬂu"-H,(xD)) dﬂ,
(2.2.2)

y—nt
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the last relation being a consequence of the elementary inequality a®+b* < (a+5)? <
2(a? + b?) for a,b > 0.

We now substitute expressions (1.4.2) into (2.2.2) and make the change of vari-
ables t = (n)7. As above, tD; = 7D,, so a direct calculation shows that

“u”av' T(XOxRe)

~ T[T (o [ WD ) F el sy d

oo+j<s

ey [P D (L = (7)) Pt iy i

To dea.l w1th the expressions on the right side, let us introduce the temporary
notations ! (u) and n{® )( ) for

a ;
(W) = (Taorics 5° Jipee 2= (7D )ofy_.,,uni,,(x}dq) rdr)?,

T

”ga (u) = (Zaoﬂ'ﬁs I5 (f(q)z mﬁﬁo—-ﬁf (D) yHn““H;(x)d’?) T d‘r)%
(2.2.3)
It is easy to see that both n{*(-) and n{)(-) are norms on W*7(X© x R?). As
w({n)r) = 1 for (n) < ¢ and w({n)7) = 0 for () > 2, it follows from what has
already been proved that

2 . 2 s
lully.. _,(annq) <¢ (nSA)(u)) + ¢ (ng )(u)) for all u € W*(XP xR7), (2.2.4)

the constants ¢;, ¢; being independent of u.
. . . (a)

The rest of the proof consists of analyzing the properties of the norms n;’,
i=1,2.

If 0 < a < A, then n(la)(u) < ng")(u). Moreover, n(lA)(u) = |lullywe(meexoy)
as A - oo.

Similarly, if 0 < @ < A, then n{"(u) > n{(u). And n{(u) - |eilwsme e xay)
as a — 0.

Our next claim is that

(4) 2 _ ({3} 12 . .
_min (a2(i—’7)’A2(i—')‘)) < (n(l )(u)) (11(1.4)(11)) < I'I'IELX ( 2[:—1)’142(1—7)), (225)
)~ Py

whenever 0 < a < A. Indeed,

(n(A)(u))z _ (n(ﬂ)(u))z

= [ ) (Do) F il iy ) 7dr
semed (i 1 T @

ap+3<s

Z _/ (/(W A ’F))Q(%H_ﬂ(.,.(n(;])):ﬂ) I|(rD,)* fyhnuﬂin(x)drar"df,

agti<s

whence (2.2.5) follows.
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Combining (2.2.4) and (2.2.5) gives

#lpnrixonmg < & (30@)" + e (9)" = () ") + e (2§ )’
< (W) + e max (@6, 456 (0w) - (80 () ) + e (o (w)’
<0 ((w)" + ().

(2.2.6)

with C a constant independent of u. This is just one part of the lemma.
We shall have establlshed the other part of the lemma if we prove that also
both n{”(u) and n{®(v) are majorized by |l e xoxma)- We give the proof only

for n{” (u); the norm n{”(u) can be handled in much the same way.
Substituting

Fyentt = w((M7) Fymqu + (1 = w({(n) 7)) Fyrqu

into (2.2.3), using the triangle inequality and taking into account that w({n)r) =0
for (n) > £, we get

= Z/ (Asm)s,T(q(—)n)%E?)”( ) @) ) Fyant) i ) 41

cap41<s

o1
(n)* o 2 n
[ T I D™ (1 = ) ) F o ) 7

Since
o (,,‘;;l(c..m) < max (a*07), A) (—%)— for all £ < () < 2,
we get
() ()’
< 2 max (o207, 47079) /l ) il :{_,T(XD) dn
2 [ 0 (1 = i) Font] o 4
< L0 (lored Pty + 10 = 0853 Famrtl 1))

where ¢ is independent of u.
As J(a+b)? < a®+b% < (a + b)? for a,b > 0, we can assert by (2.2.1) that the
right-hand side here is equivalent to ”“’”f»v'-ﬁ(xﬂan)’ which is the desired conclusion.

O



2.2 Invariance 47

2.2.2 More on tensor products

No one has yet given a direct proof of the fact that, given any ¢ € C% (R4 x X x
R?), the multiplication operator u — @u is a continuous mapping of W*7(XU x
R?) — W*7(XP x R?). This can be easily verified for those ¢ which are of the
form ¢, (t, z)wa(y), where ¢, € CZ, (Ry x X) and @2 € C2,,,(R?). To derive the
desired conclusion for general ¢ from this, one then uses a representation theorem
on projective tensor products of two Fréchet spaces to be formulated.

Let I* be the usual Banach space of all summable sequences of complex numbers.

Given a Fréchet space L, we denote by so(L) the space of all zero sequences
(1)) in L with the topology given by the family of seminorms ({()) - sup, p(I")),
where p runs over a system of seminorms defining the topology of L.

If (¢,) € " and (IM) € so(L), (f®) € so(F), then the series T, ¢, I} @
¥ is absolutely convergent in the (completed) projective tensor product L ®, F.
Conversely, if both L and F are Fréchet, then we can expand every element of L®,F
into a sum of the above type.

Theorem 2.2.2 Let L, F be Fréchet spaces. Suppose that N} and N are ab-
solutely conver neighborhoods of zero in L and F respectively, and N is the neigh-
borhood of zero in L ®, F corresponding to the absolutely convez hull of Ny @ N,
in L ®« F. Then for any compact set K C N there are a compact subset k of the
unit ball in I' and sequences (V) € so(N1), (f) € so(N2) such that every element
u € K can be written asu =Y, ¢, I ® f*) with some (c,) € k.

Proof. See Treves [21, Theorem 45.2].

a
The theorem gains in interest if we realize that the sequence (¢,) can be chosen
of small norm in {!, provided u is close to zero in L ®, F.

Corollary 2.2.3 Let L, F be Fréchet spaces. Then for any sequence (u()) C
L ®x F converging to zero there are sequences (I)) € so(L), (f) € so(F) and
(c(‘.)) = ((cg))) € So(ll) such that

=5 e fori=1,2,....

Proof. See Hirschmann [9].

2.2.3 Boundedness of edge-degenerate operators

The result to be proved here extends to the statement that the space W*7(X® x RY)
is locally invariant under pseudodifferential operators of order 0 on R? whose symbols

take values in L(K*7(X5)) (see Schulze [17]).
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Theorem 2.2.4 Let ¢ € S(R"™"™*7). Then the multiplication operator M,
u > u is a continuous mapping of W*(R, x R" x R?) — W*7(R, x R* x
R?). Moreover, the operator ¢ — M, is a continuous mapping of S(RM*+7) —
LW (R x R" x RY)).

Proof. By duality and interpolation arguments, it is sufficient to prove the
theorem for s € Z,.

We first prove a reduced form of the theorem. Namely, let us assume that
@(t,z,y) = ¢i1(t, T)p2(y), where v, € S(R'*") and ¢, € S(RY).

If u € W"(R, x R* x R?), then

“ (pu”:pon(ﬁx K" xR9)
= [onr s () 2t Pt

¢ ' 2
2
Se  sup D)% o] llerullfy@rymanae:
{(t,x)ER4 xR
aj+la’|<s

2
dn
K* (s xR")

the constant ¢ being independent of u. Since ¢, depends only on y, Proposition
2.1.11 gives

“(Pu”:v'.‘v(ﬁxl"xlq)

< tD aBDa' ‘ s+max(=.ht)fH o
- C(t,z)zllg)xl“ ( t) * 991' “(!]) ¥ f’('92|151(n.a) ”u”W (R xRnxRI)?
agtla’i<s
(2.2.7)
as desired.

For the general case, given any ¢ € S(R!*"*?) we can find, by Theorem 2.2.2,
sequences (goﬁ“’) € so(S(R™™)), (v} € so(S(RY)) such that

p(t,z,y) = ZC" t: @tp(")( )

with some (¢,) € {'. Applying (2.2.7) we get

||‘P“"w--v(i1xnnan)

() )y,
< Xy: el |l ’w‘-v(ﬁxnnan)

Y2
<c (E [c,,|) sup (tDt)aé Dj:_"(p(nu) sup ||(q)a+max(a |-y|)j_- ._.,,tpg”)
v (t,z)ER4 xR™ v=1,2,...
ag+la’|<s
v=1,1,...

Li(R9)

x ”U”w-rr(ﬁxnﬂxnw

which proves the first part of the theorem.
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The second part of the theorem follows from Corollary 2.2.3 because were ¢
close to zero, we would choose (¢,) of small 3", |c,|.

O
If X is a compact manifold of dimension n, then the theorem shows that

W*(XP x RY) is a module over C=,_(Ry x X x R?).

comp

We now invoke a standard procedure to localize the spaces W*7(XP x RY) to
open subsets of Ry x X x R%. Namely, given any open set O C R, x X x RY,
we denote by W;.7(O) the space of all distributions u on O N (int X© x RY) such
that pu € V’V""’(X[j x R?) for any ¢ € C=,_(R; x X x R?). And by W2 _(O) we

com ( com
P P

denote the space of all distributions on @ N (int XU x RY) of the form yu, where
C2p(Ry x X xR?). By the above, W27, (O) consists of all u € W*7(XH x RY)
supported on O.

Corollary 2.2.5 Assume that M is an edge-degenerate differential operator of
order m on an open set O C Ry x X x RY. Then M induces continuous mappings

M: Wloc (O) - WI:J—cmﬁ_m(O)
for all s,y € R.

Proof. By Theorem 2.2.4, we are left with the task of showing that the operator
L(—td)* D’ (tD,)? is a continuous mapping of

W (R, x R* x R?) = W™ ™""™(R, x R* x RY),

provided that af + |o'| + |8] < m.
We give the proof only fmﬁ]e case of integer s > m; the other cases are left to
the reader. For any u € W*7(R,; x R" x R?), Lemmas 2.2.1 and 1.1.3 yield

2

1 L 1
NF('tat)%Di' (tDy) u

- ao+iz‘_:ﬂ-m /Om
(e s 00 (a0 o)

()2
1> (t(n )2(ao+i)

Sczf”

oap+jLa—

e s

Lo § D% (€D01) ey

Wa—my—m (R xR xR4)

2

dn
Hi(R")
2

+ dr,r) thdt
Hi(R")

‘( D,)““Fw,,(l( —18,)% D' (tD,)° )

2

Hj+la’l(nn) dn
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with ¢ a constant independent of u.
As Fiuy ((tDy)ﬁus = tWlyP Foopu and || < const (7))l for all n € RY, it
follows that

1 i ! 2
F(—t&)""D: (tD,)u _
We-m,y=m(E; xR" xR9)

2|81 <) ag u
¢ B L[ e iy NP0 Py

ao+1<:
(m?*

o 2 n
+a"’"‘°’°"°" B0 Sy 2 [y eeesd NPT Fumentlliiqar d”)t “

which completes the proof.

2.2.4 An example of non-invariance

In this subsection we will look more closely at the norm of W%¥(XU x R?), with
4 < 0. More precisely, we examine this norm on functions of separated variables,
thus showing that the variables z and y enter the norm in an essentially asymmetric
way. This naturally leads to a simple diffeomorphism of the wedge, under which the
space WO(X® x R?) is not locally invariant.

Given any u(t,z,y) = uo(t)u(z)uz(y) in Wo(XEP x R?), we have, by Lemma
2.2.1,

||“||3v0.1(xnan)
oy [T, n o n
~ oo ((n) o fo " o [Ptndt + / & |uo|*t dt) [Fug|*dn [|ual|72(x)-
n

Assume that ug vanishes away from the line segment [0,7]. Then an easy
computation shows that

“u”:von(xﬂan)

T
—~ -2 Z;n ~25 2 2
([ o hopteat) (/wm Fu dn) sl

-2 ﬁ)' -2 2,n T 4n 2 2
#f o [T el rde+ [ juolPtrdt ) 1Fusldy s
(> % 0 o)
(2.2.8)

Hence it follows that up has to be square-integrable on R, with respect to the

measure t=*7*"dt. So the integral [ =27|uo|?t"dt is infinitesimal when 7 — oo.
On the other hand, the integral J‘% |uo|*t"dt may be unbounded as  — co.
n

However, its growth is controlled by a multiple of (7)~%” because

/ luo |’t"dt<(( ) / £=27 |uo|*m dt.

(&)
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For this reason, the norm of u being finite requires the smoothness of uz in y of
degree close to —+ in accordance with uq.

Example 2.2.6 Take uqo(t) = t* x[o,1)(t), where xjo1} is the characteristic func-
tion of the line segment [0,T]. This ug is square-integrable with respect to the
measure t~27*"dt if and only if =2y 4+ 2p + n + 1 > 0. Moreover,

T

(1’)—27 /lﬁ’t—zvluol2tﬂdt+‘[n |'U.0|2tndt
0 10}

g~ 2rHHLen

T 2yt 2p+14n

T2p+1+n a2p+1+n

2p+1+n_2p+1+n

s ).

In the merely interesting case 2p+ 1 + n < 0, formula (2.2.8) thus becomes
||th[0.T] “1“2||w°.-r(xﬂxno) ~ ||“1||L’(X) ||“2||H-p-‘-’52(l,)- (2.2.9)
Therefore, a function u(t,z,y) = t?x[o,7)(t) u1(z)uz(y) belongs to WO (X® x R) if

and only if u; € L3(X) and uy € H™P~"5*(R?). In particular, we conclude that the
space W (R, x RY x RY) is not locally invariant under the diffeomorphism

(t’ z, y) = (T(tsm? y)$ X(ts T, y), v(ta :c,y))

of the wedge Ry x R? x R?, where

T(t7$1 y) = t’
x(t,z,y) =y, (2.2.10)
v(t,z,y) =z

rearranges r a.nd Y.

2.2.5 Properties of the automorphisms of the wedge

Example 2.2.6 demonstrates rather strikingly that it is important to pay attention to
admissible diffeomorphisms of the stretched wedges when discussing the invariance
of weighted Sobolev spaces on them. In fact, it is to interest of wedge calculus
that such diffeomorphisms have to preserve edge-degenerate differential operators.
The chain rule shows that, for this to happen for a diffeomorphism (¢,z,y)
(T(t? I, y)a X(t) m’y)a U(t, T, y))v 1t must Sa'tiSfy

1
e
t

€ C® up to t =0; and

ar

8t

13v o —
o ;- €C®uptot=0.



52 2 Wedge Sobolev Spaces

As we shall see, both the conditions make also sense under the geometric set-
ting. Namely, the first condition is an analytical interpretation on the fact that the
edge of the wedge must be preserved under the diffeomorphism. And the second
condition just amounts to saying that the diffeomorphism of the wedge is a family of
diffeomorphisms of the cone bases, which is parameterized by the variable y running
over the edge.

Note that the diffeomorphism given in (2.2.10) satisfies the first condition, while
the second condition fails to be fulfilled for it.

Let Z2 and W_ be two model cones in R!*", with Z; and W, open subsets of
the unit sphere S™.

Given open subsets Z; and W, of R, we consider the geometric wedges Z =
ZP x Zy and W = WP x W, in R+,

Accordingly, we write z = (21, 2;) and w = {w;, w;) for the variables in R'*"+9,
where z;,w; € R'*™" stand for the “cone variables,” and z;,w; € R? run over the
edge.

By a diffeomorphism of the wedges Z and W is meant any diffeomorphism
w = §(z) of a neighborhood of Z to a neighborhood of W in R'"*"*9  such that
§(Z)y=Ww.

Given a diffeomorphism w = 6(z) of Z — W, it follows that § acts smoothly
near the edge {0} x Z; of Z. Moreover, a familiar topological argument shows that
6 maps the edge of Z to that of W, i.e., §({0} x Z3) = {0} x W,.

Composing & with polar coordinates z) = tp(z) in Z and w, = 7¢(x) in W2

yields a diffeomorphism
T =1(t,z,y),
x = x(t,z,y),

v=uv(t,z,y)

S

of the stretched wedges intZ — int W, where

(¢, z,y) = i (tp(z), y)l,

x(t,z,y) = pabud, (2.2.11)

v(t, z,y)-= watp(z),y)

and
Z =20 X Zy,
W = I-VU x Ws.

As polar coordinates are singular at the origin, this diffeomorphism (denoted by
6) may fail to extend to a diffeomorphism of neighborhoods of Z and W in Rx 5™ xR®.
However, the following properties of § are immediate from the construction of this
diffeomorphism:

7(0,z,y) =0forall z € Z,, y € Z,,

v(0,z,y) = wy(0,y) is independent of z € Z,. (2.2.12)

The first condition (2.2.12) means that the base ({0} x Z,) x Z; of the wedge
Z transforms to the base ({0} x W,) x W, of the wedge W by §. And the second
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T(t,z,y)
t y v(t,z,y)

x(t,z,y)

Fig. 2.2: In this way the stretched cone ([0,1) x Z;) x {y} transforms to the
stretched cone {(7,x): 7 < 7(1,x,y), x € Wi} x {v(t,z,y)} under
8.

condition (2.2.12) means that, for any fixed y € Z;, the base ({0} x Z;) x {y} of the
stretched cone ZD transforms to the base ({0} x W) x {v(0,z,y)} of the stretched
cone WPD. _

It is worth pointing out that if é keeps invariant the cone structure of Z close
tot =0, i.e., given any y € Z,, the stretched cone ([0,1) x Z;) x {y} transforms
to the stretched cone ([0,7(¢,z,y)) x W;) x {v(t,z,y)}, then the v(t,z,y) will be
independent of both t and z for ¢ € [0, 1).

By a diffeomorphism of the stretched wedges, we shall now mean any diffeo-
morphism 6 : (¢, z,y) — (7, x,v) of a neighborhood of Z to a neighborhood of W in
R x S™ x RY, such that §(Z) = W and the restriction of § to the base of Z preserves
the cone bases.

Fix a diffeomorphism & of Z — W. By the above, both conditions (2.2.12) are
fulfilled.

Lemma 2.2.7 Given any R > 0 and compact sets K, C Z, and K, C Z;, there
is a constant ¢ > 0 such that

1
c < |J(t,z,y)| < p forall {t,z,y) € (0,R] x K, x K,

where J = det %((1:-:5:'5-')1 is the Jacobian of §.

Proof. By assumption, the Jacobian matrix %(&-.ﬁ)l is non-singular near the
compact set [0, R] x K; x I;. Hence our statement follows by a familiar argument.
0

_ We now invoke the first condition of (2.2.12) to derive one of two main properties
of é.

Lemma 2.2.8 Assume that K; is a compact subset of Z;, for i = 1,2. Then
there are an R > 0 and a C* function Fy in a neighborhood of [0, R] x K, x K,,
such that

T(t,z,y) = tefo =V forall (t,z,y) €[0,R] x K, x K,.
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Proof. Indeed, 7(0,z,y) = 0 implies
1 g
rtay) = [ 6(,( r(0t,,y)) 0
=t / (0t,z,y)do.
We are going to set
1 Or
Fo(t,z,y) = ln/ —a—t-(ﬂt,:c,y) do. (2.2.13)
0

The only point remaining concerns the behavior of the derivative 88—: for ¢t > 0 small
enough. More precisely, our objective is to show that this derivative is bounded
from below by a positive constant.

As the Jacobian matrix

or 91 or
o) E B R
a(t,z,y) L T T
9t ©dx Oy
is non-singular on Ry x Z, X Z; and
’(0 z y) =0

for all z € Z\, y € Z,, we deduce that Z2(0,z,y) # 0 for those z and y. Even
(0 z,y) > 0, because the R, -direction is preserved. Hence it follows by the
compactness of K; x K, that there are positive constants R and ¢ such that

€< %(t,a:,y) < % for all (t,z,y) € [0, R] x K, x K.

Thus, the function Fy given by (2.2.13) possesses all the desired properties, and
the proof is complete.

a
The same reasoning applies to the component v(¢,z,y) of 5, when using the
second condition (2.2.12).

Lemma 2.2.9 There ezist a diffeomorphismv = Fy(y) of Z; » W, and a C*"/%
Junction F on a neighborhood of Z with values in R, such that

v(t,z,y) = Fi(y) +tF(t,z,y)  forall (t,z,y) € Z.
Proof. Indeed,

19
vlt,zy) = v(0,2,y)+ [ 2 (v(0t2,v))d0

1
= w0,z 9+t [ 20t,a,9)d.
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Set
Fi(y) = v(0,z,y),
F2(t’$,y) = 01861;(0t x,y) do
(that Fy does not depend on z follows from (2.2.12)).

Then both Fy and F; are C* functions on a neighborhood of Z with values in
RY. Moreover, since

5(({0} x 1) x Z))
= {(r(0,z,¥), x(0,2,¥),v(0,2,9)) : (z,¥) € Z; x Z,}
= {(01X(0azay)1Fl(y)) : (:B,y) € 7 % Zg}
= ({0} x W;) x W,

and
a eFO(O'Ivy) 0 O
-3%11”—))(0,:,11)= %(0,2,y) B(0,2,5) E(0,my) |,  (22.14)
Y F3(0,2,y) 0 B (v)

we can assert that F| is a diffeomorphism of Z; — W,, as desired.
a
The class of diffeomorphisms we obtained in the course of the proof seems to
be of independent interest.

Lemma 2.2.10 As defined above, the wedge diffecomorphisms form a group, i.e.,
the composition of any two diffemorphisms is a diffeomorphism and the inverse to
any diffeomorphism is a diffeomorphism.

Proof. This is evident by a purely geometric reasoning. The analytical proof
is also straightforward.

O

2.2.6 The invariance

Every function u € W;;7(W) defines a continuous linear functional on CZ,, (int W),
and so is a dlstrlbutlon in the interior of W. For this reason, given any diffeomor-
phism & : Z — W, we may define the pull-back v = v o 5 of u under § in the
usual way. The §*u is a distribution on int Z, and the question arises whether it
still belongs to W},1(Z).

The following result answers this question.

Theorem 2.2.11 Let & be a diffeomorphism of Z — W. Then §*u € W 1(Z)
for any u € W T(W).
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Proof. By a purely formal argument, it suffices to prove that if v € W*7(W)
vanishes away from a compact subset of W, then 6*u € W*7(Z). Moreover, because
of interpolation and duality we may assume that s is a non-negative integer.

Fix a u € W2 (W). As §: Z —» W is a proper mapping, there are compact
sets Ky C Z) and Ky C Z; such that 5 (supp u) C Ry x Ky x K;. Hence it follows
that the pull-back §*u is supported in Ry x K, x Kj.

Let 6 = (r,x,v), and let R be the number of Lemma 2.2.8. Analysis similar
to that in the proof of Theorem 1.2.3 shows that there is an A > 0 such that from
(t,z,y) € Z and 7(t,z,y) € [0, A) it follows that ¢ € [0, R).

Pick a cut-off function w with a support on [0, A), which is equal to 1 for 7 < a,
where 0 < a < A. Write u = u; + uz, with u; = wu and u3 = (1 — w)u.

The function us € H*(W) is supported away from ([0, a) x W;) x W;. Since the
invariance of the usual Sobolev spaces is well-known, it follows from Lemma 2.1.4
that §*u; € H*(Z), provided that either u vanishes outside of a compact subset of W
(which is the case) or & behaves well at the “infinity” of Z. Thus, Proposition 2.1.19
shows that in fact 8*u; € W?*7(Z) because §*uy vanishes for ¢ > 0 small enough.

It remains to prove that §*u; € W*"(Z). To do this, we shall write u instead
of u; and assume that u is supported on ([0, A) x W;) x Wg.

As Fyan(tDy)? = (in)P Fyey and |(in)?| < const (B) for (n) < 2, we can assert
that

||5'“||3fv--(2)

(n)* -
= tD Orngf o 5*u dT]
ao-l'lzﬂl<s'/ / (/ 2 (t{n) )2‘7‘( t) y—n
(1’> ’ 2] o n
+/<">Z%W| tD:) D3 Fyanb™u " didz

- = L ( [ (f(v:f))’h [(¢D)%° D Fpren (D, 50)*

ao+|a|+|B|<s

1 o . ]
+](,,)> 12(ao+|o]+i81) ’ (tD:)*D fw—-n((tD )35 )l dT})t didz.

Denote by x(,,).:a(n) and X(y»e (1) the characteristic functions of the sets (1) <
2 and (n) > ¢ in R? respectively. Given any N =0,1,..., let

WMt 9) = (_g(z]‘)s“)’_g;X(n)S%(ﬂ) + t—%xw)z%(’?), (2.2.15)

then from the above it follows that

“g'““%v-na) ~ Z

ao+|al+[B|<s

/Om f (/v [f,,Hn ((tDp)%Dg(tDy)ﬁg'u)|2w(ao+|°|+|ﬁ|)(t,n)dn) M dide.
(2.2.16)
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On the other hand, applying the chain rule and Lemmas 2.2.8 and 2.2.9 gives

t—(uo&) = 1+t% 6+Ztax’ 6+Z ‘F°8v’ » o 08,
ot ax; 3

i 8 = % - axl u 5 : —Foa 2 6u 3

az-(“°6) B ax.-( ) z z; (3)() +Ze Jz; 3vJ °o

1=1
0F, 2 6‘)@((’)11) g Fav,( Bu) ~
§) = t— 5 0 8,
2 (wod ayk( ) S raa (gt -

fori=1,...,nand k =1,...,q. Therefore,
(D) D2 (tD,)? (u o &)
= > 28 (t,2,y) (D) D3(7D,)"u) o3,

Yo+Iv[+9Sao+|al+]8]

the coefficients ¢2°7 5 ? being infinitely differentiable near [0, R] x K; x K.
We now invoke the elementary equality

v0%u = Z(—l)lm ( “ ) P (0° Py u),
B<a p
to rewrite this in the form
(tD)*° D2 (tD,)? (u o &)
- ) ((rD,Y°DY(7D,)’ (5ef u)) 0 8
Yo+ly[+{0|Sao+e|+|8]
(2.2.17)

with some new C* functions ¢) 7 9(r,x,v) defined near the support of u. There is

no loss of generality in assuming that (cf;::f ) are C* functions of compact support

on the whole wedge W, for if not, we modify them away {rom a neighborhood of

suppu. _
If (n) > £, then

1 1 (n)2((00+|0|+w|)—(‘7’0+|ﬂl+|ﬂn
2(a0+lol+IB] — {2(vo+hI+I7] (t(n))2(eo+lal+IB)~(vo+1vI+19])

< 1 L ()2teotlalsIBh-(ro+ak+i)
= a2((@otlal+B)=(ro+y+HP)  2(v+lvI+I0] )

Substituting (2.2.17) to (2.2.16) we thus get

I|g‘u”¥,vo,7(z) S Const Z

Yo+ |¥|+]9[<s
0 R}

~ 2
Fyen® (7 D2 DY D) (ex03:00)| w“"‘*”‘*"’”(t,n)dn)t"dtdx,

(2.2.18)
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(Cyp,y,0) being C functions of compact support in W.
Having disposed of this preliminary step, we can now highlight the main tech-
nical idea of the proof.

Lemma 2.2.12 For any compact set K C [0, A) x W, x W, there is a constant
¢ > 0 such that

1 s Uk

<c [T 2,) " N
<c /0 ]n; ( Rs | Formnv|” '™ (T, n)dq) "drdy (2.2.19)

for all v € CZ,, (W) with support in K.

Assuming this estimate, we show how to complete the proof of the theorem. To
this end, apply Lemma 2.2.12 to each function

v = (7D;)* DY(7 D) (cy ,0u)

on the right-hand side of (2.2.18) and N = v + |v| + |J|. (That (2.2.19) is valid for
v of finite smoothness, can be seen by a passage to the limit.) This yields

||S'“||3vm(z) <c 3

Yo+ Iy +[9]<s
e 2
/0 /m ( /,q | Foen (7 D2 DY (7 Do)’ (Cr6.7,9) | w‘""’*""*"’“(r,n)dn) T drdy.

By Theorem 2.2.4, every summand on the right-hand side here is majorized by
a multiple of ||ull}y..(w), With a constant depending only on (cy, 4,9). Summarizing
we see that

Fypn(vo g)r w(N)(t, n)dn) t"dtdz

16" ullwenizy < e [luflwencm),
the constant ¢ being independent of u provided u is supported in a fixed compact
subset of [0, A) x W, x W,. This is the desired conclusion.
O

Thus, the theorem will be proved once we prove Lemma 2.2.12.

Proof of Lemma 2.2.12. The proof lies beyond the range of the paper. This
is a standard result on the L%-boundedness of pseudodifferential operators. We
refer the reader to Calderon and Vaillancourt [4], Coifman and Meyer [6], Kato
[12], Kumano-go [13], Beals [1], Cordes (7], Hwang [11], Hunt, Muckenhoupt and
Wheeden [10], Coifman and Fefferman [5] and others.

a

2.3 Sobolev Spaces on a Manifold with Edges

We now turn to the weighted Sobolev spaces on arbitrary manifolds with edge-like
singularities.
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2.3.1 Manifolds with edges

To be short, we begin with a definition.

Definition 2.3.1 By a manifold with edges, we mean a topological (second co-
untable) Hausdorff space W with an exceptional set Y C W (“singularities”) such
that

e Y is a compact manifold of dimension ¢ > 1;
o W\Y isan (1 +n+ q)-dimensional manifold;

o for each pointy € Y there exist a neighborhood N in W and a homeomorphism
$: N — %1]):—;{- xU, for X a compact manifold of dimension n and U an open
subset of RY, such that ¢ restricts to diffeomorphisms of N\Y — (0,1)x X xU
and NNY — {—g—]% x U.

We may easily generalize the notion of manifolds with edges by allowing Y
to be the disjoint union of components of different dimensions. This causes trivial
modifications of our considerations. For similar reasons, there is no loss of generality
in assuming that Y is connected. Then the cone bases X (v,) and X (v;) for different
v1,v2 € Y are diffeomorphic. Hence we may simply talk about X.

We may always think of X embedded to the unit sphere S¥ for N large enough,
even for N = n if we consider local embeddings. If it is the case, the product
1%1‘1)% x U is identified with the model wedge {Ap: A €[0,1), p€ X} x U in the
obvious way.

Our next goal is to determine a “wedge structure” on W close to each point
vEeY.

Given any two diffeomorphisms

b1: N\Y = (0,1) x X x Uy,
$2: N\Y = (0,1) x X x Uy,

the composition ¢; 0 ¢7' is a diffeomorphism of (0,1) x X — (0,1) x X x U; —
(0,1) x X = (0,1) x X x U;. We say that ¢; and ¢, are equivalent if ¢; 0 ¢7" is the
restriction of some diffeomorphism (=1,1) x X x U; — (—1,1) x X x Us.

The system of the equivalence classes of such diffeomorphisms, when v varies
over Y, is regarded as a part of the structure of W\ Y near Y. It is kept fixed and
determines the “wedge structure” on W close to v € Y via the local R, action on
(t,z,y) € (0,1) x X x U, i.e.,, A(t,z,y) = (At,z,y) for all A € R, with At € (0,1).

Note that W is no manifold near Y, unless the base of the model cone is the

sphere S™. Nevertheless we will talk about manifolds with edges because the analysis
takes place on W\ Y.
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2.3.2 Siretched manifolds

The analysis on a manifold with edges has always referred to the corresponding
“stretched manifold.”

Proposition 2.3.2 For any manifold W with edge Y there is a smooth manifold
with boundary W such that
1) W\Y is diffeomorphic to W\ OW, and
2) there is a neighborhood N of Y in W and a collar neighborhood N ~ W x
[0,1) of OW in W such that N\ 'Y 1s diffeomorphic to W x (0,1).

Proof. We construct W by replacing, for every singularity v, the neighborhood
N in Definition 2.3.1 by (0,1) x X x U via gluing with any one of the diffeomorphisms
¢. We even get W = U,ey X, the subscript v pointing to the dependence of X on
V.
C
This manifold W is called the “stretched object” associated with W.

Example 2.3.3 Assume that K is a manifold with conical singularities, and U
1s an open subset of RY. Then W = K x U is a manifold with edges, and we have

W=KxU.
0

The important point to note here is the form of the transition diffeomorphisms
close to the boundary of the manifold W. By definition, every point of W has a
neighborhood A in W, which is diffeomorphic to Ry x R™ x R9. If

¢: N >Ry xR" x RY,
¢": N" =R, xR"x R?

are two such diffeomorphisms, then the composition ¢’ o (¢”)~! is a diffeomorphism

of ¢"(N'NN") = ¢'(N' O N") of the form

(tym, y) = (T(ta z, y))X(t7xa y)vv(t’ :B!y)),

where
7(0,z,y) =0,
v(0,z,y) does not depend on z.

To see this, we recall that £ and = enter the function v only through the aggregate
t p(z), where p(z) € SV,
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2.3.3 Definition of Sobolev spaces

Assume that W is a compact manifold of dimension 1 + n + ¢ with edges, and W is
the corresponding “stretched object.”

The definition of weighted Sobolev spaces W*7(W) is based, as usually, on the
standard localization procedure.

By the definition of W, each interior point of W has a neighborhood which is
diffeomorphic to R**"+7, And every point of JW possesses a neighborhood which is
diffeomorphic to K, x R™ x R9.

Since W is compact, there exists a finite covering {V, } of W by open subsets
each of them lies in a coordinate patch on W. It follows that, for A, N W = §,
we have a diffeomorphism ¢, : A, — R If N, N OW # 0, then we have a
diffeomorphism 4, : N, — Ry x R* x R9.

Let {¢,} be a C* partition of unity on W subordinated to the covering {N,}.

As expected, given any s,v € R, the space W*7(W) is defined to consist of all
distributions u in the interior of W such that, for every v, the product {(p,u) o ¢;?
belongs to either H*(R'*"*7), if N, NIK = §, or W**(R; xR" xR?), if N, NIK # 0.

Proposition 2.3.4 As defined above, the space W*Y (W) is independent of the
particular choice of the covering {N,}, diffeomorphisms {¢,}, and the partition of

unity {¢,}.

Proof. Let
T'={N,, ¢, ¥.},
"= {N:: gv ‘19::

be two triples as above.

We introduce the temporary notation W**(W, T') or W*7(W, T") for the space
W*7(W) corresponding to either triple. We shall have established the proposition
if we prove the following: if u € W*7(W,T"), then u € W*Y(W,T").

To this end, pick a u € W*7(W, T’). Given any number v, write

(so’y' (Z vL) u) o (¢

I

’ my=1\* "o A
S (@@ ™) ((even)u) o (4) -
m

The task is now to show that every summand on the right-hand side here is in
HA(R™™H) if N'NIK = @, or in W*(Ry x R* x R?), if N"NIK # 0. We give the
proof only for the latter case, i.e., when A NJK # 0. Similar considerations apply
to the first case, and will only refer to the invariance of the usual Sobolev spaces.

We can certainly assume that N, NN # 0, because otherwise @}¢!, = 0 and
so the corresponding (zero!) summand is obviously in W*7(R; x R" x R?).

Suppose that A, N 0K = §. By condition, ((tpftp:‘) u) 0 (¢:‘)_1 belongs to
H L (R19) As ¢ o ()" is a diffeomorphism of

(Ry x R* x R?) N g, (M, NAY) — R+,

(whuo ()™
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it follows that the pull-back of ((goﬂch) u) o (é;)-l under this diffeomorphism be-

longs to H}, (R4 x R x R?). Applying Lemma 2.1.4 and Proposition 2.1.19 we
can assert that

' n—-1\* ' 7 AN YR n
(8,0 (e0™") ((¢hwl) u) o (4,) € H(Ry xR™ x RY),
as desired.
It remains to consider the case when N N OW # §. By condition, the function

((‘P:‘PL) ") ° (¢:‘) - belongs to W*¥(R; x R* x R?). Moreover, it vanishes away
from a compact subset of R; x R™ x R?. Since ¢, © (qb:f)'l is a diffeomorphism of

(Ry xR" xR*) n g, (M.nN)) - Ry xR* xR,

it follows from Theorem 2.2.11 that the pull-back of ((tpﬁgo:‘) u) o (gﬁL)—l under this

diffeomorphism belongs to W*?(R4 x R® x R?). This completes the proof.
O
Another way of stating Proposition 2.3.4 is to say that these weighted Sobolev
spaces make sense on a manifold with conical singularities.
The space W*7(W), when endowed with the norm

llellwerwwy

=Q > lew)od, yenmrxemcany + 2 @)y’

: Ny NOW#£D v: AuNaW=5p

%{'(R""“‘H))%)

is a Banach space and even a Hilbert space.

Moreover, analysis similar to that in the proof of Proposition 2.3.4 shows that
the norm || - |lyw+~w) is independent, up to an equivalent norm, of the particular
choice of the covering {V, }, diffeomorphisms {4, }, and the partition of unity {¢,}.

2.3.4 Properties

The spaces W*7(W) have actually the same properties as the weighted Sobolev
spaces on a wedge of Subsection 2.1.8.

2.4 Sobolev Sections of Vector Bundles

From now on we assume that 1 is a compact manifold of dimension 1 4+ n + ¢ with
an ¢-dimensional edge Y. As above, we denote by W the corresponding stretched
manifold.



2.4 Sobolev Sections of Vector Bundles 63

2.4.1 Sections of vector bundles

Let B be a differentiable C-vector bundle of rank & over W, or, more concisely,
m:B—W.

By o(B) we denote the vector space of all sections of B, that is, all mappings
u : W — B such that the composition mu gives the identity mapping of W. In other
words u maps a point p € W into the fiber B, of the bundle B over this point.

Locally each section of B is represented by a vector-function on an open subset
of either the space R'*"*+? or the subspace R} x R™ x RY with values in C*. How
does this happen?

We suppose that A is some coordinate neighborhood on W over which B is
trivial, and let t : Bly — A x C* be this trivialization. For u € o(B), the
composition

N =% Bly -5 N x CF 24 ¢

defines a vector-function uy : A" — C* that is called the representation of u in A.

Let A and A, be some coordinate neighborhoods on W with A NN, # @, and
let B be trivial over these neighborhoods with trivializations ¢, and t; respectively.
Then the representations u; and u; of the section u in A} and A, are connected in
the intersection N7 N Ay by means of the equality u, = t5,u,. Heretq, : MNN; —
GL(k,C) are the transition matrices for the bundle B induced by the mapping
tgtl-l . (Nl ﬂNg) X Ck — (Nl ﬂNg) X Ck.

The smoothness of the transition matrices is determined by the smoothness
of the bundle B so an analysis of differentiability properties of sections of vector
bundles is reduced to an investigation of such properties for their local representa-
tions. Moreover, in each neighborhood it is sufficient to limit oneself to some one
representation.

The use of local representations also gives a way to define a topology in spaces
of differentiable sections of B. We shall illustrate this by the example of weighted
Sobolev sections of B.

2.4.2 Definition

The definition of weighted Sobolev spaces WY (W, B) is based, as usually, on the
standard localization procedure.

Fix a finite coordinate covering {N,} of the manifold W, such that B is trivial
over each V,. Pick also some trivializations ¢, : B|y, — N, x C* for the restrictions
of B.

Let {¢.} be a C* partition of unity on W subordinated to the covering {N,}.

Given any section u € o(B), denote by u, the representation of u in N,. For
every v, the product @, u, is a well-defined function on W with values in C*.

Let s,7 € R. The space W7 (W, B) is defined to consist of all sections u € o(B)
such that, for every v, the product ¢,u, belongs to W*Y(W)* (the direct sum of &
copies of W*7(W)).
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Proposition 2.4.1 As defined above, the space WY (W, B) is independent of
the particular choice of the covering {N,}, trivializations {t,}, and the partition of
unity {,}.

Proof. Let )

T' = {N, t,, ¥}
T"=A{N;, t, ¢/}
be two triples as above.

We introduce the temporary notation W*Y(W, B, T") or W*7(W, B, T") for the
space W*7(W, B) corresponding to either triple. We shall have established the
proposition if we prove that v € W*Y(W, B, T") implies u € W*'(W, B, T").

To this end, pick a v € W*Y(W, B,T’). Given any number v, write

ot = o (Tl
u
= so’u'( > vi.) uy.

u:JV;,rW.',’#G

-1
Since uj, = tl (t:‘) u,, in a neighborhood of supp @], N supp ¢, we get

o= X (ete(n)) e (2.4.1)
y:)\f;,m\/’;';éﬂ
By assumption, every product ¢, u; belongs to W*7(W). As multiplication by
functions of C2.(W) is a continuous operator in W*7(W) (see Subsection 2.3.4), it
follows that every summand on the right-hand side of (2.4.1) is in W*Y(W),
Hence u € W*Y(W, B, T"), which is the desired conclusion.

a
The space W*7(W, B), when endowed with the scalar product

(u,v) = Z (ot PuVL )iy s Wk (2.4.2)

is a Hilbert space. Again this Hilbert structure doesn’t depend, up to an equivalent
norm, on the concrete choice of the covering {A,}, trivializations {t,}, and the
partition of unity {p,}.

Our next theorem yields information about the dual of W*Y(W, B).

Proposition 2.4.2 For any s,v € R, it follows that

top.
W*Y(W, BY & W="(W, B'),
B’ being the dual vector bundle of B.

Proof. This is an immediate consequence of the corresponding local result
given in Proposition 2.1.17.

o
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2.4.3 Rellich Theorem

For weighted Sobolev spaces of sections of a vector bundle B over W the Rellich
Theorem remains valid in full generality.
Theorem 2.4.3 If W is compact, then the embedding
W’?.‘h(w’ B) —y W’Iv‘n (w, B)
is compact provided that s, < s and 7, < 3.

Proof. See Behm [2, Theorem 3.3.2.4].
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