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VIRASORO AND KDV

FRANCISCO J. PLAZA MARTÍN

Abstract. We investigate the structure of representations of the
(positive half of the) Virasoro algebra and situations in which it
decomposes as tensor product of Lie algebra representations. As
an illustration, we apply these results to the differential operators
defined by the Virasoro conjecture and obtain some factorization
properties of the solutions as well as a link to the multicomponent
KP hierarchy.

1. Introduction

The breakthrough discovery of Witten-Kontsevich ([W, Ko]) estab-
lished an intimate link between mathematical physics and enumera-
tive geometry. From a general perspective, one aims at studying the
Gromov-Witten invariants of a smooth projective variety X in terms
of suitable integrable hierarchies. From this point of view, the Witten-
Kontsevich case corresponds to the situation when X is a point and
it was shown that the exponential of the generating function of inter-
section numbers on the moduli space of curves was a common solution
of the Virasoro constraints and of the KdV hierarchy. On the one
hand, following the generalization for the case of the projective space
proposed in [EHX], one wonders if the generating function fulfills a
generalization of the Virasoro constraints. On the other hand, one also
wants to know if the generating function is given by (the logarithm
of) a particular tau-function of an integrable hierarchy. Nowadays, the
case of varieties with semisimple quantum cohomology is well under-
stood and the answer to both questions is affirmative ([T] and [DZ2];
see also [DZ, Ge, Gi1, LT, OP, OP2]).

It is worth pointing out that, for each X, the explicit Virasoro opera-
tors as well as the relevant integrable hierarchy may vary; for instance,
the 2-Toda hierarchy appears when dealing with the equivariant GW
invariants of P1 ([OP2]). Nevertheless, one recognizes some common
features that arise among these results. Let us mention some of them.
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In [Gi2], Givental studied a case in which the total descendent potential
is a τ -function for the nKdV-hierarchy by using n−1 copies of the KdV.
Thus, the total descendent potential of a semisimple Frobenius mani-
fold was defined in [Gi1] as a product of n copies of Witten-Kontsevich
τ -functions. Dealing with a case of orbifold quantum cohomology, it
has been proved in [JK] that the Virasoro constraints decomposed as
n copies of (half of) the Virasoro algebra, that their solution was the
product of Witten-Kontsevich τ -functions, and that the relevant inte-
grable hierarchy consisted of n commuting copies of the KdV hierarchy.
Finally, in [DVV, KS] it was shown that the solution of the Virasoro
constraints in the case of Witten-Kontsevich is unique (up to a constant
factor) and this uniqueness also holds in other setups (e.g. [LYZ]).

This paper, making use of the representation theoretic properties of
the Virasoro algebra, offers new insights and results on these proper-
ties and provides evidences that the above mentioned properties rely
heavily on the structure of the Virasoro algebra and its representations.
Our study of explicit expressions for Virasoro representations (see §2)
is general enough to encode many of the known representations within
the framework of Virasoro constraints. Further, it allows us to de-
termine whether a representation is the tensor product of Lie algebra
representations and if a solution factorizes as a product of solutions of
those representations. An explicit realization of these ideas is carried
out in §3 for the case of smooth projective varieties with trivial odd
cohomology and vanishing first Chern class. Thus, we think that our
approach may help in determining the explicit expression of the Vira-
soro operators as well as the corresponding integrable hierarchies for
other types of varieties X (see §3.6). Now, let us be more precise and
explain the contents of the paper.

We begin by fixing a pair (A, ( , )) consisting of a finite dimensional
vector space and a non-degenerate bilinear form. Associated to this
data, we consider a Heisenberg algebra H(A) and its universal envelop-
ing algebra U(H(A)). Let us denote by W> the positive half of the
Virasoro algebra and recall that it contains sl(2) canonically. Sec-
tion 2 is entirely devoted to the study of Lie algebra maps W> →
U(H(A)). To begin with, we show that, under some homogeneity con-
dition, there is a canonical bijection between HomLie-alg(W>,U(H(A)))
and HomLie-alg(sl(2),U(H(A)) (Theorem 2.9). This is highly non-trivial
since, in general, the problem of extending a map defined on sl(2) to
W> involves infinitely many conditions (see [PT]). Accordingly, it is
natural to expect that many properties of a map W> → U(H(A)) can
be stated in terms of its restriction to sl(2). Actually, we prove that
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such a map decomposes as tensor product of Lie algebra representa-
tions if and only if its restriction does. Moreover, this factorization
is possible only if A decomposes as the orthogonal sum of two sub-
spaces (Theorem 2.10). We finish this section by showing that the fact
W> admits no non-trivial finite dimensional representations has im-
portant consequences on the structure of the solutions of the equations
(ρ1⊗1+1⊗ρ2)(L)(

∑
i fi⊗gi) = 0, where L ∈ W> (see Theorem 2.12).

That is, decompositions of the representation and of the solutions de-
pend strongly on the structure of W> and of (A, ( , )).

Although the previous results are interesting on their own, §3 ex-
plores their application to concrete situations; for instance, relations
with integrable hierarchies (e.g. multicomponent KdV). The case we
have chosen to illustrate this issue is that of the differential operators
appearing in the Virasoro conjecture when X has trivial odd coho-
mology (for instance, whenever X has semisimple even quantum coho-
mology) and its first Chern class vanishes. Then, Theorem 3.3 shows
explicitly how to obtain that these operators as the images of the gen-
erators Lk ∈ W> by:

ρ̂ : W>
ρ−→ U(H(A)) −̂→ End

(
C[[{ti,α|1 ≤ α ≤ dim(A), i = 1, 3, . . .}]]

)
for A = H∗(X,C) endowed with the Poincaré pairing. Then, our

results of §2 imply that ρ̂ decomposes as the tensor product of Lie
algebra representations associated to data (C, ( , )); i.e. 1-dimensional
case. The detailed study of the 1-dimensional case carried out in §3.4
shows that, up to re-scaling the variables, the corresponding operators
always come from a representation:

σ :W> −→ Diff1(C((z)))

which means that we can profit from [KS, P1] to build the unique solu-
tion in terms of a τ -function of the KdV hierarchy. Putting everything
together, we have the main results of this section. First, in the case of
dimA = 1:

Theorem (see Theorem 3.14). Let ρ ∈ HomLie-alg(W>,End(C[[t1, t3, . . .]]))
be such that ρ(Lk) is of type k for k ≥ −1 and that all coefficients of
ρ(L−1) are non zero.

Then, there exists a unique τ(t) ∈ C[[t1, t3, . . .]], with τ(0) = 1, such
that:

ρ(Lk)(τ(t)) = 0 k ≥ −1

Further, the solution τ(t) is a τ -function of the scaled KdV hierarchy.

and, for dimA = N ≥ 2:
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Theorem (see Theorem 3.16). Let ρ :W> → U(H(A)) be as in §3.3.
There exist S ∈ Gl(A) and functions τα(t1,α, t3,α, . . .) ∈ C[[t1,α, t3,α, . . .]]

such that:

ρ̂(Lk)
(
S(
∏
α

τα(tα))
)

= 0

Further, τα(t1,α, t3,α, . . .) are τ -functions of the scaled KdV hierarchy.

We hope that our methods shed some light on the explicit expressions
of the Virasoro operators and of the relevant integrable hierarchies
that appear when studying the Virasoro conjecture. We also think
that the techniques presented here can be applied to many instances of
representations of W> which appear in a variety or problems such as
recursion relations, Hurwitz numbers, knot theory, etc. . We give some
ideas in §3.6 although all of them deserve further research.

Acknowledgements. I wish to express my gratitude to the Max
Planck Institute für Mathematik (Bonn) for inviting me and where
most of this work has been done. I also thank A. Givental for explain-
ing me some facts on his papers. This work is supported by the research
grants Mineco-MTM2012–32342 and Fundación Solórzano FS/9-2014.

2. Lie algebras

Let W be the Witt algebra; that is, the C-vector space with basis
{Lk}k∈Z endowed with the Lie bracket [Li, Lj] = (i − j)Li+j, and let
W> be the subalgebra generated by {Lk}k≥−1. It contains a copy of
sl(2) via sl(2) =< {L−1, L0, L1} >⊂ W>. Recall thatW> is also called
positive half of Virasoro algebra.

In this section, we study certain maps from sl(2) and their extensions
to W>. These results will eventually allow us to relate the representa-
tion theories of W> and sl(2). A further consequence is that, in order
to construct the operators L0, L1, L2, . . . one only has to start with L−1

and follow some simple procedures and choices.
It is worth mentioning that a study of the representation theory of

W> in terms of the representation theory of its subalgebra sl(2) ⊂ W>

has been carried out in [PT] in full generality.

2.1. Preliminaries. Let us be more precise. Let (A, ( , )) be given,
where A is a finite dimensional C-vector space and ( , ) is a non-
degenerated bilinear pairing. For a basis {aα|α = 1, . . . , n} of A, let
η = (ηαβ) denote the matrix associated to the given bilinear product;
that is, ηαβ := (aα, aβ). The inverse will be denoted with superindexes;
i.e. ηαβ := (η−1)αβ.
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Let us consider unknowns {pi, qi|i > 1} and introduce pi,α = pi ⊗ aα
and qi,α = qi ⊗ aα. Let H(A) be the Heisenberg algebra generated by
{1, pi,α, qi,α|i ≥ 1, α = 1, . . . , n}, whose elements will be called opera-
tors, endowed with the Lie bracket:

(1)
[pi,α, qj,β] = δi,jiη

αβ

[pi,α, pj,β] = [qi,α, qj,β] = 0

We define their degree by deg(qi,α) = i, deg(pi,α) = −i and deg(1) = 0.
Although the definition of the Heisenberg algebra depends on the

pair (A, ( , )) and on a basis on A, it will be simply denoted by H if no
confusion arises.

For H as above, let us define U(H) the universal enveloping algebra
of H, which is the quotient of the tensor algebra of H by the two-sided
ideal generated by the relations u⊗ v − v ⊗ u− [u, v].

Definition 2.1. An operator T ∈ U(H) is of type i if it is a linear com-
bination of p2i+3,α and double products of degree −2i; i.e. pj,αp2i−j,β,
qj,αp2i+j,β and qj,αqj−2i,β. If i = 0 we also allow a constant term.

The subset consisting of operators of type i will be denoted by U(H(A))i
(or, simply, U(H)i).

This section deals with the study of homomorphisms of Lie algebras:

ρ :W> −→ U(H) s.t. ρ(Li) ∈ U(H)i

Let us illustrate the previous definition. From now on, according to
Einstein convention, summation over repeated indices will be under-
stood. For instance, an operator of type −1 is of the form:

(2) b0,1
−1p1 + q1a

1,1
−1q

T
1 + qi+2b

i+2,i
−1 pi ∈ U(H)−1

(the sum runs over the set of odd positive integers i), pi is the column
vector (pi,1 . . . , pi,n)T , qi is the row vector (qi,1 . . . , qi,n), b0,1

−1 is a row

vector, a1,1
−1 and bi+2,i

−1 are n× n matrices. For brevity, we set a := a1,1
−1.

Similarly, an type 0 operator can be expressed as:

(3) b0,3
0 p3 + b0,0

0 + qib
i,i
0 pi ∈ U(H)0

while an operator of type i ≥ 1 is of the form:

(4) b0,2i+3
i p2i+3 + pTj c

j,2i−j
i p2i−j + qjb

j,2i+j
i p2i+j ∈ U(H)i i ≥ 1

for a row vector b0,2i+3
i and n × n-matrices bj,2i+ji and cj,2i−ji , where

cj,2i−ji = (c2i−j,j
i )T and the sum runs over j odd.

It is convenient to offer an interpretation of these matrices. Recall
that qi is the row vector (qi,1, . . . , qi,n), which can be thought as an
H-valued vector of A. A similar argument holds for the column vector
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pi. Thus, under a basis change in A, the matrix b in qi · b · pi will
behave as a bilinear form on A. The same fact applies to all a, b and
c matrices. Similarly, column vectors b0,2i+3

i behave as vectors on A
while row vectors are like linear forms.

It is worth noticing how these operators behave w.r.t. the Lie bracket.
Indeed, the computations given in subsection §2.5 and the linearity of
the bracket show that it is compatible with the degree:

(5) [ , ] : U(H)i × U(H)j −→ U(H)i+j

2.2. Maps from sl(2) to Heisenberg. Let sl(2) be the Lie algebra
of Sl(2,C). We fix a basis {e, f, h} of sl(2) satisfying the relations:

[e, f ] = h , [h, e] = 2e , [h, f ] = −2f .

In particular, the previous choice yields a natural embedding:

(6) ι : sl(2) ↪→ W>

by mapping f to L−1, h to −2L0, and e to −L1.

Lemma 2.2. Let F ∈ U(H)−1 be as in (2). Assume that bi+2,i
−1 is

invertible for all i. It holds that:{
H ∈ U(H)0 s.t.

[H,F ] = −2F

}
'

{
(b, B) ∈ C×Matn×n(C) s.t.

(Bη−1 + Id)(a+ aT ) + (a+ aT )(Bη−1 + Id)T = 0

}
Proof. Our task consists of computing the bracket [H,F ] explicitly.
Recall that, for simplicity, we have set a = a1,1

−1. Since H ∈ U(H)0,

it must be of the form H := b0,3
0 p3 + b0,0

0 + qib
i,i
0 pi where b0,3

0 is a row
vector, b0,0

0 is an homothety, and bi,i0 are n× n matrices.
Having in mind the commutation relations of §2.5, the bracket [H,F ]

is a linear combination of p1, q1αq1β and qi+2,αpi,β. Therefore, the ex-
pression [H,F ] = −2F is equivalent to the following identities:(

3b0,3
0 η−1b3,1

−1 − b
0,1
−1η

−1b1,1
0

)
p1 = −2b0,1

−1p1

q1b
1,1
0 η−1

(
a+ aT

)
qT1 = −2q1aq

T
1

qi+2

(
(i+ 2)bi+2,i+2

0 η−1bi+2,i
−1 − ib

i+2,i
−1 η−1bi,i0

)
pi = −2qi+2b

i+2,i
−1 pi ∀i ≥ 1

Observe that q1Aq
T
1 = q1Bq

T
1 if and only if A+AT = B +BT . Hence,

the above system is equivalent to the following equations:

3b0,3
0 η−1b3,1

−1 − b
0,1
−1η

−1b1,1
0 = −2b0,1

−1(7a)

b1,1
0 η−1(a+ aT ) + (a+ aT )(b1,1

0 η−1)T = −2(a+ aT )(7b)

(i+ 2)bi+2,i+2
0 η−1bi+2,i

−1 − ib
i+2,i
−1 η−1bi,i0 = −2bi+2,i

−1 ∀i ≥ 1(7c)
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Note that, since bi+2,i
−1 and η are invertible, given a pair (b, B) as

in the statement, this system has a unique solution for b0,0
0 = b and

b1,1
0 = B; namely,

(8)
b0,3

0 =
1

3
b0,1
−1(η−1b1,1

0 − 2)(η−1b3,1
−1)−1

bi+2,i+2
0 =

1

i+ 2
bi+2,i
−1 (iη−1bi,i0 − 2)(η−1bi+2,i

−1 )−1 ∀i ≥ 1

The converse is straightforward. �

Example 2.3. Set F = b0,1
−1p1 + q1aq

T
1 + i+2

2
qi+2pi and b1,1

0 = −1
2
, then

H = −2b0,1
−1p3 + b0,0

0 + iqipi. Note that iqipi is the degree operator.

Example 2.4. Let us consider the case where the chosen basis in A is
orthonormal; i.e. η is the identity matrix, and suppose that:

F = b0,1
−1p1 + q1aq

T
1 + qi+2pi ∈ U(H)−1

Then, operators H given by Lemma (2.2) acquire the form:

H =
1

3
b0,1
−1(b1,1

0 − 2)p3 + b0,0
0 +

1

i
qi(b

1,1
0 − (i− 1))pi,∈ U(H)0

where b0,0
0 ∈ C and b1,1

0 verifies (b1,1
0 + Id)a+ a(b1,1

0 + Id)T = 0.

Example 2.5. Finally, let dimA = 1 , a, η ∈ C∗ and F = b0,1
−1p1 +

q1aq
T
1 +qi+2ηpi. Then, bi,i0 = −η for all i and H = −b0,1

−1p3 +b0,0
0 −qiηpi.

Lemma 2.6. Let H be as in equation (3) and U(H)′i be the subspace:

U(H)′i := {T ∈ U(H)i s.t. [H,T ] = 2iT}
Then, it holds that [U(H)′i,U(H)′j] ⊆ U(H)′i+j.

Proof. The claim follows easily from (5) and the Jacobi identity. �

Theorem 2.7. Let F and H be as in equations (2) and (3) respectively.
There is a surjective map:

c ∈Mn×n(C) such that

b0,00 = Tr(cη−1(a+ aT )(η−1)T )

and equation (10b) below

 −→


σ ∈ HomLie-alg(sl(2),U(H))

such that σ(f) = F,

σ(h) = H and σ(e) ∈ U(H)1


Moreover, c1 and c2 have the same image iff c1+cT1 = c2+cT2 . Thus, the

restriction of the above map to symmetric matrices yields a bijection.

Proof. Giving a map σ as in the r.h.s. is equivalent to set an operator
E ∈ U(H)1, such that [E,F ] = H and [H,F ] = −2F . Consider:

(9) E = b0,5
1 p5 + pT1 c

1,1
1 p1 + qib

i,i+2
1 pi+2 ∈ U(H)1
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where, for simplicity, we will set c = c1,1
1 . The identity [H,E] = 2E,

expressed in terms of the coefficients of the operators, is equivalent to
the following equations:

3b0,3
0 η−1b3,5

1 − 5b0,5
1 η−1b5,5

0 = 2b0,5
1(10a)

−(cT + c)η−1b1,1
0 − (η−1b1,1

0 )T (cT + c) = 2(cT + c)(10b)

rbr,r0 η−1br,r+2
1 − (r + 2)br,r+2

1 η−1br+2,r+2
0 = 2br,r+2

1(10c)

Analogously, the relation [E,F ] = H yields the system:

Tr(cη−1(a+ aT )(η−1)T ) = b0,0
0(11a)

−b0,1
−1η

−1b1,3
1 + 5b0,5

1 η−1b5,3
−1 = b0,3

0(11b)

3b1,3
1 η−1b3,1

−1 + (a+ aT )(η−1)T (c+ cT ) = b1,1
0(11c)

(r + 2)br,r+2
1 η−1br+2,r

−1 − (r − 2)br,r−2
−1 η−1br−2,r

1 = br,r0 ∀r > 2(11d)

Having in mind the properties of the trace, one observe that these
equations only depends on c+ cT .

It remains to show that equations (10) and (11) are equivalent to
the conditions of the claim; that is, that they can be reduced to (10b)
and (11a).

Assuming (10b) and (11a), one gets b1,3
1 from (11c); then, b0,5

1 is
determined by (11b); and, br,r+2

1 is obtained from (11d). We claim that
(10a) is fulfilled too. Indeed, a long but straightforward computation
shows that (10a) is derived from (8), (10b) together with the case r = 3
of (11d). Similarly, (10c) follows from (8), (7c) and (11d). �

2.3. Extending to W>. In order to extend a map defined on sl(2)
to one on W>, one should choose an endomorphism T , define ρ(Li) by
equations (12) and (13) and check infinitely many constraints (see [PT]).
However, in our situation the following Lemma simplifies that approach
drastically; there will exist a unique T satisfying all the requirements.

Lemma 2.8. Let F,H be as in equations (2) and (3). The map:

ad(F ) : U(H)′i
∼−→ U(H)′i−1

is an isomorphism for i ≥ 2.

Proof. First, one has to prove that given an operator:

S := b0,2i+1
i−1 p2i+1 + pTj c

j,2i−j−2
i−1 p2i−j−2 + qjb

j,j+2i−2
i−1 pj+2i−2 ∈ U(H)i−1

of type i− 1 ≥ 1, there is exactly one operator:

T := b0,2i+3
i p2i+3 + pTj c

j,2i−j
i p2i−j + qjb

j,j+2i
i pj+2i ∈ U(H)i
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of type i satisfying ad(F )(T ) = S where ad denotes the adjoint repre-
sentation and F is given by equation (2).

Now, one proceeds as in the proof of Lemma 2.2 and shows that
ad(F )(T ) = [F, T ] = S has exactly one solution.

Finally, let us check that if S ∈ U(H)′i−1 and ad(F )(T ) = S, then
T ∈ U(H)′i. Using to the injectivity of ad(F ) and the relation:

ad(F )(ad(H)(T )) = ad(H)(ad(F )(T )) + ad([F,H])(T ) =

= ad(H)(S) + ad(2F )(T ) = 2(i− 1)S + 2S = 2iS

one obtains ad(H)(T ) = 2iT , as wanted. �

Theorem 2.9. Let F be as in (2) where a is symmetric and bi,i−2
−1 are

invertible.
Then, the map ι∗ of (6) yields a bijection:
ρ ∈ HomLie-alg(W>,U(H))

such that ρ(L−1) = F

and ρ(Li) ∈ U(H)i for i ≥ 0

 ∼−→


σ ∈ HomLie-alg(sl(2),U(H))

such that σ(f) = F ,

σ(h) ∈ U(H)0 and σ(e) ∈ U(H)1


Proof. Given ρ, we define σ := ι∗(ρ) and, therefore, σ(f) = ρ(ι(f)) =
ρ(L−1), σ(h) = ρ(−2L0) and σ(e) = ρ(−L1).

For the converse, one requires several steps and the previous Lemmas.
Step 1. Let σ be given. There exists a C-linear homomorphism

ρ :W> → U(H) such that σ = ι∗(ρ). First, we set:

ρ(L−1) := σ(f) = F , ρ(L0) := −1

2
σ(h) , ρ(L1) := −σ(e)

The fact that σ is a map of Lie algebras and Lemma 2.2 imply that:

ρ(L0) = −1

2
H

where H is as in equation (3). Furthermore, it holds that ρ(Li) ∈ U(H)′i
for i = −1, 1. Having in mind Lemma 2.8 we obtain that there is a
unique T ∈ U(H)′2 such that:

ad(ρ(L−1))(T ) = ρ(L1)

Then, we define:

(12) ρ(L2) := −3T ∈ U(H)′2

and, recursively,

(13) ρ(Li) :=
1

i− 2
[σ(e), ρ(Li−1)] for i > 2 .

Step 2. It holds that [ρ(L0), ρ(Lj)] = −jρ(Lj) for j ≥ −1. This is
equivalent to show that ρ(Lj) ∈ U(H)′j for all j ≥ 1. Bearing in mind
that ρ(L1) ∈ U(H)′1 and Lemma 2.6, the conclusion follows.
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Step 3. It holds that [ρ(L−1), ρ(Lj)] = −(1 + j)ρ(Lj−1) for j ≥ −1.
The cases j ≤ 1 follow from the fact that σ is a homomorphism of Lie
algebras. The choice of T implies the case j = 2. Let us proceed by
induction on j. For j ≥ 3, the definition of ρ(Li), the Jacobi identity
and the induction hypothesis yield:

[ρ(L−1),ρ(Lj)] = [ρ(L−1), − 1

j − 2
[ρ(L1), ρ(Lj−1)]] =

=
1

j − 2

(
[ρ(L1), [ρ(Lj−1), ρ(L−1)]] + [ρ(Lj−1), [ρ(L−1), ρ(L1)]]

)
=

=
1

j − 2

(
[ρ(L1), jρ(Lj−2)] + [ρ(Lj−1), (−2)ρ(L0)]

)
=

=
1

j − 2

(
j(3− j)ρ(Lj−1)− 2(j − 1)ρ(Lj−1)

)
= (−1− j)ρ(Lj−1)

Step 4. The identity:

(14) [ρ(Li), ρ(Lj)] − (i− j)ρ(Li+j) = 0

holds for i, j ≥ 1. We proceed by induction on n = i + j. The case
n = 4 (i.e. i, j ≥ 1 and i+ j = 4) holds by the very definition of ρ(L4).
Now, let us assume that it holds true up to n − 1 = i + j − 1 and let
us prove the case n = i + j > 4. Observe that, by Step 2, the l.h.s of
the equation (14) lies in U(H)′i+j. By Lemma 2.8, it suffices to show
that its image under ad(F ) = ad(ρ(L−1)) vanishes. In fact, the Jacobi
identity, the Step 3 and the induction hypothesis show that:

ad(ρ(L−1))
(
[ρ(Li), ρ(Lj)] − (i− j)ρ(Li+j)

)
=

= [[ρ(L−1), ρ(Li)], ρ(Lj)] + [ρ(Li), [ρ(L−1), ρ(Lj)]] − (i− j)[ρ(L−1), ρ(Li+j)] =

= [−(1 + i)ρ(Li−1), ρ(Lj)] + [ρ(Li),−(1 + j)ρ(Lj−1)] + (i− j)(1 + i+ j)ρ(Li+j−1) =

= −
(
(1 + i)(i− j − 1) + (1 + j)(i− j + 1) − (i− j)(1 + i+ j)

)
ρ(Li+j−1) =

= 0

Step 5. ρ is a Lie algebra homomorphism. This follows from the
properties of σ and Steps 2, 3, 4.

�

2.4. Factorization as a product. It is remarkable that if the vector
space (A, ( , )) decomposes as A1 ⊥ A2 (i.e. A = A1⊕A2 and (a1, a2) =
0 for all ai ∈ Ai), then the very definition of the associated Heisenberg
algebra implies that:

H(A) ' H(A1)⊗̂H(A2)

as Lie algebras and H(Ai) is a subalgebra of H(A). So, we may wonder
under which circumstances a morphism ρ : W> → U(H(A)) would
decompose accordingly. The following Theorem provides an answer in
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terms of the restriction ρ|sl(2). For this goal, recall that matrices a, b
and c’s behave as bilinear forms on A (w.r.t. the action of Gl(A)).

Theorem 2.10. Let F,H,E be as in (2), (3) and (9). Let ρ : W> →
U(H(A)) satisfy ρ(L−1) = F , ρ(L0) = −1

2
H and ρ(L1) = −E.

If the vector space A decomposes as A1 ⊥ A2 w.r.t. η and this
decomposition is compatible with the action of F and with the bilinear
forms b1,1

0 and c1,1
1 , then there are maps ρi : W> → U(H(Ai)) for

i = 1, 2 such that:

ρ = ρ1 ⊗ 1 + 1⊗ ρ2

If this is the case, and ρ(Lk) ∈ U(H(A))′k for all k ≥ −1, then
ρi(Lk) ∈ U(H(Ai))

′
k for all k ≥ −1 and i = 1, 2.

Proof. Step 1. The case of ρ(L−1). The hypothesis says that we can
find {aα|α = 1, . . . , n}, a basis of A, and an index m such that, for
1 ≤ i < m ≤ j ≤ n, the vectors ai and aj are orthogonal w.r.t. to the
bilinear form defined by a. Equivalently, w.r.t. the splitting A1⊕A2 the
matrix of this bilinear form acquires a block decomposition as follows:

a =

(
∗ 0
0 ∗

)
It is now straightforward that the terms of the operator F (as given in
equation (2)) can be grouped in two factors, the first one involves pi,α
and qi,α for i ∈ N and 1 ≤ α < m, while the second one depends only
on pi,α and qi,α for i ∈ N and m ≤ α ≤ n. Denote these operators as
L̄−1,1 and L̄−1,2 respectively. One checks that:

(15)
ρ(L−1) = L̄−1,1 ⊗ 1 + 1⊗ L̄−1,2

L̄−1,α ∈ U(H(Aα))−1 α = 1, 2.

Step 2. The case of ρ(L0). Bearing in mind that it is defined as −1
2
H

and that the coefficients of the latter fulfill the relations (7), one can
proceed as in the previous case. Note, however, that constant terms
of L̄0,1 and L̄0,2 can be arbitrarily chosen as long as their sum is b0,0

0 .
They will be determined later on.

Step 3. The case of ρ(Lk) for k ≥ 1. Recall from the proof of
Theorem 2.7 that the coefficients br,r+2

1 of ρ(L1) can be expressed in
terms of a, b1,1

0 and c1,1
1 and that a close look of these expressions shows

that br,r+2
1 are compatible w.r.t. to the splitting of A. Thus, we can

express ρ(L1) as the sum of two factors; namely, L̄1,α for α = 1, 2
which consists of the terms of ρ(L1) in pi,α, qi,α for 1 ≤ α < m and for
m ≤ α ≤ n, respectively. Now, we proceed as above.



12 F. J. PLAZA MARTÍN

For the case of ρ(Lk) for k ≥ 2 one proceeds recursively (using the
expressions of the proof of Lemma 2.8).

Step 4. The constant terms of L̄0,1 and L̄0,2. Recall that the constant
terms of these operators were arbitrary with the constraint that their
sum were b0,0

0 . Indeed, once we know that ρ(Lk) decompose for all k,
the easiest way is to consider:

L̄0,α := −1

2
[L̄−1,α, L̄1,α] α = 1, 2

Alternatively, if one has the block decompositions:

η =

(
η1 0
0 η2

)
a =

(
a1 0
0 a2

)
c1,1

1 =

(
c1 0
0 c2

)
one may use the following splitting as a defining relation for L̄0,α:

ρ(L0)− b0,0
0 =

(
L̄0,1 − 2 Tr(c1η

−1
1 (a1 + aT1 )(ηT1 )−1)

)
+

+
(
L̄0,2 − 2 Tr(c2η

−1
2 (a2 + aT2 )(ηT2 )−1)

)
Step 5. [L̄k,α, L̄l,β] = 0 for k, l ≥ −1 and α 6= β, since these two

operators involve disjoint sets of variables.
Step 6. The maps ρα. Consider:

ρα(Lk) := L̄k,α for k ≥ −1 and α = 1, 2

The previous steps show that ρ = ρ1 ⊗ 1 + 1⊗ ρ2.
It remains to check that ρα are morphisms of Lie algebras. For

this goal we will expand both sides of the identity [ρ(Lk), ρ(Ll)] =
(k − l)ρ(Lk+l) using the above facts. The l.h.s. is:

[ρ(Lk), ρ(Ll)] = [L̄k,1 + L̄k,2, L̄l,1 + L̄l,2] = [L̄k,1, L̄k,1] + [L̄k,2, L̄l,2]

while the r.h.s. reads:

(k − l)ρ(Lk+l) = (k − l)(L̄k+l,1 + L̄k+l,2)

Comparing both expressions and having in mind the separation of
variables, it follows that:

[L̄k,α, L̄k,α] = (k − l)L̄k+l,α

and we conclude that ρα is a map of Lie algebras W> → U(H(Aα)).
Step 7. Type of the operators. In order to show that ρ(Lk) ∈
U(H(A))′k implies that ρα(Lk) ∈ U(H(Aα))′k, it suffices to expand the
Lie bracket [ρ(L0), ρ(Lk)] using ρ(Lk) = ρ1(Lk)⊗ 1 + 1⊗ ρ2(Lk). �

Remark 2.11. It is worth noticing that if a decomposition is com-
patible with a, it does not need to be compatible with b1,1

0 . Indeed, for

A = C2, η = a =
(

1 0
0 1

)
, the general form of b1,1

0 is given by
(
−1 λ
λ −1

)
.
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For later use, the following general result will be required.

Theorem 2.12. Let ρi :W> → EndVi, i = 1, 2, be two representations
of the Lie algebra W>. And let us consider the product representation:

ρ = ρ1 ⊗ 1 + 1⊗ ρ2 : W> −→ End(V1 ⊗ V2)

Let
∑r

i=1 f1,i ⊗ f2,i ∈ V1 ⊗ V2. Assume that fi,1, . . . , fi,r are linearly
independent (for i = 1, 2).

It then holds that:

ρ(Lk)(
∑
i

f1,i ⊗ f2,i) = 0 ∀k ≥ −1

if and only if:

ρi(Lk)(fi,j) = 0 for all i, j and k ≥ −1

Proof. Let us prove the converse. Bearing in mind that ρ = ρ1 ⊗ 1 +
1⊗ ρ2, one can do the following computation:

ρ(Lk)(
∑
i

f1,i ⊗ f2,i) = (ρ1 ⊗ 1 + 1⊗ ρ2)(Lk)(
∑
i

f1,i ⊗ f2,i)

=
∑
i

ρ1(Lk)(f1,i)⊗ f2,i +
∑
i

f1,i ⊗ ρ2(Lk)(f2,i) = 0

and the conclusion follows.
The direct implication is more subtle. The hypothesis and the de-

composition of ρ yield:

0 = ρ(Lk)(
∑
i

f1,i ⊗ f2,i) = (ρ1 ⊗ 1 + 1⊗ ρ2)(Lk)(
∑
i

f1,i ⊗ f2,i)

=
∑
i

ρ1(Lk)(f1,i)⊗ f2,i +
∑
i

f1,i ⊗ ρ2(Lk)(f2,i)

Let E be the vector space generated by {f1,1, . . . , f1,r} ⊂ V1. Suppose
that there exists l such that ρ1(f1,l) does not belong to E. Then,
let χ : V1 → C be a linear form such that χ(f1,i) = 0 for all i and
χ(ρ1(f1,l)) 6= 0. Applying χ to the above equation, one obtains:

0 =
∑
i

χ
(
ρ1(Lk)(f1,i)

)
f2,i ∈ V2

which contradicts the fact that f2,1, . . . , f2,r are linearly independent.
Therefore, it follows that ρ1(f1,l) belongs to E for all l or, equivalently,

ρ1,E :W> −→ End(E)

Lk 7−→ ρ1,E(Lk) := ρ1(Lk)|E
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is a Lie algebra homomorphism. Recall that, beingW> simple, the non-
trivial representations ofW> are faithful. Since E is finite dimensional,
ρ1,E must be trivial; that is, ρ1,E(Lk) = 0 for all k. In particular,

0 = ρ1,E(Lk)(f1,j) = ρ1(Lk)(f1,j) ∀j
The identities ρ2(Lk)(f2,j) = 0 are proven similarly. �

2.5. Commutation Relations. This subsection only collects the ex-
plicit computations of some Lie brackets used previously and, thus, the
reader can skip it. From a formal point of view, we are dealing with
generators of U(H), 1, qi,α, pi,α, with i = 1, 2, . . . and α = 1, . . . , n, that
satisfy the following relations:

[pi,α, qj,β] = δi,jiη
αβ [qj,β, pi,α] = −δi,jiηαβ

[pi,α, pj,β] = [qi,α, qj,β] = 0

and, because of the associativity of composition, we will also use:

[a, bc] = [a, b]c + b[a, c]

We will use the Einstein convention; that is, repeated subindices of
the variables p, q’s imply the summation is to be done. Recall that
b0,2i+3
i and qi := (qi,1, . . . , qi,n) denote row vectors, pi := (pi,1, . . . , pi,n)T

are column vectors (the superscript T denotes the transpose), and
a, bj,2i+ji , cj,2i−ji are n× n square matrices.

Let us compute some Lie brackets. For instance,

[b0,2i+3
i p2i+3, b

0,2j+3
j p2j+3] =

= [(b0,2i+3
i )α(p2i+3)α , (b0,2j+3

j )β(p2j+3)β] =

= (b0,2i+3
i )α[(p2i+3)α , (p2j+3)β](b0,2j+3

j )β = 0

where subindices α, β denote the corresponding entries of the vectors.
Analogously, we have the following identities:

[q1aq
T
1 , b

0,2i+3
i p2i+3] = 0 ∀i ≥ 0

[qrb
r,r+2i
i pr+2i, b

0,2j+3
j p2j+3] =

= −[b0,2j+3
j p2j+3, (qr)α](br,r+2i

i pr+2i)α

− (qrb
r,r+2i
i )α[b0,2j+3

j p2j+3, (pr+2i)α] =

= −(b0,2j+3
j )β[(p2j+3)β, (qr)α](br,r+2i

i )αγ(pr+2i)γ =

= −(2j + 3)(b0,2j+3
j )βη

βα(b2j+3,2j+3+2i
i )αγ(p2j+3+2i)γ =

= −(2j + 3)b0,2j+3
j η−1b2j+3,2j+3+2i

i p2j+3+2i

[prc
r,2i−r
i p2i−r, b

0,2j+3
j p2j+3] = 0
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[q1aq
T
1 , qrb

r,r+2j
j pr+2j] = 0 ∀j ≥ 1

[q1aq
T
1 , qrb

r,r
0 pr] =

= (q1b
1,1
0 )α[q1aq

T
1 , (p1)α] =

= −(q1b
1,1
0 )α

(
[(p1)α, (q1)β](aqT1 )β + (q1a)β[(p1)α, (q1)β]

)
=

= −q1b
1,1
0 η−1

(
a+ aT

)
qT1

[q1aq
T
1 , p

T
r c

r,2j−r
j p2j−r] =

= [q1aq
T
1 , (pr)α](cr,2j−rj p2j−r)α + (pTr c

r,2j−r
j )α[q1aq

T
1 , (p2j−r)α] =

= −
(
[(p1)α, (q1)β](aqT1 )β + (q1a)β[(p1)α, (q1)β]

)
(c1,2j−1
j p2j−1)α−

− (pT2j−1c
2j−1,1
j )α

(
[(p1)α, (q1)β](aqT1 )β + (q1a)β[(p1)α, (q1)β]

)
=

= −q1

(
a+ (a)T

)
(η−1)T c1,2j−1

j p2j−1 − pT2j−1c
2j−1,1
j η−1

(
a+ (a)T

)
qT1 =

= −q1

(
a+ (a)T

)
(η−1)T

(
c1,2j−1
j + (c2j−1,1

j )T
)
p2j−1−

− δj1 Tr
(
c1,1

1 η−1(a+ aT )(η−1)T
)

[qrb
r,r+2i
i pr+2i, p

T
s c

s,2j−s
j p2j−s] =

= [qrb
r,r+2i
i pr+2i, (ps)α](cs,2j−sj p2j−s)α +

+ (pTs c
s,2j−s
j )α[qrb

r,r+2i
i pr+2i, (p2j−s)α] =

= −[(ps)α, (qr)β](br,r+2i
i pr+2i)β(cs,2j−sj p2j−s)α−

− (pTs c
s,2j−s
j )α[(p2j−s)α, (qr)β](br,r+2i

i pr+2i)β =

= −rpT2j−r(c
r,2j−r
j )Tη−1br,r+2i

i pr+2i − rpT2j−rc
2j−r,r
j η−1br,r+2i

i pr+2i =

= −rpT2j−r
(
(cr,2j−rj )T + c2j−r,r

j

)
η−1br,r+2i

i pr+2i

[qrb
r,r+2i
i pr+2i, qsb

s,s+2j
j ps+2j] =

= [qrb
r,r+2i
i pr+2i, (qs)α](bs,s+2j

j ps+2j)α +

+ (qsb
s,s+2j
j )α[qrb

r,r+2i
i pr+2i, (ps+2j)α] =

= −(qrb
r,r+2i
i )β[(qs)α, (pr+2i)β](bs,s+2j

j ps+2j)α−
− (qsb

s,s+2j
j )α[(ps+2j)α, (qr)β](br,r+2i

i pr+2i)β =

= (r + 2i)qrb
r,r+2i
i η−1br+2i,r+2i+2j

j pr+2i+2j − rqr−2jb
r−2j,r
j η−1br,r+2i

i pr+2i

3. An Application

As an application of the previous sections, we offer here an example
that illustrates how our results can be used for studying the represen-
tation of W> appearing in the study of the Virasoro conjecture. Re-
garding the Virasoro conjecture our main references are the works of
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Dubrovin-Zhang, Eguchi-Hori-Xiong, Getzler, Givental and Liu-Tian
([DZ, EHX, Ge, Gi1, LT]).

In our example will consider (A, (, )) to be the cohomology ring of
a smooth projective variety X with c1(X) = 0 and trivial odd coho-
mology groups. Recall that the hypothesis on the first Chern class is
equivalent to the vanishing of the operator R in [DZ, Ge]; however,
it does not seem difficult to extend the results of §2 to include this
case. On the other hand, the hypothesis on the odd cohomology groups
is fulfilled if X has generically semisimple even quantum cohomology
([HMT]). It seems to be very hard to weaken this assumption.

3.1. Preliminaries. Let A be a n dimensional vector space over C
endowed with a bilinear form ( , ). Let {a1, . . . , an} be a basis and η be
the matrix associated to the pairing, ηαβ := (aα, aβ). Let us consider
the subspace C[[t1, t3, t5, . . .]] of the the boson Fock space C[[t1, t2, . . .]]
and the subalgebra of C[[t1, . . .]]⊗̂CS

•A generated by ti,α := ti ⊗ aα
with i odd:

(17) Vodd(A) := C[[{ti,α|1 ≤ α ≤ n, i odd}]] ⊆ C[[t1, . . .]]⊗̂CS
•A

If no confusion arises, we will simply write Vodd.
Now we study a distinguished representation of W> in Vodd; even-

tually, we will see that it is the representation coming from the action
of the Heisenberg algebra via Givental’s quantization ([Gi1]). More
precisely, we will combine the chain of inclusions of Lie algebras:

sl(2) ↪→ W> ↪→ U(H)

which has been studied in the previous section, with a map:̂ : U(H(A)) −→ EndC(Vodd(A))

P 7−→ P̂

whose obstruction to be compatible with the Lie brackets is governed
by a cocycle. This map is defined following the results of Dubrovin-
Zhang, Givental and Kazarian ([DZ, Gi1, Ka]); namely, we set:

(18) 1̂ = 1 , p̂i,α = ηαβ
∂

∂ti,β
, q̂i,α = iti,α

(recall that i is a positive odd integer number).

Remark 3.1. Givental has develop a beautiful formalism for this con-
struction in terms of quantization of quadratic hamiltonians ([Gi1]).
An alternative approach, originated in the Japanese school and strongly
linked to the Sato grassmannian, is in [KSU] to be found. Forthcoming
section (§3.4) is deeply inspired by the latter one.
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3.2. The representation. Bearing in mind the results of §2.2, we
know that the operator:

F := b0,1
−1p1 + q1ηq

T
1 + qi+2ηpi

together with the data:

• b0,1
−1 arbitrary,

• b1,1
0 such that (7b) holds, and

• c1,1
1 := 1

16
ηT b1,1

0 η−1(b1,1
0 η−1 + 2),

determine a map σ : sl(2) → U(H). Indeed, equations (7), (11) and
(10) allow us to obtain the explicit expressions for H and F :

(19)

H =
1

3
b0,1
−1(η−1b1,1

0 − 2)p3 +
1

i
qi(b

1,1
0 − (i− 1)η)pi+

+
1

16
Tr(b1,1

0 η−1(b1,1
0 η−1 + 2)(1 + η−1ηT ))

E =
1

5!!
b0,1
−1

(
2η−1b1,1

0 − 2− (η−1 + (η−1)T )(c1,1
1 + (c1,1

1 )T )
)
p5+

+
1

16
pT1 η

T b1,1
0 η−1(b1,1

0 η−1 + 2)p1−

− 1

4i(i+ 2)
qi(b

1,1
0 η−1 − (i− 1))(b1,1

0 η−1 − (i+ 1))ηpi+2

Now, by Theorem 2.9, the map σ extends uniquely to an homomor-
phism ρ :W> → U(H). And one can now compute the induced action
on Vodd. Let us write down the first operators:

L̂−1 := (ρ(L−1))ˆ = F̂ = b0,1
−1η

−1 ∂

∂t1
+ t1ηt1 + (i+ 2)ti+2

∂

∂ti

L̂0 := (ρ(L0))ˆ = −1

2
Ĥ = −1

6
b0,1
−1(η−1b1,1

0 − 2)η−1 ∂

∂t3
−

− 1

2
ti(b

1,1
0 η−1 − (i− 1))

∂

∂ti,α
− 1

32
Tr(b1,1

0 η−1(b1,1
0 η−1 + 2)(1 + η−1ηT ))

L̂1 := (ρ(L1))ˆ = −Ê =

− 1

5!!
b0,1
−1

(
2η−1b1,1

0 − 2− (η−1 + (η−1)T )(c1,1
1 + (c1,1

1 )T )
)
η−1 ∂

∂t5
−

− 1

16
(
∂

∂t1
)T b1,1

0 η−1(b1,1
0 η−1 + 2)

∂

∂t1
+

+
1

4(i+ 2)
ti(b

1,1
0 η−1 − (i− 1))(b1,1

0 η−1 − (i+ 1))
∂

∂ti+2

where, as usual, we write ti for the row vector (ti,1, . . . , ti,n) and ∂
∂ti

for

the column vector ( ∂
∂ti,1

, . . . , ∂
∂ti,n

)T .
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3.3. The operators of the Virasoro Conjecture: a baby model.
Now, we are ready to show how the operators appearing in the Virasoro
conjecture agree with our approach for the case of manifold with trivial
odd cohomology and whose first Chern class vanishes.

From now on, we suppose we are given X, whose first Chern class
is zero, and with trivial odd cohomology. Under this hypothesis, the
Poincaré pairing defines onA := H•(X,C) a symmetric non-degenerated
bilinear form:

(a, b) =

∫
X

a ∪ b for a, b ∈ A,

Let r := dim(X) and fix a basis {aα|α = 1, . . . , n} of A, with a1 =
1 ∈ H0(X,C), such that it is homogeneous w.r.t. the Hodge decom-
position; that is, aα ∈ Hpα,qα(X) for certain pα, qα. Let η̄ the matrix
associated to the Poincaré pairing w.r.t. the chosen basis and let us
define µα := pα − r

2
and µ the matrix with µ1, . . . , µr along its diag-

onal and 0 elsewhere. Observe that the compatibility of the Poincaré
pairing w.r.t. the Hodge decomposition yields:

(21) η̄αβ 6= 0 =⇒ µα + µβ = 0

The operators appearing in the Virasoro conjecture when the first
Chern class vanishes ([Ge, Equation (1.2)]) are as follows:

(22)

L̄−1 := − ∂

∂t̄0,1
+

1

2~
t̄0η̄t̄

T
0 + t̄i+1

∂

∂t̄i

L̄0 := −3− r
2

∂

∂t̄1,1
+ (µα + i+

1

2
)t̄i,α

∂

∂t̄i,α
+

1

48
(3− r)

∫
X
cr(X)

and, for k ≥ 1, as:

(23)

L̄k := −
Γ(k + 5−r

2 )

Γ(3−r
2 )

∂

∂t̄k+1,1
+

Γ(µα + i+ k + 3
2)

Γ(µα + i+ 1
2)

t̄i,α
∂

∂t̄k+i,α

+
~
2

(−1)i
Γ(µα + i+ k + 3

2)

Γ(µα + i+ 1
2)

η̄αβ
∂

∂t̄−1−i,α

∂

∂t̄k+i,β

where cr(X) is the r-th Chern class and we have used variables t̄i,α
with α = 1, . . . , n and i = 0, 1, 2, . . ..

Similarly to the case of U(H), we say that a second order differential
operator in {t̄i,α} is of type i if it is a linear combination of ∂

∂t̄i+1,α

and the following terms ∂
∂t̄j−1,α

∂
∂t̄i−j,β

, t̄j,α
∂

∂t̄j+i,β
and t̄j−1,αt̄−i−j,β and, if

i = 0, a constant term. Observe that L̄k is of type k. Now, we offer a
simple proof of a folk statement.

Proposition 3.2. The operators {L̄k|k ≥ 2} are uniquely determined
by {L̄−1, L̄0, L̄1} and the condition that L̄k is of type k for all k ≥ −1.



VIRASORO AND KDV 19

Proof. Under the change of variables t̄i :=
√

2~(2i+ 1)!!t2i+1, it is clear
that a second order differential operator in t̄i’s is of type k if and only
if is equal to T̂ for T ∈ U(H)k. Now, it is easy to check that the

hypothesis of Theorem 2.9 hold; namely, F̂ = L̄−1 and L̄k are of type
k for k = 0, 1. The conclusion follows. �

Theorem 3.3. It holds:

L̄i = L̂i i = −1, 0, 1, . . .

for the choice t̄i :=
√

2~(2i+ 1)!!t2i+1, η = η̄, b0,1
−1 = (0, . . . , 0, 1√

2~) and:

b1,1
0 := −(2µ+ 1)η = −

 0 2µ1 + 1

. .
.

2µn + 1 0


Proof. Theorem 2.9 implies that it suffices to show that L̄i = L̂i for
i = −1, 0, 1. Indeed, this fact follows from the explicit substitution of
ti, η, etc. as in the statement in the operators L̂i. The only identity
which is not obvious is the one corresponding to the constant term of
L̂0. Bearing in mind the definitions and the fact that η is symmetric,
this term is:

− 1

32
Tr(b1,10 η−1(b1,10 η−1 + 2)(1 + η−1ηT )) =

= − 1

16

n∑
α=1

(2pα − r + 1)(2pα − r − 1) =
1

4

∑
p,q

hp,q(
r + 1

2
− p)(p− r − 1

2
)

where hp,q = dimHp(X,Ωq).
Now, observe that the Libgober-Wood identity ([LW, Proposition 2.3])

can be stated as:∑
p,q

(−1)p+qhp,q(
r + 1

2
−p)(p− r − 1

2
) =

1

6

∫
X

(3− r
2

cr(X)−c1(X)cr−1(X)
)

Recalling that we are assuming that that it has trivial odd cohomology,
the constant term equals:

1

48

∫
X

(
(3− r)cr(X)− 2c1(X)cr−1(X)

)
which agrees with the free term of L̄0 (see (22)) since c1(X) = 0. �

Remark 3.4. It is worth noticing that up to rescaling the variables and
a Dilaton shift, these operators coincide with those of [DVV, Equation
(3.5)] and [Gi1, §3] (for b1 = 0) and with those of [D, Equation (7.33)]
and [W, Equation (2.59)] (for b1 = −1

3

√
η
2~).
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Now, we will go one step further in the study of the above representa-
tion. Recall that in §2.1 it was stated that matrices a, bj−2i,j

i and cj,2i−ji

behave as bilinear forms under the action of Gl(A). A fundamental ob-
servation is that all results and equations above are invariant under the
action of the general linear group (acting as base changes on the given
basis {a1, . . . , an}). Let us briefly discuss this statement. For instance,
let S ∈ Gl(A), then the row vector qi = (qi,1, . . . , qi,n) is transformed
to qiS

T , accordingly the column vector pi goes to Spi. The action of S
sends the bilinear form η to (S−1)TηS−1 and analogously with a, etc. .
Note that, since η and b1,1

0 behave as bilinear forms, η−1b1,1
0 defines an

endomorphism of A. Finally, the Heisenberg algebra is also affected.

Definition 3.5. Let Hη be the Heisenberg algebra defined in (1). Given
a map of Lie algebras ρ : W> → U(Hη) and S ∈ Gl(A), we denote by
ρS the map of Lie algebras:

W>
ρ−→ U(Hη)

∼−→ U(H(S−1)T ηS−1

)

where the last map sends qi to qiS
T and pi to Spi.

With the hypothesis and choices of above, we have the following,

Theorem 3.6. Let ρ : W> → U(Hη) be as above; i.e. ρ̂ defines the
Virasoro constraints, (22) and (23), of a smooth projective variety with
trivial odd cohomology and vanishing first Chern class.

Then there exists S ∈ Gl(A) such that ρS decomposes as the product
of n representations of dimension 1; that is, there exist ρi : W> →
U(H(C)) such that:

(24) ρS = ρ1 ⊗ 1⊗ . . .⊗ 1 + . . . + 1⊗ . . .⊗ 1⊗ ρn

Proof. Let us consider a basis which is orthonormal for η. Let S ∈
Gl(A) be the matrix associated to this change of basis. Due to the
choices of a, bi+2,i

−1 , b1,1
0 and c1,1

1 , it is trivial that S also bring them
into diagonal form; or, what amounts to the same, there is a common
orthogonal basis for all these bilinear pairings. Applying Theorem 2.10,
one concludes. �

In this situation, for each α = 1, . . . , n, one obtains a one dimensional
representation ρα or, what is tantamount, our study essentially reduces
to the case of Example 2.5. That is, dimA = 1 , a = η ∈ C∗ and, thus,
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b1,1
0 = −η. Setting b0 := b0,0

0 , one has that (19) gives:

F = b−1p1 + q1ηq1 + qi+2ηpi

H = −b−1p3 − qiηpi −
1

8

E = −1

4
b−1p5 −

1

4
p1ηp1 −

1

4
qiηpi+2

where b−1 and η are computed from the n-dimensional setup (22).
These three operators determine ρ completely and, according to the

map (18) and Theorem 3.3, one has:

(25)

L̄−1 := b−1

√
2~η−1 ∂

∂t̄0
+

1

2~
ηt̄20 + t̄i+1

∂

∂t̄i

L̄0 :=
3

2
b−1

√
2~η−1 ∂

∂t̄1
+ (i+

1

2
)t̄i

∂

∂t̄i
+

1

16

L̄1 :=
5!!

4
b−1

√
2~η−1 ∂

∂t̄2
+

~
2
η−1 ∂

∂t̄0

∂

∂t̄0
+ (i+

1

2
)(i+

3

2
)t̄i

∂

∂t̄i+1

3.4. On the solutions for the 1-dimensional situation. Once the
representation has been decomposed in terms of 1-dimensional parts,
we wonder if one could deduce some properties of the solutions of the
Virasoro constraints. Our approach follows closely our previous work
[P1] which is inspired in [KS]. Briefly, the idea is to show that each of
our representations ρi come from an action of W> on the Sato Grass-
mannian and that that they admit exactly one solution τi, which are
τ -functions for the KP hierarchy and, then, conclude that the product
τ1 · . . . · τn is a solution for ρS.

Let us begin recalling that the Sato Grassmannian is the set of sub-
spaces U ⊂ C((z)) such that the kernel and cokernel of πU : U →
C((z))/C[[z]] are finite dimensional ([SS, SW]). Actually, it is an infi-
nite dimensional scheme ([AMP]) and carries a distinguished line bun-
dle, the determinant line bundle D. Each integer n correspondes to
a connected component, Grn; namely, the subset of subspaces U such
that dim ker πU − dim coker πU = n. Sato-Sato’s achievement was to
show that there was a bijection between the set of those U s.t. πU is an
isomorphism and the set of functions τ(t) ∈ C[t1, t2, . . .]] with τ(0) = 1
and fulfilling the KP hierarchy (under this correspondence we say each
U has a τ -function; see [SS, SW, AMP] for details). The same holds
for the Sato grassmannian of C((z))⊕n and the n-multicomponent KP
hierarchy.
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The fact that the space of global section of D∗ is isomorphic to the
semi-infinite wedge product or Fermion Fock space:

H0(Grn,D∗) ' ∧
∞
2 C((z)) =<

{
zi1 ∧ zi2 ∧ . . . s.t. i1 < i2 < . . .

and ik = k + n ∀k >> 0

}
>

have allowed its extensive use in CFT’s (in particular, by the Japan-
ese school, see [KSU] and references therein). Recall that the boson-
fermion correspondence is the isomorphism (we restrict us to Gr0; that
is, the charge 0 sector):

∧
∞
2 C((z)) ' C[[t1, t2, . . .]]

that maps zi1 ∧ zi2 ∧ . . . to the Schur polynomial associated with the
partition 1− i1 ≥ 2− i2 ≥ . . .. Similarly, the space of global sections of
D∗ over the Sato grassmannian of C((z))⊕n is isomorphic to C[[{ti,α|α =
1, . . . , n, i = 1, 2, . . .}]].

Given a subgroup of the restricted linear group of C((z)) (see [SW]),
one has an induced action on Grn(C((z))). Moreover, if the action
preserves the determinant bundle, it will yield a projective action on
the space of global sections. In fact, an analogous statement holds
for the case of Lie algebras. Let us illustrate this issue with the case
of the Lie algebra Diff1(C((z))) of first order differential operators on
C((z)). An operator D ∈ Diff1(C((z))) acts on sections as follows.
If the matrix (dij) corresponding to D w.r.t. the basis {zi} has no
non-trivial diagonal elements, then:

D(zi1 ∧ zi2 ∧ . . .) := D(zi1) ∧ zi2 ∧ . . .+ zi1 ∧D(zi2) ∧ . . .+ . . .

If the matrix (dij) is diagonal, then:

D(zi1 ∧ zi2 ∧ . . .) :=
∞∑
j=1

(dijij − djj)zi1 ∧ zi2 ∧ . . .

Having in mind the boson-fermion correspondence, the above construc-
tion gives rise to a linear map:

(26)
Diff1(C((z)))

β−→ End(C[[t1, t2, . . .]])

D 7−→ β(D)

which defines a projective representation. Note, nevertheless, that if
we are given a map of Lie algebras σ :W> → Diff1(C((z))), then, β ◦σ
can be canonically promoted to a linear representation since W> has
no non-trivial central extensions. Indeed, for this goal, if suffices to
add a constant to β ◦ σ(L0).

The following results will show that the operators of §3.3 arise from
the previous setup.
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Lemma 3.7. Let D ∈ Diff1(C((z))). Then, β(D) is of type i if and
only if D is a linear combination of 1, z−(2i+3) and z−2i(z∂z + 1−2i

2
).

Proof. Recall that Diff1(C((z))) is generated as C-vector space by 1, zm

for m ∈ Z acting as an homothety and zm(z∂z + m+1
2

) for m ∈ Z. Let
us recall from [Ka, Table 1] the description of the operators induced
by them via the boson-fermion correspondence:

β(zm) =


mtm for m > 0

0 for m = 0
∂

∂t−m
for m < 0

and, for m > 0,

β
(
zm(z∂z +

1 +m

2
)
)

=
1

2

m−1∑
j=1

j(m− j)tjtm−j +

∞∑
j=1

(j +m)tm+j
∂

∂tj

Analogously, the action of z−m(z∂z + 1−m
2

) on C((z)) corresponds to
the action of:

β
(
z−m(z∂z +

1−m
2

))
)

=
∞∑
j=1

jtj
∂

∂tm+j
+

1

2

m−1∑
j=1

∂

∂tj

∂

∂tm−j

Finally, recall that the case m = 0 is regularized as follows:

β
(
z−m(z∂z +

1−m
2

))
)

:=
∞∑
j=1

jtj
∂

∂t−j

Checking the degrees, the conclusion follows. �

Lemma 3.8. Let σ ∈ HomLie-alg(W>,Diff1(C((z)))). Recall that Vodd =
C[[t1, t3, . . .]].
β(σ(Li))|Vodd takes values in Vodd and it is of type i for all i, if and

only if there exists s, t ∈ C such that:

σ(Li) = ti
(1

2
z−2i(z∂z +

1− 2i

2
) + sz−2i−3

)
∀i ≥ −1

Proof. The “if” part follows from Lemma 3.7 and the fact that σ as in
the statement defines a map of Lie algebras. Let us now deal with the
“only if” part.

We know from [P1, §2] (see also [P2]) that there is a 1-1-correspondence:{
σ ∈ HomLie-alg(W>,Diff1(C((z))))

such that σ 6= 0

}
1−1←→

{
triples (h(z), c, b(z)) such that

h′(z) ∈ C((z))∗, c ∈ C, b(z) ∈ C((z))

}
which is explicitly given by:

(27) σ(Li) =
−h(z)i+1

h′(z)
∂z − (i+ 1)c · h(z)i +

h(z)i+1

h′(z)
b(z)
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On the other hand, due to Lemma 3.7, the fact that σ(Li) is of type
i implies that there exist ri, si, ti ∈ C satisfying:

(28) σ(Li) = ri · 1 + si · z−(2i+3) + ti · z−2i(z∂z +
1− 2i

2
)

Comparing the coefficients of ∂z in the previous identities, it follows
that h(z) = ti

ti−1
z−2. Hence, the quotients ti

ti−1
are all equal to a con-

stant, say t. Hence ti = tit0 and h(z) = tz−2. Further, the case i = 0
yields t0 = 1

2
.

Pluging this in equations (27) and (28), one gets:

−(i+ 1)c(tz−2)i − (tz−2)i+1

2tz−3
b(z) = ri + siz

−(2i+3) +
1

2
tiz−2i(

1− 2i

2
)

and, thus:

b(z) = −2(i+ 1)cz−1 − 2t−iriz
2i−1 − 2sit

−iz−4 − 1

2
z−1(1− 2i)

Observe that the l.h.s. does not depend on i, one gets many conditions.
First, for i 6= 0 the term z2i−1 is an odd power of z different from z−1

that can not be cancelled with any other term; consequently, ri = 0 for
i 6= 0. Further, since the coefficient of z−4 in b(z) has to be independent
of i, it follows that t−isi is a constant independent of i; and, thus, equal
to s0. Finally, the coefficient of z−1 in b(z) is:

−2(i+ 1)c− 2r0δi,0 −
1

2
(1− 2i)

Since it has to be independent of i, it follows that c = 1
2
, r0 = 0 and,

thus:

b(z) = −3

2
z−1 − 2s0z

−4

Substituting h(z), c, b(z) into expression (27) and setting s = s0, one
obtains the result. �

Let us recall that the rescaling of the variables yields an action on
the boson Fock space. More precisely, λ = {λi} ∈

∏
i odd C∗ maps ti to

λiti. Accordingly, it acts on HomLie-alg(W>,End(Vodd)) and sends ρ to
ρλ := λ ◦ ρ ◦ λ−1.

Definition 3.9. The λ-scaled KP hierarchy is the hierarchy obtained by
replacing ti by λiti in the KP hierarchy (for given λ = (λi) ∈

∏
i∈N C∗).

A function τ1(t) ∈ C[[t1, t2, . . .]] is called τ -function of the λ-scaled KP
hierarchy if τ(λ−1t) := τ(λ−1

1 t1, λ
−1
2 t2, . . .) is a τ -function of the KP

hierarchy. For brevity, we simply say scaled KP. We do similarly for
KdV, multicomponent KP.
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Note that the λ-scaled KP hierarchy for λ = (µi) for µ ∈ C∗ coincides
with the KP hierarchy. However, this does not happen in general.

The following Lemma is the key point to go from Virasoro to KdV.

Lemma 3.10. The map β of (26) induces a bijection between:

• the set of σ ∈ HomLie-alg(W>,Diff1(C((z)))) such that there ex-
ist s ∈ C satisfying:

σ(Li) =
1

2
z−2i

(
z∂z +

1− 2i

2

)
+ sz−2i−3

• the set of scale equivalence classes of ρ ∈ HomLie-alg(W>,End(Vodd))
whose coefficients of quadratic terms in ρ(L−1) do not vanish
and such that ρ(Li) is of type i for i ≥ −1.

Proof. First, we prove the statement with no reference to r(z) on the
first item and with no mention to a linear function on the second item.
Under these circumstances, given σ as in the statement, Lemma 3.7
shows that (β ◦ σ)(Li)|Vodd takes values in Vodd and it is of type i for
all i. An explicit computation yields:

(β ◦ σ)(L−1) = s
∂

∂t1
+

1

4
t21 +

1

2

∞∑
j=1

jtj+2
∂

∂tj

(β ◦ σ)(L0) = s
∂

∂t3
+

1

2

∞∑
j=1

jtj
∂

∂tj

(β ◦ σ)(Li) = s
∂

∂t2i+3

+
1

4

2i−1∑
j=1

∂

∂tj

∂

∂t2i−j
+

1

2

∞∑
j=1

jtj
∂

∂t2i−j

(where j, as usual, is odd) and thus:

[(β ◦ σ)(L−1), (β ◦ σ)(L1)] − β([σ(L−1), σ(L1)]) = −1

8

which implies that we have a map of Lie algebras defined by:

(29) ρ(Li) := (β ◦ σ)(Li) +
1

16
δi,0

Conversely, let us start with ρ as in the second set of the statement.
The assumptions yield the following expression:

ρ(L−1) = b0,1
−1

∂

∂t1
+ at21 + bi+2,i

−1 ti+2
∂

∂ti
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with a, bi+2,i
−1 6= 0. Considering the action of

∏
i odd C∗ by conjugation,

one finds λ = {λi ∈ C∗|i odd} and s ∈ C such that:

ρλ(L−1) = λ ◦ ρ(L−1) ◦ λ−1 = s
∂

∂t1
+

1

4
t21 + (

i+ 2

2
)ti+2

∂

∂ti

Lemma 3.8 and the previous discussion show that ρλ is the represen-
tation associated to the map σ :W> → Diff1(C((z))) defined by:

σ(Li) =
1

2
z−2i(z∂z +

1− 2i

2
) + sz−2i−3 ∀i ≥ −1

�

Remark 3.11. The statement can be generalized. On the one hand, we
may consider the conjugation of σ by an operator of the type exp(r(z))
while, on the other hand, we replace ρ by its conjugate by exp(β(r(z))).
For instance, for r(z) ∈ C[[z2]], one has that β(r(z)) is a linear function
on t1, t3, . . .. Thus, the first representation is:

σ(Li) =
1

2
z−2i

(
z(−r(z) + ∂z) +

1− 2i

2

)
+ sz−2i−3

while ρ is as in the statement up to a linear function on ti’s.

Remark 3.12. It is worth noticing that the Virasoro operators studied
by Witten ([W]) correspond to the case s = −1

2
, r(z) = 0. Kac-Schwarz

([KS]), using the fact the these operators come from a representation
in Diff1(C((z))), proved that there is a point in the Sato Grassmannian
whose τ -function is a solution of these equations and, hence, is a solu-
tion of KdV hierarchy too. A study of common solutions of Virasoro-
like constraints and KdV has been carried out in [P1].

Lemma 3.13. Let ρ be as in Lemma 3.10 and let τ(t) ∈ Vodd =
C[[t1, t3, . . .]]. Then, the Virasoro constraints:

ρ(Lk)(τ(t)) = 0 k ≥ −1

with the initial condition τ(0) = 1 admits no solution for s = 0 and at
most one solution for s 6= 0.

Proof. Since τ(0) = 1, let us consider the problem in terms of a for-
mal function F (t) ∈ Vodd = C[[t1, t3, . . .]] with F (0) = 0 and τ(t) =
exp(F (t)). The function F (t) has a series expansion:

(30) F (t) =
∑
n

fntn

where n := {n1, n3, . . .} is a sequence of non-negative integers such
that ni = 0 for all i � 0, fn ∈ C and tn :=

∏
i≥1 t

ni
i . Further, the
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topology of Vodd = C[[t1, t3, . . .]] comes from the definition deg(ti) = i.
In particular, the degree of tn is given by |n| :=

∑
i≥0 ini.

For the sake of brevity, let us denote by fn1n3...nk = fn for n =
{n1, n3, . . .} with nk 6= 0 and ni = 0 for all i > k and we set f0 =
F (0) = 0. As a brief summary, let us write down the monomials and
their coefficients up to degree 5:

degree 0 1 2 3 4 5
monomials 1 t1 t21 t31, t3 t41, t1t3 t51, t

2
1t3, t5

coefficient f0 f1 f2 f3, f01 f4, f11 f5, f21, f001

After rescaling ti’s and conjugation by an exponential, if needed, we
may assume that ρ is given by (29). The hypothesis ρ(Lk)(τ(t)) = 0 is
equivalent to the vanishing of the corresponding homogeneous parts of
degree i for i = 0, 1, 2, . . .. An explicit computation for low values of k
and i yields:

k i part of degree i in ρ(Lk)(τ(t))
−1 0 sf1

−1 1 2sf2t1
−1 2 3sf3t

2
1 + 1

2
t21

−1 3 s
(
4f4t

3
1 + f13t3

)
+ t3f1

0 0 sf01 + 1
16

0 1 sf11t1 + t1f1

0 2 sf21t
2
1 + 2f2t

2
1

1 0 sf001 + 1
2
f2 + 1

4
f 2

1

1 1 sf101 + 3
2
f3t1 + f11t1

Thus, it is clear that if a solution F does exist, then s 6= 0. In this case,
the vanishing of the above polynomials implies that f1 = 0, f2 = 0,
f3 = − 1

3!s
, f01 = − 1

16s
, f11 = 0, f4 = 0, f11 = 0, etc. . Writing down the

general expression for the homogeneous part of degree i of ρ(Lk)(τ(t)),
one observes that it allows us to determine fn with |n| = i and nk 6= 0
in terms of fn with |n| ≤ i − 2. Thus, if a solution F exists, the
coefficients fn can be recursively determined.

�

Theorem 3.14. Let ρ ∈ HomLie-alg(W>,End(C[[t1, t3, . . .]])) be such
that ρ(Lk) is of type k for k ≥ −1 and that all coefficients of ρ(L−1)
are non zero.

Then, there exists a unique τ(t) ∈ C[[t1, t3, . . .]], with τ(0) = 1, such
that:

ρ(Lk)(τ(t)) = 0 k ≥ −1

Further, the solution τ(t) is a τ -function of the scaled KdV hierarchy.
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Proof. Lemma 3.10 implies that there is λ and σ :W> → Diff1(C((z)))
such that ρλ = β∗(σ). Recalling Theorem 3.12 of [P1], one knows that
there is a function τ0(t) which satisfies that ρλ(Ln)(τ0(t)) = 0 and that
it is a τ -function of the KdV hierarchy. Then, τ(t) := τ0(λt) fulfills the
requirements. Since Lemma 3.13 implies the uniqueness of the solution,
the conclusion follows.

�

Remark 3.15. Let us make two comments on the solutions. First, an
instance of the notion of scaled KdV appears already in Kontsevich’s
Theorem when it is claimed that the exponential of the generating func-
tion in variables T2i+1 := ti/(2i + 1)!! is a τ -function for the KdV hi-
erarchy ([Ko, Theorem 1.2]). On the other hand, although the dilation
shift t̄i 7→ t̄i − δi,0 transforms the operators ρ(Lk), it should be noted
that it does not induce an automorphism of the algebra C[[t̄0, t̄1, . . .]].

3.5. On the solutions for the n-dimensional situation. Let us
now focus in the n-dimensional situation. That is, we aim at studying
the interplay between Virasoro representations and multicomponent
KP hierarchy. Special attention will be paid at their common solutions.

Recall that Vodd(A) is the subalgebra of C[[t1, t3, . . .]]⊗̂CS
•A gener-

ated by ti ⊗ a. Then, S ∈ Gl(A) acts on it by the automorphism of
algebras ti ⊗ a 7→ ti ⊗ S(a).

Theorem 3.16. Let ρ :W> → U(H(A)) be as in §3.3.
There exist S ∈ Gl(A) and functions τα(t1,α, t3,α, . . .) ∈ C[[t1,α, t3,α, . . .]]

such that:

(31) ρ̂(Lk)
(
S(
∏
α

τα(tα))
)

= 0

Further, τα(t1,α, t3,α, . . .) are τ -functions of the scaled KdV hierarchy.

Proof. Theorem 3.6 shows that there is S ∈ Gl(A) such that ρS de-
composes as the tensor product of n 1-dimensional Lie algebra rep-
resentations of W>. More precisely, if {aα} is the chosen basis for
A, then {S(aα)} is a orthogonal basis for η. Consequently, there are
ρα :W> → U(H(< S(aα) >)) such that (24) holds.

Now, we apply the results of §3.4 on the 1-dimensional case. In-
deed, since η is non-degenerated and {S(aα)} is a orthogonal basis,
from Theorem 3.14 one obtains functions τα(tα), such that τα(0) = 1,
ρα(Lk)(τα) = 0 for all α, k and they are τ -functions for the scaled KdV
hierarchy.

Observe that (31) holds if and only if ρ̂S(Lk)(
∏

α τα(tα)) vanishes.
Applying the converse of Theorem 2.12 one concludes. �
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Remark 3.17. The previous Theorem means that, assuming the unique-
ness of the solution ([DZ, Theorem 3.10.20]), the solution of the Vira-
soro constraints has to be of the above form; that is, an operator acting
on a product of Witten-Kontsevich τ -functions. Thus, it agrees with the
results of Givental ([Gi1]) for the total descendent potential. It would be
interesting to relate both expressions explicitly (see also [FvLS, Gi2, L]).
Alternatively, one could combine Teleman’s classification of semi sim-
ple cohomological field theories ([T]) with Givental’s results to deduce
that this is the right expression for the solution. Nevertheless our result
can be applied on other frameworks, as it will mentioned in §3.6).

Corollary 3.18. Let ρ be as in the Theorem 3.16.
If S, τα satisfy (31), then ρS = ρ1 + . . .+ ρn and ρ̂α(Lk)(τα) = 0.
The matrix S is unique up to an ortogonal matrix.

Proof. If S and τα are such that (31) vanishes, then the following ex-
pression also vanishes:

0 = exp(−
∑
α

τ̃α(tα))S−1ρ̂(Lk)
(
S(
∏
α

τα(tα))
)

=
ρS(Lk)(exp(

∑
α τ̃α(tα)))

exp(
∑

α τ̃α(tα))

Recall that an operator ρS(Lk) of type (4) is the same as ρ(Lk) where
the matrix a has been replaced by (S−1)TaS−1 (and, accordingly, bk,
ck, etc.). Expanding the case k = −1 of the last identity, one obtains
that (S−1)TηS−1 is diagonal. Then, Theorem 2.10, implies that ρS

decomposes as a sum ρ1 + . . . + ρn and Theorem 2.12 implies that
ρ̂α(Lk)(τα(tα)) = 0.

It is straightforward that S is unique up to an ortogonal matrix. �

Corollary 3.19. Let ρ be as in the Theorem 3.16. If either S is diago-
nal or τα are τ -functions of the same scaled hierarchy, then the solution
is a τ -function for the scaled multicomponent KP hierarchy.

Proof. In particular, the product S(
∏

α τα(tα)) is uniquely determined
by ρ. Each function τα(tα) satisfies the scaled KdV and, thus, there
are λα := (λi,α) ∈

∏
i odd C∗ such that τα(λ−1

α tα) defines a point Uα ∈
Gr(C((z))). If ρ is expressed w.r.t. a basis {a1, . . . , an}, then S de-
termines a second basis {S(a1), . . . , S(an)} or, equivalently, an isomor-
phism C⊕ . . .⊕ C ' A. This isomorphism induces:

Gr(C((z)))× . . .×Gr(C((z))) ↪→ Gr(C((z))⊕ . . .⊕C((z))) ' Gr(A⊗C((z)))

Since τ -function of the image of (U1, . . . , Un), which is U1 ⊕ . . .⊕ Un,
is given by

∏
α τα(λ−1

α tα) it follows that S
∏

α τα(tα) is a τ -function of
the scaled multicomponent KP in the two cases of the statement. �
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Remark 3.20. Recalling Remark 3.11, we observe that Theorems 3.14
and 3.16 could be weaken and stated for representations satisfying the
hypothesis up to a linear function on ti’s.

3.6. Final Comments. Let us finish with some brief comments. From
a general perspective, we hope that our methods shed some light on
the explicit expressions of the Virasoro operators and of the relevant
integrable hierarchies that appear in the Virasoro conjecture. Further-
more, they can also be applied to many instances of representations of
W> such as recursion relations, Hurwitz numbers, knot theory, etc. .

As an illustration, let us point out the results of [AC, KZ] on Hurwitz
numbers. In both cases, the authors study the generating functions of
the number of coverings of P1 \ {0, 1,∞} with some properties. It is
shown that these functions satisfy Virasoro constraints, KP hierarchy
and topological recursion (of the Eynard-Orantin type [EO]). It is
remarkable that the Virasoro constraints are explicitly expressed as
differential operators of the form considered in §2 for the case A =
C. Thus, the results of §3.4 can be directly applied to conclude that
Virasoro constraints imply the scaled KP hierarchy.

Our results could also be of interest within the context of Eynard-
Orantin topological recursion ([EO]). Indeed, we learn from [MS] that
Mirzakhani’s recursion formula for the Weil-Petersson volumes ([Mir])
is indeed a Virasoro constraint imposed on a generating function of
these volumes and that this function satisfies the KdV hierarchy. It
is worth pointing out some recent results on the relation of topolog-
ical recursion and Virasoro constraints ([E, Mil]). On the one hand,
it has been shown in [E] that these Virasoro constraints are actually
equivalent to Eynard-Orantin topological recursion for some spectral
curve. On the other hand, one knows from [Mil] that the correla-
tion functions of a semisimple cohomological field theory satisfy the
Eynard-Orantin topological recursion and that these recursion formu-
las are equivalent to n copies of the Virasoro constraints for the ancestor
potential. Therefore, two problems can be faced with our techniques.
First, we think that Theorem 3.16 should imply some bilinear relations
of Hirota type for the solution of the Eynard-Orantin topological re-
cursion. Second, due to the uniqueness of the solution and the fact
that the solution satisfies the KP hierarchy, there must be a relation
of the Eynard-Orantin spectral curve and the Krichever construction.
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