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Introduction
The theory of newforms is very important and useful for arithmetical study of
modular forms of integral weight. This theory have the following nice properties:

(i) The space of newforms have an orthogonal C-basis consisting of common
eigenforms on all Hecke operators and such common eigenforms are uniquely deter-
mined up to multiplication of complex numbers. Moreover such common eigenforms
satisfy the Strong Multiplicity One Theorem (cf. [M, §4.6]).

(ii) The full space of cusp forms, S(2k, N), can be reconstructed by the space of
newforms, i. e., we have the following decomposition:

sekN) = @ P SeEBII(5)x,

0<B|N 0<A|(N/B)

where S°(2k, B) is the space of newforms (see below §0 and [M, §4.6]).

(iif) The above operator f — f|[(‘3 (1’)]2,c (almost) preserve the Fourier coeffi-

cients of cusp form. Hence for studying the Fourier coefficients of cusp forms, it is
sufficient to study cusp forms only in the space of newforms.

(iv) The theory of newforms has tight relations to both Representation theory
and Geometry.

Until now, several authors have attempted to find a similar theory of newforms
of half-integral weight which satisfy similar properties like the above (i)—(iv) (cf.
[She], [N], (K}, [M-R-V], [U1], [She-W]).

In the paper [K], W. Kohnen defined (what is called) Kohnen space which can
be considered as the canonical subspace corresponding to cusp forms of integral
weight and of odd level via Shimura correspondence. And when the level is a 4 x
(odd squarefree integer), he also established a theory of newforms for this Kohnen
space. :

Partly supported by the Grants-in Aid for Scientific Research, the Ministry of Education of
Japan.
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In the previous paper {U1], the author generalized Kohnen’s work and obtained a
similar theory of newforms for Kohnen space of arbitrary level (= 4 x (odd integer),
cf. [U1, §3]). But those results are half-way for a technical reason (cf. [U1, §4]).

The aim of this paper is to complete the results in the previous paper and to
formulate and state a complete theory of newforms of Kohnen space.

Let us precisely state a formulation of theory of newforms for Kohnen space.

Let k, N € Z; and N divisible by 4. Let x be an even character modulo N with
x2=1. Wc denote the p-adic additive valuation for any 1ntegcr m by ord,(m). We
decompose N as follows:

N =22GMM M., M, = H p, My, = H porde(N)
p|N,p#2 p| N, p#2
ord,(N)=1 ord, (N)>2

Denote the set of all prime divisors of My, by IT.
Kohnen spaces S(k + 1/2, N, x) i can be defined only in the case of ordy (V) = 2
(See below §0 (d) for the definition).

We shall consider such a case. For simplifying the explanation, we deal with only
the case of k > 2. In the case of k = 1, we must slightly modify subspaces (cf. §0).

Define the space of oldform O(k + 1/2, N, x)k as follows.

Ok+1/2,N k= Y., Y. Sk+1/2,4B,&)5a
0<B|M 0<A|(M/B)
B#AM  ¢(4)=y

+ ) > > S(k+1/2,4B,&), [UA) [] R

0<B|M 0<A|(M/B)* 0<e1<2 lenr
M g(d)=x (el

Here, £ runs over all characters modulo 4B such that £ (4) = x. The operator
b4, the shift operator U(A), and the twisting operator Ry (I € IT) are defined as
follows: For f =3 ., a(n)e(nz),

Floa(2) := AF/2HY4f(Az) = AR/2H1/4 Z e(Anz)
n>l
fIU(A)E) = aAn)e(nz),  fIRu(z) =Y aln) (?) e(nz).
n>1 n>1

The space O(k + 1/2, N, x)k is a subspace of S(k+1/2,N,x)x. We denote by
Nk + 1/2,N,x)kx the orthogonal complement of D(k + 1/2,N,x)k in S(k +
1/2, N, X)K-

The space M(k+1/2, N, x)k is stable by the twisting operators R, for all p € IT.
Hence we can decompose this space into common eigen subspaces as follows:

N(k+1/2, N, X)k = Bre(xnyr NPk +1/2, N, x)x ,
MRk +1/2,N, )k = {f € Mk +1/2,N,X)k ; fIRp =r(p)f forallpe Il }.
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Here {+1} := Map(IT, {£1}).

We call these spaces M®*(k 4+ 1/2, N, x)k (k € {£1}'7) the spaces of newforms,
because these subspaces have the following nice properties (cf. below §3 and espe-
cially (3.7)).

(1) M®=(k+1/2, N, x) k has an orthogonal C-basis consisting of common eigen-
forms for all Hecke operators Tk—l-l /2, N,x(pz) (p:prime, pJM) and U(p?) (p:prime,
p | M}, which are uniquely determined up to multiplication with non-zero complex
numbers. Let f be such a common eigenform and A, the eigenvalue of f with
respect t0 Tiy1/2 8¢ (P?) (PJM) resp. U(p?) (p|M). Then there exist a primitive
form F € S°(2k, M) of weight 2k and of conductor M which is uniquely determined
and satisfies the following: For a prime p,

F|Topm(p) = ApF if (p,M)=1 and F|U(p)= A, F if p|M.

Furthermore we can find, by using the trace relation (2.28)(1), which primitive form
occurs via the above correspondence. [

(2) (The Strong Multiplicity One Theorem)
Let f, g be two non-zero elements of m9’~(k+1/2, N,x)k. If f and g are common

eigenforms of Ty 1y /2.N x(p?) with the same eigenvalue for all prime numbers p prime
to some integer A, then Cf = Cg. O

(3) The space of oldforms O(k+1/2, N, x) k has also an orthogonal C-basis con-
sisting of common eigenforms for all operators Tk+1 /2,85 (%) (p:prime, p[N). The
system of eigenvalues of such a common eigenform corresponds to a primitive form
of weight 2k whose conductor is a divisor of M and is less than M (cf. (3.5)). O

(4) The space of oldform D(k + 1/2, N, x)k is generated by the spaces of cusp
forms of lower level. Hence, by induction, we see that the spaces S(k+1/2, N, x)
are reconstructed by the spaces of type of MP*(k +1/2,4B, €)k and the operators
of type of 64, U(A), and R;.

From the above definition these operators 64, U(A), and R; (almost) preserve
Fourier coeflicients of cusp forms. Hence for studying Fourier coeflicients of cusp
forms € S(k+ 1/2, N, x) g, it is sufficient to study cusp forms only in the spaces of
newforms M~ (k +1/2,N,x)k. O

Finally the author has some comments.

There exists a case such that M*(k + 1/2, N, x)x = M%< (k + 1/2,N, x)k as
modules over Hecke algebra for two distinct x, k' € {£1}¥. See (3.8) for such a
example.

It seems likely that there exists a similar theory for any full spaces of cusp forms
S(k+1/2,N,x) even if ord2(N) > 3.

In the case of ords(N) < 3, the author thinks that necessary preparations have
already done in the author’s previous papers [U3-5]. But situations are quite
different in the case of orda(N) > 4 (cf. [U5)]).

It seems that its reason is the existence of the twisting operators for characters
(=1) and (2). These twisting operators can be defined only if ordz(N) > 4 and
ord2(IN) > 6, respectively. See the forthcoming papers [U6].
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This paper is composed as follows: §0 is general preliminaries. §1 is preparation
from representation theory of finite groups. We apply results of §1 to calculations
of §2. In §2, we will complete an attempt in the previous paper [U1,§4]. §3 is the
main part of this paper. We will formulate and state a complete theory of newforms
for Kohnen space in §3. In the Appendix, we will prove several general formulae
which are used in calculations of §2.

The author wrote this paper during he was staying at Max-Planck-Institut. The
author would like to express his hearty thanks to Max-Planck-Institut and its staff
for their warm hospitality.

80. Notational Preliminary. Throughout this paper, we use the following nota-
tions.

(a) General notations. Let A, B be subsets of a set X and {A;}ics a family
of subsets of X. If AU B is a disjoint union, then we denote A + B := AUB
for simplicity. Similarly, if U;erA; is a disjoint union, then we denote Eie 1 Ai =
Uie 14;.

We denote the set of positive integers by Z,. We denote the additive valuation
for any integer m by ord,(m).

See [M,p.82] for the definition of the Kronecker symbol (£) (a, b integers with
(a,b) # (0,0)).

Let N be a positive integer and m an integer # 0. We write m|N® if every
prime factor of m divides N.

Let k denote a non-negative integer. If z € C and z € C, we put 2% = exp(z -
log(z)) with log(z) = log(|z|) + v/—1arg(z), arg(z) being determined by —7m <
arg(z) < w. Also we put e(z) = exp(2my/—1z).

Let $) be the complex upper half plane. For a complex-valued function f(z) on

H, o= (“b) € G’L'{(R), v = (u ") € Ip(4) and 2z € $, we define functions

cd w T

J(a,2), j(7,2) and f|[a]x(2) on $ by:J(e,2) = cz +d, j(v,2) = (_71)"1/2 (2)
(wz + )2 and fl[a]k(2) = (det a)*/2J(a, 2) 7% f(az).
For m € Z.. we define a shift operator U(m) on formal power series in e(z) by

Z a(n)e(nz)|U(m) := Z a(mn)e(nz) .

n>0 n>0

Let x be a Dirichlet character modulo N. We denote the conductor of x by §(x)
and the p-primary component of x by x, for each prime divisor p of V.

Let V, V' be finite-dimensional vector spaces over C. We denote the trace of a
linear operator T on V by tr(T; V) and also the kernel of a linear map F from V
to V' by Ker(F; V).

We denote the set of all mapping from a set A to a set B by Map(A, B). Fur-
thermore we use the abbreviated notation B4 (= Map(4, B)).

Let A be a set of prime numbers and (@p)pe4 a system of integers. We put the
following notation: A(a); :={p€ A | ap =1} and A(a)it :={p€ A ] ap > i} for
any : € Z.

(b) Modular forms of integral weight.
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Let k and N be positive integers. By S(2k, N), we denote the space of all holo-
morphic cusp forms of weight 2k with the trivial character on the group I' = I'y(N).
We also denote the subspace of S(2k, N) spanned by all newforms in S(2k, N) by
SO(2k, N).

Let @« € GLF(R). If I' and o ' are commensurable, we define a linear
operator [I'al,, on S(2k,N) by: f|[I'all,, = (det@)* 1Y fllai]ak, where o;

runs over a system of representatives for I'\I'al’. For a positive integer n with
(n,N) = 1, we put Top n(n) = > [F (g 3) F] o where the sum is extended

ad=n
over all pairs of integers (a,d) such that a, d > 0, a|d, ad = n.

Let @ be a positive divisor of N such that (@, N/Q) = 1. Take any element
Y € SLy(Z) which satisfies the conditions:

(%) (mod Q);
'm={ (£9) (mod N/Q).

Put W(Q) = o (cg (1)) The following facts are well-known: W{(Q) is a normalizer

of I'; [W(Q)],) induces a C-linear antomorphism of order 2 on S(2k, N) and this
operator is independent of a choice of an element yg. For @ = 1, we can take

7nno=W(Q1) = (3(1)) Hence we have [W(1)],, = 1. Moreover for the sake of

simplicity, we use the following abbreviated notation: Let A be a subset of the
set of all prime divisors of N. Then W4 := W(Hpe 4 porde (N )). In particular, we
simply write W; = Wy if A = {l}.

Moreover, if the subscripts are obvious and any confusion does not occur, we
simply write T'(n) = T2k n(n) and W(Q) = [W(Q)],s, etc..

For any f(z) = 3 oo, a(n)e(nz) € S(2k, N) and x a primitive character modulo
f = f(x), put fIRy(2) i= 3 oo x(n)a(n)e(nz). From [Sh 3,Prop. 3.64] we have
fIRy € S(2k,N', x?), where N' is the least common multiple of N and §(x)2. We
call this operator R, the twisting operator of x.

(¢) Modular forms of half-integral weight.

Let k£ denote a non-negative integer, N a positive integer divisible by 4, and x
an even character modulo N such that x2 = 1. Put g = ord2(N), M = 27#¥N and
I'o = I'n(N). Then there is a square-free odd positive divisor My of M such that
x = (M) or (240) (the Kronecker symbol).

Let &(k + 1/2) be the group consisting of all pairs («, ), where @ = (“ b

cd)6

GL7T(R) and ¢ is a holomorphic function on $ satisfying o(z) = t(det o) ~*/2-1/4
J(a, 2)**1/2 with t € C and |t| = 1. The group law is defined by: (a, p(2)) -
(B,9(z)) = (af,¢(Bz)Y(2)). For a complex-valued function f on $ and («,p) €
B(k + 1/2), we define a function f|(a,¢) on H by: fl(e,9)(2) = ¢(z)7 1 f(az).
Moreover if there will be no confusion, we also write v* = (v, j(v, z)?**1) for all
v € Io(4).

By Ao = Ao{N,x) = Ao(N, X)k+1/2, we denote the subgroup of &(k + 1/2)
consisting of all pairs (v, ¢), where (’: 3) = v € Iy and p(z) = x(d)j(v, z)2F+!
and also denote Ay = A (N) := {v* |y € [T(N)}.
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We denote by G(k+1/2,N,x) (resp. S(k+1/2,N,x)) the space of integral
(resp. cusp) forms of weight k + 1/2 with the character x on the group I'y, namely,
the space of all the complex-valued holomorphic functions f on $ which satisfy
fl€ = f for all £ € Ag and which are holomorphic (resp. are holomorphic and
vanish) at all cusps of I'y. Moreover we also denote by S(k+1/2,A;(N)) the
space of cusp forms of weight k£ + 1/2 on the group I'i(N) i.e., the space of all the
complex-valued holomorphic functions f on § which satisfy f|¢ = f for all £ € A,
and which are holomorphic and vanish at all cusps of I (N) ([cf. Sh 1]).

In the case k = 1, i.e., the case of weight 3/2, S(3/2, N, x) contains theta series
of special type. We know that these theta series correspond to Eisenstein series via
Shimura correspondence.

From this reason we define the orthogonal complement V{(N; x) of the space of
such theta series in S(3/2, N, x). In the case of weight 3/2, we deal only with this
complement V(N;x). See [Ul, §0, §1] for the details.

Let £ € 8(k+1/2). If Ag and £~ 1Ag€ are commensurable, we define a linear op-
erator [AoéAo]k_,_I/2 on G(k+1/2, N, x) and S(k+1/2, N, x) by: f| [Aoon]k+1/2 =
5" fIn, where n runs over a system of representatives for Ag\Ag€A. Similarly, if

n

€ and £71A € are commensurable, we define a linear operator [A1£A] on S(k +
1/2,A1(N)) by: fl[A1€A] =3 canasea, fIn

Then for a positive integer n with (n, N) = 1, we put

Tk+1/2,N,x(n2) — pk—3/2 Z a [Ao ((a(: ;)2) ,(d/a)k“/z) Ao]

ad=n

k+1/2

where the sum is extended over all pairs of integers (a, d} such that a, d > 0, a|d and
ad = n. We simply write T(n?) := Ty, /2,N,x (%) if the subscripts are obvious and
any confusion does not occur. These operators T'(n?) ((n, N} = 1) are hermitian
and commutative with each other on S(k+1/2, N, x) (cf. [Sh 2, lemma 5], {Sh 3,
Prop.(3.32)], [U1,(1.9)]).

),m

For any m € Z 4, put b 1= ((0 1)

Let @ be an odd positive divisor of N such that (@, N/Q) = 1. Take any element
vo € SL2(Z) satisfying the conditions:

B 7Y (mod Q);
”’Qz{ (2°) (moa N/Q).

m 0 ~k/2-1/4

Then vg € Io(N/Q) C Ip(4). Put w(Q) = v9*6g € B(k +1/2). See [U1,81] for

—

the details of properties of these d,, and W(Q).
Let f(z) = Yo ,a(n)e(nz) € G(k+1/2,N,x) and ¥ a primitive character

n=0
modulo f(). Let N’ be the least common multiple of N, §(+)2, and §(¢)f(x).
Then f|Ry(2) := Y o2 ¥(n)a(n)e(nz) belongs to the space G(k +1/2, N, xy?).
In particular, if f is a cusp form, so is f|Ry [Sh 1, Lemma 3.6]. We call this operator
R, the twisting operator of 7).

(d) Kohnen space. We keep to the notations in the subsection {c).
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Let k£ be a positive integer. Suppose that N = 4M and M is an odd natural
number. We define the Kohnen space S(k+1/2, N, x), as follows:

1 _ [ 8(k+3,N,x) 3 f(2) = X0%, a(n)e(n2) ;
S(k * §’N’ X)K B {a(n) = 0 for xo(=1)(=1)*n 512,3 (mod 4) } ’

where x2 is the 2-primary component of .

In the case of weight 3/2, we define V/(N;x) := V(N;x) N S(3/2, N, x) . See
[U1, §0, §1] for the details.

§1 Representations of SL; over finite fields and non-vanishing
of Fourier coefficients.

(1.1) We begin with a summary of representations of G := SLy(Fp) (p is an
odd prime number).
Define subgroups of G by:

B:={(ga31) la € F), beF,,}, U:={(3i) |beF,,}

and put

¥ : Fp, 3 u mod p - e(u/p) = exp(2rv—1u/p) € C*,
N (((1) ‘1‘)) = 1(au) (e, u € Fy).
The set of all irreducible representations of U is given by {¢, | a € Fp}. For any
Dirichlet character x modulo p, we define the representations x of B of degree one
by: x:B >3 (8031) — x(a) € C*.
The following facts are well-known.
(1.2) Proposition ([S, Chapter 7, pp. 54-60]).
(1) If x2 5 1, Ind§ X is an irreducible representation.

(2) If x = 1 (the trivial representation), Ind§1 = 1 @ €,, where €, is an
irreducible representation of G of degree p which is called Steinberg representation
and Resy €, = @per, Va-

3 Ifx= (;) (Legendre symbol), Ind$ X = Cpr1)/2 @€y, 1y/9, Where €y
and (‘lzp +1y/2 denote irreducible representations of G of degree (p+1)/2, which are
not equivalent to each other and satisfy the following:

Resy (€pi1)/2) = 1o ® (@aepg%) . Resy (e:’(p o) /2) & o ® (@aEF; _F:ma) .
We call €(p11)/2 (resp. €, +;) /2) the residual (resp. non-residual) representation. [

(1.3) From now on and until the end of the paper, we assume that x? = 1.
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We will determine the explicit C-basis of the irreducible components 1, €,,
€(p+1)/2, and Ql(p+1)/2 in Indgé (x=1, (5)).
We can identify the induced representation Ind§ x with the left C[G]-module

C[G] ®cp] x- Hence, it is sufficient to find the explicit C-basis of irreducible
components of this left C[G]-module.

Let e := ((1) 2) be the unit element of G and we chose a basis of the representa-

tion space of x by ¢, i.e., x ((3 af, )) € = x(a)e. A system of all representatives for

G/B is given by the p + 1 elements: e = ((1) (1)) and £, := ([1) ‘;) (_01 (1]) (a € Fyp).
Under these notation, a C-basis of Indg x = C[G] ®cp) x is given by the p+ 1

elements: e ® € and €, @ ¢ (a € Fy).

Take any element u € Fp and h 1= a(e®€) + 3 cr, Fo(§s @ €) € Ind§ x (a,

Bz € C (z € F,)). We have the identity ((1) '1‘) h=ale®e)+3,cp, Bo(buts®e).

Hence any element h belonging to the representation v, (a € F,) is expressed as
follows:

(1.4) {h=a(e®€)+ﬂ(zxer£m®e) (, B C) ifa=0,

h=B3,er,e(—az/p)(l. ®e) (B€C) if a # 0.

(]
We therefore see that for any non-zero a, C(Ezef-‘,, e(—az/p)(€: ®€)) is the -
component in the C[U]-modules Resy €, Resy €(,+1)/2, and Resy lep +1)/2°

We must determine an explicit basis of each 3p-component in the above three
C[U]-modules.

Put for any a € Fp, hq = Zzer e(—az/p)(é; ®e) € Indgx and put X :=
ek, & € C[G].
We will calculate the element Xh, =3 cp e(—ay/p)(£:€y ®¢). Since £,60 =

(_01 :T) € B, the part of y = 0 in the above sum is

Y Gbo®e= ) e®§((‘01 :‘{))e=x(—1)p (e®e).

z€F, z€F,
Next assume that y % 0. Then

ety = (7 ) =t () (2707

8



Hence

Y el-au/p) (6,00 = Y el-ay/mamy @ x (7 2 ) (3-47))
z€F, z€Fp
yéF: y§F§

= Y e(-ay/p)x(~y) | D Loy ®c

yGF; z€F,
= (Z e(ay/p)x(y)) ho -
yEF
From these results,
( ple®e) + (p— 1)ho, if x=1and a =0,
ple ® €) — hy, if ¥y =1 and a # 0,
(15 Xha=1 (2)peoe) if x = ;) and a =0,
{ (_Tl) ple®e) + (%) gpho, ifx= (5) and a # 0,

where g, := ZmeF,’,‘ e(z/p) (%) is the gauss sum. 0O

Suppose x = (;) and take a quadratic residue a € F. Since hy € €(py1)/2,

Xhy = (_71) ple®e) + (%) gpho = gp(Bp(e ® €) + ho) € C(pya)/2. From the
formula (1.4), C(gp(e ® €) + ho) = ¥ and hence this element gives a basis of the
Yo-component of €y 1y/2.

We can find an explicit basis of the io-component of €,, Q:’(p +1)/2 in the same
way. The case of 1 is trivial. Thus we obtain the following.

(1.6) Proposition. Under the above notation, we have the following explicit
expression of irreducible C[G]-modules in Indg X-

1 =C((e®e€) + ho) ,
¢ = C(p(e®) —ho) @ (@ueryCha)
Cpin =Clgp(e®e) +ho) & (@,epzrCha)
tps1y2 = Clop(e®e) —ho) & (@yery_pyCha) -
Here, each direct summand of the right-hand sides is an irreducible C[U]-module.

Precisely speaking, each first direct summand is isomorphic to ¢ and the other di-
rect summands Ch, (a # 0) are isomorphic to v, respectively, as C[U]-module. O

(1.7) From now, we study representations of finite groups which are constructed
by modular forms of half-integral weight.
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We use following notation until the end of this section.

Let k& be a positive integer and N =4 x M, M is a positive odd integer.

Put v, = ord,(N) = ord, (M) for any odd prime p. We decompose M = My My,
My = 1lpipp,=1 P a0d Moy 2= I1 0r0, 529"

Let x be an even Dirichlet character with x* = 1 and for any prime p, x, the
p-primary component of x. Moreover we denote the M;(resp. 2M,, )-component

of x by x1:= [ jar, Xp (resp. X := [1pjapr,, Xp)-

For any positive integer a € Z., put

G(a) = SLy(Z/aZ), B(a):={(.*)€G()}, Ula):= {(; ;) € G(a)}.
Moreover if (a, 8) = 1, we naturally identify as follows: G(af) = G(a) x G(f) and
for simplicity, we shortly write G := G (M;), By := B (M), and B := B (4M,).

For any positive integer « divisible by 4, put A(a) := {v*|v € I'(a)},
Ay (a) :=={y" |y € ()}, and Ao (@) := {¥" | v € To(a)} (cf. §0(c)).

Under these notation, we have that Ag(4My.) > A(N) = A(4dM;M,,) and that

AO (4M2+) /A(N) & FO (4M2+) /F(N) = B X Gl.

From this we can define the representation 7 of the group B x G; on S(k +
1/2, A(N)) as follows:

(1.8) [r(y mod(N))] f = f|v"™", (f€Sk+1/2,A(N))) ,

where v mod(N) € I'y(4Mz,)/T'(N) ~ B x G;. We consider S(k +1/2,A(N)) as
a left C[B x Gj]-module by the above representation .

(1.9) Let 7; be the left C[B x G1]-module generated by a non-zero cusp form
feSk+1/2,N,x) ie,

7;:=C[B x G1]f = (flv* ; 7 € To(dM2y)) ¢ -

Moreover we can define the following one-dimensional representation x as in (1.1)

x:BI)> (5.2 )»x@eC*, x:iBis(8.5)mxlecr,
£:B5(5,0)px@ect,  xBE3(5h)pu@ec

Then we have a canonical identification y = x ® x1 = x ® (®p| Mlxl)'

For any f € S(k+1/2,N,x) and any v = (1) € Fo(N), 7(y mod(N))f = f |

(_dc _ab) = x(a)f. Hence we get the isomorphism X &~ Cf as B(N)-modules. We
denote the basis of the representation space of x by . Then we get the following

proposition by easy computation.
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(1.10) Proposition. For any non-zero f € S(k +1/2, N, x), the following map
gives an surjective homomorphism of B x Gi-modules:

d = Py IndB"G‘x - 7y, (ZananZanﬂ(n)f),
n n

O

where a, € C and 75 is taken over all representatives for (~ X Gl) (]3 B )
We can, therefore, identify 7y with a subrepresentation of Inde LX

We have canonical identity:
BxG ~ ~ G
IndeBll X=X ® IndH1 xi= §® (®pFM1 IndB((:;)) x_—p) .

From (1.2), we know that each IndB((p )) Xp is the direct sum of two distinct irre-
ducible submodules. We therefore have the following decomposition

(1.11) Indgiglx Ds)pine, (§®(®pw,0p)) )

where 6, is taken over the set of irreducible C[G(p)]-modules {lg(p,Cp} or

{€p+1)/2s ¢’(p+1)/2} accordingly to xp = 1g(p) Or (J—J) (cf. Proposition (1.2)). We
note that ¥ ® (®pa,0p) are irreducible C[G]-modules and not equivalent to each
other.

(1.12) Now we more closely study the representation 7 by using the results of
(1.1)-(1.6). We need some national preliminaries.
For any prime divisor p of My, let €, be a basis of one-dimensional representation

space of xp. Put ep := (1 0) € G(p) and &p(a) := (1 a) ( 0 1) € G(p)fora e F,
and X,(a) := > ser, €(—az/p)ép(z) € C[G(p)]. Moreover let € be a basis of X

For any prime divisor p of M; and any z € F,, we chose an element v,(z) €
SLo(Z) such that

((1) [1)) mod N/p,
€p(z) mod p,

and define an operator X, (p | M) as follows:

(1.13) SLa(Z) 3 vp(z) = {

(1.14) F1Xp =) m(rp(z) mod(N)f, feS(k+1/2,N,x).
z€F,

In [U1, §1], We defined several fundamental operators on S(k +1/2, N, x): U(p),
W (p), and Y,. The above operator X, can be express by those.

(1.15) Proposition. Let p be any prime divisor of M; and f any element of
S(k+1/2,N, x). Then the following hold.
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(1)  f]X, = p~*/2+3/4 f|W (p)U(p). Hence the map f — f| X, gives an operator
on S{k+1/2,N,x).

(2)  fIRU(p) = fIU(p)Xp.
P (-?l)pf, if xp = (;)
Hence X, is a semi-simple operator on S(k +1/2, N, x).

Proof. (1) We keep to the notation in [U1, §1]. We have from the definition
[U1,p.151) W(p) = 7, 0p, where v, € SLy(Z) is satisfied the following condition:

_{(?—01) (mod p)
PE1(R9) (mod N/p),

and Sp = ((g 2) ,p"‘/z_l/“). From [U1, (1.19)],

FIW (@)U (p) = p*/*=3/4 Z £IW (p) ((;2) ,pk/2+1/4) ((1) cll)*
acF,

=AYy ((8)0) (a3) = X s (35)
acF, aEF,

By using the notation y,(a) (cf. (1.13)), we can easily calculate for any a € Fy,
g ((1) (11) = 7(yp(—a) mod(N))f. We therefore have

WU =4 S flp (32)

a€F,
=2V S wy(~a) mod(N))f = p*/ AT fIX,

a€F,
From this and [U1, (1.22)], f — f|X, gives an operator on S(k + 1/2, N, x).
(2) From the definition of Y} (cf. [Ul, p.155]) and the above (1),

P2 YU () = U)W (DU () = (FIU @)W (0)U () = o>~/ flU(p) X,

(3) The map f — f|U(p) gives an isomorphism from S(k+1/2, N, x) onto
S(k+1/2,N,x (®)) (cf. [U1, (1.28)]). Hence it follows from the above (2) that
U(p)~Y,U(p) = X, on S(k+1/2,N,x). By using this relation, we can deduce
properties of X,, from those of Y},. In particular, from [U1, Proposition (1.27)], we
have the above relation (3). O

(1.16) Take any non-zero f € S(k + 1/2, N, x) and assume that 7 is irreducible.
From (1.10) and (1.11), there exists a system of irreducible representations (fp)pias,
such that ®5: x ® (®pyar,0p) = m5. Moreover for any prime divisor ¢ of M,

~ G
Ker(®5) 2 X® (@i, pta Indg 5y Xp) ® 0

12



where 8, is the irreducible component such that Indg((g)) g =0,00,.
Set the elements c,, o, € C[G(p)] such that

(ep + Xp(0), pep, — A5(0)), if 6, = 1),
(pep — A5(0), e, + Ap(0)), if Op = Cp,
(Gpep + XP(O): Gp€p — XP(O))’ if 913 = Q:(P'H)/z’

(gpep — Xp(0), gpep + Xp(0)), if 6, = C’(p+1)/2.

(1.17) (ap, 0y} 1=

Then o @ € € Oy, @, ® €p € 0, and

(1.18) E® (®p|M1,p¢qep ® Ep) ® (a; ®Eq) € Ker((IJf) .

We therefore have
(1.19)

qf = f1Xq b= ]'G(Q)’
F+FflXq if 0, = €,

8¢f — | Xqo 10 =Clqy1y/2,
0of + F1 Xq 16, = €

0= (ER (®pia, pralp ®€p) © (0, ® £q)) =

In other wards, f is a common eigenform of X, for all prime divisors p| M.

Conversely, assume that f is a common eigenform of X, p|M;.

Decompose 7 into irreducible components: 7 = p; @ --- @ pp, and let f =
i+t fm fi€p(i=1,...,m).

We apply the following operator to the above: M := |B x B~} Z'r x(d)~*,

: 3) is taken over all representatives of IH(N)/I'(N).

We easily see that f = f|M and for any ¢, fi|lM € p; N S(k+1/2,N,x). From
this, without loss of generality, we can assume that f; € S(k+1/2, N, x) and f; # 0
(i=1,...,m). Then p; is generated by a non-zero form f; for all i. It follows from
(1.19) that all f;’s are common eigenforms of X, p|M;.

Set filX, =0 fi, i =1,...,m, p|M;, o € C).
EXGl

Since my is identified with subrepresentation of IndExB1 X pi (1=1,...,m)

are not equivalent to each other (cf. (1.11)). Hence, from (1.19), the systems of

eigenvalues (af,l))m Mys -« (af,m))p| M, are different from each other. Therefore we
see that m = 1 and =y is irreducible.

where v = (

Thus we get the following results.

(1.20) Proposition Let the notation be the same as above. For (0 #)f €
S(k+1/2,N,x), the following hold good.

(1) m; is an irreducible C[B x G;]-module if and only if f is a common
eigenform of X, p|M;.

(2) Suppose that m¢ is irreducible. Then m; = ¥ ® (®pn,0p), where 6,’s are
irreducible C[G(p)]-modules. Let oy, (p|M)) be an eigen value of f on X,: flXp =
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opf. Then o, is given by the following table.

¢/

P, if xp =1 and 6, = 1g(y),
-1, ifxp=1andf,=¢,,

(1.21) W= gy i xp = (5) and 6 = €y,

L ~Op> if Xp = (E) and 919 = €2p+l)/2'

O

(1.22) Now we will study relations between the above representations and
Fourier coefficients.

Let f be a non-zero element of S(k + 1/2, N, x) and take any system (ap)p)as, €
[L,s, Fp- Then

Br(E® (®pp Xplap) @) = Y ] el—apzp/p)m(r((zp)) mod(V))f

(zp)p|ay PIM
zp€EF,

where y((zp)) € SL2(Z) is an element satisfied the following condition:

10
(=] ()
ép(zp) mod p for all prime divisors p of M.

Choose a matrix vy, € SL2(Z) and an element z € Z for (zp)pm, € [Iar, Fr
such that

01

{ (1 0) mod 4Mz.,, { 0 mod 4Ma.,
M,y = and z =
(? _61) mod Mh

zp, mod p for all p|M;.

01
Moreover set g := fIW(M;) = $°0, b(n)e(nz) € S(k+1/2,N,x (#1)). Hence
s (E® ®pan, (Xp(ap) ®Ep) = D ] e(=apmp/p)fIiso(zp))

' (zp)p|M1 lel
zp€F,

= Z H e(—ap:cp/p)ﬂW(Ml)g;Jlla((a;p))-q
(zp)&u, p| My

= M, ~*/1/ Z H e(—a,7,/p)g((z — z)/M1)

(zp)p M, PIM

and put of(z,)) = (“’). Then we note that y((zp))va, al(zp))~t € I'(N).

zp€F,
o0
= M, k214 Z b(n)e(nz/M) Z H e(—apzy/p) | e(—nz /M) .
n=1 (zp)p1m, \ PIM:
zp€Fp
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Since the G.C.D. of all M;/p (p: prime divisor of M;) is 1, there exist integers
up € Z such that 3>,/ up - (M1/p) = 1. We therefore have

Z H e(—a,,a:,,/p)) e(—nz /M) = Z H e((—apzp — nzuy)/p)

(Zp)pim, \ pIM1 (zp)p M, PIML

zp€Fp zp€Fy
= H Z e((—apzp — nzpup)/p)
p|My z,€F,
_ { M,, if —ap, =nu, (mod p) for all p|M,
B 0, otherwise.

Here, we use the condition: z = z, (mod p).
Since —ap = nu, (mod p) & —ay,(M1/p) = n (mod p), we get the following.

(1.23) Under the above notation,

P51 (& ® ®pm, (Xp(ap) @ Ep)) = M, ~R/2H8/ Z b(n)e(nz/M) ,

n=—ap(M1/p) mod(p)
p|M,

where g := fIW (M) = 120 b(n)e(nz). O

n=1
(1.24) Moreover we suppose that 7y is irreducible. In this case, there are irre-
ducible C[G(p)]-modules 8, (p|M;) such that ¥ ® ®pa,0p = 75 via Oy,
We use the notation a; and «j, of (1.17). Then in all cases of 8, = 1g(s), &p,
Cip+1)/2> OF €y 1y /20 We can express that A, (0) = co X ap +c1 X a;, with a non-zero

constant ¢y and a constant ¢;. And from the formula (1.18), it follows that for any
system (ap)p|m, € le M, Fp, there exists a non-zero element ¢z such that

(1.25) €@ @pina, (Ap(ap) @ ep)
= c2 € ® (®piMy ap0(Xp(ap) ® £p)) ® (Spim, ap=0{tp ®€)) (mod Ker®y) .

Now we set the following notation for any prime divisor p of Mjy:

0, if 8, = 1y,
FX if 6, = ¢,
X . p) P ! — gX
(1.26) S5 = Fx2, 0, = Cipity/2n and S, := S U{0}.

FX -FX% iff,= €ty
From the formula of (1.6), we see that S = {a € F) | A}(a) ® ¢, € ,}.
From (1.25), we see that for any system (ap)par, € [par, Fo»
D5 (E @ (®pim, Ap(ap) ®p)) # 0
& B1(E @ Byt my 0¥ (ap) @ 3)  (Bpipt apmoty ® €p)) # 0
& E® (®p|My,0,20%p(2p) ® €p) @ (Bp|M, a,=00p B Ep) € X ® (®pin1,0p)
& Xp(ap) ® e, € 0, for any p|M; such that a, # 0
& ap € S for any p|M, such that a, # 0
< (ap)p|m, € H Sp .

| M,
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Combining the above with the formula (1.23), we obtain the following theorem.

(1.27) Theorem Let f be a non-zero element of S(k+1/2,V,x) and g :=
fIW (M) = Y502 b(n)e(nz) € S(k+1/2,N,X(Ml)). Suppose that 7y is irre-
ducible and m; = ¥ ® ®p|as,0p with irreducible C[G(p)]-modules 6.

Then for a (ap)pim, € [Ipjrr, Fp, we have the following;

“ there exists n € Z such that b(n) # 0 and

(ap)pin, € };4[1 S5 © n = —a,(My/p) (mod p) for all p|M; " .

In other words,

« _ , , : e
(ap)pint, ¢ H S, o b(n) = 0 for all n’s which satisfy the condition:

n = —ap(M1/p) (mod p) for any p|M, > .
pIM,

See (1.26) for the definition of S,. O

§2. A complete theory of newforms for Kohnen spaces

We will generalize the results of §4 of the previous paper [Ul] and will get a
complete theory of newforms for Kohnen spaces. So we will consider only Kohnen
spaces in this and next sections.

We keep to the notations in §0, §1 and in [Ul]. See those for the detail of
definitions and notations.

We recall some notations.

Let k be a positive integer and N = 4 x M, M is a positive odd integer. Put
vp := ord,(N) = ord,(M) for any odd prime p. We decompose M = MMy,
My = [Ippt,=1 P 80d Moy =TT} 0,50 P

Let x be an even Dirichlet character with x* = 1 and for any prime p, Xp the
p-primary component of x. Moreover we denote the M;(resp. 2M,)-component
of x by x1:=Iar, Xp (resp. X := 1120, Xp)-

We also denote the set of all prime divisors of My, by II. For any | € II, we
denote the twisting operator of (;) by R; (cf. §0 (c)). Furthermore for any subset
I CII, weput Ry := H,EI R;.

For any « € {+1}7 and any [ € II, we define operators by ef := $(R? + «()R;)
and efy := [[;c;y ef. For any subset I of IT, we set the following notations: I :=
[lier b

Let (ai)ienm be a system of integers such that 0 < oy < v for alil € II. For
simplicity, put My = [Leg !, N(e) = aMM{Y, D = H(a)o = {l € 1T |
oq=0}, E=Hay={lell|a=1},and F = H{a)sy :={l € I | 4y > 2}.
We note that every positive divisor of M2, is of the form Mz(fl'_) for some system
(ar)ien.

We choose and fix & € {1} until the end of this paper. Let x|p € {£1}F be
the restriction of x to F.

We have to study the subspace G%:*l7 (k +1/2, N(a), x) « of S(k+1/2,N,x) k-

We recall the definition of this subspace (cf. [U1, (3.3) and (3.5)]).
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We decompose the character y into two parts as follows:

U u
x=m', n=(%), n’=(*—), 0<ullp, 0<u|Milglp.

Since the character 7' can be defined with modulo N(a), the subspace
Sox'lr (k + I/Z,ﬁ(a),n’)K is naturally defined, where «'|p := k|p - (%) € {£1}F
(cf. [U1, p.177]). And then, using this subspace, we define as follows

(21) & Ir(k+1/2,N(a), X)K =&"le (k+1/2, N(a), n')K U(w) .

Gon'lF (k + 1/2,]\~T(a),n’)K has a C-basis B, consisting of common eigenforms
for all Hecke operators T(nz) = ~k+1/2,ﬁ(a),n’(n2) (n € Z,, (n,N(a)) = 1)
(cf. {U1, (3.11)}). Moreover U(u) gives an injection on S(k +1/2,N(a) - lD,n’)K

([U1, (1.28)]) and is commutative with all Hecke operators T(n?)’s (cf. [U1, (1.8)
and (1.20)]). Therefore the set B, := {glU(u); g € By} gives a C-basis of

Goxlr (k +1/2,N(a), x)K consisting of common eigenforms for all Hecke oper-
ators T(n?) = Tip1/2.nx(n%) (n € Zy, (n,N) =1). Put

~ S(k+1/2,N if k> 2
B®):= 3" 6@=~|F(k+1/2,N(a),x)K|U(a2)Q{ 172 Nox)e ik 22,

0<alip V(N;x)k ifk=1.
Then from [U1,(3.10)],
(2.2) B@ = P & (k+1/2,N(a), X)K U (a?)
0<a | ip
{ S“”"F(k +1/2, N(a) - zD,x)K ith> 2,
VOl (N(a) : zD,x)K if k=1

Since every U(a?) (0 < a | Ip) gives an injection on S(k +1/2, N(a) -ZD,x) (cf.
[U1, (1.28)]), we get the following:

fEBx 0<a | Ip

(2.3) Bl = h ( & CfIU(az)) ;

where f takes over all elements in B,.
Moreover we can see that

(2.4) B@lef; C 6% (k+1/2,N,x)k -
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In fact, applying the operator ef; to the both sides of definition, we see that

B@|ex ¢ { S(k+1/2, N, X)k lefy = " (k +1/2, N, X)k, if k22,
~ LV(INiX)g lefr = VOR (N )k, if k= 1.
Every generator of B(™|e%, f|U(a%)ef (f € By, 0 < allp), is a common eigenform

on T(n?) (n € Z,, (n,N) = 1) and it has the same system of eigen values as f
(and so as g € B,y). This system corresponds to a primitive form in §°(2k, M; M'),
0 < M'|Mg) ([U1, (3.11))).

From [U1,(3.10)] and the Strong Multiplicity One theorem of weight 2k ([M,
Theorem 4.6.19]), G%*(k +1/2, N, x) contains all of generators, f|U(a?)e%;, and
therefore contains all elements of B(®)ef;.

We denote for any f € B,

(2.5) B .= P Clu@d.

0<a |ip

These spaces B}a) are contained in § (k +1/2,N{(a) - Ip, x). We will decompose

B}a) by the semi-simple operators Yy, p|Myiplg, on S(k +1/2,N(a) - lp,x) (cf.
[U1, (1.27)]).
(2.6) First we consider the case of p | Milg.

Take g € B,y such that f =g | U(u). Then

S(k + 1/2,N(a),n') , ifE>2,
| Y, € N K
. N —
V(N(a),n)K, itk =1,
and since R; (I € F) commutes with Y, ([U1, (1.24)(2)]), we see

SOl (k +1/2, N(a),n') k> 2,
glY, € K

ver'le (ﬁ(a);n’)K, ifk=1.

Since Y, commutes with Hecke operators T(n?), (n,N) = 1, both g and glYp
belong to the same system of eigen values on T'(n?), (n, N) = 1. And since g €
Go'lr (k +1 /2,]\7 (a),n')K, its system of eigenvalues corresponds to a primitive
form of weight 2k and of conductor Mylg x (a divisor of [, 1*) ([UL, (3.10)(2)]).

From these, first we see that g|Y, € G%~'lr (k +1/2, N(e), n’)K ([U1, (3.10)(1)]

and next, by using the Strong Multiplicity One theorem ([U1, (3.11)(2)}), 9|Yp = 7pg
for some 7, € C.

Combining these with (A.1), we obtain that
@) 1% =alUY, =y () a0 =) (2) nr
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i. e., f is an eigen form on Y,
Moreover in this case, ¥, commute with U(a?) (0 < a | Ip) because of (A.1).

Hence we see that every element of B}a) is a common eigenform on Y,'s (p|Mlg)
belonging to the same system of eigen values as f. O

As to the case of p|lp, we get the following proposition.

(2.8) Proposition Let I be any subset of D and f be any element of B,.
And let A(I) be the subset of Map(Z, C) consisting of all functions p such that

p(p) = %4/ (‘Tl)p resp. p(p) € {p,—1} according to x, = 1 resp. (;). Hence
|A(I)| = 2!1. Then we have the following decomposition:

P cruE®)= @ Cf,

0<a | 1 pEA(I)

where each f, (p € A(I)) is a non-zero cusp form satisfying the condition:
folYp=p(p) f, (forallpel).

Proof. We will prove with induction on |I].
If [I| =0 (<& I = 0), then ly =1 and the assertion is trivial.

Next suppose that I # @ and the assertion holds good for any proper subset I’
of I.

Take and fix a prime p € I and decompose I = {p} + I', i.e. I' = I — {p}. By
the assumption of induction, we have

B crue= @ ciy,

0<a | I, P EA(I)

where A(I) is the subset of Map(I’, C) which is described in the assertion. Hence
|A(I')] = 2" and f, (o' € A(I")) is a non-zero cusp form satisfying the condition:

fo | Yy =p'(p) fr (forallpel’).

Since U(p?) gives an automorphism of S (k +1/2,N (a) - Ip, x) e we can calculate
as follows:

b Cf|U(a2)=( P CfIU(az)) @ ( P Cf|U(a2)) | U(p?)

0<a | i 0<a | 4! 0<a | i

=| @ ci|o| @ CrHlUG
)

plEA(I p €A

= @ (CireciuE) .

p'eA(l’)
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From [UL,(1.24)] f,|U(®*)Yy = f»|Y,U(®?) for any q € I'. Hence, every element
of Cfy & C(fy |U( ?)) is a common eigenform on all Y, (¢ € I’) which belongs to

o
Now, we will decompose the space Cf, & C(f,|U(p?)) into two eigen subspaces
on Y.

From the definition of B, there exists g € B, such that f = g | U(u). Then

0<G|11I 0<a|11r

P c @ (69 Cg|U(a )lU(u)

and so for any fy (o' € A(I")), there exists g € Bocqs, C9 | U(a?) such that
for =90 | U(u).

These forms g, satisfy the conditions: g, € S (k +1/2,N(a) Iy, ) And also
we have (p, N(a) - 1) =1, (u 4lp)=1,and ', = 1.

g is an eigen form on T( 2). From this and [U1, (1.20)], g, is also an eigen form
on T(p?) belonging to the same eigen value as g.

From the above facts, we can apply the formulae (A.9) and (A.15) in the appendix
to the forms fy = g | U(u) and fy | U(p?) = g | U(up?).

It follows that the space C f & C f, | U(p?) can be decomposed into two
distinct one-dimensional eigen subspaces on Y,:

C fp‘ @ C fp‘ |U(p2) = Chl @c}l«z .

And also we see that hy, hy are two common eigenforms on Y, (g € I) whose eigen
values are coincide (= p’(q)) on the operators Y; (¢ € I') and are different only on
Y,. We can extend p’ to two elements in Map(J, C) by associating {p} with each
of such two eigen values.

Combining this and the above formula, we obtain the assertion. UJ

From this proposition and (2.6), we have the following decomposition:

(2.9) B"= @@ cud= P Cfp

0<allp pEA(D

Here A(D) is a subset of Map(D, C) such that JA(D)| = 2/®! and each f, is a
non-zero common eigen form on Y, (p|M1iplg) satisfying the condition:

Ap, for all p |Milg,

2.10 Y, =cf,, =
( ) fP l P Cpfp C'p { p(p)’ fOI‘ allp c D,

where A, is the eigen value of f € B, on ¥},

(2.11) We take such a f, and fix it. Since f, € S(k +1/2, N(c) - lD,X)K, hp =
1l W (Malptg) ™ € S(k +1/2, N(a) - Lp, x (Mlete) ) (. [UL, (1.22))).

20



Let X, be an operator defined in (1.14) of §1. The above form h, is a common
eigen form of X, for any p|M:iplg.

Proof of this claim. From [U1,(1.18)] and Proposition (A.1), it follows that

hy | W(Mlple)U(p)W (p) = coh, | W (D)W (Malple/p)U(p)W ()
= ho[W (p)U ()W (Malpl/p)W () = c1h,|W (p)U (p)W (Malpls) ,
where ¢o = (x (MH22)) 1 (5) and oy = (x (M4212)) (Mulpli/p)
Hence, for any prime divisor p of Milplg,
(2.12) cohp = Fo| Y, W (Milplg)™
= p~M/2/4h |W (Mylple)U (p)W (P)W (Mylplg) ™
= hp|Xp .
Thus we proved the above claim. O
From this claim and Proposition (1.20), Ao(4 [T;ep (*)/A(4MilpM{Y)-module
75, 18 irreducible. We decompose it into primary components:
(2.13) T, = £® (®pir1:05) ® (®pitpisty) »
where ¢ = [ 1a1010 (x (Mﬂ))p and 9 is defined by 1) in the same way as (1.1)
or (1.9).

(2.14) Claim We can determine each primary components 8, (p € D + E) by
using (1.21) and (2.12) as follows:

[Case 1] (p|lplg and xp, = 1)

[ Ty, ifAp = (MIIZIE ) gp and p € E,

Milpl
Clopryyz i Ap=-— (-‘—‘;—@-Q) gp and p € E,

o
1%
N

Cprry/2 if p(p) = (M‘“;'E ”) gp and p € D,

\ ’(p+1)/2a if p(p) = — (L’:,‘EQ) gpand p€ D.

[Case 2} (p|lp and xp = (5))

4

P

IR

{ lg(p), if p(p)=p,
Q‘P) if p(p) = —1.

[Case 3] (if pllg and xp = (5)) Bp = C,.

Proof of this claim. The assertions in the Case 1 and 2 is easily verified.
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We consider the Case 3. Suppose that 6, = 1g ;). We have h,|X, = ph, from
(1.20)(2). Hence A, = p. This follows from (2.10) and (2.12). Moreover, using (2.7)

and the fact: 7, = xp = (5), we get that g|Y, = pg.

Applying [U1,(1.26)] to g (= 32,5, a(n)e(nz) € S(k + 1/2,]§7(a),n’>K) and p,
we have g|Y, = g|W (p)~18, — g + p~*/2+3/4g|U(p)3,,.

Since p~*/2+3/4g|U(p) = (g|Yp)|f/T7(p)_1 = (pg)|W(p)~?, we therefore have g =
p~k2=14g|U(p)p = 3,5, alpn)e(pnz).

From this formula we have that a(n) = 0 if (p,n) = 1. Hence there is a form
g € S(k +1/2,N(a)/p, 7 (E))K if k > 2, resp. V(N(a)/p; 7 (2))K if k = 1 such

that ¢ = ¢’'(pz) (U1, (1.11)}).

Both g and ¢’ have the same system of eigen values on the Hecke operators T (n?),
(n,N) =1 (cf. [U1,(1.8)]). Since g is in G®'IF (k + 1/2,ﬁ(a),n’)K, the system
of eigen values corresponds to a primitive forms of weight 2k and of conductor
Milg x (a divisor of [[,cp I*).

On the other hand, from [U1,(3.10)] for the spaces S(k +1/2,N(a)/p, 7 (2))1{

and V (N (@) /Dy (2)) o the system of eigen values of g’ corresponds to a primitive

form of weight 2k and of a conductor prime to p.
This is a contradiction. Hence we have 6, = ¢,. 0O

Now we will find the condition for f,|e}; # 0 by using the results in §1.

(2.15) Claim (1) If xp = 1, we have A, = + g, (p € F) and p(p) = + g, (p € D).

If xp = (,—,) p(p) =por —1 (p e D).
(2) We have

Ap = ("71) x(p)gy, forall p € E with x, =1,
folefr #0 & < plp)=-1, for all p € D with x, = (;),

p(p) = ('71) k(p)gp, for all p € D with x, =1.

p

Proof of the claim. The first assertion follow from [Ul, (1.27)] and (2.10). We
will prove the second assertion.

[=] We apply (1.27) to the forms h, and f, (€ S(k +1/2, N(a) - lp,x)K). Set
fo(2) == 3,51 c(n)e(nz) and use the notation S, on 4, in (1.26-27).
From (1.27), we know the following: '

Remark. In the above, the condition: A, = (_—1) k(p)gp depends only on f.

(2.16) e(n) =0if n=—z (Mqlplg/p) mod p for some z mod p ¢ S,
We modify the condition. Let first p € E with x, = 1. From the definition of
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Sp and the claim (2.14),

the condition in (2.16) <« —n(Mylplg/p)~" (modp) ¢ S,
(—-anlDlE/p) _ { -1, if ep = Q:(;7-!-1)/27
— ) =1

p if 6, = Q’(p+1)/2.

Suppose that 6, = €, 4)/2. From the first assertion, A, = £ gp. If A, =
- (Ml—“;l—’gg) gp, then 6, = C’(p+1)/2 (cf. (2.14)). This is a contradiction. Hence

Ap = (-AL';‘EQ) gp and so ("Tf‘) /\pg;l = —1. Thus we can easily deduce the

following from similar argument.

(2.17)

- -1\ .
the condition in (2.16) & (?n) ,\pg;1 =-l& (%) =— (7) gp)\gl. a
We suppose that A, = — (‘71) k(p)gp (& K(p) = — (_Tl) gpAp ') for some p € E
with xp, = 1. If (%) = k(p), we have ¢(n) = 0 from (2.17). On the other hand, if

(%) = —&(p) or 0, we have (%)2 + k{p) (-:-) =0.

2
Observing that fyley = %anl c(n) ((%) + k(p) (%)) e(nz), we get fyley =

0 and so f,lefy = 0.
In the same way, we get the assertions in the case of p € D with x, = 1.

Next we consider the case of p € D with x, = (5)' Let 6, & 1g(p). Then

Sp = {0 mod p}. It follows from (2.16) that c¢(n) = 0 for any n prime to p. Hence
we have fyley = 0. From these fylefy # 0 = 0, = €, = p(p) = —1. We use the
first assertion at the last implication.

[«] From (2.2) and f, € B}a) C B, it follows that f,|R, = (p)f, for all
p € F. Hence for all p € F, fyles = f,. Therefore,

oler = fo e;=2"('D|+|E|) c(n n ’ K n nzj .
et =1l I > )pellE{(p) " (p>(p)}e( )

For each prime p|M1lplg, we choose a residue class b, (mod p) € F satisfying the
following condition:

( (Eﬂ) = (ﬁ‘i”‘—’;[ﬂ) gp)\p"l, ifpe E and xp =1,
) gor(p)™!, - ifpeDandx, =1,

(l—’;}) = (_Tl) (M‘l‘;',lE p) k(p), fpe€ D+ FE and xp = (5),
\ by € S, if p| M.
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We can see from the definition S, and the claim (2.14) that (by)pia,ipiz €

IL,ip1p15 Sp- Hence by using Theorem (1.27), there exists no € Z such that

c(no) # 0 and —ng = b, (M1lplg/p) (mod p) for all prime divisors p of M,lplg.
For such a ng, we have by using the assumption in the claim

(5)-() () (5
P P p P
(_Tl) oAy =x(p), ifpeEandx,=1,

= (31) op) ™ = 5lp); ifpeDand x, =1,

&(p), ifpe D+ E and xp = (;).

Thus we see that (9’}) = k(p) and also that the ng-th Fourier coefficient of f,|efy

is equal to 2=UPHIEDe(no) [T po g {k(p)? + &(p)s(p)} = c(n0) # 0. This means
that fplefy #0. O

Combining (2.5), (2.9) with (2.15), we get the following claim.
(2.18) Claim Let the notation be the same as above. Then

(:ﬁl) K‘(p)gp) for pE D and Xp = 1,

-1, forpe D and xp, = (-)

Bl = C flefr,  polp) :={
P

Moreover f,,|ef; # 0 if and only if f € B, satisfies the following conditions:
(%) flY, = (%) k(p)gp f for all p € E with x, = 1.

We have the following formula:
(2.19) Claim

B ey = @ C foo leq
fEBy, fi(¥)

(_?1) k(p)gp, forp€ D and xp, =1,

and po(p) :=
-1, forpe D and x, = (5)’

where (*) is the same condition as in the claim (2.18) and f,, is a non-zero common
eigenform on Y, (p|Milplg) such that f,|Y, = po(p)fo, if p € D resp. Apf,, if
p € E. Here Ap is the eigen value of f on Y.

Proof of the claim. From [Ul, (1.20)] and [U3, (1.7)], fulef € B}a) is a common

eigenform on all T'(n?) ((n, N) = 1) belonging to the same system of eigenvalues as
those of f.
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And since there is a g € B,y such that f = g|U(u), the system of eigenvalues is
also the same as those of g € B,.

By applying the Strong Multiplicity One theorem [U1, (3.11)(2)} to elements in
B, , each different element in B, belongs to a different system of eigenvalues from
each other. Therefore, {f,|efy ; f € By, f satisfies the condition (¥)} is a system
of linear independent forms. O

We will express the above condition () in terms of g € B,y such that f = g|U(u).
Since 75, = xp for all p € E, we have f|Y, = (%) g|YpU(u) forallp € Ewith x, =1
(cf. (2.7)).

Hence, the condition () & (%) g|YpU(u) = (:pl) k(p)gpg|U (u).

Moreover since U(u) is an isomorphism on S(k +1/2, N(a) - lD,n’) , we get
that the condition (x) & g|Y, = ("T“) £(p)8pg-
In [Ul, (3.6)], we defined the hermitian involutions w, (p|Milg) on

k+1/2

&°~'1r (k+1/2, N(a), n’)K- Then glw, =p="/2 (Z1) " n/(p)g|Y; for all p € E

with x, = 1. This follows from [U1, (3.7)] and 7, = xp for all p € E. Hence

1\* 1\ *
f:(x) & glw, = (_?) 7' (p) (%) x(p)g = (—T) x(p)x(p)g. Here, we note that
x(p) is meaningful because of x, = 1.

We denote this condition for g by (xx):

k
(*%) glwy, = (_?1) x(p)k(p)g forallpe E with xp, =1,

and we denote

0}"""5’ — @n"jlp k 1/2 -N '
(CleA Gux ( + / ) (a)‘n)K
Orlr (k +1/2,N(a),7')
:{hEG ( +1/2, (a),'q)K, }

k
hlwy, = (TP—l) x(p)k(p)h forallp € F with x, =1

From [U1, (3.9) and (3.11)], we have g|lw, = +¢ for all g € B, and so {g €

B, ; g satisfies the condition (%)} is a basis of the space I

As we show in the proof of the claim (2.19), all of three forms f,,|ef, f, and g
are common cigenforms on T'(n?) (n € Z,, (n,N) = 1) and all of them belong to
the same system of eigenvalues.
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Therefore, for all n € Z and (n,N) =1,

(2.20)
tr(f(nz);B(a)le}‘I) = tr (T(nz), @ Cfpo|e?1)
FE€Bx, fi(x)
= tr (f‘(nQ), @ Cg)
gEB1,g:(+x)
=tr( (n?); el (k+1/2,N(a),n’)K) :
O

We will describe the right hand side of the above formula in terms of cusp forms
of weight 2k.

Take any element g of the basis of 6** ~'le , i.e. g € By which satisfies the
condition (#*). Let G be the primitive form of weight 2k which corresponds to
g in the sense of [Ul, Theorem (3.11)]. From [Ul, (3.9)], we have g|U(p?) =

k
—p*~! glw, = —p*=1 () x(p)a(p) g for all p € B with x, = 1. So from [U1,

k
(311)], GlU(p) = —p** () x(p)s(p) G.
Let W(p) be the Atkin-Lehner operator of weight 2k (cf. §0 (b)). From [M,

Corollary 4.6.18], G|U(p) = —p*"GIW (p) and s0 CIW (p) = (32) x(p)(p) G for

P
all p € E with x, = 1. Hence the space 6 e corresponds to all such G’s.
p

We can deduce the following expression by the trace relation in the paper [U1,

(3.10)(2), (A.2)(3), and (A.5)):
| (2.21) For any n € Z,. prime to N{a),

tr(T(n )i 627 (k +1/2, N(a), )K)
= Z E'((ﬁz),‘lf’, (Tlaa"))
((-Bf)!‘I"'l(""ll':""))e}:'J
X tr (T(n); §*(me") (Zk,MllE 11 zﬁ*) |R.I,,) ,
leF

where the notations are as follows: Z((ﬁ:),‘l"
elements of the following set:

{ ((Biier, V', (1',0")) 5 (B1) = (Bi)icr is a system of integers }
P .=

(' ,0'y)ep’ 18 the sum extended over all

such that 0 < By < o for any [ € F,¥' C F(B)o + F(B)1,
7' € Map(F, {£1}),0" € Map(F(B)2+, {*1})

F(ﬁ)icz{l‘EFlﬂz:i}fori—-OlandF(ﬂ)g ={ F| B8 > 2}
E((64), ¥, (7',0")) = [ler Ep((B), ¥, (1',0")). Bach E,((81), ¥, (',0")) is the
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constant determined by the table [Ul, (2.22)]. ' is the extension of 7 which is
defined as follows:

(1), ifl € F,
() = L z .
(T) x(1)k(l qu\pf(a) , ifle Eand x;=1.

Finally,

o e S (2k, Mylp [Tep 1) ;
g+ (2k, Milg [ zﬁ‘) ={ fIW,=#U)fforallle F+{lc E|x =1}, }.
i€F FIRW; = o' () f|R; for all I € F(B)ay
See [Ul, Appendix 1] for the definition of the space S‘(Zk, Mg [Tier 15‘). d

In order to compare this formula (2.21) with those in [U1,(3.10)(2)], we must
modify the above formula.

We define a system of integers (B)iem for each system of integers (8;)icr as
follows: By = B, 1, or 0 according to l € F, E, or D. _
Then we have H(ﬂ)o = D+F(,B)(), ( )1 = E+F(ﬂ) H(ﬁ)z.;_ = F(ﬁ)2+, and

lg % [Lier 1 = Tlen 1.

We want to extend the domain of definition of 7/ (=F') to the whole set IT. Since
{£1}7 = {£1}F x {£1}P*E we will append this factor {£:1}P+# and denote each
element of {+1}7 = {£1}F x {£1}P+E as 7 = (+',7").

We note that there are some assumptions on the primes [ € F with x; = 1 in
the definition of the space $*(77") (2k, Milg [Ticr 1Pt). We remove this condition
by replacing the coefficients Z'((5;), ¥, (T o)) = [ er p((ﬁl) v (7',0')) with
[loer Ep((8), V', (7', 0")) X [],,e py & Ep» where the notation is as follows:

1+ 7"(p), ifpe D;
o ) 141, iprEandxp=(—);
Ep -

14+ (52) X®r0) yew (2) 7", itp€ Band xp=1.

Finally replacing ¢’ with ¢ and combining the formula (2.20) and (2.21), we can
obtain the following expression of tr (T(nz); B("‘)[e}%) in terms of primitive forms
of weight 2k.

(2.22) Under the above notation, we get the followings for all n € Z prime to N,
tr (T(nz), B(“)lefj)

- ) I =6, v H =
eD+

(), %' (' ,0),7")EP x {£1} P+ E pEF

X tr (T(n); §*(7:9) (%,Ml 1T zﬁf) |Rq,,) .

lel1
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where 7 := (7', 7") € {£1}F x {£1}P*E = {£1}7, 0 € {£1}F O+ = {:|:1}17(5)=+,
and

= f|W = T(p)f for all pE H’ ~

) [ €8 (2k MiTLep 17) 5
f|B,Wp = o(p)f|Rp for all | € IT(B)24 = F(f)2+

§* () (2k, M ]

len
O

(2.23) Now we will compare the above formula (2.22) with [U1, (3.10)(2}]. And
we will see that the formula (2.22) can be considered as a part of the expression

formula [U1, (3.10)(2)] of tr(T(nz); G%*(k +1/2, N, x)K).

We first note that for any parameter ((8;), ¥, (7’,0),7") € P’ x {£1}P*+E the
system ((B1)ierr, V', (7,0)) contains in the range P of parameters in the expression

formula [U1,(3.10)(2)] of the trace tr (T(nz); G%*(k+1/2, N, X)K)' This is easily
verified.

We second must study for any (8)ier, ¥, (1,0) = ((7',0),7"), whether the
coefficient of tr(T(n); S*(m9) (Zk, M [Tien lﬂf) |Rq,:) is equal to those in the ex-
pression formula [U1, (3.10)(2)].

Both coefficients are defined as products of primary components on p € II. We
will compare these primary components.
For p € F 4 E, we can verify the following identities:

— a ! g :B 1\]‘:’,3 I) ) if EF;
(2.24) =((3), ¥, (r,0)) = { ;’(( D, ¥, (7', 0)) ;fgeE,

Sp

where the left-hand side is the constant with respect to G%*(k +1/2, N, x), de-
termined by [U1, (2.22)] and 7" := 7|F.
These identities are easily verified, in case by case, from the following facts.

=1 =1 =}
(1) The 2-primary part of x is x2 = 7275 = (u) (LV-Z) nh = (L_Ll)

—1
and also 77,2MltE = (L?‘)') XMy HpeE Xp:
(2) For p € E + F, we have x, = 7,

]

Next we consider the case of p € D. Then if 7(p) = —1, the identity like (2.24)
does not hold good.

However, since any prime p € D does not occurs in the level My [[,cpy 15', the
Atkin-Lehner operator W, is the identity operator 1. Hence if 7(p) = —1, the

space S*(7:7) (2k,M1 [Tien l‘é‘) is always equal to {0}. Therefore we can neglect

such cases and eventually without a loss of validity, we can consider that we also
have the same identity as (2.24) in the case of pe D. [

Therefore we get the following formula.
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(2.25) Proposition Let notation be the same as above and n € Z, such that
(n,N)=1.

tr(f“(nz);B(a)|e'f1) = Z H Z((B), V', (r,0))

((ﬂ;),‘P',(T',a),T")EP’ x {:hl}D+E lell

X tr (T(n);S*(””) (2k,M1 H 154) |R,;,,) ,

lell

where each coefficient Z;((3;), ¥/, (7, o)) has the value either 0 or 1 which is the co-
efficient of tr(T(n); §*(m:) (2k,M1 [licn lﬁ‘) |Rqﬂ) in the expression formula [U1,
(3.10)(2)] of the trace of T(n?) on the space &%*(k +1/2, N, x) k-

In other words, we can consider the above formula as a part of the expression
formula {U1,(3.20)(2)]. O

(2.26) For any (o), B(®)|ef; is a subspace of G®*(k -+ 1/2, N, x) - (cf. (2.4)). We
define the following subspace of G%*(k +1/2, N, x) x:

(2.27) O = RO+ 1/2, N, )= D, B)ef .
(a)# ()

Here, () in the above sum runs over all system of integers such that 0 < ap <
v = ordy(N) (I € IT) and (e # (M)iem- We also denote by MNex = mbr(k 4
1/2, N, x)k the orthogonal complement of M®*(k +1/2, N, x) - in 6%*(k+1/2, N,
X) k-

~ Since any operators T'(n?) ((n, N) = 1) fix each subspace B{®)|e}; respectively,
both NP~ and NP~ are stable under the action of T(n?) ((n, N) = 1).

We can generalize [U1, Theorem (4.13)] as follows:
(2.28) Theorem Let the notation be the same as above and let « € {+1}¥. We
suppose that orda(/N) = 2. The following assertions hold good.

(1) For all n € Z prime to N,

tr(‘f(nz); N (k+1/2,N, X)K)
- Z Z E((vI,N), I+ J,(,0))

H(w)s=I+J+K TE€Map(IT,{£1})
agEMap(IT—-(I+J),{%1})

xtr(T(n);S"‘(T"’) (2k,M1Hl 1T l”‘) |R,+J) ,

leJ Ileln—{(I+J)

where II(v)y :={l € Il | vy = 2}, 3 (), =14 y+x 18 the sum extended over all
partitions such that II(v), = I+ J+ K, v(1I,J); is a constant which has a value 0,
1, or vy (:=ord;(N)) according to L € I, J, or IT - (I + J), E((v(I, I)1), I+ J, (7,0))
are the constants determined by [U1,(2.22)].
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(2) Let B be an orthogonal basis of G%*(k+1/2, N, x), which is stated in
[U1,(3.10)(2)). Let By (resp. B;) be the set of all f € B which correspond to
primitive forms € S%(2k, M) (resp. € S°(2k, M), 0 < M’'|M, and M’ < M)
in the sense of [Ul,Theorem (3.11)(1)]. Then By (resp. Bi) generates the space
N~ (k +1/2, N, x)k (resp. T+ (k+1/2,N, x)k).

(3) Let f be any element of By and A, the eigenvalue of f with respect to

’_f‘k+1/2,N,x(p2) (p:prime, p fM) resp. U(p?) (p:prime, p|M). Then the primitive
form F which corresponds to f in the sense of [Ul, Theorem (3.11)(1)] satisfies the
condition F|T'(p) = A, F resp. F|U(p) = A, F for all primes with p fM resp. p|M.

Proof. Let B be the same C-basis of &%%(k+ 1/2,N,x), as in the above
‘statement (2) and P the same set of parameters as in the expression formula
[U1,(3.10)(2)).

For any (), the space B(®|ef; is a stable subspace of G®*(k +1/2, N, X)
under the action of all operators T(n?) ({(n, N) = 1). Using the Strong Multiplicity
One theorem [U1, (3.11)(2)] on &%*(k 4 1/2, N, x) k, B{¥|efy is generated by the
set BN (B("‘) |e}‘7). Similarly, we can see that the spaces N8~ and NP~ are generated
by Bn NO* = Upayen) (B@)ey) N B and NP5 N B respectively. And also B =
(BN NP+) + (éﬂ ‘5!”"‘). For any ((p), ¥, (,0)) € P, we denote by é((m),‘ll,(‘r,a))
the subset of B which corresponds to the subspace S*(™?) (2k, M; [[,c; ') |Ry in
the sense of [U1,(3.11)(1)].

Then from (2.25), there exist only two possible cases: either B

—((m),‘I’,(‘r,cr)) g
B@efy, or By roy " B@|e% = §; and whether the former case is or not
depends only on the parameter ((p;), ¥, (,0)).

We define the subsets P* and P** of P by:

((pl)a v, (T) 0’)) € P; ((pl)) v, (T7 0)) does not satisfy
(at least) one of the following three conditions:

(i) pr = v on I (p)ay; (il) ¥ = II(p)o + I (p)1;

(ili) vy = 2 on I (p)o + M (p):

P* =

and P** .= P — P*.

Take a system (oq)ie ;7 and a parameter ((p;), ¥, (,0)) € P such that (o) # (»)

and é((m) ¥ (r.0)) C B©®)e%. Then ((p), ¥, (r,0)) € P*. In fact, suppose that

((p1), ¥, (7,0)) satisfies the above condition (i) and (ii). We get from (2.25) that
p1 < o for alll € IT and ¥ C IT{a)24. Hence IT(p)ay C IT(e)24 and by using the
condition (i), (p;1 =) a;r = v for all |l € II(p)ay..

From the condition (i), T(c)a4 2 ¥ = IT —II(p)a4 2 IT — IT()24. This means
I = H(a)2+.

Since (a;) # (»1), there exists | € IT such that @y < v;. From the above, then
l € I —1TH(p)ay (C I(a)z4+) and 2 < g < v;. Hence the condition (iii) is not
satisfied.
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The contrary is also true. Take any ((p;), ¥, (7,0)) € P*. Put

pi, ifl € I (p)ay,
2, ifle v,

1, if H(p); — ¥,
0, if I(p)o— 0.

Q=

Since ((p1), ¥, (1, 0)) does not satisfy one of the conditions (i)—(iii), we have (a;) #
().
Next we put
pu, ifl € II{p)ay,
Gri=< 1, ifle¥nii(ip),
0, ifle¥nII(p)o.

We also define the system of integex;s (ﬁ;);e 17 by the above (£;) in the same man-
ner as in (2.21). Then we have §; = p; for all [ € II. Moreover observing

that ¥ C II{p)o + 1I(p)1 € (I(a)24)(B)o + (I (a)2+)(B)1 and (II(a)24)(B)24+ =
II(p)a4, we can see that ((Blicm(a),, s ¥, (7,0)) occurs in the parameter set P’ x

{£1} (@) +I{@)o of the expression formula (2.25). Hence é((p:) ¥ (ro) & B®|e%,.

Thus, we see that NO~ g generated by the set U((P'):‘P»(Taa))EP'é((p,),‘p,(f,a)) and

S0 U((pl),@,(,,,))ep..g((m) ¥ (r.0)) generates M%<, The assertion (1) is easily deduced
from this result.

We will prove the assertion (2). For any ((p:), ¥, (7,0)) € P, we have from the
definition: S*(™9)(2k, M1 [,cr 17) |Rw © S°(2k, My [Ticy—g 1P Tlicy 1%). Hence
the assertion (2) follows from the fact:

(o), ¥,(r,0)) € P & H [ lezMz-}- .
lell—¥ ey

The assertion (3) can be proved by the same method as in the [Ul, Theorem
(3.11)(1)]. O :

§3 Another simpler definition of newforms for Kohnen spaces.

In this section, we give another simpler definition of newforms for Kohnen spaces
than the previous one.

We keep to the notations in the previous sections and the paper [Ul]. See those
for the details of definitions and notations.

We note that we consider only Kohnen spaces in this section.

(3.1) In this paper and the previous paper [Ul], we define several subspaces
and give several decompositions. Combining those decompositions, we obtain the

31



following:

S:=8(k+1/2,N,x) ifk>2
Vi=V(N;x)k ifk=1

e (@n&{il}n me"‘(k + 1/2, N, X)K) @ (@Ke{il}n ‘:h@,fi(k + ]./2, N, X)K)
® (eane{il}n oce wrm S (5-+1/2, 4001, ) |U(e2))
ed M]

® Ker(Rp,S) ifk>2
Ker(Rpg,V) ifk=1["

This formula follows from [U1, (1.5), (1.7), (3.10)(2)] and (2.27) in this paper. O
(3.2) Definition We put the following notation:

Nk +1/2, N, X) k= Dre ey Wk +1/2,N,x)xc
Ok +1/2, N, ) k= (Breganyn T(k+1/2,N,3)x)

® (@ne{:l:l}” ®0<e,;,g;em &% (k + 1/2,4dMay, X) IU(ez))
€ 1

& Ker(Rp,S) ifk>2
Ker(Rp,V) ifk=1]"

~ Then we rewrite the formula in (3.1) as follows.

{S:: Stk+1/2,N,X)g, ifk>2

V.= V(N;X)K: ifk = 1} =m(k+1/21N:X)K@D(k+1/2,N,X)K.

(]
(3.3) Proposition

Ker(Rp, 8) = Yien S(k+1/2,N/Lx (1)) ¢ |6; .
Ker(Rn, V) =Y e V(N/l;x (L))K |d; .

Proof. By using {U1,(1.9)], the subspaces of the right-hand sides are contained in
S, V respectively. Since (f|&;)(z) = I¥/2+1/4 f(12), those subspaces are contained in
the subspaces of left-hand sides.

We will prove the contrary. Let I be any non-empty subset of I7.

From [U1,(1.5)(3)], it is sufficient to prove that SY, V' are contained in the
subspaces of right-hand sides respectively.

From the formula after (U1,(1.4)], we have

gl — {Z b(n)e(nz) € S;b(n) =0 for alln ¢ L},

n>1
vi= {Z b(n)e(nz) € V;b(n) =0foralln ¢ L},

n>1
where L .= {a € Z;(a,l;7) =1} (C Zl;).
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Take a prime [ € I and any element f = 5 oo , b(n)e(nz) in ST or V?. Then from
the above formula, b(n) # 0 = n € L; C ZI. Hence there exists a function g(z) on H
such that f(z) = g(lz). It follows from [U1,(1.11)] that g € S(k +1/2, N/Lx (1)) &
if fe S8, orgeV(N/;x () if f € V. This prove the contrary inclusion. [
(3.4) Definition For any primitive form F of weight 2k, we denote by {Ap(n);n €

N} the system of eigenvalues on the Hecke operators {T'(n);n € N}. Then we define
two subspaces of S(k +1/2, N, x) as follows:

_ FEeSK+1/2,N,X)k; fIT(n?) = Ap(n)f
Sk +1/2,N, % F)y = { for all n € Z.. such that (n,N) =1 '

7y = [ FEVNiX) i [IT(R?) = Ar(n) f
VN X F)ge = {for allm € ZI.: such that (n,FI‘V) =1 } '

These are considered as the eigen subspaces corresponding to the primitive form
F. O

Remark. We can prove that V(N, x; F), = S(3/2, N, x; F) for any primitive
(cusp) form F.

Under the above notation, we get the following theorem.

(8.5) Theorem (1) For k > 2, the following decompositions hold good.

S(k+1/2,N,x), = € S(k+1/2,N,x; F)k,

F:(=1)

Nk +1/2,N,x)k = € S(k+1/2,N,x; F)x ,
F:(*2)

O(k+1/2,N,x)k = € Stk +1/2,N,x; F)x .
F:(*3)

(2) For k =1, the following decompositions hold good.

VINix)k= @ VIV Fg

F:(x1)
NB3/2,N,x)k = P VN, x; Flg
F:(»2)
D@3/2, Nk = @ V(IN,x: F)g
F:(%3)

Here (x1)—(*3) are the following conditions on primitive forms F' of weight 2k:

(¥1) the conductor of F is a divisor of M.
(¥2) the conductor of F is M.
(*¥3) the conductor of F' is a divisor of M and less than M.

Proof. From (2.28)(2), the subspaces M%*(k + 1/2, N, x)x has an orthogonal
C-basis consisting of common eigenforms for all Hecke operators T'(n?) (n € Z.,
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(n,N) = 1). Moreover the system of eigenvalues of any element of such basis
corresponds to a primitive forms of weight 2k and of conductor M.

Similarly, from (2.28)(2) and [U1, (3.10)(2) and (3.5)], the subspaces T®=(k --
1/2, N, x)k and &®*(k + 1/2,4dMa., x) ¢ |U(€?) have orthogonal C-basis consist-
ing of common eigenforms for all T(n?) (n € Z,, (n, N) = 1). Moreover the system
of eigenvalues of any element of such basis corresponds to a primitive forms of
weight 2k and of a conductor which divides M and is less than M.

We will prove a similar result for the subspaces Ker(Rp,S) and Ker(Ry, V),

e., these subspaces have orthogonal C-basis consisting of common eigenforms
for all T(n?) (n € Z4, (n,N) = 1) and moreover the system of eigenvalues of
any element of such basis corresponds to a primitive forms of weight 2k and of a
conductor which divides M and is less than M.

We use an induction on M.

If Moy =1, 1T =@ and Rz = 1. Hence, Ker(Rp,S) = Ker(Rp,V) = {0} and
the statement holds good.

Let M3, > 1 and assume that the above claim holds good if the subspace has a
smaller “My”-part than My,.

We consider the spaces S(k-+1/2,N/l,x (})), and V(N/l;x (})), for any
! € II. From the assumption of the induction and [U1,(1.8)], these subspaces
have orthogonal C-basis consisting of common eigenforms for all T(n?) (n € Z.,
(n, N) = 1) and moreover the system of eigenvalues of any element of such basis

corresponds to a primitive forms of weight 2k and of conductor dividing M/!.

~ Combining this and (3.3), the claim for Ker(R, S) and Ker(Rp, V) follows.

From (3.1) and the Strong Multiplicity One theorem of weight 2k, the first
assertion follows. The second and third assertion are easily seen by using the above
results. O

Our next purpose is to rewrite the space of “oldform” O(k + 1/2, N, x)k

(3.6) Proposition We have the following formulae.
[The case of k > 2]

O(k+1/2,N, )k = 3 > S(k+1/2,4B,&)k |64
0<B|M 0<A|(M/B)
B#M 5(&)=x

Y Y X Sk+1/24BOx U] R

0<B|M 0<A|(M/B)2 0<e; <2 leil
B#M £(4)=x (tem)

[The case of k = 1]
OB/L,N, k= Y 3 V(EB;€) 8a

0<B|M 0<A|(M/B)
B#M.  ¢(A)=x

+ > > > VEB; &) UA) J] R .

0<B|M 0<A|(M/B)* 05e:<2 lell
B#M  ¢(4)=y (tell)
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Here, £ runs over all (even quadratic) Dirichlet characters defined modulo 4B such
that £ (£) = x.

Remark. We know the relation of the twisting operator: R =R, foralll e IT.
Hence we can replace the range 0 < e¢; <2 with 0 <¢e; € Z.

Proof. From [Ul, (1.9), (1.22), (1.23)], we easily see that the right-hand sides of
the statements are subspaces of S(k+1/2, N, x), resp. V(N;x)-

The subspaces S(k + 1/2,4B,€), and V(4B;§), have orthogonal C-basis con-
sisting of common eigenforms on hermitian operator T'(n?) (n € Z,, (n,4B) = 1),
moreover the systems of cigenvalues of such eigenforms correspond to primitive
forms of weight 2k and of conductors dividing B. (cf. [U1,(3.10)}).

The operators T(n?) (n € Z,, (n,N) = 1) commute with the operators 84,
U(A), and R; (I € IT) (cf. [U1, (1.8), (1.20)] and [U3, (1.7)]). Hence all subspaces
in the right-hand sides of the statements have generators which are common eigen-
forms on ff'(nz) (n € Zy, (n,N) = 1). Moreover those systems of eigenvalues
correspond to primitive forms of weight 2k and of a conductor which divides M
and are less than M, because B|M and B # M.

Combining this with (3.5), we see that O{k-1/2, N, x) x contains the right-hand
side.

Next we will prove the contrary inclusion.
We have an explicit expression formula (3.2) of O(k+1/2, N, x)x. We will check
each direct summand of the formula (3.2).

It follows from (3.3) that Ker(Ry,S) and Ker(R, V) occurs in the first term
of the right-hand side.

Next we consider the part of the subspaces G®*(k + 1/2,4dMay, X) & [U(e?) =
&%~ (k +1/2,4dMay, x**) . [U(mae?) (0 < e, d, d # My, ed|M;), where see [UL,
(3.1)] for the definition of m; and x**. We only remark x’' := k- (), 0 < m;|My,
and x* (L) = x.

This subspace is contained in the space S(k+1/2,4dMa,x*") . [U(m,e?)
(when k > 2), resp. V (4dMa; x*) . [U(mie?) (when k = 1).

We decompose my = mg - m3 with mq = (my,d).

Then the character x2* (22) can be defined modulo 4dMs4. From [U1, (1.28)],
we have S(k+1/2,4dMyy, x*") . |U(ma) = S(k+1/2,4dMay, x>+ (2)) . and
V(8155 |Uma) = (40 3 55* (22))

From this we may assume that (m,,d) = 1.

K

We decompose that my = my - ms with my = (my, e).

We first consider the case of my = 1. In this case, we set B = dM,,.

Since (my,ed) = (e,d) = 1, mie?|(M,/d)? = (M/B)? and so the subspaces
S{k+1/2,4dMyy, x*¥) . [U(mae?) (when k > 2) and V(4dMay; x*1)  |U(1€?)
(when k = 1) occur in the second term of the right hand side.

Next we consider the case of myq > 1. Take a prime divisor p of m4q. Then
mie? = (mi1/p)(e/p)? x p°.
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For k > 2, we have

S(k+1/2,4dMay, x*%) . [U(mye?)
= S(k + 1/2’ 4dM2+1 X2+)K |U((m1/p) (e/p)Z)U(pS)

- S(k +1/2,4M/p, x** (M))K |U (%)
C S(k+ 1/2,4M/p, x** (M))K 15,
+ S(k +1/2,4M/p,x** (M) ) . U (p) .

Here, we use the formula (A.4) at the last inclusion.
For k£ = 1, we can see in the same way,

Here, we use that Hecke operator T'(p?) fixes V(4M /p; x*t (M»K.

We set B = M/p, A = p and so A = p|(M/B) = p. This means that
S(k+1/2,4dMyy, x**)  |U(m1€?) (when k > 2) and V (4dMzy; x*)  [U(mq€?)
(when k = 1) are contained in the right-hand side.

We finally consider the part of T1®*(k + 1/2, N, x)k. For all (a)ien # (W)m,
we have the following (cf. §2 (2.1)):

Bl .- @ SPnlr (k, + 1/2,ﬁ(a),x)K |U(a?)
0<allp

= @ &1 (k+1/2,N(),7) |U(ua?),
0<allp K

where D := II(a)p, F := II(a)24, and see §2 for the other notation.

It follows from the above that B{®) occurs in the second term of the right-
hand side. Here, we note that B = M1M2(i) and so Ip*|(M/B). Hence A =
ua?|lp®|(M/B).

Since ef; = [[,eyr 3(R*+x()Ry) and N=(k+1/2, N, x)k = 2 () (o) B©@)|er
the subspace N%*(k+1/2, N, )k is contained in the second term of the right-hand
side. O

From the above, we can give the following simple reformulation of results of §2
and §3.

(3.7) Final formulation of newform for Kohnen space. Let k be a positive
integer and M an odd positive integer. Let x be an even character modulo N := 4M
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with x? = 1. We denote the p-adic additive valuation for any integer m by ord,(m).
We decompose M as follows:

M=MM,., M= H p, My = H pordp(M) .
ord,(M)=1 ord,(M)>2
plM p|M

Denote the set of all prime divisors of My by IT.

Define the space of oldform O(k + 1/2, N, x)x as follows.
[The case of k > 2]

O(k+1/2,N,x)xk= > > S(k+1/2,4B,&) 64
0<B|M 0<A|(M/B)
B#M  ¢(A)=x
+ 3 Y Y Sk+1/24B,0, U [ R
0<B|M 0<Aj(M/B)? 0Ser<2 lelnr
B E(A)=x (te )

[The case of k = 1]

O(B/2, N,k = Y Y V(B &)k loa
0<B|M 0<A|(M/B)
B#AM g(A)=x

+ > > S VAB g IU@) [[ R .

0<B|M 0<A|(M/B)? 05ei<2 lent

Here, £ runs over all characters modulo 4B such that £ (4) = x.
O(k +1/2,N,x)k is a subspace of S(k+1/2,N,x)x if k > 2, resp. V(N;x)x
if k = 1. We denote by M(k + 1/2, N, x)k the orthogonal complement of O(k +
1/2,N,x)k in S(k+1/2, N, x), resp. V(N; x)g according as k > 2 resp. k = 1.
Then the space M(k + 1/2, N, x)k is stable by the twisting operators R, for

all p € II. Hence we can decompose this space into common eigen subspaces as
follows:

m(k + 1/2?Na X)K = eanE{ﬂ:l}Hm@’n(k + 1/2?N: X)K 3
MRk +1/2,N,x)k = {f € Mk +1/2,N,x)k ; fIRy = x(p)f for all p € IT }.

We call these spaces M?%(k41/2, N, x)k the spaces of newforms of Kohnen space,
because these subspaces M%*(k4-1/2, N, x)x (k € {£1}7) have the following nice
properties.

(1) M®*(k +1/2, N, x) k has an orthogonal C-basis consisting of common eigen-
forms for all Hecke operators Ty /2 v 5 (P?) (p: prime, pJM) and U(p?) (p: prime,
p|M), which are uniquely determined up to multiplication with non-zero complex
numbers. Let f be such a common eigenform and A, the eigenvalue of f with
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respect to ’f’k_,_l/z,N,x(pz) (pJM) resp. U(p?) (p|M), then there exists a primitive
form F € §°(2k, M) of weight 2k and of conductor M which is uniquely determined
and satisfies the following: For a prime p,

F|Tok (@) = A F if (p,M)=1  and  FlU(p)=A\F ifp|M.

Here, we can find, by using the trace relation (2.28)(1), which primitive form occurs
via the above correspondence.

(2) (The Strong Multiplicity One Theorem) .

Let f, g be two non-zero elements of M**(k41/2, N, x)k. If f and g are common
eigenforms of f’k_,_l /2, N,x(pz) with the same eigenvalue for all prime numbers p prime
to some integer A, then Cf = Cg.

(3) The space of oldforms D(k + 1/2, N, x)k has also an orthogonal C-basis
consisting of common eigenforms for all Hecke operators Ty /2, N,x(Pz) (p: prime,
pfN). The system of eigenvalues of such a common eigenform corresponds to a

primitive forms of weight 2k whose conductor is a divisor of M and less than M
(cf. (3.5)).

(4) The space of oldform O(k + 1/2, N, x)k is generated by the spaces of cusp
forms of lower level. Hence, by induction, we see that the spaces S(k +1/2, N, x) g
(k > 2) and V(N;X)g (k= 1) are reconstructed by the spaces of type of M= (k +
1/2,4B,€)k and the operators of type of ba, U(A), and Ry.

These operators 64, U(A), and R; (almost) fix the Fourier coefficient of cusp
forms, i. e, for f =3" ., a(n)e(nz),

Fléa(z) == APV f(AZ) = AMPHUAN " g(n)e(Anz)
n>1
n

VA2 =3 a(Ane(nz), fIRi2) =Y aln) () e(nz) .

n>1 n>1

From this we claim the following: For studying Fourier coeflicients of a cusp form
€ S(k-+1/2,N,x) g resp. V(N;x), it is sufficient to study cusp forms only in the
spaces of newforms M®*(k+1/2,N,x)g. O

(3.8) Remark There exists a case such that M#(k + 1/2, N, x)kx = N~ (k +
1/2,N,x)k as modules over Hecke algebra for two distinct , ' € {£1}7. For

example we have the following isomorphism: Let p be an odd prime and {«, &'} =
Map({p}, {£1}). Then

m@,n(k + 1/2’ 4]02, l)K = m@,n'(k + 1/2) 4p2a I)K

14

B sk e (1 + (Zpl)) /2 {S°(2k,p)| Ry ® S(2k,1)| R, } -

oge{x1}{r}
(cf.(2.28)(1)) O
Appendix. We collect several propositions which are use in the section 2.
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Let k and N be positive integers such that 4 | N and x an even Dirichlet character
modulo N with x% = 1.

(A.1) Proposition Let @ and a be two odd positive divisors of N such that
(Q,N/Q) = (a,Q) =1. For any f € S(k+1/2,N, ), the following identity holds
good: ~ .

FlU@W(Q) = xqla) fIW(Q)U(a),
where xq is the @-primary component of x.

Proof. 1f Q = 1, the assertion is trivial and so we suppose that @ # 1.
We decompose a = ljla---I; (l1,...,l; are odd prime numbers) and Q =
€1...p,%n (p;’s are distinct prime numbers and e; > 1).
First we consider the case of ¢ = 1 and will prove this case by using induction
on n.
If n = 1, the assertion follows from [U1,(1.20)(1)].
Suppose that n > 2 and the assertion holds good for any m less than n.
Observing f|U(l1) € S{k+1/2,N, x (%)), we have the following formula from
[U1,(1.18)] and the assumption of induction:

y4%

® UG =(x(l—1))P (@pa™5") U T (@pa") W (pa')

n

= X Q0™ X paa (1) SIW(@Qpa™*)U (L)W (pn®)
- Qpn_°"
= n ") Xpypny (L l
Xp (@Pn ™" ) Xpy--pur (1) (x( )),, (1)

X JIW(Qpn™ )W (pn")U (1)
= Xpn (Qpn )Xm “Pn (ll) f|W(Qpn_en) (pnen)U( l)
= Xps--pa (1) FIW(@QU(L) = x@(l) [IW(@QU(L) -

Next we suppose that ¢ > 2 and the assertion holds good for any s less than .
From the above formula (x) and the assumption of induction, we have the following

AU@W(Q) = U - L) U )T (Q)
( (“ L )) 1) AU - L) W QUL
{

= x(e)xo (1 -+ li) FIW(@Q)U (L1 -~ Le—1)U (L)
= xq(a) FIW(Q)U(a).

Thus we obtain the assertion. O

Now, we choose and fix an odd prime number p satisfying (p, N) = 1. Take a
form g € S(k+1/2,N,x). Then g is also contained in S(k + 1/2, Np, x). Hence
we can consider the form g | Y, (Sec [Ul, p.155] for the definition of Y},).

Since (p, N) = 1 and yx is defined modulo N, we have x, = 1. Therefore from

[U1, (1.27)], p~*+3/2 g |[U@W (DU @W (p) = g | Y, = (%1) pg.
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Using UL, (118)], p™+¥2g | U@WEUGE) = (3)pg | W)™ =

k+1/2 —~
(2)p(2) " -Dxne) 9| Wim).
Since g € S(k+1/2,N,x) and W(p) = y,*6, for some v € I'(N), we get

g|Wip)=g| Sp'
Thus we obtain the following formula for any g € S(k + 1/2, N, x).

) L1\ k2
(A.2) 915, = (7) X g | YU )

[e0]

Next we consider ¢ = > 7 a(n)e(nz) € S(k+1/2,N,x) as an element of
S(k+1/2,Np, x) and apply [U1, (1.26), (1.18)] to g.

-1/2

g1Y, = (%)Hm x(0)g | W (o), + (‘;1) P2 Y am) (2) etn2)

n>1

= (_?1)“3/2 x(p)g | 82 + (%) o p/%> a(n) (E) e(nz)

1\ k12
= (_) x(p)p*/**

D
3> {p%-la(n/zﬁ) 7 x() (fpi)k (2) a(n)} e(nz),

where a(n/p?) = 0 if p? f n.
By using [Sh 1, Theorem (1.7)], this formula is expressed by U(p?) and the Hecke
operator Ty 11/2,n(P?), ie., for any g € S(k+1/2, N, x),

1\ k-1/2 )
(A.3) lep=(7) XEP (g | Torryonx 0 — 91 UE) -

O
Combining (A.2) with (A.3), we have for any g € S(k+1/2, N, x),

(A4) g|W(p) = g8 = p g | Tiy1/o vy ") UlD) - 9| UGY)) -
O

Now we assume moreover that g is an eigen form of ff’(pz), ie.,

(A.5) 91 Ter1/2anx®) = dpg (Ap€C).

and let u be a squarefree odd positive integer such that (u,4M2,) =1 and x, = 1.
Here, x, is the u-primary component of y.
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We will describe the action of ¥, on the forms f := g | U(u) and f | U(p?) =
g | U(up?®). Here, we consider the action of Y, on the space S(k +1/2,N,x (3))
(N is the least common multiple of Np and u).

(A.6) First we assume that (p,u) = 1.

Since g | U(p) in contained in S (k +1/2,N,x (3)), we can apply Proposition
(A1) to g | U(p). Hence we have f | Y, = p~*/2+3/4g | U(p) U(w) W(p) =
(2) /2349 | U) W(n) UGw) = (2) 917, Uw).

By using (A.3) and (A.5),

Uu

o 11v=(Y) (%)k_l/zx(mpm-kupf — 1 1UE).

Applying Y}, to the both sides of the above formula and using [U1, (1.27)],

(5) pr=11%=(3) (%)kﬂlmx(mpw-k(xp 1Y~ F UG ).

Modifying this formula and using (A.7), we have
(A.8)

u -1

F106H Y=~ (%) (7)_k+3/2x(p)p’°'l/2f 0 1Y,

- (5) (_?1)“ X202 - PR = A, FIUGD)}

We can represent these relations as a matrix as follows:

(A.9) (f 1Y, FIU®")Yp)
=vorven (5) (5) s (B ).
(W

The characteristic polynomials of this matrix is t2 — (_—pl-) p. Hence, this matrix
has two distinct eigen values.

(A.10) Next we assume that p | u.

Since g | U(p?) is contained in S (k+ 1/2,N, x), we can apply Proposition
(A1) to g | U(p?). Observing xp =1, f | Y, = p~*/2+3/4g | U(p?) U(u/p) W (p) =
pHH g | UW?) W(p) Uu/p).

By using (A.3) and (A.5), g | U(®?) = A9 — (_?1

) —k+1/2
Applying W(p) to the both sides,

x(p)p*—3/%g | Y,

. . —k+1/2 ~
(A1l) g |U@*) W(p)=dpg | W(p) - (_13_) x(P)p* % | Y, W(p) .
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Observing g | U(p) € S(k +1/2,N,x (E)), we apply (U1, (1.18)] to g | U(p),
(A.12)

— _ — _ ~1
9 | Y, W(p) = p~*/3H3/4g | U(p)W (p)? = p~F/2+3/4 (—

k—1/2
. ) X(@)g | UD) .

Combining (A.4), (A.11), and (A.12), we have

pR2H g | U ) W(p) = p~ {07 — p™ g | U(p) — Mg | U (%)} -

Therefore
(A.13) FIY =p 2202 = p™ D) f = A F UG

Applying Y, to the both sides of the above (cf.[U1, (1.27)]),

-1 f1| Yo+of=f | Y, = —2k+2{(/\p2 _szﬂz)f | Yo — Apf | U(pz) Yp} .

Modifying this formula and using (A.13),
(A.14)

FIUG) Y = p7842{(0° = 201 + 5770 f = 2 =917 | UG}

We can represent these relations as a matrix as follows:

(A15) (f 1Y JIUG) V)
A2 k=2 y 3 _ )\ (k-1 2k—2
= (1, 110G x ok (BT MG R )

O
The characteristic polynomials of this matrix is t? — (p— 1)t —p = (t — p)(t + 1).
Hence, this matrix has two distinct eigen values.
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