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Introduction
The theory of newforms is very important and useful for arithmetical study of

modular forms of integral weight. This theory have thc following IDce properties:

(i) The space of newforms have an orthogonal C-basis consisting of COllllllon
eigenforms on all Hecke operators and such common eigenforms are uniquely cleter
mineel up to multiplication of complex,numbers. Moreover such common eigenforms
satisfy the Strang Multiplicity One Theorem (cf. [M, §4.6J).

(ii) The fuU space of cusp forms, S(2k, N), can be reconstructeel by the space of
newforms, i. c., we have the following decomposition:

S(2k,N) = EB EB SO(2k,B) I [( ~ ~)bk ,
O<BIN o<AI(N/B)

where SO(2k, B) is the space of newforms (see below §O anel [M, §4.6]).

(iii) Thc above operator f -t f I[( ~ ~ ) bk (almost) preserve the Fourier coeffi

cients of cusp form. Hence for studying the Fourier coefficients of cusp forms, it is
sufficient to study cusp forms only in the space of newforms.

(iv) The theory of newforms has tight relations to both Representation theory
anel Geometry.

Until now, several authors have attempted to find a similar theory of newforms
of half-integral weight which satisfy similar properties like the above (i)-(iv) (cf.
[She] , [N], [K], [M-R-V], [VI], [She-WJ).

In the paper [K], W. Kohnen defined (what is called) Kohnen space which can
be considered as the canonical subspace corresponding to cusp forms of integral
weight and of odd level via Shimura correspondence. Anel when the level is a 4 x
(odd squarefree integer), he also establisheel a theory of newforms for this Kühnen
space.

Partly supported by the Grants-in Aid for Scientific Research, the Ministry of Education of
Japan.
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In the previous paper [VI J, the author generalized Kohnen's work and obtained a
sirnilar thcory of newforms for Kohnen space of arbitrary level (= 4 x (odd integer),
cf. [VI, §3]). Hut those results are half-way for a technical reason (cf. [VI, §4]).

The aim of this paper is to complete the results in the previous paper and to
formulate and state a complete theory of newforms of Kohnen space.

Let us precisely state a formulation of theory of newforms for Kohnen space.

Let k, N E Z+ and N divisible by 4. Let X be an even character modulo N with
X2 = 1. We denote the p-adic additive valuation for any integer m by ordp(m). We
decompose N as follows:

N - 2ord~(N)M M
- 1 2+, M 1 := TI p,

pIN,p#2
ordp (N)=1

M2+ := TI pordp(N).

pIN,p:ji:2
ordp(N)2: 2

Denote thc set of all prime divisors of M2+ by JI.
Kohnen spaces S(k + 1/2, N, X)K cau be defined only in the case of ord2 (N) = 2

(See below §O (d) for the definition).
We shall consider such a case. For simplifying the explanation, we deal with only

the case of k ;;::: 2. In the case of k = 1, we fiUSt slightly modify subspaces (cf. §O).

Define the space of oldform D(k + 1/2, N, X)K as follows.

D(k+l/2,N,X)K= L L S(k+l/2,4B'~)KIJA
o<BIM o<AI(M/B)
B=f.M e( .d )=x

+ L L L S(k + 1/2, 4B, ~)K IU(A) TI Rle,.
o<BIM o<AI(M/B)2 O<e,<2 lEn
B:f.M e( .d )=x ([Elf)

Here, ~ runs over all characters modulo 4B such that ~ (~) = X. The operator

JA, the shift operator U(A), and the twisting operator Rl (l E JI) are defined as
follows: For f = 2:n~1 a(n)e(nz),

fIJA(z) := A k
/

2+1
/

4 f(Az) = Ak
/

2+1
/

4 L a(n)e(Anz) ,
n~1

fIU(A)(z) := L a(An)e(nz) ,
n;:::1

fIRl(z) := L a(n) (7-) e(nz) .
n>1

The space D(k + 1/2, N, X)K is a subspace of S(k + 1/2, N, X) K' We denote by
91(k + 1/2, N, X)K the orthogonal complement of D(k + 1/2, N, X)K in S(k +
1/2, N, X)K.

The space 91(k +1/2, N, X)K is stable by the twisting operators R.p for all p E 1I.
Hence we can decompose this space into corpmon eigen subspaces as follows:

91(k + 1/2, N, X)K = ffi KE {±I}I1910,I';(k + 1/2, N, X)K ,

910,K(k + 1/2, N, X)K := {f E 91(k + 1/2, N, X)K j flRp = ~(p)f for all p E TI }.
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Here {±l}fl := Map(l1, {±1}).

We call these spaces S)10 ,K.(k + 1/2, N, X)K ('" E {±l}fl) the spaces of newforms,
because these subspaces have the following nice properties (cf. below §3 and espe
cially (3.7)).

(1) S)10 ,K.(k + 1/2, N, X)K has an orthogonal C-basis consisting of common eigen
forms for all Hecke operators Tk +1/ 2 ,N,x(p2) (p:prime, pAM) and U(p2) (p:prime,
p IM), which are uniquely determined up to Illultiplication with non-zero complex
numbers. Let f be such a common eigenform and Ap thc eigenvalue of f with
respect to Tk +1/ 2,N,x(p2) (pAM) resp. U(p2) (pIM). Then there exist a primitive
form F E SO(2k, M) of weight 2k and of conductor M which is uniquely determined
and satisfies the following: For a prime p,

FIT2k,M(P) = ApF if (p, M) = 1 and FIU(P) = ApF if piM.

Furthermore we can find, by using the trace relation (2.28)(1), which primitive form
occurs via the above correspondence. D

(2) (The Strong Multiplicity One Theorem)
Let f, 9 be two non-zero elements ofS)10,K.(k+l/2, N, X)K. If fand gare common

eigenforms of Tk +1/ 2 ,N,x (p2) with the same eigenvalue for all prime numbers p prime
to some integer A, then Cf = Cg. D

(3) Thc space of oldforms D(k+ 1/2, N, X)K has also an orthogonal C-basis con
sisting of common eigenforms for all operators Tk +1/ 2,N,x(p2) (p:prime, pAN). The
system of eigenvalues of such a common eigenform corresponds to a primitive form
of weight 2k whose conductor is a divisor of M and is less than M (cf. (3.5)). D

(4) The space of oldfornl D(k + 1/2, N, X)K is generated by the spaces of cusp
forms of lower level. Hence, by induction, we see that the spaces S(k + 1/2, N, X)K
are reconstructed by the spaces of type of S)10,K.(k + 1/2,4B, €)K and the operators
of type of JA, U(A), and R,.

From the above definition these operators JA, U(A), and R, (almost) preserve
Fourier coefficients of cusp forms. Hence for studying Fourier coefficients of cusp
forms E S(k + 1/2, N, X) K' it is sufficient to study cusp forms only in the spaces of
newforms S)10,K.(k + 1/2, N, X)K. D

Finally the author has some comments.

There exists a case such that m0,K.(k + 1/2, N, X)K I'V S)10,K.' (k + 1/2, N, X)K as
modules over Hecke algebra for two distinct "', ",' E {±l}fl. See (3.8) for such a
example.

It seems likely that there exists a similar theory for any full spaces of cusp forms
S(k + 1/2, N, X) even if ord2 (N) ~ 3.

In the case of ord2 (N) ::::; 3, the author thinks that necessary preparations have
already done in the author's previous papers [U3-5]. Eut situations are quite
different in the case of ord2 (N) 2:: 4 (cf. [U5]).

It seems that its reason is the existence of the twisting operators for characters
(-1) and (l). These twisting operators can be defined only if ord2 (N) ~ 4 and
ord2 (N) ~ 6, respectively. See the forthcoming papers [U6].
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This paper is composed as follows: §O is general preliminaries. §1 is preparation
from representation theory of finite groups. We apply results of §1 to calculations
of §2. In §2, we will complete an attempt in tl:J.e previous paper [UI,§4J. §3 is the
main part of this paper. Wc will formulate and state a complete theory of newforms
for Kohnen space in §3. In the Appendix, we will prove several general formulae
which are used in calculations of §2.

The author wrote this paper during he was staying at Max-Planck-Institut. The
author would likc to express his hearty thanks to Max-Planck-Institut and its staff
for their warm hospitality.

§o. N otational Preliminary. Throughout this paper, we use the following nota
tions.

(a) General notations. Let A, B be subsets of a set X and {Ai}iEI a family
of subsets of X. If A U B is a disjoint union, then we denote A + B := A U B
for simplicity. Similarly, if UiEI Ai is a disjoint union, then we denoteL:iEI Ai :=

UiE1A i .

We denote the set of positive integers by Z+.We denote the additive valuation
for any integer m by ordp (m) .

See [M,p.82] for the definition of the Kronecker symbol (%) (a, b integers with
(a, b) i- (0,0)).

Let N be a positive integer and m an integer i- O. We write mlN°O if every
prime factor of m divides N.

Let k denote a non-negative integer. If z E C and x E C, we put ZX = exp(x .
log(z)) with log(z) == log(lzl) + R arg(z), arg(z) being determined by -7r <
arg(z) ::; 7r. Also we put e(z) = exp(27rHz).

Let S) be the complex upper half plane. For a complex-valued function f(z) on

5), a = (::) E CLt (R), 'Y = (: ~) E r o(4) and Z E S), we define functions

J(a, z), j(" z) and fl[aJk(z) on S) by:J(a, z) = cz + d, j(" z) == (".~/) -1/2 (~)
(wz + X)I/2 and fl[aJk(z) = (deta)k/2J(a, z)-k f(az).

For m E Z+ we define a shift operator U(m) on formal power series in e(z) by

L a(n)e(nz)IU(m) := L a(rnn)e(nz) .
n~O n~O

Let X be a Dirichlet character modulo N. We denote the conductor of X by f(X)
and the p-primary component of X by Xp for each prime divisor p of N.

Let V, V' be finite-dimensional vector spaces over C. We dcnote the trace of a
linear operator T on V by tr(T; V) and also the kernel of a linear map F from V
to V' by Ker(F; V).

We denote the set of aU mapping from a set A to a set B by Map(A, B). Fur
thermore we use the abbreviated notation BA (= Map(A, B)).

Let A be a set of prime numbers and (ap)PEA a system of integers. We put the
foUowing notation: A(a)i := {p E A 1 a p == i} and A(a)i+ := {p E A 1 a p 2:: i} for
any i E Z.

(b) Modular forms of integral weight.
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Let k and N be positive integers. By S(2k, N), we denote the space of all holo
morphic cusp forms of weight 2k with the trivial character on the group r = To(N).
We also denote the subspace of S(2k, N) spanned by all newforms in S(2k, N) by
SO(2k, N).

Let a E GLt(R). If rand a- 1Ta are commensurable, we define a linear
operator [TaT]2k on S(2k, N) by: II [FaF]2k = (det a)k-1 L: II[aihk' where ai

O:i

runs over a system of representatives for r\raT. For a positive integer n with

(n, N) = 1, we put T2k,N(n) = L: [r (~ ~) rJ ,where the sum is extended
ad=n 2k

over all pairs of integers (a, d) such that a, d > 0, ald, ad = n.
Let Q be a positive divisor of N such that (Q, N / Q) = 1. Take any element

rQ E SL2 (Z) which satisfies the conditions:

{

(~ Öl) (mod Q) ;
,Q - (10)°1 (mod N / Q) .

Put W(Q) = ,Q (~ ~). The following facts are well-known: W(Q) is a normalizer

of Fj [W(Q)]2k induces aC-linear automorphism of order 2 on S(2k, N) and this
operator is independent of a choice of an element rQ. For Q = 1, we can take

,1 = W(1) = (~~). Hence we have [W(1)]2k = 1. Moreover for the sake of

simplicity, we use thc following abbreviated notation: Let A be a subset of the

set of all prime divisors of N. Then WA := W(IlpEAPordp(N)). In particular, we

simply write W, = WA if A = {I}.
Moreover, if the subscripts are obvious and any confusion does not oceur, we

simply write T(n) = T2k,N(n) and W(Q) = [W(Q)bk' etc..

For any fez) = L:~=1 a(n)e(nz) E S(2k, N) and X a primitive character modulo
f = fex), put jIRx(z) := L:~=1 x(n)a(n)e(nz). Prom [Sh 3,Prop. 3.64] we have
f IRx E S (2k, N' , X2 ), where N' is the least eommon multiple of N and f(x) 2. We
eall this operator Rx the twisting operator of X.

(c) Modular forms of half-integral weight.
Let k denote a non-negative integer, N a positive integer divisible by 4, and X

an even eharacter modulo N such that X2 = 1. Put J.L = ord2 (N), M = 2-~N and
Fo = Fo(N). Then there is a square-free odd positive divisor Mo of M such that
X = (.Mo.) or (2Mo) (the Kronecker symbol).

Let ce; (k + 1/2) be the group consisting of all pairs (a, <p), where a = (~:) E

GLt(R) and <p is a hololllorphic function on.fj satisfying <p(z) = t(deta)-k/2-1/4
J(a, z)k+1/2 with t E C and Itl = 1. Thc group law is defined by: (a, <p(z)) .
(ß,7j;(z)) = (aß, <p(ßz)7j;(z)). For a complex-valued funetion I on S) and (a, <p) E

<!3(k + 1/2), we define a function II(a, <p) on jj by: II(a, <p)(z) = <p(z)-l/(az).
Moreover if there will be no confusion, we also write ,. = (" j (" z) 2k+ 1) for all
r E r o(4).

By ßo = ßo(N, X) = ßo(N, X)k+l/2, we denote the subgroup of G(k + 1/2)

consisting of all pairs (r, <p), where (::) = , E Fo and cp(z) = X(d)j(" Z)2k+1

and also denote ß1 = ß1(N) := {,. I, E F1 (N)}.
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We denote by G(k + 1/2, N, X) (resp. S(k + 1/2, N, X)) the space of integral
(resp. cusp) forms of weight k +1/2 with the character X on the grOlip Ta, namely,
the space of al1 the complex-valued holomorphic functions f on 55 which satisfy
Il~ = 1 for all E E .6.0 and which are holomorphic (resp. are holomorphic and
vanish) at an cusps of To. Moreover we also denote by S(k + 1/2,.6.1(N)) the
space of CllSP forms of weight k + 1/2 on the group T1(N) Le., the space of an the
complex-vailied holomorphic functions 1 on 55 which satisfy IIE = 1 for an EE .6. 1

and which are holomorphic and vanish at all cusps of r1 (N) ([cf. Sh 1]).

In the case k = 1, Le., the case of weight 3/2, 8(3/2, N, X) contains theta series
of special type. We know that these theta series correspond to Eisenstein series via
Shimura correspondence.

From this reason we define the orthogonal complement V(N; X) of the space of
such theta series in 8(3/2, N, X). In the case of weight 3/2, we deal only with this
complement V(Nj X). See [VI, §O, §1] for the details.

Let EE Q) ( k + 1/2). If .6.0 and E-1 .6.oEare cOlnmensurable, we define a linear op
erator [.6.oE.6. 0 ]k+1/2 on G(k+l/2, N, X) and 8(k+l/2, N, X) by: I1 [.6. 0 E.6.0 ]k+1/2 =
L: 111], where 1] runs over a system of representatives for .6. 0 \.6.oE.6.o. Similarly, if
tJ

~ and E-1.6.1Eare commensurablc, we define a linear operator [Li.l~ßl] on 8(k +
1/2, ßl(N)) by: I1 [ß1E.6. 1] = L:tJE A t\AleÖ l 111]·

Then for a positive integer n with (n, N) = 1, we put

T (n2) = nk
-

3
/
2 " a [Li. (( a:J 0) (d/a)k+1/2).6.]k+1/2,N,x L.-, 0 0 d2 , 0 /'k+1 2

ad=n

where the SUffi is extended over an pairs of integers (a, d) such that a, d > 0, ald and
ad = n. We simply writc T(n 2

) := Tk +1/ 2 ,N'X(n2 ) if the subscripts are obviollS and
any confusion does not OCCllr. These operators T(n 2 ) ((n, N) = 1) are hermitian
and commutative with each other on S(k + 1/2, N, X) (cf. [Sh 2, lemma 5], [Sh 3,
Prop. (3.32)], [VI, (1.9)]).

For any m E Z+, put Jm := ((; ~) ,m-k / 2-
1

/
4
).

Let Q be an odd positive divisor of N such that (Q, N / Q) = 1. Take any element
TQ E 8L2 (Z) satisfying the conditions:

{

(~ö1) (mod Q) j

'YQ = (10)
01 (mod N/Q) .

Then 'YQ E To(N/Q) ~ To(4). Put W(Q) := 'YQ*JQ E G(k + 1/2). See [Ul,§I] for
the details of properties of these 8m and W (Q) .

Let I(z) = L:~=o a(n)e(nz) E G(k + 1/2, N, X) and 'IjJ a primitive character
modulo f(7jJ). Let NI be the least common multiple of N, f(7jJ)2, and f(7jJ)f(X).
Then IIR,p(z) := L:~=o7jJ(n)a(n)e(nz) belongs to the space G(k + 1/2, NI, X7jJ2).
In particular, if1 is a cusp form, so is IIRw [Sh 1, Lemma 3.6]. We caU this operator
F4p the twisting operator of 7jJ.

(cl) Kühnen space. We keep to the notations in the subsection (c).
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Let k be a positive integer. Suppose that N = 4M and M is an odd natural
number. We define the Kohnen space 8(k + 1/2, N, X)K as follows:

8 (k ~ N ) = { 8(k + ~,N, X) 3 j(z) = L:~=l a(n)e(nz) i }
+ 2' ,x K a(n) = 0 for X2(-I)(-I)k n _ 2,3 (mod 4) ,

where X2 is the 2-primary component of X.

In the case of weight 3/2, we define V(N; X)K := V(N; X) n 8(3/2, N, X)K' See
[VI, §O, §1] for the details.

§1 Representations of 8L2 over finite flelds and non-vanishing
of Fourier coefHcients.

(1.1) We begin with a summary of representations of G := 8L2 (Fp) (p is an
odd prime number).

Define subgroups of G by:

and put

W: F p 3 u mod p H e(u/p) := exp(21rHu/p) E C X
,

Wa ((~ ~)) := 1/J(au) (a, U E F p ).

The set of all irreducible representations of U is givcn by {Wa I a E F p}. For any
Dirichlet character X modulo p, we define the representations K of B of degree one

by: ~: B 3 (~a~ 1 ) I--t X(a) E C X
•

The following facts are well-known.

(1.2) Proposition ([S, Chapter 7, pp. 54-60]).

(1) If X2 =I=- 1, Indg K is an irreducible representation.

(2) If X = 1 (the trivial representation), Indg 1 = 1 EB <tv, where <tv is an
irreducible represcntation of G of degrcc p which is called Steinberg representation
and Resu <tv rv EBaEF p 1/Ja'

(3) If X = (p) (Legendre symbol), Indg ~ = Q:(p+l)/2 ffi Q:(P+l)/2' where Q:(p+l)/2

and Q:(P+l)/2 denote irreducible representations of G of degree (p + 1)/2, which are
not equivalent to each other and satisfy the following:

We call Q:(P+l)/2 (resp. Q:(P+l)/2) the residual (resp. non-residual) representation. 0

(1.3) Prom now on and until the end of the paper, we assume that X2 = 1.
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We will determine the explicit C-basis of the irreducible components 1, <Lp,

<!(p+l)/2' and <!(P+1)/2 in Ind~ X (X = 1, (p)'
We can identify thc induced representation Ind~ X with the left C[G]-module

C[G] ®C[B] K. Hence, it is sufficient to find the explicit C-basis of irreducible

components of this left C[G]-module.

Let e := (~ ~) be thc unit element of G and we chose a basis of the representa

tion space of ~ by e, Le., ~ ( (~ a~l )) e = x(a)e. A system of all representatives for

G/B is given by the p+ 1 elements: e = (~~) and ~a:= (~~) (~1~) (a E F p ).

Under these notation, aC-basis of Ind~ X = C[G] ®C[B] K is given by thc p + 1
- -

elements: e ® e and ~a '81 € (a E F p).

Take any element u E F p and h := a(e 0 e) + L:xEF
p
ßx(~x ® e) E Ind~ K (a,

ßx E C (x E F p)). We have the identity (~ ~) . h = a(e0 0) + I:xEF
p
ßx(~u+~00).

Hence any element h belonging to the representation 7J;a (a E F p) is expressed as
folIows:

(1.4) {
h = a(e ®e) + ß (L.:xEF

p
~x ®e) (a,ß E C) if a = 0,

h = ßExEF
p

e(-ax/p){ex ® e) (ß E C) if a # o.

o
We therefore see that for any non-zero a, C(L:xEF

p
e( -ax/p){ex ® e») is the Wa

component in the C[U]-modules Resu <!p, Resu <!(p+1)/2' and Resu <!(P+l)/2'

We must determine an explicit basis of each 7/Jo-component in the above three
C [U]-modules.

Put for any a E F p, ha := L:xEF
p

e(-ax/p){~x ® e) E Ind~ K and put X :=

EXEF
p
~x E C[G]. -

We will caIculate the element Xha = L:xIYEF
p

e( -ay/p){(x(y ® e). Since ~x~o =

( ~l =~) E B, the part of y = 0 in the above surn is

L (x(o 0 e = L e 0 K (( ~1 =~)) e = X( -1) P (e ® e) .
xEF p xEFp

Next assume that y f: O. Then

(
xy-l -x) (-y 0 ) (1 _y-l )

~x€y = Y -1 = €x-y-l 0 _y-l 0 1
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Hence

L e(-ay/p)(€x€y 0 e) = L e(-ay/p)€x_y-1 ® ~ (( ~y _:-1 )(~ _Yl-l )) e
xEF p xEF p

yEF; yEF;

= Le( -ay/p)x(-y) (L €X-y-1 0 e)
yEF; xEF p

= (L e(ay/p)x(y)) ho .
yEF;

Prom these results,

(1.5)

p(e 0 e) + (p - l)ho,

p(e 0 e) - ho,

(~l)p(e®e),

( ~1
) P(e ® e) + (:) gpho,

if X = 1 and a = 0,

if X = 1 and a i=- 0,

if X = (p) and a = 0,

if X = (p) and a i=- 0,

where gp := L:xEF; e(x/p) (~) is the gauss sumo 0

Suppose X = (p) and take a quadratic residue a E F;. Since ha E {!(p+l)/2,

Xha = (~l) p(e 0 e) + (~) gpho = gp(gp(e 0 e) + ho) E {!(p+l)/2' Prom the

formula (1.4), C(gp(e 0 e) + ho) ('o.J 'l/Jo and hence this element gives a basis of the
'l/Jo-component of {!(p+l)/2'

We can find an explicit basis of the 7/1o-component of l!p, {!(P+l)/2 in the same
way. The case of 1 is trivial. Thus we obtain the following.

(1.6) Proposition. Under the above notation, we have the following explicit
expression of irreducible C[G]-modules in Ind~ K.

1 = C ((e 0 e) + ho) ,

~ = C(p(e ® e) - ho) ffi ( ffiaEF; Cha) ,

{!(p+l)/2 = C(gp(e ® e) + ho) ffi (ffiaEF;2Cha) ,

{!(p+l)/2 = C(gp(e ® e) - ho) ffi (ffiaEF; _F;2Cha)

Here, each direct summand of the right-hand sides is an irreducible C[U]-module.
Precisely speaking, each first direct summand is isomorphie to 7/10 and the other di
reet summands Cha (a i=- 0) are isomorphie to 'l/Ja respcetively, as C[U]-module. 0

(1.7) PrOfi now, we study representations of finite groups which are constructed
by modular forms of half-integral weight.
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We use following notation until the end of this section.

Let k be a positive integer and N = 4 X M, M is a positive odd integer.
Fllt vp = ordp(N) = ordp(M) for any odd primep. We decompose M = M 1M 2+,

M 1 := OplM v -1 p and M2+ := OplM v >2 pVP
•

l p- 1 P_

Let X be an even Dirichlet character with X2 = 1 and for any prime p, Xp the
p-primary component of X. Moreover we denote the M1 (resp. 2M2+)-component
of X by Xl := OplM l Xp (resp. X := OpI2M:H Xp)·

For any positive integer Q' E Z+, put

G(a) := SL2 (Z/CiZ), B(Ci):= {( ~ :) E G(a)}, U(Ci):= {( ~ ~) E G(a)}.

Moreover if (a, ß) = I, we naturally identify as folIows: G(aß) = G(a) x G(ß) and
for simplicity, we shortly write G 1 := G (M1 ), B 1 := B (M1 ), and B := B (4M2+).

For any positive integer a divisible by 4, put ß (a) := {'y* I , E r (Ci) },
ß1 (a) := {,* I, E r 1(a)}, and ßo (a) := {,. I, E To(a)} (cf. §O(c)).

Under these notation, we have that ßo(4M2+) t> ß(N) = ß(4M1M 2+) and that

From this we can define the representation 'Ir of the group B X G 1 on S(k +
1/2, ß(N)) as follows:

(1.8) [11"(, mod(N))] f := ! 1,*-1, (/ E S(k + 1/2, ß(N))) ,

where, mod(N) E To(4M2+)/T(N) ~ B x GI. We consider S(k + 1/2, ß(N)) as
a left C[B X GI]-module by the above representation 11".

(1.9) Let 11"f be the left C[B X GI]-module generated by a non-zero cusp form
f E S(k + 1/2, N, X), i.e.,

11" f := C[B x GI]! = (/1,* ; , E To(4M2+))c

Moreover we can define the following one-dimensional reprcsentation K as in (1.1)

X : B(N) 3 (~a~l ) f-t x(a) E C X , Xl: BI 3 (~a~l ) f-t Xl (a) E CX ,

X: B 3 (~a~l ) f-t x(a) E C X., Xp : B(pVp
) 3 (~a~l ) f-t Xp(a) E CX.

Then we have a canonical identification X = ~ C8J Xl = 8. C8J (~PIMl~'

For any f E S(k + 1/2, N, X) and any , = (::) E To(N), 11"(, mod(N))1 = I I

(~c ~b)· = x(a)f. Hence we gct the isomorphism ~ '" CI as B(N)-modules. We

denote the basis of the representation space of X by c. Then we get the following
proposition by easy computation. -
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(1.10) Proposition. For any non-~ero f E S(k + 1/2, N, X), the following map
gives an surjective homomorphism of B X Gl-modules:

(1.11)

where al1 E C and 1] is taken over all representatives for (B x G l ) / (B X B l ).

We can, therefore, identify 'Ir f with a subrepresentation of Ind:~~: X. D

We have canonical identity:

I dBxGI - 10'> I dG I - 10'> (10'> I dG(P)",,, ,
n BxB I ~ = K'OI TI BI Xl = ~ '01 'OIplMI n B(p)~

PrOfi (1.2), we know that each Ind~~? Xp is the direct sum of two distinct irre

ducible submodules. We therefore have the following decomposition

Ind:~~; ~ = EB(9p)pIMI (x ® (®pIM1 Op)) ,

where Op is taken over the set of irreducible C[G(p)]-modules {lG(p),~} or

{~(p+l)/2'C!(P+l)/2} accordingly to Xp = 1G (p) or (p) (cf. Proposition (1.2)). We

note that g ® (®pIMIOp) are irreducible C[G]-modules and not equivalent to each

other.

(1.12) Now we more closely study the representation 'Irf by using the results of
(1.1)-(1.6). We need some national preliminaries.

For any prime divisor p of M l , let cp be a basis of one-dimensional representation

space ofXp. Put ep := (~~) E G(p) and ~p(a) := (~~) (~l~) E G(p) for a E F p

and Xp(a) := LXEFpe(-ax/p)~p(x) E C[G(p)]. Moreover let E be a basis of ~.

For any prime divisor p of M l and any x E Fp, we chose an element ')'p(x) E

SL2 (Z) such that

(1.13)

and define an operator X p (p IM l ) as follows:

(1.14) f I X p := L 'Ir(')'p(x) mod(N))j, f E S(k + 1/2, N, X) .
xEF p

In [VI, §I], We defined several fundamental operators on S(k + 1/2, N, X): U(P),
W(P), and Yp- The above operator X p can be express by those.

(1.15) Proposition. Let p be any prime divisor of M l and f any element of
S(k + 1/2, N, X). Then the following hold.
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(1) flXp = p-k/2+3/4fIW(p)U(p). Hence the Inap 1 I--t jlXp gives an operator
on S(k + 1/2, N, X).

(2) jIYpU(p) = jIU(p)Xp-

{

(p - 1) IIXp + pi, if Xp = 1,

(3) IIXp
2

= (-1) 1 'f _ (_)pP, 1 Xp - P •

Hence X p is a semi-simple operator on S(k + 1/2, N, X).
Proof. (1) We keep to the notation in [VI, §1]. We have from the definition

(Vl,p.151] W(p) = 1';Jp , where ,p E SL2 (Z) is satisfied the following condition:

{
(~OI) (modp)

,p - (~~) (mod N/p) ,

and 8p = (( ~ ~) ,p-k/2-1/4). Prom (VI, (1.19)],

fIW(P)U(p) = pk/2-3/4 L: IIW(p) ( (~~) ,pk/2+1/4) (~ ~) *
aEF p

= pk/2-3/4 L: fl,; (( b~) ,1) (~ ~ ). = pk/2-3/4 L: fl,; (~ ~ ) •
aEF p aEF p

By using the notation ,p(a) (cf. (1.13)), we can easily calculate for any a E F p,

11,; (~ ~) * = 1r(,p(-a) mod(N))f. We therefore have

IIW(p)U(P) = pk/2-3/4 L: 111'; (~ ~).
aEF p

= pk/2-3/4 L: 1r(,p(-a) mod(N))1 = pk/2-3/4/IXp •

aEF p

Prom this and [VI, (1.22)], 1 I--t jlXp gives an operator on S(k + 1/2, N, X).
(2) Prom the definition of Yp (cf. (VI, p.155]) and the above (1),

(3) Thc map f I--t IIU(p) gives an isomorphism from S(k + 1/2, N, X) outo
S(k + 1/2, N, X (l~)) (cf. (VI, (1.28)]). Hence it follows from the above (2) that
U(p)-lypU(P) = X p on S(k + 1/2, N, X). By using this relation, we can deducc
properties of X p from those of Ypo In particular, from [VI, Proposition (1.27)], we
have the above relation (3). 0

(1.16) Take any non-zero j E S(k + 1/2, N, X) and assume that 11"f is irreducible.
From (1.10) and (1.11), there exists a system of irreducible representations (Bp)pIMl
such that <I> f: X® (®pl MI Bp) rv 1rf. Moreover for any prime divisor q of MI,

Ker(<I>f) ~ ~® (®pIMI1P#qlnd~{:j Xp) ®B~,
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where (}~ is the irreducible component such that Ind~{~j Xq = Bq Ef1 B~.

Set the elements (}p, a~ E C[G(p)] such that -

(1.17)

(ep + Xp(O), pep - Xp(O)),

(pep - Xp(O), ep+ Xp(O)),

(gpep + Xp(O), gpep - Xp(O)),

(gpep - Xp(O), gpep+ Xp(O)),

if Bp = lc(p),

if Bp = <!:p,

if Bp = <.!(p+l)/2'

if Bp = <'!(p+1)/2'

(1.18)

We therefore have
(1.19)

qf - f 1 X q ,

f + f I X q ,

gqf - f I X q,

gqf + f I X q,

if Bq = 1c(q),

if Bq = <.!q,

if Bq = <.!(q+l)/2'

if Bq = C!(q+l)/2'

In other wards, f is a common eigenform of X p for all prime divisors p1M1 .

Conversely, assume that f is a common eigenfornl of X p , p1M1.

Decompose 11"f into irreducible components: 11"f = PI ffi ... ffi Pm and let f =
11 + ... + Im, fi E Pi (i = 1, ... ,m).

We apply the following operator to the above: M := IR x B 11-1 E"Y x(d),+,

where , = (: :) is taken over all representatives of ro(N)/r(N).

We easily see that f = 11M and for any i, filM E Pi n S(k + 1/2, N, X). From
this, without loss of generality, we can assurne that fi E S(k + 1/2, N, X) and fi i= 0
(i = I, ... ,m). Then Pi is generated by a non-zero form li for all i. It follows from
(1.19) that all fi's are common eigenforms of X p, pJMl'

Set lilXp = (T~i) li' (i = 1, ... ,ffi, plMll (T~i) E C).

Since 'Irfis identified with subrepresentation of IndB~ x GB 1 X, Pi. (i = 1,... ,m)
x 1 =

are not equivalent to each other (cf. (1.11)). Hence, from (1.19), the systems of

eigenvalues (O"~l))pIMl' ... , ((T~m))pIMl are different from each other. Therefore we
see that m = 1 and 1r f is irreducible.

Thus we get the following results.

(1.20) Proposition Let the notation be the same as above. For (0 #)1 E
S(k + 1/2, N, X), the following hold gooel.

(1) 1r f is an irreducible C[R x G 1]-module if anel only if f is a common
eigenforrn of X p , p1M1 .

(2) Suppose that 1r f is irreducible. Then 'Irf rv X® (®pIM1 Bp ), where Bp 's are

irreducible C[G(p)]-modules. Let (Tp (piMI) be an eigen value of f on Xp: flXp =
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(J"pf. Then (J"p is given by the following table.

(1.21)

o

p, if Xp = 1 and Bp = IG(p),

-1, if Xp = 1 and 8 p = <!P'

(J"p = gp, if Xp = (p) and Bp = <!(p+I)/2'

-gp, if Xp = (p) and 8p = <!(P+I)/2'

(1.22) Now we will study relations between the above representations and
Fourier coefficients.

Let f be a non-zero element of S(k + 1/2, N, X) and take any system (ap)pIM l E

fIplMl Fp' Then

if!f(e® (®pIM1Xp(ap) ®cp» = L rr e(-apxp/p)1r(,«xp» mod(N»f ,
(xp)pIMl plMl

xpEFp

where ,((xp » E SL2 (Z) is an element satisfied the following condition:

,«xp» {( ~ ~) mod 4M2+

~p(xp) mod p for all prime divisors p of MI'

Choose a matrix 'YMI E SL2 (Z) and an element x E Z for (Xp)pIM l E DplM
l

F p

such that

{
0 mod 4M2+ 1and x-
xp mod p for all p1M1 .

and put a«xp» := (~~). Then we note that 'Y«Xp»'M l a«xp»-l E reN).

Moreover set 9 := fIW(M1 ) = I:~=l b(n)e(nz) E S(k + 1/2, N, X (MJ..)). Hence

<I>fee ® ®plMl (Xp(ap) ® €p» = L rr e(-apxp/p)!I'M l a«xp»"'-l
(xp)pIMl plMl
xpEFp

L rr e(-apxp/p)fIW(MdJM~a«xp»"'-l
(Xp)pIM I plMl
xpEFp

=Ml-k/2-1/4 L rr e(-apxp/p)g«z - x)/Mt}
(Xp)pIMl plMl
xpEFp

00

= MI-k/2-1/4 L b(n)e(nz/Md L
n=l (xp)pIMl

xpEFp
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(1.26)

Since the G.C.D. of all MI/p (p: priIne divisor of Md is 1, there exist integers
up E Z such that LplM

t
up . (MI/p) = 1. We therefore have

L: (rr e(-apxp/ p)) e(-nx/MI) = L: rr e((-apxp - nxup)/p)
(Xp)plMl plMl (Xp)plMl plMl
xpEFp xpEFp

= rr L: e((-apxp - nxpup)/p)
plMl xpEFp

= {MI' if -ap - nup (mod p) for all plMl,
0, otherwise.

Here, we use the condition: x - x p (mod p).
Since -ap =nup (mod p) {:} -ap(MI/p) =n (mod p), we get the following.

(1.23) Under the above notation,

<I!f(e ® ®plMl (Xp(ap ) ® cp)) = MI-k/2+3/4 L: b(n)e(nz/Mt} ,
n:=-ap{Mtlp) mod(p)

plMl

where 9 := f!W(M I ) = L~=l b(n)e(nz). 0

(1.24) Moreover we suppose that 1r f is irreducible. In this case, there are irre
ducible C[G(p)]-modules Bp (plMd such that g ® ®plMl Bp rv 1r f via <I> f.

We use the notation a p and a~ of (1.17). Then in all cases of Bp = 1G (p), <!p,
<L(p+ 1)/2, or <L(p+ I) /2' we can express that Xp(0) = Co x a p+Cl X a~ with a non-zero
constant CO and a constant Cl. And from the formula (1.18), it follows that for any
system (ap)pIM l E TIplM

t
F p, there exists a non-zero element C2 such that

(1.25) e® ®plMl (Xp(ap) ® cp)

C2 e® (®pIM l ,ap,eO(Xp(ap) ® ep)) ® (®pIMl ,ap=o(ap ® e)) (Inod Ker <I> f) .

Now we set thc following notation for any prime divisor p of MI:

{

0, if Bp = 1G (p), }

x F; , if Bp = <Lv,
Sp:= F x2 'f 6 tf' and Sp:= S; U {O} .

p , 1 P = ~(p+l)/2,

F; - F;2, if Bp = <L(P+I)/2'

From the formula of (1.6), we see that S; = {a E F; I Xp(a) ® cp E Bp}.

PrOfi (1.25), we see that for any system (ap)pIM I E TIplMl F p,

<I>f(e ® (®pIMl Xp(ap ) ® cp)) f:. 0

{::} <I>f(e ® (®pIM1,Gp#OXp(ap ) ® ep ) q9 (®pjM1,Gp=Oap ® cp)) f:. 0

{:} € ® (®pIMI1Gp,eOXp(ap) ® cp) ® (®pIM1,ap=Oap ® cp) E g® (®pIMt 6p )

{:} Xp(ap) ® ~p E 6p for any plMI such that ap f:. 0

{:> ap E S; for any plMI such that ap #- 0

{:> (ap)pIMl E rr Sp .
plMl
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Combining the above with thc formula (1.23), we obtain the following theorem.

(1.27) Theorem Let j be a non-zero element of S(k + 1/2, N, X) and 9 :=

jlW(Md = L:~=lb(n)e(nz) E S(k+l/2,N,X(M1.)). Suppose that 'Ir! is irrc
ducible and 'Ir f i'V X® 0 plMl Bp with irreducible C[G(p)]-modules Bp-

Then for a (ap)pIM1 E OplM
1

F p, we have the following:

(ap)pIMl E TI Sp {::}
plM1

In other words,

(ap)pIM l fj. TI Sp {::}
plMl

" there exists n E Z+ such that b(n) =I=- 0 and
n == -ap(Ml/p) (mod p) for all plMl " .

" b(n) = 0 for all n's which satisfy thc condition:
n - -ap(Ml/p) (mod p) for any plMl " .

See (1.26) for the definition of Sp- 0

§2. A complete theory of newforms für Kühnen spaces
We will generalize the results of §4 of the previous paper [VI] and will get a

complete theory of newforms for Kohnen spaces. So we will consider only Kühnen
spaces in this and next sections.

We keep to the notations in §O, §1 and in [VI]. See those for the detail of
definitions and notations.

We recall some notations.
Let k be a positive integer and N = 4 X M, M is a positive odd integer. Put

vp := ordp(N) = ordp(M) for any odd prime p. We decompose M = MlM 2+,
Mt := Op]M 11 -1 P and M2+ := nplM 11 >2 pV

P
•, P- 1 P_

Let X be an even Dirichlet character with X2 = 1 and for any prime p, Xp the
p-primary component of x. Moreover we denote the Ml(resp. 2M2+)-colnponent
of X by Xl := OplM

l
Xp (resp. X := np1 2M2+ Xp).

We also denote the set of all prime divisors üf M2+ by II. For any l E II, we
denote the twisting operator of (1) by R l (cf. §O (c)). Furthermore for any subset
I ~ II, we put R I := OlEI R l .

For any K, E {±I}l7 and any LE II, we define operators by e, := ~(R; + K,(l)Rd
and eil := OIEn e

'

. For any subset I of II, we set the following notations: LI :=

nlEI l.
Let (al)lEl7 be a system of integers such that 0 :s; al :s; VI for all l E II. For

simplicity, put M~~) := OlE17lCl1, N(a) := 4MIM~~), D = II(a)o := {l E II I
al == O}, E == lI(a)l :== {l E l1 1 az == I}, and F = l1(a)2+ := {l E II I al 2:: 2}.
We note that every positive divisor of M2+ is of the form M~~) for sonle system
(o:dlEI1'

We choose and fix '" E {±1}11 until the end of this paper. Let "'IF E {±I}F be
the restrietion of K- to F.

We have to study thc subspace S0,KIF (k + 1/2, N(a), X) K of S(k + 1/2, N, X)K'

We recall the definition of this subspace (cf. [VI, (3.3) and (3.5)]).
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We decompose the character X into two parts as follows:

Since the character 1]' can be defined with modulo N(a), the subspace

6 0,K'IF (k + 1/2, N(a),1]') K is naturally dcfined, where K'IF := K;IF . (!!) E {±I}F

(cf. [VI, p.177]). And then, using this subspace, we define as follows

(2.1) 6 0•K1F (k + 1/2, N(a), X) K := 60•
K 'IF (k + 1/2, N(a),1]') K IU(u) .

60,K'IF (k + 1/2, N(a), 17') K has aC-basis BTJI consisting of common eigenforms

for all Hecke operators T(n 2
) = Tk+l/2.N(a),TJ' (n 2

) (n E Z+, (n, N(a)) = 1)

(cf. [VI, (3.11)]). Moreover U(u) gives an injection on S(k + 1/2, N(a) ·lD, 17') K

([VI, (1.28)]) and is commutative with all Hecke operators T(n 2)'s (cf. [VI, (1.8)
and (1.20)]). Therefore the set Bx := {gIU(u); 9 E BTJI} gives aC-basis of

60•K1F (k + 1/2, N(a), X) K consisting of common eigenforms for all Hecke oper-

ators T(n2
) = Tk+l/2.N,x(n2) (n E Z+, (n, N) = 1). Put

B(a):= " 60.K1F (k + 1/2, N(a), X) IU(a2) ~ { S(k + 1/2, N, X)K if k2: 2,
LJ K V(N·X) if k = 1.

O<al'v ' K

Then from [V1,(3.10)],

(2.2) B(a) = EB 60,KIF (k + 1/2, N(a), X) K [U(a 2
)

O<a lID

~ { S0,KIF (k_+ 1/2, N(a) oID'X) K if k ~ 2,

V0.KIF (N(a) ·lD, X) K if k = 1.

Since every U(a2
) (0 < a IlD) gives an injection on S (k + 1/2, N(a) ·lD, X) (cf.

[VI, (1.28)]), we get the following:

(2.3)

where f takes over all elements in Bx .
Moreover we can see that

(2.4)
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In fact, applying the operator eil to the both sides of definition, we see that

B(Cl)leK C { S(k + 1/2,N,X)K len = S0,X(k + 1/2,N,X)K, if k 2: 2,

II - V(Nj X)K len= V0'X(Nj X)K, if k = l.

Every generator of B(Cl)len,fIU(a2 )en(f E Bx' 0 < allD), is a COlnmon eigenform
on T(n 2

) (n E Z+, (n, N) = 1) and it has the same system of eigen values as f
(and so as 9 E B,..,/). This system corresponds to a prinlitive form in SO(2k, MIM'),

o< M'IM;2 ([VI, (3.11)]).
From [Vl,(3.10)] and the Strong Multiplicity One theorem of weight 2k ([M,

Theorem 4.6.19]), 6°'~(k + 1/2, N, X) K contains all of generators, fIU(a2)eil, and
therefore contains all elements of B (er) Ieil.

We denote for any f E Bx

(2.5) B}Cl):= EB c fIU(a2
) .

O<a liD

if k ~ 2,

if k = 1,

These spaces BY::t) are contained in S(k+ 1/2, N(a) ·lD, X). We will decompose

By:X) by the semi-simple operators Yp , pIMI lDIE , on S(k + 1/2,N(a) .lD,X) (cf.

[VI, (1.27)]).

(2.6) First we consider the case of p IMIlE.

Take 9 E B,.." such that f = 9 I U(u). Then

{

S (k + 1/2, N(a), 1]') K '

gl Yp E

V (N{a); 11') K '

and since Rl (I E F) commutes with Yp ([VI, (1.24)(2)]), we see

{

S0,K'IF (k + 1/2, N(a), 11') , if k2: 2,
glYpE I _ K

V0,x IF (N(a); 11') K ' if k = 1.

Since Yp commutes with Hecke operators T(n2 ), (n, N) = I, both 9 and glYp

belong to the same system of eigen values on T(n 2 ), (n, N) = 1. And since 9 E

6 0,x' IF (k + 1/2, N(a), 1]') K' its system of eigenvalues corresponds to a primitive

form of weight 2k and of conductor M I IE x (a divisor of TIIEF lClI) ([VI, (3.10)(2)]).

From these, first we see that glYp E 6 0,K'jF (k + 1/2, N(a),11') K ([VI, (3.10)(1)])

and next, by using the Strong Multiplicity One theoreln ([VI, (3.11) (2)]), glYp = Tpg
for some T p E C.

Combining these with (A.l), we obtain that

(2.7) flYp = gIU(u)Yp = 1)~(u) (~) gIYpU(u) = 1)~(u) (~) Tpf ,
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L e., f is an eigen form on Yp •

Moreover in this case, Yp commute with U(a2) (0 < a I lD) becausc of (A.l).

Hence we see that every element of BjO) is a COlnmon eigenform on Yp's (p!M1lE)
belonging to the same system of eigen values as f. 0

As to the case of pllD, we get the following proposition.

(2.8) Proposition Let 1 be any subset of D and f be any element of Bx .
And let A(l) be the subset of Map(I, C) consisting of all functions p such that

pu = xV()) re p. p p) E {p, -1 aree ding to Xv = 1 rem (p)' Hence

IA(l) I = 2111 . Theu we have the following decomposition:

EB c fIU(a2) = EB C fp ,
O<a Il, pEA(I)

where each fp (p E A(I)) is a noo-zero cusp form satisfying thc condition:

fp IYp = p(p) fp (for all p E 1) .

Proof. We will prove with induction on 111.
If 111 = 0 ({:} 1 = 0), then l0 = 1 and the assertion is trivial.
Next suppose that 1 =1= 0 and the assertion holds good for any proper subset l'

of 1.
Take and fix a prime p E 1 and decompose 1 = {p} + 1', Le. I' = I - {p}. By

thc assumption of inductiou, we have

EB C fIU(a2) = EB C fpl ,
O<a Il" pi EA(I')

where A(l') is the subset of Map(I', C) which is described in the assertion. Hence
lA(l')1 = 211'1 and fpl (p' E A(l')) is a non-zero cusp form satisfying the condition:

fpl I Yp = p'(p) fpl (for all p E 1') .

Since U (p2) gives an automorphism of S ( k + 1/2, N(a) . lD, X) K' we can calculate

as follows:

EB C fIU(a2) = ( EB C fI U(a2)) Ef1 ( EB C fl U(a2
)) 1 U(p2)

O<a III O<a IlJI O<a IlI'

= ( EB C fpl) Ef1 ( EB C fpl I U(p2))
pi EA(I') pi EA(I')

- EB (Cfpl Ef1 C (fp I IU(p2)))
pIEA(I')
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From [UI,(1.24)] f p'IU(p2)Yq = f p'IYqU(p2) for any q E I'. Hence, every element
of Cfp' E9 C(fpI IU(p2)) is a common eigenforrn on all Yq (q E I') which belangs to
p'.

Now, we will decompose the space Cfp' EB C(fp' IU(p2)) ioto two eigen subspaces
on Yp .

From the definition of Bx' there exists g E 81]1 such that f = g IU(u). Then

and so for any fpl (p' E A([')), there exists gp' E Ef)O<a 11
1

, Cg I U(a2) such that

fp' = gp' I U(u).

These forms gpi satisfy the conditions: gpi E S (k + 1/2, N(a) . lI' , "1' ). And also

we have (p, N(O'.) . ll' ) = I, (u, 4lF) = 1, and "1' u = 1.
g is an eigen form on T(p2). From this and [VI, (1.20)], gp' is also an eigen form

on T(p2) belonging to the same eigen value as g.

From the above facts, we can apply thc formulae (A.9) and (A.15) in the appendix
to the forms fpl = gp' I U(u) and fpl 1 U(p2) = gp' I U(Up2).

It follows that the space C fpl EB C fpl I U(p2) can be decomposed into two
distinct one-dimensional eigen subspaces on Yp :

And also we see that h ll h2 are two common eigenforms on Yq (q E [) whose eigen
values are coincide (= p' (q» on the operators Yq (q EI') and are different only on
Yp- We can extend p' to two elements in Map(I, C) by associating {p} with each
of such two eigen values.

Combining this and the above formula, we obtain the assertion. 0

From this proposition and (2.6), we have the following decomposition:

(2.9) BJO) = E9 C fIU(a2) = E9 C fp .
O<a liD pEA(D)

Here A(D) is a subset of Map(D, C) such that IA(D)1 = 21D1 and each fp is a
non-zero common eigen form on Yp (pIMllDl E) satisfying the condition:

(2.10)
for all p IM1lE ,

for all p E D,

where Ap is the eigen valne of f E 8x on Yp •

(2.11) We take such a fp and fix it. Since fp E S (k + 1/2, N(O'.) . lD, X) K' hp :=

fpIW(MllDlE)-l E S(k+I/2,N(0'.) .lD,X(MdDlE))K (cf. [VI, (1.22)]).
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Let X p be an operator defined in (1.14) of §1. The above form hp is a common
eigen form of X p for any p1M1l D l E .

Praof of this claim. PrOfi [U1,(1.18)) and Proposition (A.1), it follows that

hp IW(M1lDlE)U(p)W(p) == cohp IW(p)W(M1lDlE/P)U(P)W(p)

== hpIW(P)U(p)W(M1lDlE/p)W(P) == C1 hpIW(p)U(p)W(M1lDlE) ,

where CO == (X (Mt1oIE)) M1IDIE/p (p) and Cl == (X (MtlDlE))p (M1lD lE /p).
Hence, for any prime divisor p of M 1lD lEl

(2.12) ephp == !pjYpW(M1lDlE)-1

== p-k/2+3/4 hp IW(M1lDlE )U(p)W(p) W (M1lDl E)-1

== C1 hplXp .

Thus we proved the above claim. 0

Prom this claim and Proposition (1.20), 6 0 (4 nlEF la, )/~(4M1lDMJ~))-module
Trhp is irreducible. We decompose it into primary components:

(2.13)

wbere 7/J == OpAMtlDlE (X (MtIDlE)) p and 7/J is defined by 7/J in the same way as (1.1)
or (1.9).

(2.14) Claim We can determine each primary components ()p (p E D + E) by
using (1.21) and (2.12) as follows:

[Case 1) (PllDlE and Xp == 1)

<!(p+1)/2' if Ap == (Mtl~IE/p) 9p and p E E,

<!(P+1)/2' if Ap == - ( Mtl~lE/P) 9p and p E E ,

<!(p+1)/21 if p(p) == (Mtl~IE/P) 9p and pE D,

<!(P+1)/2 1 if p(p) == - ( Mtl~lE/P) 9p and p E D.

[Case 2] (PllD and xp == (p))

()p rv {lG(p)l if p(P) == p,

<!p, if p(P) ==-1.

[Case 3] (if pilE and Xp == er)) ()p c:i <!po

Prao/ 0/ this claim. The assertions in the Case 1 and 2 is easily verified.
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We consider the Case 3. Suppose that Bp "-' 1G (p)' We have hp IXp = php from
(1.20)(2). Hence Ap = p. This follows from (2.10) and (2.12). Moreover, using (2.7)

and the fact: 7]~ = Xp = (p), we get that glYp = pg.

Applying [U1,(1.26)] to 9 (= L:n~l a(n)e(nz) E S (k + 1/2, N(a), 7]') K) and P,

we have glYp = gIW(p)-18p - 9 +p-k/2+3/4gIU(p)8p-

Since p-k
/

2+3/
4gIU(p) = (gIYp )IW(p)-l = (Pg)IW(p)-l, we therefore have 9 =

p-k/2-1/4gIU(p)8p = L:n~l a(pn)e(pnz).

From this formula we have that a(n) = 0 if (p, n) = 1. Hence there is a form

g' E S(k + 1/2, N(a)/pl 7]' (~)) Kif k 2: 2, rcsp. V(N(a)/pj1]' (E)) Kif k = 1 such

that 9 = g'(pz) ({VI, (1.11)]).
Both 9 and g' have the same system of eigen values on the Hecke operators T(n 2 ),

(n, N) = 1 (cf. [V1,(1.8)]). Since 9 is in 6o,~IIF (k + 1/2, N(O'.) ,1]') K' thc system

of eigen values corresponds to a primitive forms of weight 2k and of conductor
M l lE X (a divisor of TI'EF lai).

On the other hand, from (U1,(3.10)] for the spaces S(k + 1/2, N(O'.)/p, 1]' (E) ) K

and V (N (0'.) /pj 1]' (~) ) K' the system of eigen values of g' corresponds to a priInitive

form of weight 2k and of a conductor prime to p.
This is a contradiction. Hence we have Bp "-'~. 0

Now we will find thc condition for fpleil #- 0 by using the results in §1.

(2.15) Claim (1) If Xp = 1, we have Ap = ± gp (p E E) and p(p) = ± gp (p E D).

If Xp = (p), p(p) = p or -1 (p E D).

(2) We have

Ap = ( ~1) ~(p)gp,

p(p) = -1,

p(p) = ( ~1) K(p)gp,

for all P E E with Xv = 1,

for all p E D with xp = (p),
for all p E D with Xp = 1.

Remark. In thc above, the condition: Ap = ( ~1 ) K(p)gp depends only on f.

Proof of the claim. The first assertion follow from [VI, (1.27)] and (2.10). We
will prove the second assertion.

[=>] Wc apply (1.27) to the forms hp and fp (E S (k + 1/2, N(O'.) ·lD, X) K)' Set

fp(z) := Ln~l c(n)e(nz) and use thc notation Sp on 1rhp in (1.26-27).
From (1.27), we know the following:

(2.16) c(n) = 0 if n =-x (Ml lD lE/P) mod p for some x fiod p ~ Sp

We modify the condition. Let first p E E with xp = 1. From the definition of
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Sp and the claim (2.14),

the condition in (2.16) {::}

Suppose that Bp I'V l!(p+l)/2' From the first assertion, Ap = ± gp- If Ap =

- (Md~lE/P) gp, then Bp :: <!(P+l)/2 (cf. (2.14)). This is a contradiction. Hence

Ap = (Mll~lE/P) gp and so (-pn) Ap g;1 = -1. Thus we can easily deduce the

following from similar argument.

(2.17)

the condition in (2.16) <* (-pn) Ap 9;1 = -1 <* (~) = _ (~1) 9p A;l, 0

We suppose that Ap = - ( ~l) K,(p)gp ({::} K,(p) = - ( ~1) gpAp-1) for same p E E

with Xp = 1. If (~) = K,(p), we have c(n) = 0 from (2.17). On the other hand, if

(~) = -t>(p) or 0, we have (~) 2 + t>(p) (~) = O.

Observing that jple; = ~ L:n~l c(n) ( (~) 2 + t>(p) (~) ) e(nz), we get jple; =

oand so fplen = O.
In the same way, we get the assertions in the case of p E D with Xp = 1.

Next we consider the case of p E D with Xp = (p). Let Bp I'V 1G (p)' Then

Sp = {O mod p}. It follows from (2.16) that c(n) = 0 for any n prime to p. Hence
we have fple~ = O. FrOfi these jpleil :j:. 0 => Bp I'V <!p => p(p) = -1. We use the
first assertion at the last implication.

(~] FrOfi (2.2) and !p E B}cx) ~ B(o.), it follows that !p!Rp = K(p)fp for all
p E F. Hence for all p E F, fple~ = fp. Therefore,

For each prime plMl lD lE , we choose a residue dass bp (mod p) E F; satisfying the
following condition:

if p E E and Xp = 1,

if p E D and· Xp = 1,

if p E D + E and Xp = (p),
if p1M1.
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We can see from the definition Sp and the claim (2.14) that (bp)pIMllDlE E
IlplMdDIE Sp. Hence by using Theorem (1.27), there exists no E Z+ such that
c(no) =I- 0 and -no - bp (M1lDlE/P) (mod p) for all prime divisors p of M l lDlE.

For such a no, we have by using the assumption in the claim

(:0)= (~1) (~) (M11;lE/P)
(-;1) gpAp-1 = ~(p),

_ (-;1) gpp(p)-1 = ~(p);

~(p),

if p E E and Xp = 1,

if p E D and Xp = 1,

if p E D + E and Xp = (p)'

Thus we see that (~ ) = ~(p) and also that the no-th Fourier coefficient of fplen

is equal to 2-(I D1+IEl)c(no) IlpED+E {~(p)2 + ~(p)~(p)} = c(no) =I- O. This means
that fplen=I- O. D

Combining (2.5), (2.9) with (2.15), we get the following claim.

(2.18) Claim Let the notation be the same as above. Then

{
(~1) ~(p)gp, for p E D and Xp = 1,

po(p) :=
-1, for p E D and Xp = (p)'

Moreover f Po len =I- 0 if and only if f E ßx satisfies the following conditions:

flYp = (~1) K(p)gp f for all p E E with Xp = 1.

We have the following formula:

(2.19) Claim

EB C f Po len ,
/EBxl f:(·)

{
(~1) ~(p)gp,

and po(p):=
-1,

for p E D and Xp = 1,

for p E D and Xp = (p),
where (*) is the same condition a.s in thc claim (2.18) and f Po is a non-zero common
eigenform on Yp (pIMl lDlE) such that f Po IYp = po(p)!po if p E D resp. Ap!po if
P E E. Here Ap is the eigen, value of f on Yp .

Proof of the claim. FrOfi [VI, (1.20)] and [U3, (1.7)], !Po Jen E BJCt) is a common

eigenform on all T(n2 ) «n, N) = 1) belonging to the same system of eigenvalues a.s
those of f.
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And since there is a 9 E B11 , such that f = gIU(u), the system of eigenvalues is
also the same as those of 9 E B.,.,I.

By applying the Strong Multiplicity One theorem [VI, (3.11)(2)] to elements in
B11" each different element in B11 , belongs to a different system of eigenvalues from
each other. Therefore 1 {fPo Ieil ; f E Bx,f satisfies the condition (*)} is a system
of linear independent forms. 0

We will express the above condition (*) in terms of 9 E B1}1 such that f = glU (u) .

Since 1]~ = Xp for al1 p E E, we have jlYp = (*) glYpU(u) for an p E E with Xp = 1

(cf. (2.7)).

Hence, the condition (*) <=> (~) gIYpU(u) = ( ~1) K.(p)gpgIU(u).

Moreover since U(u) is an isomorphism on S(k + 1/2, N(a) .lD,1]') , we get

that the condition (*) <=> glYp = (~u) K(p)gpg.

In [VI, (3.6)], we defined the hermitian involutions wp (p IM 1lE ) on

I ( - ) ( ) k+l/26°,1' IF k + 1/2, N(a),1]' K' Then glwp = p-l/2 -;1 1]' (p)gIYp for an p E E

with Xp = 1. This follows from [VI, (3.7)] and 1]~ = Xp for all p E E. Hence

f : (*) {o} glwp = (~n k r/(p) (*) K(p)g = (-,,1rX(P)K(P)g. Here, we note that

X(p) is meaningful because of Xv = 1.

We denote this condition for 9 by (**):

(**) glwp = (~) k X(P)K(p)g for all pE E with Xp = 1 ,

and we denote

From [VI, (3.9) and (3.11)), we have glwp = ±g for all gEBT/I and so {g E

B1}1 ; 9 satisfies the condition (**)} is a basis of the space 6~~t;IIF.

As we show in the proof of the claim (2.19), all of three forms f Po [eil, f, and 9

are common eigenforms on T(n2
) (n E Z+, (n, N) = 1) and an of them belong to

the same system of eigenvalues.
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Therefore, for all n E Z+ and (n, N) = 1,

(2.20)

tr (f(n2
); B (a) Ieil) = tr (f(n 2

); EB CfPo Ieü)
/EBx.'/:(-.)

= tr (T(n2
); EB Cg)

gEB", ,g:(**)

= tr(T(n2); 6~~~IIF (k + 1/2, N(a),1J') K)

o
We will describe the right hand side of the above formula in terms of cusp fonns

of weight 2k.

Take any element 9 of the basis of 6~~~'IF, Le. 9 E 8 11, whieh satisfies the
condition (**). Let G be the primitive form of weight 2k whieh corresponds to
9 in the sense of [VI, Theorem (3.11)]. PrOfi [VI, (3.9)], we have gIU(p2) =

_pk- 1 glwp = _pk-l ( ~l ) k X(p)K(p) 9 for all p E E with Xp = 1. So from [VI,

(3.ll)J, GIU(P) = _pk-l ( ~l) k X(p)K(p) G.

Let W(p) be the Atkin-Lehner operator of weight 2k (cf. §O (b)). From [M,

Corollary 4.6.18], GIU(p) = _pk-1GIW(p) and so GIW(p) = ( ~l) k X(p)K(p) G for

all p E E with Xp = 1. Hence the space 6~~tI:'IF corresponds to all such G's.

We can deduce the following expression by the trace relation in the paper [Ul,
(3.10)(2), (A.2)(3), and (A.5)]:

(2.21) For any n E Z+ prime to N(a),

tr(T(n 2
); 6~~K~ (k + 1/2, N(a),1J') K)

- L B' «ß,) , '11', (T', er'))
«ßl ),'1'1 ,(T' ,U'))Epl

X tr(T(n); 8'(;',0-') (2k,M11E TI lß') IR>!',) ,

where the notations are as folIows: 'l:«ßdIW',(T',ul))EPI is the surn extended over all
elements of thc following set:

{

«ß,),EF, '11', (r', 0"')) j (ß,) = (ß,)lEF is a system of integers }
p':= such that 0 ::; ßl ::; al for any l E F, '11' ~ F(ß)o + F(ß) 1, .

r' E Map(F, {±1}), 0"' E Map(F(ß)2+, {±1})

F(ß)i := {l E F I ßl = i} for i = 0, 1 and F(ß)2+ := {l E F I ß, 2:: 2}.
B'«ßd, '11', (T', 0"')) = OPEF 3~«ßl), '11' , (T', 0"')). Each B~«ßd, '11' , (T', 0"')) is the
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constant determined by the table [UI, (2.22)]. f' is the extension of r which is
defined as folIows:

{

r' (l) , i f l E F;
f' (l) = 1 k I

(T) x(l)~(l) nqE'lt, (Cl)' if lEE and Xl = 1.

Finally,

See [UI, Appendix 1] for the definition of the space S*(2k, MllE OIEPlßt). D

In order to compare this formula (2.21) with thosc in [U1,(3.10)(2)], we roust
modify the above formula.

We de..!ine a system of integers (ßz)IEll for each system of integers (ßz)IEP as
follows: ßl = ßl, 1, or 0 according to l E F, E, or D.

Then we have II(ß)o = D +F(ß)o, II(ßh = E +F(ß)b II(ß)2+ = F(ß)2+, and

lE x O'EP lßt = O,Ell lß' .

We want to extend the domain of definition of r' (=F) to the whole set II. Since
{±1}ll = {±l}F x {±1 }D+E, we will append this factar {±1 }D+E and dcnate cach
element af {±1}ll = {±1}F X {±l}D+E as T = (T', T").

We note that there are some assumptions on the primes lEE with Xl = 1 in
thc definition of thc space 8*(i' ,(7') (2k, Mll E nlEF lßt). We remove this condition
by replacing the coefficients S' ((ß,), 'lJ', (r', (T')) =: OPEF S~ ((ß,), \lf', (r', er')) with
OPEF 3~«(ßI), 'lJ', (T', er')) x OPED+E 3~, where the notation is as folIows:

1 + T" (p),

2 X =/1 '= 1 + 1,......p •

if pE Dj

if p E E and Xp = (p);

1 + (~n k X(p) K (p) TIq E'!" (~) 7" (P), if p E E and Xv = 1.

Finally replacing er' with a and combining thc formula (2.20) and (2.21), wc can

obtain the following expression of tr(T(n2); B(a)leil) in terms of primitive forms

of weight 2k.

(2.22) Under the above notation, we get the followings for all n E Z+ prime to N,

tr(T(n2
); B(O)len)

L TI 3~«ßI), \lf', (T', a)) x TI S~
((ßd,w' ,(T' ,(7),T")EP' X{±l}D+E pEF pED+E

X tr (T(n)j S*(T,U) (2k, MIlU [ßI) IR'!'.)
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where r:= (r',r") E {±I}F X {±I}D+E = {±I}fl, a E {±I}F(ßh+ = {±I}fl(ßh+,
and

(
_) { J E S* ( 2k, MI ll'Efl ißI) ; }

s*(-r,u) 2k, MI TI ißt := JIWp = r(p)j for all pEll, .

lEfl JIRpWp = a(p)JIRp for all i E II(ß)2+ = F(ß)2+

o

(2.23) Now we will cOInpare thc above formula (2.22) with [VI, (3.10)(2)]. And
we will see that the formula (2.22) can be considered as apart of thc expression

formula [VI, (3.10)(2)] of tr(T(n2
); 6°'~(k+ 1/2, N, X)K)'

We first note that for any parameter ((ßd, w', (r',a),r1/) E P' x {±I}D+E, the
system ((ßd l En l 'lJ', (r, a)) contains in the range P of parameters in thc expression

formula [VI,(3.IO)(2)] of the trace tr (T(n2
); 6°'~(k+ 1/2, N, X)K)' This is easily

verified.

We second fiust study for any (ß,),EF, 'lt', (r,a) = ((r',a),r1/), whether the

coefficient of tr(T(n)i s*(r,u) (2k, MI lllEfl lßI) IRw') is equal to those in thc ex

pression fonnula [VI, (3.10)(2)].
Both coefficients are defined as products of primary components on pEll. We

will compare these primary components.
For p E F + E, we can verify the following identities:

(2.24) '= ((ß-) ,TI' ( )) = { 3~((ßI), w', (r', a)),
......p I, '1! , r, a ......"

'::'Pl

if pE Fi

if pE E,

where the left-hand side is the constant with respect to 6°'~(k+ 1/2, N, X)K de
termined by [VI, (2.22)] and r' := rlF.

These identities are easily verified, in case by case, from the following facts.

Cl)ue 2 pr war; par of X ie n = 1121J~ = U-;.' )) U-;;I- )). 1J~ = U-;;/-) ).
(rn)and also 7]~MIIE = ~ XM1 llpEE Xp'

(2) For p E E + F, we have Xp = 7]~.

Next we consider the case of p E D. Then if r(p) = -1, thc identity like (2.24)
does not hold good.

However, since any prime p E D does not occurs in the level MI ll'Efl lßt, the
Atkin-Lehner operator Wp is thc identity operator 1. Hence if r(p) = -1, the

space s*(r,u) (2k, MI I1'Efl lßI) is always equal to {O}. Therefore we can neglect

such cases and eventually without a 10ss of validity, we can consider that we also
have the same identity as (2.24) in the case of p E D. 0

Therefore we get the following formula.
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(2.25) Proposition Let notation be the same as above and n E Z+ such that
(n,N) = 1.

tr (T(n2
); B (0

) Ieil ) L TI Sl ((ßl ), \lf', (r, a) )
«ßd,'11 I ,(r',u),r")EP' x {±l}D+E lEil

X tr (T(n); S'(7",u) (2k, MIlU lß') IR>I>') ,

S((v(I, J)z),l + J, (r, a))

where each coefficient Sl ((ßt), 'J!', (r, a)) has the value either 0 or 1 whieh is the co

efficient of tr (T(n); s*(r,u) (2k, M1 OlEil lßI) IR'11') in thc expression formula [VI,

(3.10)(2)] of the trace of T(n 2
) on the space 6°'~(k + 1/2, N, X)K'

In other words, we can consider the above formula as apart of the expression
formula [U1,(3.20)(2)]. 0

(2.26) For any (at), B(o) JeiI is a subspace of 6°'~ (k + 1/2, N, X) K (cf. (2.4)). We
define the following subspace of 6°'~(k + 1/2, N, X)K:

(2.27) 6t0
,K = 61o,K(k + 1/2, N, X)K:= L B(o) len .

(ad#(vd

Here, (at) in the above SUffi runs over all system of integers such that 0 ::; al ::;
Vl = ordz(N) (l E 11) and (al)zEil =1= (Vt)ZEII' We also denote by ')10,K = ')10,K(k+
1/2, N, X)K the orthogonal complement of '.Tt0,K(k + 1/2, N, X)K in 6 o,K(k+ 1/2, N ,
X)K.

Since any operators T(n 2 ) ((n, N) = 1) fix eaeh subspace B(o)leiI respectively,
both ~0,K and ')10,K are stable under the action of T(n2) ((n, N) = 1).

We cau gcneralize [VI, Theorem (4.13)] as follows:

(2.28) Theorem Let the notation be the same as above and let J<iJ E {±I}Il. We
suppose that ord2 (N) = 2. The following assertions hold good.

(1) For all n E Z+ prime to N,

tr (T(n2
); ')10,K(k + 1/2, N, X)K)

L L
II(vh=1+J+K rEMap(Il,{±l})

uEMap(Il-(l+J),{±l})

x tr (T(n)j s*(r,a) (2k' M1 TI l TI lVI) IRI+J) ,
ZEJ ZEII-(I+J)

where l1(v)2 := {l E 11 I Vz = 2}, L:Il(vh=I+J+K is the sum extended aver all
partitions such that II(v)2 = I + J +K, v(I , J)l is a constant which has a value 0,
1, or Vz (:=ordz(N)) according to l E I , J, or 11- (I + J), 3((v(I, J)z), 1+ J, (r,a))
are the constants determined by [Vl,(2.22)].
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(2) Let 8 be an orthogonal basis of 6 0,1I;(k + 1/2, N, X)K which is stated in
[V1,(3.10)(2)]. Let 80 (rcsp. 8 1) be the set of all f E B wmch correspond to

primitive forms E SO(2k, M) (resp. E SO(2k, M'), 0 < M/IM, and M' < M)
in the sense of [V1,Theorem (3.11)(1)]. Then Bo (resp. 8 1) generates the space

'J10,II;(k + 1/2, N, X)K (resp. 6t0,II;(k + 1/2, N, X)K ). -

(3) Let f be any element of Bo and Ap the eigenvalue of f with respect to

Tk+1/2,N,x(P2) (p:prime, p 1M) resp. U(p2) (p:prime, pIM). Then the primitive
form F which corresponds to f in the sense of [VI, Theorem (3.11)(1)] satisfies the
condition FIT(p) = ApF resp. FIU(p) = ApF for all primes with p AM resp. piM.

Proof. Let 8 be the same C-basis of 6°'~(k + 1/2, N, X)K as in the above
-statement (2) and P the same set of parameters as in the expression formula
[V1,(3.10) (2)].

For any (ad, the space B(o)len is a stable subspace of 6 o,lI;(k + 1/2, N, X)K

under the action of a11 operators T(n 2 ) ((n, N) = 1). Vsing the Strong Multiplicity
One theorem [VI, (3.11)(2)] on 6°'~(k + 1/2, N, X)K' B(o)len is generated by the
set 8n (B(a) len). Similarly, we can see that the spaces 61°,~ and 'J10,~ are generated

by 8 n 61°,~ = U(a')i=(v') (B(a) len) n 8 and ')10,11; n 8 respectively. And also 8 =

~ n 'J10,K) + (8 n 61o,K). For any ((PI), '11, (,,0-)) E P, we denote by B((P,),W,(T,CT))

the subset of B which corresponds to the subspace S*(T,CT) (2k, MI D,En lPE) ]Rw in
the sense of [V1,(3.11) (1)].

Then from (2.25), there exist only two possible cases: either 8((P,),W,(T,CT)) ~

B(a) len-, or 8((P,),W,(T,CT)) n B(a) len = 0; and whether the former case is or not

depends only on the parameter ((PI), '11, (" 0- ) ) .

We define the subsets P* and P** of P by:

{

((pd, i', (" 0-)) E P; ((PI), 'lJ, (" 0-)) does not satisfy }
p*.= (at least) oue of the following three conditions:

. (i) PI = VI on JI(p)2+; (ii) 'lJ = JI(p)o + JI(P)I;
(iii) Vi = 2 on II(p)o + JI(ph

and P** := P - P* .

Take a system (adlEn and a parameter ((Pt), 'lJ, (,,0-)) E P such that (al) 1= (vd
and B((p,Lw,(T,CT)) ~ B(a)leil· Then ((Pt), '11, (,,0-)) E P*. In fact, suppose that

((PI), 'lJ, (,,0-)) satisfies the above condition (i) and (ii). We get from (2.25) that
PI ::; (}:i for alll Eiland \l1 ~ n(a)2+' Hence II(p)2+ ~ II(a)2+ and by using the
condition (i), (Pi =) al = V, for alll E II(p)2+'

From the condition (ii), II(a)2+ :2 w= II - II(p)2+ 2 II - II(a)2+' This means
II = n(a)2+'

Since (aI) =j:. (Vt), there exists l Ellsuch that (}:l < VI. From the above, then
l E II - II(p)2+ (~ ll(a)2+) and 2 ::; al < Vi. Hence the condition (iii) is not
satisfied.
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The contrary is also true. Take any ((Pl), 'lJ, (r, (T)) E P"'. Put

Pl, if l E II(p)2+'
2, if l E 'lJ,

1, if II (p) I - W,

0, if II(p)o - 'lJ.

Since ((pi), 'lJ, (r, a)) does not satisfy one of the conditions (i)-(iii), we have (al) =1=

(Vi)'
Next we put

{

Pl, if l E II(p)2+,

ßi := 1, if l E 'lJ n II(ph,

0, if lEW n II(p)o.

We also define thc system of integers (ßz)lEII by thc above (ßz) in thc same man
ner as in (2.21). Then we have ßi = Pl for all l E II. Moreover observing
that 'lJ ~ II(p)o + II(ph ~ (II(a)2+) (ß)o + (l1(a)2+) (ß)I and (1J(O:)2+)(ß)2+ =
11(p)2+, we can see that ((ßi) iEII (a:h+' 'lJ, (r, a)) occurs in the parameter set P' x
{±1 }1I(ah +1I(a:)o of the expression formula (2.25). Hence B C B(a) 1en.

=((pd, '1', (r,O"» -

Thus, we see that 61°,x is generated by the set U«p,),'1',(r ,O"»Ep .. B«pd,W,(T,O"» and

so U«Pd,W,(T,O"»EP•• B«pd,w,(T,a» generates m0,~. The assertion (1) is easily deduced
from this result.

We will prove the assertion (2). For any ((pl)' W, (r,a)) E P, we have from the
definition: 8*(T,O") (2k, MI TI'EII lPE) IRw ~ SO (2k, MI TIiEII-W lPE TI,Ew l2). Hence
the assertion (2) follows from the fact:

((pz),W,(r,a))EP** {:} TI lP'TIl2=M2+.
lEil-1I! lEW

The assertion (3) can be proved by the same method as in the [VI, Theorem
(3.11)(1)]. 0

§3 Another simpler definition of newforms for Kohnen spaces.
In this section, we give another simpler definition of newforms for Kohnen spaces

than the previous one.

We keep to the notations in the previous scctions and the paper [VI]. See those
for the details of definitions and notations.

We note that we consider only Kohnen spaces in this section.

(3.1) In this paper and the previous paper [VI], we define several subspaces
and give several decompositions. Combining those decompositions, wc obtain the
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following:

{
S := S(k + 1/2, N, X) K if k ~ 2 }
V:= V(NiX)K if k = 1

= (ffin;E{±1}n m0,n;(k + 1/2, N, X)K ) EB (ffin;E{±1}n ~0,n;(k + 1/2, N, X)K)

EB (ffin;E{±l}n ffiO<e,d, d#M1 6 0,n;(k + 1/2, 4dM2+, X) K lu(e2
))

cdlMt

EB { Ker(Rn, S) if k ~ 2 }
Ker(Rn, V) if k = 1 .

This formula follows from [VI, (1.5), (1.7), (3.10)(2)] and (2.27) in this paper. D

(3.2) Definition We put the following notation:

91(k + 1/2, N, X)K:= ffin;E{±1}n 91o,n;(k + 1/2, N, X)K ,

D(k + 1/2, N, X)K:= (ffin;E{±1}n 6l0,n;(k + 1/2, N, X)K)

EB (ffin;E{±1}n ffiO<e,d,d#M1 6 o,n;(k + 1/2, 4dM2+, X) K IU(e2
))

edlMl

{
Ker(Rn, S) if k ~ 2}

EB Ker(Rn, V) if k = 1 .

Then we rewrite the formula in (3.1) as follows.

{
S:=S(k+1/2,N,X)K' ifk>2} 91(k / N) D(k /2N)
V:=V(N;X)K' ifk=1 = +12, ,XKEB +1, ,XK·

D

(3.3) Proposition

Ker(Rn, S) = ~'En S(k + 1/2, N/l, X U)) K IJ, .
Ker(Rn, V) = ~'En V(N/l; X (f)) K 18l .

Proof. By using [Vl,(1.9)), the subspaces of thc right-hand sides are contained in
S, V respectively. Since (!16,) (z) = lk/2+1/4 !(lz), those subspaces are contained in
thc subspaces of left-hand sides.

We will prove the contrary. Let I be any non-empty subset of II.
PrOfi [V1,(1.5)(3)], it is sufficient to prove that SI, VI are contained in the

subspaces of right-hand sides respectively.
PrOll the formula after [Vl,(1.4)], we have

SI = {L b(n)e(nz) E S; b(n) = 0 for all n rt LI},
n~l

VI = (E b(n)e(nz) E V; b(n) = 0 for all n ~ LI},
n~l

where LI := {a E Z; (a,ln) = lI} (~ ZlI).
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Take a prime lEI and any element f = L:~=l b(n)e(nz) in SI or VI. Then from
the above formula, ben) i=- 0 ::::} n E LI ~ Zl. Hence there exists a function g(z) on.fj
such that fez) = g(lz). It follows from [U1,(1.11)] that 9 E S(k + 1/2, Nil, X (!)) K

if fE SI, or 9 E V(N/liX (!))K if fE VI. This prove the contrary inclusion. 0

(3.4) Definition For any primitive form F of weight 2k, we denote by {AF(n)j n E
N} the systeIll of eigenvalues on the Hecke operators {T(n)i n E N}. Then we define
two subspaces of S(k + 1/2, N, X)K as follows:

S(k + 1/2 N . F) := { f E S(k + 1/2, N, X)K j fIT(n
2

) = AF(n)f }
, ,x, K for all n E Z+ such that (n,N) = 1

V(N .F) .= {f E V(N; X)K; fIT(n2
) = AF(n)f }

,X, K' for all nE Z+ such that (n,N) = 1 .

These are considered as the eigen subspaces corresponding to the primitive form
F. 0

Remark. We cau prove that yeN, Xi F)K = 8(3/2, N, Xi F)K for any primitive
(cusp) form F.

Under the above notation, we get the following theorem.

(3.5) Theorem (1) For k 2:: 2, the following decompositions hold good.

S(k+1/2,N,X)K= EB S(k+1/2,N,XjF)K,
F:(.l)

91(k + 1/2, N, X)K = EB S(k + 1/2, N, x; F)K ,
F:(.2)

D(k + 1/2, N, X)K = EB S(k + 1/2, N, Xi F)K .
F:( .3)

(2) For k = 1, the following decompositions hold good.

V(N;X)K = EB V(N,XiF)K ,
F:(.l)

'Jt(3/2,N,X)K = EB V(N,XiF)K ,
F:(.2)

D(3/2,N,X)K = EB V(N,XiF)K .
F:(.3)

Here (*1)-(*3) are the following conditions on primitive forms F of weight 2k:

(*1) the conductor of F is a divisor of M.
(*2) the conductor of F is M.
(*3) the conductor of F is a divisor of M and less than M.

Proof. From (2.28)(2), the subspaces ')10 Jt\;(k + 1/2, N, X)K has an orthogonal
C-basis consisting of common eigenforms for all Hecke operators T(n 2 ) (n E Z+,
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(n, N) = 1). Moreover the system of eigcnvalues of any element of such basis
corresponds to a primitive forms of weight 2k and of conductor M.

Similarly, from (2.28)(2) and [VI, (3.10)(2) and (3.5)], the subspaces 61o,K(k +
1/2, N, X)K and 6 01K (k + 1/2, 4dM2+, X) K IU(e2 ) havc orthogonal C-basis consist
ing of common eigenforms for all T(n 2 ) (n E Z+, (n, N) = 1). Moreover thc system
of eigenvalues of any element of such basis corresponds to a primitive forms of
weight 2k and of a conductor which divides M and is less than M.

We will prove a similar result for the subspaces Ker(Rn , S) and Ker(Rn, V),
i. e., these subspaces have orthogonal C-basis consisting of common eigenforms
for all T(n2 ) (n E Z+, (n, N) = 1) and moreover the system of eigenvalues of
any element of such basis corresponds to a primitive forms of weight 2k and of a
conductor which divides M and is less than M.

We use an induction on M2+.
If M2+ = 1, JI = 0 and Rn = 1. Hence, Ker(Rn , S) = Ker(Rn ,V) = {O} and

the statement holds good.
Let M2+ > 1 and assume that the above claim holds good if thc subspace has a

smaller "M2+"-part than M2+.

We consider the spaces S(k + 1/2,N/l,X (!))K and V(N/l;X (f))K for any
l E JI. From the assumption of the induction and [Vl,(1.8)], these subspaces
have orthogonal C-basis consisting of common eigenforms for all T(n2 ) (n E Z+,
(n, N) = 1) and moreover the system of eigenvalues of any element of such basis
corresponds to a primitive forms of weight 2k and of conductor dividing M /l.

Combining this and (3.3), thc claim for Ker(Rn, S) and Ker(Rn, V) follows.

From (3.1) and thc Strong Multiplicity Oue theorem of weight 2k, thc first
assertion folIows. The second and third assertion are easily seen by using the above
results. 0

Our next purpose is to rewrite the space of "oldform" D(k + 1/2, N, X)K.

(3.6) Proposition We have the following formulae.
[The case of k 2: 2]

D(k + 1/2, N, X)K = L L S(k + 1/2,4B, ~)K IJA

o<BIM O<AJ(M/B)
B:I=M e( Li )=x

+ L L L S(k+l/2,4B'~)KIU(A)IIRzel.
o<BIM o<AI(M/B)2 O<el<2 ZEn
B:I=M e( .d )=x ([Elf)

[The case of k = 1]

D(3/2,N,X)K = L L V(4B;~)K IJA

o<BIM o<AI(MJB)
B#M. e( Li )=x

+ L L L V(4B;~)K IU(A) II Rzel .

o<BIM o<AI(M/B)2 O<el<2 fEn
B:I=M e( .d )=x (lelf)
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I:

Here, ~ runs over all (even quadratie) Dirichlet characters defined modulo 4B such
that ~ C!!.) = X·

Remark. We know the relation of thc twisting operator: R l
3 = R l for alll E II.

Hence we can replace the range 0 ~ el ~ 2 with 0 ~ el E Z.

Proo/. From [VI, (1.9), (1.22), (1.23)], we easily see that the right-hand sides of
the statements are subspaces of S(k + 1/2,N, X)K resp. V(Nj X)K'

The subspaces S(k + 1/2, 4B, ~)K and V (4B; ~)K have orthogonal C-basis con
sisting of common eigenforms on hermitian operator T(n 2 ) (n E Z+, (n,4B) = 1),
moreover the systems of cigenvalues of such eigcnforms correspond to primitive
forms of weight 2k and of conductors dividing B. (cf. [Ul,(3.10)]).

The operators T(n2) (n E Z+, (n, N) = 1) comnnlte with the operators JA,
U(A), and R1 (l E II) (cf. [VI, (1.8), (1.20)] and [V3, (1.7)]). Hcncc all subspaces
in the right-hand sides of the statements have generators whieh are cornmon eigen
forms on T(n2

) (n E Z+, (n, N) = 1). Moreover those systems of eigenvalues
correspond to primitive forms of weight 2k and of a conductor which divides M
and are less than M, because BIM and B =f M.

Combining this with (3.5), we see that D(k+l/2, N, X)K contains the right-hand
side.

Next we will prove the contrary inc1usion.
We have an explicit expression formula (3.2) of D(k+ 1/2, N, X)K. We will check

each direct summand of thc formula (3.2).

It follows from (3.3) that Ker(Rn, S) and Ker(Rn, V) occurs in the first term
of the right-hand side.

Next we consider the part of the subspaces 6 0,K(k + 1/2, 4dM2+, X)K IU(e2) =

6 0
,K

1

(k + 1/2, 4dM2+, X2+) K IU(mle2) (0 < e, d, d =1= MI, ed]M1 ), where see [VI,
(3.1)] for the definition ofml and X2+. We only remark ",,' := "". (.!!!.l.), 0 < m11M1,
and X2+ U!!.L) = X.

This subspace is contained in the space S(k + 1/2, 4dM2+, X2+) K IU(mle2)
(when k 2:: 2), resp. V(4dM2+; X2+) K IU(mle2) (when k = 1).

We decompose ml = m2 . m3 with m2 = (mI, d).
Then the eharacter X2+ (!!!2.) cau be defined modulo 4dM2+. From [Ul, (1.28)],

we have S(k+ 1/2, 4dM2+, X2+)K IU(m2) = S(k + 1/2, 4dM2+,X2+ (!!!:L))K and

V(4dM2+;X2+)K IU(m2) = V(4dM2+;X2+ (!~·"'))K·

From trus we may assume that (mI, d) = 1.

We decompose that ml = m4 . m5 with m4 = (mI, e).
We first consider the case of m4 = 1. In this case, we set B = dM2+.
Since (mb ed) = (e, d) = 1, mle21(M1/d)2 = (M/ B)2 and so the subspaees

S(k + 1/2, 4dM2+, X2+) KIU(mle2) (when k 2:: 2) and V(4dM2+; X2+) KIU(mle2)
(when k = 1) oeeur in the seeond term of the right hand side.

Next we consider the case of m4 > 1. Take a prime divisor p of m4. Then
mle2 = (ml/p)(e/p)2 x p3.
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For k ~ 2, we have

S(k + 1/2, 4dM2+, X2+) K IU(mle2)

= S(k + 1/2, 4dM2+, X2+) K IU((ml/p) (e/p)2)U(p3)

~ S(k + 1/2, 4M/p, X2+ (mIfp) )K jU(p3)

~ S(k + 1/2, 4M/p, X2+ (mIfp) )K 16p

+ S(k + 1/2, 4M/p, X2+ (mIfp)) K IU(P).

Here, we use the formula (AA) at the last inclusion.
For k = 1, we can see in the same way,

V(4dM2+; X2+) K [U(mle2) ~V (4M/Pi X2+ (mIfp) )K 16p

+V(4M/Pi X2+ (mIfp)) K IU(p).

Here, we use that Hecke operator T(p2 ) fixes V (4M/p; X2+ (m1!p)) K"

We set B = M/p, A = p and so A = pl(M/B) = p. This means that
S(k + 1/2,4dM2+,X2+)KIU(rnle2) (when k ~ 2) and V(4dM2+;X2+)KIU(mle2)
(when k = 1) are contained in the right-hand side.

We finally consider the part of 9l0,K(k + 1/2, N, X)K. For all (al)IEII #- (Vl)II,
we have the following (cf. §2 (2.1)):

B(a):= EB 6 0
,KIF (k + 1/2, N(a), x) K IU(a2

)

O<al1v

:= EB 6 0,,,'IF (k + 1/2, N(a), 17') K IU(ua2
) ,

O<al1v

where D := II(a)o, F := ll(a)2+, and see §2 for the other notation.
It follows from the above that B(o) occurs in the second term of the right-

hand side. Here, we note that B = MIMJ~) and so lD 2 1(M/B). Hence A =
ua2]ID 3 1(M/B)2.

Since eil = DlEII ~(RI2+~(l)Rz)and 9l0'''(k+1/2, N, X)K = I:(oE),c(vE) B(a)len,

the subspace 9l0,,, (k +1/2, N, X) K is containcd in the second term of the right-hand
side. 0

PrOfi the above, we can give the following simple reformulation of results of §2
and §3.

(3.7) Final formulation of newform für Kühnen space. Let k be a positive
integer and M an odd positive integer. Let X be an even character modulo N := 4M
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with X2 == 1. We denote the p-adic additive valuation for any integer m by ordp(m).
We decompose M as follows:

M == M1 M 2+, M 1 := rr p,
ordp(M)=1

plM

M .- rr pordp(M)2+·- .
ordp(M);:::2

plM

Dcnote the set of all prime divisors of M2+ by 1I.

Define the space of oldform D(k + 1/2, N, X)K as follows.
[The case of k 2:: 2]

D(k + 1/2, N, X)K = L L S(k + 1/2, 4B, ~)K IJA

o<BIM o<AI(MfB)
B#M €(.A )=x

+ L L L S(k + 1/2, 4B, e)K IU(A) rr Rlef .

o<BIM o<AI(MfB)2 0::; el ::;2 lEll
B#M €(.A )=x (lEll)

(The case of k == 1]

D(3/2,N,X)K = L L V(4B;~)K IJA

o<BIM o<AI(Mf B)
B#M €( L\. )=x

+ L L L V(4Bj~)K IU(A) rr Rlel .

o<BIM 0<AI(MfB)2 O::;e,::;2 ZEll
B:f.M €( .d )=x (lEn)

Here, eruns over all characters IllOdulo 4B such that ~ (A) = X.

D(k + 1/2,N,X)K is a subspace of S(k + 1/2,N,X)K if k 2: 2, resp. V(N;X)K
if k = 1. We denote by m(k + 1/2, N, X)K the orthogonal complement of D(k +
1/2, N, X)K in S(k + 1/2, N, X)K resp. V(N; X)K according as k 2: 2 resp. k == 1.

Then the space m(k + 1/2, N, X) K is stable by the twisting operators Hp for
all pEll. Hence we can decompose this space ioto common eigen subspaces as
follows:

m(k + 1/2, N, X)K = EB~E{±1}nm0,K(k + 1/2, N, X)K ,

910,#I;(k + 1/2, N, X)K := {f E m(k + 1/2, N, X)K ; flRp = K,(p)f for all pEll }.

We call these spaces 910•K (k +1/2, N, X)K the spaces of ncwforms of Kohnen space,
because these subspaces m0,#I;(k + 1/2, N, X)K (K, E {±I}n) have the following nice
properties.

(1) m0,lI;(k +1/2, N, X)K has an orthogonal C-basis consisting of common eigen
forms for all Hecke operators Tk+1/2,N,x(p2) (p: prime, pA'M) and U(p2) (p: prime,
pIM), which are uniquely determined up to multiplication with non-zero complex
numbers. Let f be such a common eigenform and Ap the eigenvalue of f with
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respect to Tk+1/2,N,xJp2) (pAM) resp. U(p2) (pIM), then there exists a primitive
form F E SO(2k, M) ofweight 2k and of conductor M which is uniquely determined
and satisfies the following: For a prime p,

FIT2k ,M(P) = ApF if (p, M) = 1 and FIU(p) = ApF if p IM.

Here, we can find, by using the trace relation (2.28)(1), which primitive form occurs
via the above correspondence.

(2) (The Strong Multiplicity One Theorem)
Let f, g be two non-zero elements of')10,I'ö(k+1/2, N, X)K.· If fand gare common

eigenforms of Tk+1/ 2,N,x (p2) with the same eigenvalue for all prime numbers p prime
to some integer A, then Cf = Cg.

(3) The space of oldforms D(k + 1/2, N, X)K has also an orthogonal C-basis
consisting of common eigenforms for all Hecke operators Tk+1/ 2,N,x(P2) (p: prime,
PAN). The system of eigenvalues of such a common eigenform corresponds to a
primitive forms of weight 2k whose conductor is a divisor of M and less than M
(cf. (3.5)).

(4) The space of oldform D(k + 1/2, N, X)K is generated by thc spaces of cusp
forms of lower level. Hence, by induction, we see that the spaces S(k + 1/2, N, X)K
(k 2:: 2) and V(N; X)K (k = 1) are reconstructed by the spaces of type of ')10,K(k +
1/2, 4B, e)K and the operators of type of JA, U(A), and RI.

These operators JA, U(A), and RI (almost) fix the Fourier cocfficient of cusp
forms, i. e., for j = L:n2: 1 a(n)e(nz),

jIJA(z) := Ak
/

2+1
/

4 f(Az) = Ak
/

2+1
/

4 L a(n)e(Anz) ,
n~l

fIU(A)(z) := L a(An)e(nz) ,
n~l

fIRl(z) := L a(n) (y) e(nz) .
n;::::l

From this we claim the following: For studying Fourier coefficients of a cusp form
E S(k + 1/2,N,X)K resp. V(N;X)K' it is sufficient to study cusp forms only in the
spaces of newforms ')10'#';(k + 1/2, N, X)K. 0

(3.8) Remark There exists a case such that ')10,I'ö(k + 1/2, N, X)K :: ')10,,..' (k +
1/2,N,X)K as modules over Hecke algebra for two distinct "', ",' E {±l}fl. For
example we have the following isomorphism: Let p be an odd prime and {"', ",'} =
Map({p}, {±1}). Then

')10'~(k+ 1/2, 4p2, l)K ~ ')10.K' (k + 1/2,4p2, l)K

rv { EB s*(l,a) (2k, p2)} EIl (1 + ( -1 ) ) /2 {SO(2k,p)IRv EIl S(2k, l)IRv} .
aE{±l}{p} p

(cf.(2.28)(1)) 0

Appendix. We collect several propositions which are use in the section 2.
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Let k and N be positive integers such that 4 IN and X an even Dirichlet character
modulo N with X2 = 1.

(A.1) Proposition Let Q and a be two odd positive divisors of N such that
(Q, N /Q) = (a, Q) = 1. For any f E S(k + 1/2, N, X), the following identity holds
good:

..-...... ..-......

f IU(a)W(Q) = XQ(a) f I W(Q)U(a) ,

where XQ is the Q-primary component of X.

Proof. If Q = 1, the assertion is trivial and so we suppose that Q f:. 1.
We decolnposc a = lll2" ·lt (lt, ... , lt are odd prime numbers) and Q =

PI el ... Pn e n (Pi 's are distinct prime numbers and ei 2: 1).
First we consider the case of t = 1 and will prove this case by using induction

on n.
If n = 1, the assertion follows from [U1,(1.20)(1)].
Suppose that n 2: 2 and thc assertion holds good for any m less than n.
Observing fIU(h) E S(k + 1/2,N,X (h)), we have the following formula from

[UI,(1.18)] and the assumption of induction:

(*) jIU(h)W(Q) = (X C-~-))Pn (QPn -en) jIU(ll)W(QPn-en)W(pnen )

= XPn (QPn -en )XPl'''Pn-l (h) fIW(QPn -en )U(lt}W(Pne n )

= XPn (QPn -e
n )Xp.---Pn-. (h) (X (Qpn -e

n

) ) Pn (ld

x fIW(QPn -en )W(Pnen )U(lt)
..-...... ---=XPn (QPn -en )XPl'''Pn (h) fIW(QPn -en )W(Pn en )U(ll)

= XPl"'Pn(h) fIW(Q)U(ll) = XQ(h) jIW(Q)U(h) .

Next we suppose that t 2: 2 and the assertion holds good for any s less than t.
From the above formula (*) and the assumption of induction, we have the following

fIU(a)W(Q) = flU(ll .. ·lt-t}U(lt)W(Q)

( (
LI" 'lt-1)) ---= X Q (lt) tlU(h .. ·lt-dW(Q)U(lt)

= XQ (ldXQ(h .. ·lt-l) fIW(Q)U(ll .. ·lt-dU(lt)

= XQ(a) fIW(Q)U(a) .

Thus we 0 btain the assertion. 0

Now, we choose and fix an odd prime number P satisfying (p, N) = 1. Take a
form 9 E S(k + 1/2, N, X). Then 9 is also contained in S(k + 1/2, Np, X). Hence
we can consider the form 9 I Yp (See [VI, p.155] for the definition of Yp ).

Since (p, N) = 1 and X is defined modulo N, we have Xp = 1. Therefore from

[VI, (1.27)], p-k +3j2 9 IU(p)W(p)U(p)W(p) = 9 I Yp
2= (-;,1) P g,
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Vsing [VI, (1.18)], p-k+3/2g 1 U(p)W(p)U(p) = (-;1) pg 1 W(p)-l =

( -;,1 ) P ( -;,1 )k+1/2 Xp( -lhN(P) 9 IW(p).

Since 9 E S(k + 1/2, N, X) and W(p) = fP *8p for SOIne fP E r(N), we get

9 IW(p) = 9 I ;Sp.
Thus we obtain the following formula for any 9 E S(k + 1/2, N, X).

_ (-1) k+l/2
(A.2) 9 I Op = P X(p)p-k/2-1/4 9 IYpU(p) .

Next we consider 9 = L:~=1 a(n)e(nz) E S(k + 1/2, N, X) a.s an element of
S(k + 1/2, Np, X) and apply [VI, (1.26), (1.18)] to g.

(
1)k+3/2 ( 1)-1/2 ( )

9 IYp = =- X(P)g IW(p)Jp + =- pl/2 L a(n) ~ e(nz)
p p n~1 p

(
1)k+3/2 ( 1) -1/2 ( )

=~ X(p)g IJp2 + ~ p1/2~ a(n) ~ e(nz)

(-1) k-l/2
= P X(p )p3/2-k

x~ {p2k-1 a(n/p2 ) + pk-1 X(p) (~l) k (~) a(n) } e(nz) ,

where a(n/p2) = 0 if p2 t n.
By using [Sh 1, Theorem (1.7)], this formula is expressed by U(p2) and the Hecke

operator Tk +1/ 2,N,x(p2), Le., for any 9 E S(k + 1/2, N, X),

(A.3) 9 IYp = (~l) k-1/2 X(P)p3/2-k(g ITk+l/2,N,x(P2) _ 9 IU(P2)) .

o
Combining (A.2) with (A.3), we have for any 9 E S(k + 1/2, N, X),

D

Now we assume moreover that 9 is an eigen form of T(p2), Le.,

(A.5)

and let u be a squarefree odd positive integer such that (u,4M2+) = 1 and Xu = 1.
Here, Xu is the u-primary component of X.
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We will describe the action of Yp on the forms 1 := 9 I U(u) and f I U(p2) =
9 I U(up2). Here, we consider the action of Yp on the space S(k + 1/2, N, X (1!))
(N is the least common multiple of Np and u).

(A.6) First we assume that (p, u) = 1.

Since 9 I U(p) in contained in S(k + 1/2, N, X (E.) ), we can apply Proposition

(A.l) to 9 I U(p). Hence we have 1 J Yp = p-k/2+3/4g I U(p) U(u) W(P) =

(~) p-k/2+3/4g IU(p) W(p) U(u) = (~) 9 IYp U(u).

By using (A.3) and (A.5),

(A.7) f I Yp = (~) (~1) k-l/2 X(p)p3/2-k(A p f - f I U(p2)) .

Applying Yp to the both sides of the above formula and using [VI, (1.27)],

(~1) Pf = f IYp
2 = (~) (~1r-1

/

2

X(p)p3/2-k(Ap f IYp - f IU(p2) Yp ) .

Modifying this formula and using (A.7), we have

We can represent these relations as a matrix as folIows:

(A.9) (I IYp, f I U(p2) Yp)

= (I, f I U(P2)) X (~) (~1) k-l/2 X(p)p3/2-k ( ~~ Ap
2 _ p2k-2)

-A .p

D
The characteristic polynomials of this matrix is t 2 - ( ~l) p. Hence, this matrix

has two distinct eigen values.

(A.10) Next we assume that p I u.

Since 9 I U(p2) is contained in S (k + 1/2, N, X), we can apply Proposition

(A.1) to 9 IU(p2). Observing Xp = 1, f IYp = p-k/2+3/4g I U(p2) U(u/p) W(p) =
p-k/2+3/4g IU(p2) W(p) U(u/p).

( )

-k+l/2
By using (A.3) and (A.5), 9 I U(P2) = Apg - ~1 X(p)pk-3/2g I Yp'

Applying W (p) to the both sides,

____ (-1) -k+l/2 ____
(A.11) 9 I U(P2) W(p) = Apg IW(p) - P X(p)pk-3/2g I Yp W(p) .
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Observing 9 I U(p) E S (k + 1/2, N, X (l~) ), we apply (VI, (1.18)] to 9 1 U(p),

(A.12)
.......... .......... (_I)k-l/2

9 1 YpW(p) = p-k/2+3/4g 1 U(p)W(p)2 = p-k/2+3/4 P x(p)g I U(p) .

Combining (AA), (A.l1), and (A.12), we have

p-k/2+3/4g I U(p2) W(p) = p-2k+2{ (Ap
2 - p2k-2)g I U(p) - Apg I U(p3)} .

Therefore

(A.13)

Applying Yp to the both sides of the above (cf.(V1, (1.27)]),

Modifying this formula and using (A.13),
(A.14)

f IU(p2) Yp = p-2k+2{ (Ap3 _ Ap (p2k-l + p2k-2))1 _ (A p
2 - p2k-l)1 IU(p2)} .

We can represent these relations as a matrix as folIows:

(A.15) (I IYp , f IU(p2) Yp )

(
A 2 2k-2

= (/, f 1 U(p2)) X p-2k+2 P - p
-Ap

o
The characteristic polynomials of this matrix is t 2 - (p -1)t - P = (t - p)(t + 1).

Hence, this matrix has two distinct eigen values.
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