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Duality for Calabi Curves and Minimal Surfaces in JRn

A.J.Small

o. Introd uction

An algebraic curve in lPn that does not lie on any hyperplane is said to be
full: its degree fiust at least equal n. Curves of degree n differ from the ratio
nal normal curve, "Rn, by a projective automorphism, see [5]. Consequently,
if 1/J : M ~ Cn+1 is a non-constant holomorphic curve whose Gauss map
"YtP = ["p'] : M ---+ lPn takes values on an algebraic curve of degree n, then
we mayasweIl suppose that 'YtP : M ~ Rn' It turns out that there exists
a natural lift of such a "YtP iuto the holomorphic line bundle of degree n over
'Rn, from which 1/J can be recovered. This may be understood in terms of
the classical duality between curves in lPn+1 and lP:+1 , see section 2. This
construction generalizes the Lie-Hitchin correspondence for null curves in
C 3 , [10], [11], and in view of that it is not very surprising to find that such
curves in C n +1 possess various fVeierstmss representation formulae.

Our interest in this correspondence and these formulae derives from the
existence oftwo applications to differential geometry together with a possible
application to the theory of Lax equations which we describe in seetion 4.

Firstly, Calabi, see [1], [7], has shown that if "Y : M ---+ lPn is a full holo
morphic curve that induces, from the Fubini-Study metric, a metric of con
stant Gaussian curvature, K, away from brauch points on M, then / fiust
take values on some unitary transformation of R'n, which is the image of
Pn : lPl ---+ lPn , where

and furthermore that J( = 2/n. We call a curve 1/J : M ~ C n +1 such that
/tP induces a metric of constant Gaussian curvature a Calabi curve. The
correspondence described here facilitates the study of these curves in Cn +1

in terms of holomorphic curves in the holomorphic line bundle of degree n,
71'" : O(n) ---+ 1P1 . The metric induced by such a curve in Cn +1 satisfies a
genemlized Rieci condition, see {7]. (Note that for n = 1 the curves in C 2

are not constrained.)
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(1)

Secondly, for n ~ 2, Rn lies on a non-singular quadric hypersurface in lPn
and a judicious transformation of coordina.tes of Cn+1 , and resulting choice
of IRn+1, determines that the correspondence generates null holomorphic
curves in C n +1 and thus minimal surfaces in JRn+1. In particular, this
facilitates the construction of non-degenerate complete minimal surfaces of
finite total Gaussian curvature in JRn+1 which are characterized by the fact
that the image of their Gauss map has the smallest possible degree. See
seetion 3.

1. Weierstrass Formulae

(1.1) Let M be a lliemann surface and suppose that 1/J : M --1- C n+1 is a full
Calabi curve. It follows that there exists U E U(n + 1) and a holomorphic
differential w on M such that

t/J = U~ =uJ(1, y'iig, ...,J(; )gk, ... ,gn)w,

h -1
W ere 9 ~ Pn 0 I {;.

(Note that the fullness assumption may be dropped here provided the obvi
ous modifications are made.)

Conversely, if 9 : M --1- C is meromorphic and w ia a holomorphic dif
ferential on M such that whenever g haB a pole of order m at p E M, w
has a zero at p of order nrn, then ,p, defined as above, gives a Calabi curve
,p : M --1- C '1+1 . Note that the branch points of 1/J occur where w has a
zero off the divisor of poles of g. (This is analogous to the usual Weierstrass
formulae for null curves, see (8].)

(1.2) Now reparameterize ;j; by its Gauss map. I.e. suppose that g-1 and
F exist on an open set V C IP1 and g-1 (V) C M respectively, such that
w = Fde, and furthermore that f : V --1- C holomorphic, satisfies

where /('1+1) denotes the (n+1)-st. derivative of f. Substituting j(n+l) into
the above formula, and changing the variable to ( = g(e), we integrate the
above by parts to obtain:
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where 1/; = (1/;0' ... ,~n)'

(1.3) The metrk induced by ;j; is given by:

ds2 = 1/(n+1)12(1 + 1(1~)nld(I~·

COllsequently, if j(n+1)(p) = 0 then p is a branch point of ds2. We will see
in 2.7 that this has a simple geometrk interpretation.

(1.4) If 'Ij; : M ----. C n+1 is a meromorphic Calabi curve then it is not
hard to see from the above formula that it may be encoded into a pair
of meromorphic functions (9t/J, /t/J), together with a unitary transformation.
Suppressing the unitary transformations we have:

gt/J(~) = p;1 0 1't/J(~)

f",W ~! 'to(-l)kJG)g~-k(f.)'Mf.).

Conversely, given a pair of meromorphic functions (9, f) on M, g non
constant, one cau invert the above by setting:

where

/ (1) = d/ /(2) = !!-( d/) t
dg' dg dg ,e c..

Ir f = Po g, where P is a polynomial of degree dp ::; n then these formula
will produce a constant map: this has a simple geometrical explanation, see
2.7.
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(1.5) In dimension 3 one can write:

1/10 = /(2)

7/Jl = h(g j(2) - j(I»)

7/J2 g2 j(2) - 2g/(1) + 2j

where, f = j,;"

Note that these are equivalent to the classical Weierstrass formula for min
inlal surfaces in JR3.

(1.6) Similiarly, any full meromorphic Calabi curve in C 4 may, after unitary
transformation, be brought iuto the following form:

1/;0 = j(3)

1/;1 V3(g /(3) - /(2»)
1/;2 = V3(g2/(3) - 29/(2) + 2j(1))

1/13 g3/(3) - 3g2 j(2) +69/(1) - 6/,

where

/ = j,;, = ~(-1/;3 +VJg7/J'J - ,;3921/11 +g3,pO) ,

and 9 gives the Gauss map of 7/J.

The point here is that it is very easy to construct Calabi curves simply by
substituting meromorphic functions into the above. We remark on the rele
vant moduli for Calabi curves in section 2.

(1. 7) Note that since the induced metric on M takes the form

it follows that meromorphic Calabi curves induce complete metrics (in the
sense that every divergent path has infinite length).

2. Duality

(2.1) Let Y denote the total space of1r : O(n) ~ 1Pt . A global holomorphic
section (J E HOCIPt, O(n)) that vanishes to order n at some point of JP1 is
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said to be nonnal. The set of lines of normal sections forms a curve of degree
n, Re IP(lIO(IPI, G(n))).

Note that q : 1PI -----+ IPn , given by q(() = {u E HO(1PI , O(n»; u vanishes to
order n at (} gives a canonical identification with R.

(2.2) The hyperplane rr, = {u E HO(1PI, O(n)); u(() = O} enjoys tangential
intersection with C(R), the cone over R, along q((). This follows because if
Cf va.n.ishes at ( then it cannot vanish to order n elsewhere on JPI . Such a
hyperplane ia said to be normal.

rr =U'EPt rr, is the kernel of

JPI X HO(1PI, O(n» -----+ O(n), ((, u) -----+ u((),

and thus there ia the following isomorphism:

O(n) ~ {IPI X HO(JPI, O(n))} Irr = affine normal planes in HO( JPI, O(n)).

Note that J.l E O(n) is dual to t he affine plane rr JJ C HO( JPI, O(n)) of sections
that pass through J.l and consequently, J.llies on the image of a global section
Cf Hf u lies on rrJJ'

Remark Note that for n = 1 the normality constraint is vacuous.

(2.3) Anormal curve 1/J : M ---+ HOC/PI, O(n» is characterized by the fact
that 1/J'(~, () is anormal section for each ~ E A1. Identifying 'R with 1PI,
and thus viewing "Yt/J as a map to 1PI , for tf; non-constant,

r tP : M ---+ G(n),

giyen by r tP (~) = 'lj;(~ , ,t/J(~)), is agIobally defined lift of the Gauss map.
Note that r t,b(e) may be viewed as the (unique) affine normal plane, with
normal direction "Yt/J (~) that passes through tf; (e , ) E HO( JPI , O(n».

(2.4) It is not hard to show that if 'T/J is non-constant then r 1/1 determines 'lj;.
Let Spe( O(n» denote the etale space of the sheaf of germs of holomorphic
seetions of O(n). There is a (canonically defined) holomorphic map

'l1 : Spe(O(n)) ---+ HO(JPI, O(n»,

which is given on stalks by,

'l1 : O(n), ---+ O(n),j(I( ® O(n)d~HO(1PI, O(n»,
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where Xc is the ideal sheaf of holomorphic functions vanishing at (.

(2.5) Let 9 c Spe(O(n)) denote thc set of germs of global sections. The
following are immediate generalizations of results described in [10]:

Proposition The holomorphic curve q, : Spe(O(n)) ----+ HO( JP1 , O(n)) is
normal, and its Gauss curve is given by flJr([a]d = a«().

Proposition Ir 1/J is normal, with "Yt/J non-constant, then tPl M = q, 0 f~,

where M = {~ E M; there exists some neighbourhood V of ~ such that
r t/J(V) is transverse to the fibre 7r-

1 ("Yt/J«())}, and r~ : !VI --+ Spe(O(n)) is

the natural natural lift of r t/J over M.

(2.6) If tP : M ----+ HO(JPt, O(n)) has non-constant Gauss map then locally
trivializing O(n) one can write, away from branch points of "Yt/J,

where f is a (locally defined) holomorphic function. Thus if we cboose the
basis ßo, ... , ßn for lIO(JP1, O(n)), wbere

then
J( () = 7f;oßo(() +... + tPnßn(() +O((n+1 )

where, as in section 2,

This elucidates the significance of f.

Thus normal curves in HO(.lPt, O(n)) give, by unitary transformation, all
Calabi curves in C n+1 .

(2.7) If J = P 00 with dp ::; n then (0, J) describes a global section of 1r :

O(n) ----+ lPt and osculation gives the point corresponding to that section.
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Note that brauch points, where j(n+l) = 0, give points where the curve is
hyperosculated by the osculating section.

(2.8) Taking the basis {ßo, ... ,ßn,17} for HO(Y,1I'"- l O(n)), where (k = (k 01r

and 1] denotes the tautological section 17((,17) = 17, the embedding t : Y -+

1P(HO(Y,1f-10(n ))) ~ IPn+1 is given by t( (,1]) = [ßo, ...,ßm 17] and thus Y
is compactified to C(R), the projective cone over R. A hyperplane in IPn+1

lying tangent to R is said to be normal. Global sections of O(n) are cut
out by hyperplanes that do not pass through the vertex v of C(R), normal
sections are cut out by normal hyperplanes which ·do not pass through v.
Normal hyperplanes that pass through v lie tangent to C(R) and thus cut
ou t a fibre of 11'" : O(n) -+- IP1 . The set of normal hyperplanes in lPn+1

forms a dual projective cone C(n*) c 1P:+1 , where R* is the degree n curve
formed by normal hyperpla

(2.9) It is clear from this that normal curves are chamcterized by the fact
that the hyperplanes of C n+1 osculating them lie tangent to the curve on the
hyperplane at infinity that is cut out by intersection with C(1l*). Recall that
osculation determines a natural correspondence between full curves in lPn+1

and IP::+l' see [5]. The correspondence can be thought of as folIows:

Theorem Osculation dctermines a correspondence between full curves on
C(R) C IPn+1 and full curves in IP::+1 that are normal with respect to n*.

(2.10) Blowing up the vertex of C(1l) gives the Hirzebruch surface

Sn ~ 1P(O(n) EB 0)

and 1P:+1 is thus identified with the linear system IEot, see [4] for details
and notation. n determines a distinguished irreducible element of IEol and
normality is defined in IEol with respect to that curve in the obvious way.
Thus one can reformulate the above as:

Theorem There exists a natural correspondence between full algebraic
curves on Sn and full normal algebraic curves curves in IEol.

(2.11) This is useful in the description of moduli for meromorphic Calabi
curves 'l/J : At! ~ Cn +1

. In fact, it is clear that U(n + 1) X laEo +bCI,
where [aEo + bCI give the linear systems on Sn, with a > 0, b ~ 0, provide
natural compactifications of the moduli spaces of such curves.
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Remark 51 ~ IP2 with one point blown up. It is more natural to compactify
0(1) to IP2 and then the construction reduces to claSsical duality.

If A is an irreducible algebraic curve on Sn it is determined up to linear
equivalence by the interseetion numbers:

A . C = k, which gives the degree of 1I'"IA and consequently equals the de
gree, as a branched covering, of tbe Gauss map of 'l/JA, the normal curve
determined by osculation of A;

A . Eo = c, which is the dass of "pA that counts (with multiplicity) the
number of hyperplanes osculating ?/JA that pass through a point of C n+1

•

Ir A is not smooth then the domain of definition Of"pA is its normalization
Ä ~ A. The genus of the generic curve of degree 7rlA = k and dass c is
given by the adjunction formula as 9 = ~(kn(1 - k) +2kc - 2k - 2c) + 1.

(2.12) Given a pair of meromorphic functions (g, I), we determine the end
structure of the corresponding Calabi curve (with Gauss map g). 1.e. those
points where the curve goes to infinity in C n +1 . Viewing the pair as a
description of an algehraic curve on Sn observe that such points are given
by points where the curve on Sn intersects the curve at infinity, Eoo , or
points where the curve osculates a fibre of Sn ---+- IP1 • These considerations
lead to the following:

Theorem Suppose that (g, /) is a pair of meromorpruc functions such that
9 is non-constant and / is not a polynomial in g of degree ~ n. Let 'Doo(g)
denote the divisor of poles of g. The end structure of the Calabi curve t/J
generated by the formulae of 1.4 is determined as follows:

(i) Those points where 1/J osculates the hyperplane at infinity are given, off
'D00 (g ), by the poles of f, and on 'D00 (g) by the poles of 9 -n /.

(ii) Those points where ?/J osculates a finite hyperplane (at infinity) are given
off 'Doo(g) by the poles of

dT'/
dyn'
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and on Voo(g) by the poles of

Remarks(i) On 'Doo(g) we must take the twisting of 71" : O(n)~ lP1 into
account.

(1i) The geometry of an end in case (ü) above is determined by the first
T ::; n for which, off 'Doo(g) ,

and on Voo(g) for which,

(iii) On Sn there is the linear equivalence Eoo f'V Eo - nC, see [4J section 4,
which gives A . Eoo = c - nk. Thus the multiplidty of that part of the end
structure corresponding to osculation of the hyperplane at infinity itself is
determined by (k, c).

3. Minimal Surfaces in mn+1

(3.1) A curve of degree n in lPn is cut out by quadrics, see [4J, and in partic
ular lies on a non-singular quadric hypersurface. A linear transformation of
coordinates on c n+1 converts this quadric hypersurface to (Z5 +... +z~ = 0)
and thus renders any normal curve null. The corresponding Weierstrass
formulae for meromorphic data (g, f) yield complete branched minimal sur
faces of finite total Gaussian curvature equal to - 271" ndeg(g). This follows
immediately from the fact that ndeg(g) gives the homology degree of the
Ganss map of the minimal surfaces derived from (g, f).

(3.2) Note that minimal sur/aces constructed in this way are chamcterized by
the geometrical property that the image 0/ their Causs map has the smallest
possible degree (without the sur/ace being degenernte in the sense that the
image 0/ its Causs map lies on a hyperplaneJ see [6), section 4). Furthermore
any such sur/ace in JRn+l may be constructed in this way.
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(3.3) It is easy to write down suitahle transformations for arhitary n, hut
since they are not canonical we limit ourselves to illustrating the procedure
in 4 and 5 dimensions.

(3.4) It follows from 1.6 tbat tbe curves described there satisfy 31/Jb1/J~ 
1/J~ 1/J~ = 0 and consequently W : M ----. C 4 given by:

v'3
Wo = 2(,po + ,p3)

Wl = -i V3 (,po - 1/13) .
2

1
W2 = - (1/11 - 1/12)

2
t

W3 = - - (1/Jl + 1/12)
2

satisfies w5 +...+w~ = O. Hence the real part of the following gives a minimal
surface in IR4 of the type described in 3.4:

v'3{(I +~3)f{3) - 3g21(2) +6g1(1) - 6f}
2

W1 = -iV3{(I - g3)/{3) + 3g2/(2) - 69/(1) + 6/}
2

W2 = v'3 {(g _ g2)/{3) - (1 - 2g)/{2) - 2g/(1)}
2

W3 = -i~{(g + g2)J(3) - (1 + 2g)J{2) + 2gJ{1}},

where

Remark There exist Weierstrass formulae in integrated form for general
null curves in C 4 , see [9], [12]. For integral formulae see [6].
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(3.5) Similiarly, full normal curves W: M ----t eS satisfy 21/;b1/J~ + 1/J~ 1/;3 
(1/;~? =0 and hence W : M ----t eS given by:

1
Wo = V2,( 7/Jo + 1/J4)

-t
Wl = -(1/;0 - 1/;4)

V2
1

W2 = 2" (,pI + 1/J3)

-t
WJ = -(7/Jl - 1/;3)

2
W4 = -iW2

satisfies w~ + ... +wl =O. So the real part of the following gives a minimal
surface in JR5 of the type described in 3.4:

Wo = ~{(1 + g4)j(4) - 4g3j(3) + 12g2/(2) - 24g/(1) +24f}
V2

Wl = -i {(I - g4)/(4) +4g3/(3) - 12g2/(2) +249J(1) - 24J}
vI2

W2 = (g +g3)j{4) - (1- 3g2)j{3) +6g/(2) - 6j(1)

W3 = -i{(g - 93)/{4) + (1- 3g2 )j{3) - 6g/(2) +6j{I)}

W4 ~{g2 /(4) - 29/(3) +2/(2)}
V6

where

(3.6) Remark The examples given in Theorem 3 of [2], which give complete
minimal surfaces with total Gaussian curvature -21rn, are generated by
osculation of the curve 1] = (n+l in 11'" : O(n) ----t lP1. In dimension 3 this
gives Enneper's surface. These give the 'simplest' non-trivial examples in
each dimension: for any power less than n +1, osculation gives a constant
map.
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The pleasure of constructing new explicit examples is left for the reader.

4. Lax Equations

(4.1) It turns out that it is natural, in quite general drcumst ances, to asso
date to a Lax form with parameter an algebraic curve C (its spectral curve),
together with a dynamical system on the Jacobean of c. C lies on some
O(n) ---+ !PI, where for many interesting examples n = 2. This formalism
subsumes many exampIes of fini te dimensional completely integrable Hamil
tonian systemsj it also covers the Nahm equations of monopole theory: see
(3] for details and further references.

(4.2) In view of this, the following appears to be a natural question: Given a
Lax form with spectral curve C C O(n ), how does the geometry of the Calabi
curve C'" reflect the structure of solutions of the Lax equation?
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