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0. Introduction

An algebraic curve in IP, that does not lie on any hyperplane is said to be
full: its degree must at least equal n. Curves of degree n differ from the ratio-
nal normal curve, R, by a projective automorphism, see [5]. Consequently,
if y : M — C™*! is a non-constant holomorphic curve whose Gauss map
¢ = [¢'] : M — IP, takes values on an algebraic curve of degree n, then
we may as well suppose that v, : M — R,,. It turns out that there exists
a natural lift of such a -y into the holomorphic line bundle of degree n over
Ry, from which % can be recovered. This may be understood in terms of
the classical duality between curves in P,41 and IP},,, see section 2. This
construction generalizes the Lie-Hitchin correspondence for null curves in
C3, [10], [11], and in view of that it is not very surprising to find that such
curves in C™t! possess various Weierstrass representation formulae.

Qur interest in this correspondence and these formulae derives from the
existence of two applications to differential geometry together with a possible
application to the theory of Lax equations which we describe in section 4.

Firstly, Calabi, see [1], [7], has shown that if v : M — IP,, is a full holo-
morphic curve that induces, from the Fubini-Study metric, a metric of con-
stant Gaussian curvature, K, away from branch points on M, then 4 must
take values on some unitary transformation of R’,, which is the image of
pn : 1Py — IP,, where

pn(C) = [1,\/77C,.-.,\/—(27)C",---,C"],

and furthermore that K = 2/n. We call a curve ¢ : M — C™*! such that
vy induces a metric of constant Gaussian curvature a Calabi curve. The
correspondence described here facilitates the study of these curves in C™H!
in terms of holomorphic curves in the holomorphic line bundie of degree n,
7 : O(n) — IP;. The metric induced by such a curve in C™*! satisfies a
generalized Ricci condition, see [7]. (Note that for n = 1 the curves in C?
are not constrained.)



Secondly, for n > 2, R, lies on a non-singular quadric hypersurface in 1P,
and a judicious transformation of coordinates of C**!, and resulting choice
of R™*!, determines that the correspondence generates null holomorphic
curves in C™*! and thus minimal surfaces in /R"*'. In particular, this
facilitates the construction of non-degenerate complete minimal surfaces of
finite total Gaussian curvature in ™! which are characterized by the fact
that the image of their Gauss map has the smallest possible degree. See
section 3.

1. Welerstrass Formulae

(1.1) Let M be a Riemann surface and suppose that 3 : M — C™t! is a full
Calabi curve. It follows that there exists U € U(n + 1) and a holomorphic
differential w on M such that

$=Uph= U/(l,\/ﬁg,--., @g", oy g0, (1)

where g = p7t 0 7;.

(Note that the fullness assumption may be dropped here provided the obvi-
ous modifications are made.)

Conversely, if g : M — C is meromorphic and w is a holomorphic dif-
ferential on M such that whenever g has a pole of order m at p € M, w
has a zero at p of order nm, then 1, defined as above, gives a Calabi curve
¥ : M — C"1 | Note that the branch points of 1 occur where « has a
zero off the divisor of poles of g. (This is analogous to the usual Weierstrass
formulae for null curves, see [8].)

(1.2) Now reparameterize ¥ by its Gauss map. Le. suppose that ¢g~! and
F exist on an open set V C P, and g~!(V) C M respectively, such that
w = Fdf, and furthermore that f : V — C holomorphic, satisfies

1

FeH(¢) = Fo g-‘(c)j—g" ©,

where f(*+1) denotes the (n+1)-st. derivative of f. Substituting f*+1) into
the above formula, and changing the variable to ¢ = g(£), we integrate the
above by parts to obtain:



Brog(0) = ()E—)’ e,

where 1 = (1/;0, ey Pn).
(1.3) The metric induced by %) is given by:

s? = | fOMDIR(L + |¢P)dC).

Consequently, if f(*+1)(p) = 0 then p is a branch point of ds?. We will see
in 2.7 that this has a simple geometric interpretation.

(1.4) If  : M — C"*! is a meromorphic Calabi curve then it is not
hard to see from the above formula that it may be encoded into a pair
of meromorphic functions (gy, fy), together with a unitary transformation.
Suppressing the unitary transformations we have:

9() = row(©)

) = =3 0M (7wt one,
k=0

Conversely, given a pair of meromorphic functions (g, f) on M, g non-
constant, one can invert the above by setting:

w© =/} )z(— y SO,

where

o o _ 4.4
a7’ . f a7\ dg ,ete..

) =
If f= Pog, where P is a polynomial of degree dp < n then these formula

will produce a constant map: this has a simple geometrical explanation, see
2.7.



(1.5) In dimension 3 one can write:
Yo @
¥ o= VS - f0)
Y = ¢ S 2950 4 2f

where, f = fy, .
fo= %(% — V291 + g%¢o).

Note that these are equivalent to the classical Weierstrass formula for min-
imal surfaces in IR3.

(1.6) Similiarly, any full meromorphic Calabi curve in C* may, after unitary
transformation, be brought into the following form:

b = fO
o= V(g - s
Y2 = V3(g*f® —29f® 4 250)
P3 = g°f® —3g7 ) + 695 -6,
where )
f=Ff= E("‘ﬂ’a + V3g¢2 — V3g%%1 + g4o),
and ¢ gives the Gauss map of .

The point here is that it is very easy to construct Calabi curves simply by
substituting meromorphic functions into the above. We remark on the rele-
vant moduli for Calabi curves in section 2.

(1.7) Note that since the induced metric on M takes the form
ds? = | fOHIE(L 4 |g?) g,

it follows that meromorphic Calabi curves induce complete metrics (in the
sense that every divergent path has infinite length).

2. Duality

(2.1) Let Y denote the total space of 7 : O(n) — IP; . A global holomorphic
section o € H®(IP;,O(n)) that vanishes to order n at some point of /P, is
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said to be normal. The set of lines of normal sections forms a curve of degree
n, R C IP(HO(IPy, O(n))).

Note that g : IP, — IP,, given by ¢(¢) = {o € H°(IP;, O(n)); o vanishes to
order n at (} gives a canonical identification with R.

(2.2) The hyperplane Il = {o € H°(IPy,O(n)); o({) = 0} enjoys tangential
intersection with C(R), the cone over R, along ¢(¢). This follows because if
o vanishes at { then it cannot vanish to order n elsewhere on /P;. Such a
hyperplane is said to be normal.
II = U¢ep, Tl¢ is the kernel of

JH:)l X HO(PIJO("')) - O("’)?(C! O') i G(C)i

and thus there is the following isomorphism:
O(n) ~ {IP, x H°(IP,,O(n))}/1l = affine normal planes in H°(IP;, O(n)).

Note that 4 € O(n) is dual to the affine plane IT,, C H°(IPy, O(n)) of sections
that pass through ¢ and consequently, i lies on the image of a global section
o iff o lies on II,,.

Remark Note that for n = 1 the normality constraint is vacuous.

(2.3) A normal curve ¢ : M — H®(IP;, O(n)) is characterized by the fact
that ¥'(£,¢) is a normal section for each £ € M. Identifying R with IP,,
and thus viewing 7y, as a map to Py, for 4 non-constant,

Ty : M — O(n),

given by T'y(€) = ¥(&,74(£)), is a globally defined lift of the Gauss map.
Note that I'y(£) may be viewed as the (unique) affine normal plane, with
normal direction 7y(£) that passes through %(€,) € HO(IP, O(n)).

(2.4) It is not hard to show that if ¥y is non-constant then T'y, determines 3.
Let Spé(O(n)) denote the étalé space of the sheaf of germs of holomorphic
sections of O(n). There is a (canonically defined) holomorphic map

¥ : Spé(O(n)) — HO(IP, O(n)),
which is given on stalks by,
T : O(n) — O(n)¢/(TF ® O(n))—H(IPy, O(n)),
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where Z¢ is the ideal sheaf of holomorphic functions vanishing at (.

(2.5) Let G C Spé(O(n)) denote the set of germs of global sections. The
following are immediate generalizations of results described in [10]:

Proposition The holomorphic curve ¥ : Spé(O(n)) — HO(IPy, O(n)) is
normal, and its Gauss curve is given by T'y([o]¢) = o(().

Proposition If ¢ is normal, with yy non-constant, then %|; = ¥ o Iy,

where M = {¢€ € M; there exists some neighbourhood V of { such that
Ly (V) is transverse to the fibre 77 (vy(£))}, and [} : M — Spé(O(n)) is
the natural natural lift of Iy, over M.

(2.6) ¢ : M — H°(IP,, O(n)) has non-constant Gauss map then locally
trivializing O(n) one can write, away from branch points of 7y,

Ty 075(¢) = £(0),

where f is a (locally defined) holomorphic function. Thus if we choose the
basis o, ..., Bn for HO(PPy, O(n)), where

Dk T
Be(() = %‘2("_1‘,

then
F(C) = $0Bo() + - + ¥aBn(C) + O™

where, as in section 2,

k
wro (= (}) S0 Gt )

This elucidates the significance of f.

Thus normal curves in H°(IP;,O(n)) give, by unitary transformation, all
Calabi curves in C™+1,

(2.7) U f = Pog with dp < n then (g, f) describes a global section of r :
O(n) — [P, and osculation gives the point corresponding to that section.



Note that branch points, where f(**1) = 0, give points where the curve is
hyperosculated by the osculating section.

(2.8) Taking the basis {Bo, ..., Bn, 7} for HO(Y,7=10(n)), where (¥ = (ko r
and 7 denotes the tautological section 7(¢,n) = 1, the embedding ¢ : ¥ —
P(H°(Y,x~10(n))) = IPay1 is given by ¢(¢,n) = [Bo, ..., Bn, n] and thus ¥’
is compactified to C(R), the projective cone over R. A hyperplane in /44
lying tangent to R is said to be normal. Global sections of O(n) are cut
out by hyperplanes that do not pass through the vertex v of C(R), normal
sections are cut out by normal hyperplanes which-do not pass through v.
Normal hyperplanes that pass through v lie tangent to C(R) and thus cut
out a fibre of r : O(n) — IP,. The set of normal hyperplanes in P4y
forms a dual projective cone C(R*) C [Py, ,, where R* is the degree n curve
formed by normal hyperpla

(2.9) It is clear from this that normal curves are characterized by the fact
that the hyperplanes of C"t! osculating them lie tangent to the curve on the
hyperplane at infinity that is cut out by intersection with C(R*). Recall that
osculation determines a natural correspondence between full curves in P44
and Py, see [5]. The correspondence can be thought of as follows:

Theorem Osculation determines a correspondence between full curves on
C(R) C Pp41 and full curves in [Py, that are normal with respect to R*.

(2.10) Blowing up the vertex of C(R) gives the Hirzebruch surface
Sy~ IP(O(n) ® O)

and [Py, is thus identified with the linear system |Ejp|, see [4] for details
and notation. R determines a distinguished irreducible element of | Ep| and
normality is defined in |Lp| with respect to that curve in the obvious way.
Thus one can reformulate the above as:

Theorem There exists a natural correspondence between full algebraic
curves on S, and full normal algebraic curves curves in |Eg|.

(2.11) This is useful in the description of moduli for meromorphic Calabi
curves ¥ : M — C"*! | In fact, it is clear that U(n + 1) X |aEp + bC|,
where |aEg + bC| give the linear systems on S,, with a > 0,5 > 0, provide
natural compactifications of the moduli spaces of such curves.



Remark $; ~ IP, with one point blown up. It is more natural to compactify
O(1) to IP, and then the construction reduces to classical duality.

If A is an irreducible algebraic curve on &, it is determined up to linear
equivalence by the intersection numbers:

A - C = k, which gives the degree of 7|4 and consequently equals the de-
gree, as a branched covering, of the Gauss map of 14, the normal curve
determined by osculation of A;

A - By = ¢, which is the class of ¥4 that counts (with multiplicity) the
number of hyperplanes osculating 1 4 that pass through a point of C*+1,

Ii:.A is not smooth then the domain of definition of ¢4 is its normalization
A — A. The genus of the generic curve of degree 7|4 = k and class ¢ is
given by the adjunction formula as g = 1(kn(1 ~ k) 4 2kc — 2k — 2¢) + 1.

(2.12) Given a pair of meromorphic functions (g, f), we determine the end
structure of the corresponding Calabi curve (with Gauss map g). Le. those
points where the curve goes to infinity in C"*!. Viewing the pair as a
description of an algebraic curve on S, observe that such points are given
by points where the curve on S, intersects the curve at infinity, E.,, or
points where the curve osculates a fibre of S,, ~— IP;. These considerations
lead to the following:

Theorem Suppose that (g, f) is a pair of meromorphic functions such that
g is non-constant and f is not a polynomial in g of degree < n. Let D (g)
denote the divisor of poles of g. The end structure of the Calabi curve ¢
generated by the formulae of 1.4 is determined as follows:

(i) Those points where 1 osculates the hyperplane at infinity are given, off
Deo(g), by the poles of f, and on Dy (g) by the poles of g=™ f.

(ii) Those points where 1 osculates a finite hyperplane (at infinity) are given
off Doo(g) by the poles of

ey

dg™’



and on Dy (g) by the poles of
&

d(%)ﬂ (g7"f).

Remarks(i) On Do, (g) we must take the twisting of 7 : O(n) — IP; into
account. :

(ii) The geometry of an end in case (ii) above is determined by the first
r < n for which, off Dy(g),
df

dgT =

and on De.(g) for which,
&
d(3)

J

(g7 f) = o0.

(iii) On S, there is the linear equivalence Eo, ~ Eg — nC), see [4] section 4,
which gives A - Eo, = ¢ — nk. Thus the multiplicity of that part of the end
structure corresponding to osculation of the hyperplane at infinity itself is
determined by (k,¢).

3. Minimal Surfaces in ™!

(3.1) A curve of degree n in IP, is cut out by quadrics, see [4], and in partic-
ular lies on a non-singular quadric hypersurface. A linear transformation of
coordinates on C™*1 converts this quadric hypersurface to (2 +...+22 = 0)
and thus renders any normal curve null. The corresponding Weierstrass
formulae for meromorphic data (g, f) yield complete branched minimal sur-
faces of finite total Gaussian curvature equal to —2rndeg(g). This follows
immediately from the fact that ndeg(g) gives the homology degree of the
Gauss map of the minimal surfaces derived from (g, f).

(3.2) Note that minimal surfaces constructed in this way are characterized by
the geometrical property that the image of their Gauss map has the smallest
possible degree (without the surface being degenerate in the sense that the
image of its Gauss map lies on a hyperplane, see [6], section {). Furthermore
any such surface in IR™! may be constructed in this way.



(3.3) It is easy to write down suitable transformations for arbitary n, but
since they are not canonical we limit ourselves to illustrating the procedure
in 4 and 5 dimensions.

(3.4) It follows from 1.6 that the curves described there satisfy 3yhh —
¥} = 0 and consequently w : M — C* given by:

Wwg = ?('ﬁo—!-d’a)

wy = —i\/Tg(’%bo—%bs) '
Wy = %(¢1“¢2)

w3 = —%(¢1+¢2)

satisfies w+...+w? = 0. Hence the real part of the following gives a minimal
surface in IR* of the type described in 3.4:

wWo

W

W2

w3

where

V3
2
V3

V3
=i {(1 - )/ + 3 FD — 695 + 67}

{(1+ %) f® = 3g27® 4 69V — 61}

(9= ) - (1~ 20)1) — 205

-i%-g{(g +99F® — (1+29)f® + 295103,

d d  d
fO = é, @ = -@(d—g),etc..

Remark There exist Weierstrass formulae in integrated form for general
null curves in C*, see [9], [12]. For integral formulae see [6].
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(3.5) Similiarly, full normal curves ¢ : M — C5 satisfy 2¢4¢ + 194 —
(%)% = 0 and hence w : M — C5 given by:

wo = \%('ﬁo + 4)
w = ‘\"—/—%(% — %4)
w = 30+
wy = (b1 —vs)
wg = =iy

satisfies w? + ... + w? = 0. So the real part of the following gives a minimal
surface in IR® of the type described in 3.4:

1
wo = E{(1 + o)W —ag3 O 4129273 — 24970 4+ 241}

o = 0= g+ 4g°O) — 12270 + 249500~ 247)
wp = (94" - (1-34)f® + 6953 — 650

ws = =i{(g—¢) /@ +(1-3g%)f® — 695 + 651}
P10 — 205 + 27}

where o d df
W =2 w2 = 2y e,
f dg H f dg dg €rc
(3.6) Remark The examples given in Theorem 3 of [2], which give complete
minimal surfaces with total Gaussian curvature —27n, are generated by
osculation of the curve n = (**! in 7 : O(n) — IP;. In dimension 3 this
gives Enneper’s surface. These give the ‘simplest’ non-trivial examples in
each dimension: for any power less than n + 1, osculation gives a constant
map.
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The pleasure of constructing new explicit examples is left for the reader.
4. Lax Equations

(4.1) It turns out that it is natural, in quite general circumstances, to asso-
ciate to a Laz form with parameter an algebraic curve C (its spectral curve),
together with a dynamical system on the Jacobean of C. C lies on some
O(n) — IP,, where for many interesting examples n = 2. This formalism
subsumes many examples of finite dimensional completely integrable Hamil-
tonian systems; it also covers the Nahm equations of monopole theory: see
[3] for details and further references.

(4.2) In view of this, the following appears to be a natural question: Given a
Laz form with spectral curve C C O(n), how does the geometry of the Calabi
curve C* reflect the structure of solutions of the Lax equation?
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