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§l. Introduction

Let ]H3 be 3-dimensional hyperbolic space and 180+ (lH3
) its group of orientation preserving

isometries. Taking tbe model

]H3 = GJ x m.+ = {(z,r) I z E CD,r E R,r > O}

the group lso+cnI3
) way be identified with PSL2(C). Tbe action of PSL2 (CD) on rn3 is

given by

(~ ~) .(z,r) = ~.((az+b)(cz+d)+acr2,r)

with
N = Icz +dl2 + Ic1 2r2

•

Note that we do not, for this paper, distinguish between a. matrix in SL2 (CD) and its image
in PSL2 (a;).

A subgroup r ~ PSL2 ( CD) acts properly discontinuously on ]H3 if and only if it is discrete
in PSL2( CD). If, furthermore r is torsionfree then the quotient space

gets the structure of a hyperbolic 3-dimensional Riemannian manifold from m? If r\IH3

has finite hyperbolic volume then it can be compactified to
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so tbat tbe boundary ar\DI3 consista of ßnitely many tori. We are here parlicularly
concerned with cases wbere r\IH:J ia homeomorphic to a link complement in S3. We call
a torsionfree discrete subgroup r < PS~ (GJ) a link complement group if

where L ~ S3 ia BOme link.

An interesting class of diacrete groups r :5 PSL,(~) ia the class of arithmetic gooups. For
the notion of arithmeticity see [B]. A subclass of these ia obtained in the !ollowing way.
Take d E lN 8. squarefree natural number and write

for the corresponding imaginary quadratic numberfield. We define

to be the ring of integers in K -cf. For a nonzero ideal A ~ 0_11 we introduce the !ollowing
groups

The definition of A-1 ia:

Ä-1 = {x E K-d I x· a E O-tl for a1l a E ~}.

Notice that PSL2(O-d) = PSL2(O-cl, <'-cl) and that for a fixed d the groups PSL2(O-cl,...4)
are a1l commensurable. It ia a well-known fact that two groups PSL2 (O-cl,Ä1 ) and
PSL2(O-cl, A2 ) are conjugate in PSL2(K_cl) if and only if Al and ...42 represent up to
a square the same element· in the idealclass group of 0 -cl. Hence there are only finitely
many conjugacy cla.sses of groups PS~(O-cl,A) as A runs through all nonzero ideals of
O-cl' .

If r :5 PS~(O-d) is a torsionfree subgroup of finite index then r\lH3 ia the interior of a
compact 3·manifold bounded by finitely many ton. H r :5 PS~(GJ) is an arithmetic link
complement group then r is up to conjugacy commensurable with a unique PSL2 (O-d).
This well-kn9Wll result can be found in [R]. A first result in the search for torsionfree,
discrete arithmetic subgroups r :5 PSL2(GJ) so that r\DI3 is homeomorphic to a link
complement is:

1.1. Theorem: Let r 5 PSL2 (CD) be a torsionfree, diacrete, arithmetic subgroup so that
r\lli3 is homeomorphic to a link complement then r is conjugate to a subgroup of finite
index in PSL2( O-d, A) where A ~ V-cl ia a nonzero ideal and

dE {1,2,3,5,6,7,10,11,14,15,19,23,31,35,39,47,55,71,95,119}.
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This result is mainly contained in [B - N]. We shall comment on it in paragraph 2. In
sorne previoUB work [G, S, 2] it was proved that if r satisfying the hypothesis of Theorem
1.1 is eontained in a PSL2 (O-d) then

de {1,2,3,5,6,7,11,15,19,23,31,39,47, 71}.

An obvious con.sequence of Theorem 1.1 is

1.2. Corollary: Up to conjugacy there are only. finitely many commensurability classes
of torsionfree, discrete, arithmetie subgroups r :5 PSL2 (CV) 80 that rYIH3 is homeomorphie
to a link complement in 53.

For most d which are in the exceptionallist in Theorem 1.1 it is not lmown whether there
is a link eomplement group r ::; PSL2 (CV) commensurabel with PSL2(O-d). For small d
like d E {I, 2, 3, 7} there are many examples listed in [H] or [R]. It can be seen from these
examples that there are infinitely many conjugacy classes of arithmetic link eomplement
groups r ::; PSL2(GJ).
Theorem 1.1 shows that all arithmetic link complement groups can be found as subgroups
of finitely many graups of the type PSL2 (O-cl, A). The main result of this paper is a
method to single out link complement groups from the subgroups of finite index in a fixe<!
group PSL2 (O-i,A).
Let d be fixed and small and let A ~ 0 -cl be a nonzero ideal. Then usually a niee
PSL2(O-d, A) invariant tesselation of IH3 is known, see for example [G, G, M], [Sw], [H],
[Seh]. From this a presentation of PSL2 ( O-cl, A) is readily obtained. The presentation ean
then be used to find all subgroups r ::; PS~(O-d, A) of a given (low) index n. This is
done with the help of standard computer programs, see [G, S, 1] for more details. Let r
now be from tms list. It can be easily checked whether r is torsionfree. We are then left
with the problem to find necessary conditions for r to be a link complement group. We
state some in the following

1.3. Proposition: Let r :5 PSL2((I;) be a torsionfree link complement group. Then:
1) H1(r, 1l) is torsionfree,
2) HJuap(r, a;) = 0, ,
3) rah is generated by images of unipotent elements,
4) r is generated by unipot"ent elements.

For more eomments see paragraph 2. It is clear, see [G,S,l], that all these eonclitions can
be checked for a specifie group r. To follow the problem whether ryrn? is homeomorphic
to a link eomplement we have now to employ more geometrie techniques. The ~esselation

of IH 3 leads to a combinatorial description of r\IH3
• From this eombinatorial description

we then have to decide whether r\IH3 is a link complement and also find the link. This
is in fact the most difficult part of our program. An elementary approuch to visualise the
manifold r\IH3 seems to be very diffieult, see [Ba] for an attempt.
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Apriori the combinatorial structure of r\rn:3 depends on the presentation chosen for the
group f. Its complexity increases with the index of f in PSL2 (O-d). However, in all
cases Wlder consideration, a special type of handle cancellation pennits us to simplify the
structure and thus to decide that f\nI3 embeds in 53. This simplification process is due
to Zieschang [Z] and is the geometrie counterpart to the Nielsen~transformationsof group
representations described in [M,K,S], [C,Z,1-3]. It is then routine work to find a system of
longitude·meridian pairs on 8Cf\IH3) which gives us the desired links. We~e indebted to
Wolfgang Haken for explaining the Whitehead-Zieschang technique to oue of uso

We do not know whether tbe above process is an algorithm. In particular, we were not
able to d~ide the embeddability of r\1ll3 in 53 algorithmically. However in 8.ll ca.ses we
have studied, we were, with sorne effort, able to do so.

We shall carry out the above program in paragraphs 3 - 5 on the subgroups of index ~ 12
in PSL2 ( 0-7 ), In paragraph 3 we describe the conjugacy classes of torsionfree subgroups
of index ~ 12 in PS~(O-7) which also have a torsionfree first homology group. We
then develop in each case a combinatorial description of r\IH3

• We then apply to these
combinatorial manifolds the simplification process described above and prove that they are
embeddable in 53 and thus are homeomorphic to link complements. We also were able to
find the corresponding links. We have listed them in paragraph 6. Our list contains many
examples of links which have not been found before.

We hope that our lists will sbed some light on the following two problems.

Problem 1: For which links L is there a torsionfree, discrete arithmetic group f <
PSL2(~) so that 53 - L is homeomorphic to f\lH3 ?

The corresponding question for just torsionfree, discrete subgroups f ~ PSL2(~) has been
answered by Thurston [Th].

The particular case of knot-complements was studied by Reid [R]. He proves that the figure
8 knot is the only knot whose comple~ent is homeomorphic to f\IH3 with r arithmetic.

Problem ,2: Which torsionfree arithmetic subgroups f ~ PSL2 ( <C) are link complement
groups? .

The examples we studied suggest that Proposition 1.3 has a converse. That is, we always
found if f :::; PSL2 ( ce) is torsionfree arithmetic l has torsionfree H 1(f, 7l) and is generated by
unipotent elements that r\IH3 is homeomorphic to a link complement. It seems plausible
that Wlder these hypothesis it is possible to glue solid tori into the cusps which kill all of
the fundamental group., The resulting closed 3-manifold would have trivial fundamental
group and should be S3. Unfortunately we were not able to carry this idea through.

Amongst all subgroups of finite index in PSL2(O-7) those which are torsionfree and have
torsionfree first homology group and hence are potential link complement groups seem to
be quite rare. We put An to be the number of conjugacy classes of subgroups of finite
index n in PSL2("-7) and Tn to be the number of conjugacy classes of subgroups of index
n which are torsionfree and have torsionfree first homology group. Note that Tn = 0 if 6
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does not divide n. We report the following table:

n An Tn
6 25 6

12 ". 197 24
18 1877 124

In all cases the links in paragraph 6 are covered by other links under cyclic coverings. By
this many other arithmetic link complements can be found. We mention only on~ example:
The link under r -7 (6,4) C8D be arranged to look like

Figure 1.1

The links under Figure 1.2 then cyclicly cover the above link.

Figure 1.2

Obviously they all have 2 components. However for other links, for example r -7(12, 1)\nl3

there are cyclic coverings with an increasing number of components. .
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§2 Link complement groups in PSL2 ((C)

We start off by discussing the proof of Proposition 1.3. Let r ::; PSL2( (c) be a link
complement group. That is r is torsionfree, diacrete and r\IH? ia homeomorphic to 8 3 - L
for same link L ~ 53. Since

we may infere the first claim of Proposition 1.3 from standard properties of fundamental
groups of link complements lRa].

Tbe second claim ia proved in [Schw], note that

This standard condition gives a strong restriction on the groups r.
The third claim is obviously implied by tbe fourth.

To prove the fourth we use that 71"1(53 - L) ia generated by Wirtinger elements. They
go to unipotent elements under the i80morphism 1rl(B3 - L) ~ r. See also [G,S,1]. This
proves Proposition 1.3.

Ta prove Theorem 1.1 let r ~ PSL2(Gj) be an arithmetic link camplement group. Then
r\rn:3 ia not cocompact and hence a conjugate of r ia commenaurable with a. PSL2 ( O-d),
[R] Proposition 1. By Proposition 1.3 r ia genera.ted by unipotent elements and hence we
infere from [R] Lemma 1 that r ~ PSL2(K_d). From standard properties [Bl of arithmetic
groups it follows that r ~ PSL2 ( O-d, A) for a suitable ideal A < O-d. Since H:...p(r, (C) =
owe get that also H~u"p(PSL2(O-d,A), (C) = O. By an application of the Lefschetz-trace
formula J.Blume-Nienhaus has proved that this can only happen in rather restricted cases,
namely at most for the d listed in tbe theorem.
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(3.1)

(3.4)

§3 Subgroups of index :5 12 in PS~(0_7 ).

Here we shall describe tbe combinatorial data whicb will be used to analyse the topology
of the quotients r\IH? wbere r :$ PSL2 ( 0_7 ) are eertain subgroups of finite index.

3.1 The group PSL2 (0-7)

We start off by describing the group PSL2(0-7). We put
1 1

w = 2+ 2"'-7.
We then have 0_7 = ~ Ei) '!Lw. Tbe group PSL2(d-7) ia generated by

(1 1) (0 -1) (1 w)A= 0 1 ' B= 1 0 ' C= 0 1

and presented by tbe relations

(3.2) B 2 = (AB)3 = ACA-IC- l = (BAC- l BC)2 = 1.

We shall also need

'S-AB-(1 -1)U-CBC-1-(W 1-W)
1 - - 1 0 ,I - - 1 -w '

S =5-1 = (0 1) U =AC-IBCA-I = (l-W W+1)
2 1 -1 1 ,2 1 W - 1 ·

The groups ß}, ~2 generated by the following matrices

(3.3) ßI =< Sb U1 >, ß2 =< 52, U2 >
are finite and in fact isomorphie to tbe symmetrie group on 3 symbols. We have

ßl n ß2 =< SI >= {1, Sb Si}.
It is well-known [G,S,1] that if r :5 PSL2 (O-7) is torsionfree of finite index then

611pSL2( 0_7 ) : rl·
So we shall eontend our study here to subgroups of index 6 and 12.

3.2 The invariant te33elation .

We shall proeeed by giving a tesselation of llf3 by hyperbolie prisIDS. Tbe vertices of these
prisms will be contained in ßIH3 = IP I ( €). In aur model we think of

ßIH3 = (CD X {O}) U {oo}

with PSL2 ( ce) acting by linear fractional transformations. We define tbe following points
in ßIH3

.

a = (0, 0), b = (~, 0), c = (w, 0),
'1 W ()d = ( 2' + 2' 0), e = 1, 0, f = 00,

9 = ( i -!f, 0), h = ( 1 - w, 0), i = (1 -~, 0).
Let P be tbe geodesie prism spanned by a,'" ,/ and PI that spanned by a, e, /, 9, h, i. We
have the following (euelidean) picture of the double prism l' U PI in ]H3 U 8IH3

:
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Figure 3.1: Pu PI

We find [G,G,M] that 6 1 is the normalizer ofP in PSL2(O-7) and that Ll1 acta transitively
on the vertices of P by the formulas:

a.....-+f a.....-+d
b.....-+c b.....-+e

(3.5)
c.....-+d c'r-+f

51 : dt-+b Ul : d'r-+a
o

e'r-+a e 'r-+ b
f'r-+e f'r-+c

The group· Ll2 is the normalizer of 'P) and also acta transitivelyon ita vertices. We have
the formulas

at-+e at-+I

et-+f et-+g

(3.6) f.....-+a f.....-+h
52 : gt-+I U2 : gl-+e

h'r-+g h.....-+f
i t-+ h It-+a

It is known that the Wlion

U '"'('P u U '"'(1'1

..,.EPSL,(O_7) "'fE;PSL,(O-7)
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Q = 'P U 'Pt.

The set Q n rn:3 ia then the fundamental domain for the action of PSL2 (O-7) on IH3
•

3.3 SubgroupJ 0/ indez 6 in PS~(O-T)

Let r :5 PSL2(0 -7) be a torsionIree subgroup of index 6 then both the sets Llt , Ll2 are
fu1l sets ot" representatives for the cosets

This shows that the hyperbolic double prism with vertices removed shown in figure (3.1)
is a fundamental domain for the action of r on m:3 • To get a combinatorial description of
the quotient r\IH 3 we need to find the identifications of the boundary of PUPt induced
by r. To do this it is enough to describe the identifications of the oriented edges of P U'Pt
induced by r. The identifications of the 2-cells then follow. Oriented edges will be denoted
by

[x, y]

where x, y E {a,···, i}. ThiB information can be extracted from the permutation represen-
tation .

0: : PSL2(O-7) -+ Se = S({I,,", 6})

on the cosets of r. We have for 9 E PSL2(O-7):

grgi = rgig-1 = ru,-I(i).

r is the stabilizer of 1 under 0' in PSL2 (O-7)' With the help of tables (3.5), (3.6) we now
pick for every oriented edge E of P U 'Pt a 7E E Llt U Ll2 80 that

Because of (3.5), (3.6) 7E ia unique. Two oriented edges E}, E 2 are then identified by r if
and only if

-1 r
IE l 'YE'J E .

This can again be checked by the permutation representation.

We shall give now for the relevant subgroups r of index 6 in PSL2 (CJ-7 ) generators and the 
permutation representation on the generators A, B, C of PSL2 (O-7). This is then sufficient
to compute the edge identifications which we will also give.

We infere from [G,S,l] that PSL2 ( 0_7 ) has 6 conjugacy c1asses of torsionfree subgroups r
of index 6 with torsionfree Ht(r, 7L). They are represented by the groups r -7(6,1) up to
r -7(6,6) in the numbering of [G,S,1]. We have
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r -1(6,1) :

Generator~: C,A2 ,BCB , H I (r,7L) = 7L3

Permutation repre3entation: 0'A = (1,2)(3,4)(5,6), UB = (1,3)(2,5)(4,6),
0'0 = (1)
Edge identijicatiofU: r -7(6,1)\1' U PI hu 3 classes of oriented edges whieh can be read
off from:
1) [a, f), [c, !), [c, d), [i, g), [a, g), 3) [e, a), [b, a), [b, c), [h, i], [e, i].
2) [b, d), [h, g], [h, f), [e, f), [e, d),

r-1(6,2) :

Generator.,: A, B(J2B, BeA-2B , H I (r, 7L) = 7L3

Pennutation reprelentation: 0'A = (2,3,4,5), U B = (1,2)(6,4)(3,5),
uc = (2,4)(3,5)
Edge identificetwn.!:
1) [a, I], [c, J), [h, I], [e, I], 3) [d, cl, (d, el, (g, i], (g, a], [d, b], [g, h].
2) [e, al, [i, e], [b, cl, [a, b], [h, i],

r -1(6,3) :

Genero.torl: A,C,BACB , H1(r,7L) = 'Tl3

Permutation reprelent4tion: 0'A = (2,3,4,5), t7B = (1,2)(3,5)(4,6),
O'C = (2,5,4,3)
Edge identijicetioru:
1) [a, f], [c, I], [h, I], [e, f], 3) [b, d], [b, a], [i, h], [i, el, [b, cl, [i, g].
2) [e, al, [d, e], [c, d], [g, h], [a, gl,

r -7(6,4) :

GeneratorI: A2, CA-I, BCA-IB , H I (r,7L) = Z3
Permutation reprelentation: O'A = (1,2)(3,4)(5,6), OB = (1,3)(2,5)(4,6),
O'C = (1,2)(3,4, )(5,6)
Edge identijicationl:
1) [a, I], [h, I], [d, b], [a, b], [h, i], 3) [e, a], [g, a], [c, d), (e, d], [g, h].
2) [c, b], [c, f], (g, il, [e, f], [e, i],

r -1(6,5) :

GeneratorI: C, BAB , HI(r,~) = '112
Pennutation reprelentation: U A = (1,3,4,5), f7B = (1,2)(6,4)(3,5),
uc = (2,6)
Edge identijicatioßI:
1) [a, I], [c, I], [i, e], [a, e], 3) [c, b], [i, h], [c, d], [a, b], [i, g], [a, g].
2) [I, e], (d, el, [d, b], [g, h], [I, h],
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f -7(6,6) :

Generatorß: AC-I, BAB , H} (f, 7L) =712

P~rmut4tion repre",entation: 0'A = (1,3,4,5), t7B = (1,2)(4,6)(3,5),
uc = (2,6)(1,3,4,5)
Edge identijictdionJ:
1) [a, f], [d, e], [h, f], [a, e], 3) [d, cl, [h, g], (d, b], [a, b], [h, i], [a, g].
2) [j, e], [ä, e], [b, cl, [j, cl, [ä, g],

3.4 Subgroupß 0/ intlu 11 in PS~(O-7)

Let r < PSL2(0-7) be a torsionfree subgroup of index 12. Then there is a T E PS~(0 -7 )
80 that the sets

~l U T~l and 6 2 U T6 2

are full sets of coset representatives for f\PSL2(O_T). We define

pi = '1'1', pI = T'P1•

We find that the union of the two double prisms

Q = l' U 1'1 U 1>' u~

with their vertices removed ia a fundamental domain for the action of r on m:3
• For the

vertices we adopt the notation shown in the following picture
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4) [b, a], [i, h], [c', b'l, [g', a'], [e', I'],
5) [c, b], [h', g'], [e, i], [a', e'l, [f', c'],
6) [b, d], [g', i'], [i, g], [c', d'], [e', d'l, [e', i'].

4) [d, e], [a', I'], [i', e'], (g, h], [c', d'],
5) [b, a], [i, h], [b', cf], [i, e], [b, cl, [g', h'],

i'

9 h g' h'
I I
I I
I I.
I

) .
I

le I e'

",. ", ",. ", .
",. ,. I, ,. ",. 1 ,,. , '" 1

,
a

,. I I a' ,.
f'

I I
I 1
I 1
I 1
I

d 1<1'.. ..
",. , ",. ,,. ",.,. ,

'"
,

",. , ",. ,
b

,.
b'

,.
dc

Figure 3.2: Q = 'P U 'PI U P U~

We infere from [G,S,1] that PSL2 (O-7) has 24 ci:mjugacy classes of subgroups of index 12
which are torsionfree and have torsionfree commutator quotient group. We list them here
together with their generators, pennutation representations and the corresponding edge
identifications for Q.

r _7(12,1) :

Generator3: A, C,BC2B, BCA3B, HI (r,7L) = 7L",
Permutation repre3entaüon: O'A = (9,3,6,5,2,4)(8, 7,12)(10,11),
O'B = (1,2)(4,5)(6, 7)(8,9)(3,10)(11,12), tlc = (2,3)(4,6)(12, 7, 8)(5, 9)(10,11).
Edge identification3:
1) [a,!l,[c,/],[h,/],[e,/],
2) [d, cl, [d, e], [g, a], [i', h'), [0, h), [d', b'],
3) [e, a], [h', I'], [I', a'], [a', b'],

r -7(12,2) :

Generator.!: A, C, BC3 B, BCA2B, HI (r,1L) = 1L4
,

Permutation repre"entation: 0'A = (2,3,4,5,6, 7)(8,9, 10)(11, 12),
0'B = (1, 2)(3, 7)(6,8)(4, 10)(5, 11)(9, 12), (Je = (2,6,4)(3, 7,5)(8, 10,9).
Edge identification,,:
1) [a, I], [c, I], [h, I], [e, I],
2) [e, a}, [d', e'], [e', I'], [/', h'],
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3) [d, cl, [c', I'], [i', h/], [g, a], [a', e/], 6) [b, d), [bi, a'l, (g' , i'], (g/, a'l, [i, g], [bi, c'].

4) Je, a], [b, alt [cf, b'], [h', i'], [ei, i'],
5) [b, cl, [h, i], le, i], [c', b'l, [gi, i /], [a', b/],
6) [d', c'], [h', g'], [g', a'], [a', eil, [e', d'].

r _7(12,3) :

Generator3:: A, C, BC" B, BCBC- 1BC-1B, H I (r,7L) = 7L",
Permutation repre3entation: U A = (2, 3, 4, 5, 6, 7, 8, 9)(10, 11),
UB = (1,2)(3,9)(8,10)(4, 11)(5, 7)(6,12), UC = (2,8,6,4)(3,9, 7, 5):

r -1(12,4) :

Generator,:: C,B(J2B,BCA2B,AB(J2BA-t, H t (r,7L) = 7L",
Permutation repre3entation: t7A = (1,2)(3,4,5,6)(7,8,9,10)(11,12),
UB = (1,3)(2, 7)(4, 10)(5, 11)(6,8)(9, 12), Uc = (3,5)(7,9)(4,6)(8, 10).

r -7(12,5) :

Generator.,:: AC-1 ,C'2,BACB,A-t BACPA, H t (r,1L) = 7L",
Permutation repre.,entaüon: q A = (1,2)(3,4,5,6)(7,8,9, 10)(11,12)
t7 B = (1,3)(2, 7)(4,10)(6,8)(5, 11)(9, 12), (Je = (1,2)(3,6,5,4)(7,10,9,8)(11,12).

r -7(12,6) :

Generator.,.,": A,C,BA2C'JB,BCBCB, H t (r,7L) = 7L",
Permutation repre3entation: U A = (2,3,4,5,6, 7,8, 9)(10, 11),
UB = (1,2)(3,9)(5, 7)(4, 10)(6, 12)(8, 11), tTc = (2,5,8,3,6,9,4, 7)(10, 11).

r -7(12, 7) :

Generator':: C,A3 ,BCB,A-1BA3BA, Ht(f,Z) = Z3,
Permutation repre3enwtion: U A = (1,2,3)(4,5,6)(7,8,9)(10,11,12),
UB = (1,4)(2, 7)(3, 10)(5,12)(6,8)(9,11), (Je = (7,10,9,12,8,11).
Edge identification3:
1) Ja, I], [c, 1], [c, d), (i, 9][a, 9],
2) [b, d), [h, g], [e, d), [h' ,1'], [ei, I'],
3) [h, I], Je, I], [a', I'], [e', 1' ],

r -7(12,8) :

Generator,,:: C,BACB,BAC- 2B, H1(r,7L) = 7L3
,

Permutation repre"entation: U A = (1,2,3)(4,5,6)(7,8,9)(10, 11,12),
tTB = (1,4)(2, 7)(3, 10)(5, 12)(6,8)(9,11), Ue = (4,6,5)(7,11,9,10,8,12).
Edge identification,,:
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1) [a,!], [c, I], [g' ,a'], [f' ,a'],
2) [h, i], [e, i], [e' ,a'], [b' ,a'], [c' ,d'],
3) [9, i], [h, I], [e, /l, [bi, d'], [ei, d'],

4) [e, a], [6, cl, [c', I'], [h', I'], [i', g'],
5) [d, cl, [6, a], [g, a], [g', g']' [ei, I'],
6) [d, e], [g, h], [i', h'], [6', c'], [ei, i'], [b, d].

4) [b, d], [g, i], [c', I'], [h', I'], [0', e'l,
5) [d, el, [i, el, [6, cl, [9, h], [/', e'l,
6) [0, e], [0' ,/'], [cl', e'l, [i' ,e'l.

r -7(12,9) :

Generator,:: C, BACB, ABC-3AB, HI(r, Z) = ZS,
Permutation. repre,ent4tion: (1A =(2,3,4,5,6, 7,8, 9)(1, 11),
(1B =(1,4)(2,10)(3,9)(5, 7)(6, 12)(8, 11), t7c =(2,9,8, 7,6,5,4,3)(10, 12).

f -7(12, 10) :

Generator,.": AC-I, BAC-IB, BCfJ Bc;'J, HI(f, 7l) = '!L',
Permutation repre"entG.üon:
(1A = (1,2,6,5)(3,4, 7,8)(9, 10)(11,12),
U B = (1,3)(2, 10)(4, 12)(5,11)(6, 7)(8, 9), (1C = (1,2,6,5)(3,4, 7,8)(9, 11)(10, 12).

r -7(12,11) :

Generator,.": C, BC2A-I B, BCBA-2B, HI(f, Z) =7i',
Permutation repre"enÜl.tion: (1A = (2,3,4,5,6)(7,8,9, 10, 11),
UB = (1, 10)(2, 12)(3,6)(4, 7)(9, 11)(5,8), (1C =(2,7,3,8,4,9,5,10,6, 11).
Edge identijicationJ:
1) [a, !J, [c, I], [h, I], [e, f],
2) [bi, d' ], [b', a'], [g', i'], [g', a'], [bi, c'], [g', h'l,
3) [c, d), [0, b], [h, i], [a, g], [d', c'], [i ' ,h'],

r-7(12, 12) :

Generator,:: C, BeB, A -IBCBA-I, BI(r, 7L) = :Tl",
Permutation repre"enÜl.tion: (1A = (1,2,3,4)(5,6, 7,8)(9,10)(11, 12),
(1 B = (1,5)(2,9)(3, 7)(4,11)(6,12)(8,10), (1C =(9,11 )(10, 12).

r -7(12, 13) :

Generator,,:: A, BC2B, CBCA2B, HI (f,1L) = '!L3
,

Permutation repre"ent4tion: q A = (2,8,5,4)(3,10,6,9),
(1B = (1,2)(3,11)(4,8)(5,12)(6,7)(9,10), Uc = (1,7)(2,3)(4,9)(5,6)(8,10)(11,12).
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4) [b, d), [h, g], [i, e], 16', c'], [e', 0"], [i', g'),
5) [f, cl, (f, h], [f', e'l, [/',01,
6) [b, cl, (h, i], [e', 01, [i', e'], [a', b'l.

4) [d, el, [i, e), [b', 4], (g', i'], [b', c'), (g', h' ],
5) [e, alt [b, cl, (g, hl, [d', e'l, fi', e'l,
6) [d, cl, [i, hl, [d, bl, [i, g], [b', 0'], (g', a'l.

4) [b, a], [i, h], [d, b'], [g', a'], [e', f'],
5) [0, e], [0', I'], [b', a'], [I', h'],
6) [i, e], [b, cl, [e', 0'], [e', I'], (g', h'].

r _7(12,14) :

Generator$:: A,C2,CBCBC2B,BACB, H 1(r,1L) = 7L3
,

Permutation repre$entation: erA = (2,3,4,5,6)(7,8,9,10,11),
erB = (1,2)(12, 7)(3,6)(8, 11)(9,4), erc = (1, 12)(2,6,5,4,3)(7,9, 11,8, 10).
Edge identijicatio,,",:
1) [0, Il, [e, f), [c', I'], [h', I'],
2) [e, 0], [d, e], [0, g], [c', et], (g', h'],
3) [b, 0], [e, d), [i, g], [6', d'], [i', h'], [a', g'],

r-7(12, 15) :

Generator,:: A, C2, BC-1A2B, CB(J2B, H 1(r, 7L) = 7L' ,
Permutation repreßent4tion: erA = (3, 7, 10,9,6,8,5,4)(11, 12),
erB = (1,3)(2,6)(4, 7)(5,11)(8,9)(10, 12), erc = (1,2)(3, 10,6,5)(4, 7, 9,8)(11,12).

r -T(12, 16) :

Generator,:: A,CBACB,BACBC-t, H t (r,1L) = Zs,
Permutation reprt,entction: O'A = (2,3,4,5)(6,7,8,9),
O'B = (1,2)(6,10)(3,5)(7,9)(4,11)(8,12),0'0 = (1,10)(2,9,4, 7)(6,5,8,3)(11,12).

r -7(12, 17) :

Generatorß:: A,CBACB,BA-t(J'lB, H t (r,1L) = 7l3
,

Permutation repre$entation: erA = (2,3,4,5)(6, 7, 8, 9),
erB = (10,2)(1,6)(3,5)(8, 11)(7,9)(4, 12), erc = (1,10)(2,8,3,9,4,6,5, 7)(11, 12).
Edge identijicatioru:
1) [0, I), [e, f], [c', I'], [h' ,I'],
2) [I, cl, [I, h], [f', e1, [f', a'],
3) [0, b), [0, g], [e', 0'], [c', d'], [h', i'],

r -7(12, 18) :

Generator$:: AC-I, CBC-l B, BA3B, H I (f,1L) = 1l3
,

Permutation repre$entation: erA = (2, 1,3)(4,5,6)(7,8,9)(10,11,12),
erB = (2,4)(1, 7)(3, 10)(5, 12)(6,8)(9, 11),0'0 = (2, 1,3)(4, 7)(5, 8)(6, 9)(10, 12, 11).
Edge identificatio~:

1) [0, f], [h, f], [c, d], [e, cl] , [h', g'],
2) [c, f], [h, g], [e, I], [0, g], [b', d'],
3) [b, d), [i, g), [g', i'], [dd'], [e', d'], [e', i'],
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4) [e, a], (g, a], [c', 4], [e', d'], [i', g'],
5) [c, d], [e, d), [g, h], [6', cl], [h', g'], [a' ,.g'],
6) [c', 6'], [6' ,4'], fi',h'], [a', e'], [e', i'J.

4) [b, cl, [h, i], [e, i], [b', cf], [h', g'l, [e', cf],
5) [e, a], [b, a], [b', c'], [h'" g'l, [e', i'],
6) [h, f), [e, f], [e' ,a'], [6', a'].

4) [d, e}, (j, h], [I', e'l, (/', a'l,
5) [b, a}, [i, el, [e', a'], [6', c'], [h', i'],
6) (g, a], [I, cl, [cl', c'], (g', i'], [cl, b'], [g', h'].

4) [g, a], [I, cl, [€I', c'], [i', h'], [d', b'], [i', g'],
5) [b, d], [g, i], [b, cl, (g, h], [d', e'], [I', h'],
6) (d, cl, [i, h], [a, e], [b', a'], [a', g'].

f -7(12, 19) :

Generator,,:: AC-I, A 3 , BAC-I B, BA3 B, HI (f,7') = 1L3
,

Permutation repre"ent4tion: f7A = (1,2,3)(4,5,6)(7, 11,8)(9, 12, 10)
(TB = (1,4)(2,8)(3,9)(5, 10)(6, 7)(11, 12), (TC = (1,2,3)(4,5,6)(7,9)(8, 10)(11, 12).
Edge identificQ.tio~:

1) [a, /), [h, I), [d, b), [a, b), [h, i],
2) [c, b), (g, i), [e, i], [c', I'], [e' ,I'],
3) [c, I), [e, I], [a', I'], [h', I'],

r -1(12,20) :

Generator,;: C,A·B,A2BA2, H}(f,7L) = '/L2,
Permutation repre"entation: (JA =(1,2,3,4,5,6, 7,8)(9, 10, 11, 12),
(TB = (1,5)(2,9)(3, 7)(4, 10)(6, 11)(8,12), (TC = (9, 12, 11, 10).
Edge identification,:
1) [a, I], [c, I), [c, d), [i, g], [a, g],
2) [b, d], [h, g], [e, d), [h', I'], [e', I'],
3) [a', I'], [c', I'], [c', d'], [i', g'], [a, g'],

r _1(12,21) :

Generator,:: A,BA'JC-'JB,BC-IBC-l, H1(r,7L) = '/L2,
Permutation repre,entation: (TA = (2,3,4,5)(6, 7,8,9)
(TB = (1,2)(3,5)(4, 11)(6, 10)(7,9)(8, 12), (TC = (1, 10,11,12)(2,8,4,6)(3,9,5, 7).
Edge identijication.5:
1) [a, I}, [e, f], [c', I'], [a' ,1'],
2) [e, a}, [b, cl, [h, i], [a', b'], [e', i'],
3) [d, cl, [g, i], [d, b], [g, h], [Li', e'], [/', h'],

r-7(12,22) :

Generator".": A, BC-1BC-1 , BA-1 CBC, HI(r, Z) = 1L2
,

Permutation repre"entation: (1A = (2,3,4,5)(6, 7, 8,9),
(TB =(1,8)(2,12)(3,5)(4, 11)(6,10)(7,9), (TC = (12,10,11,1)(2,9,5,8,4, 7, 3,6).
Edge identification3:
1) [a,f], [e,/], [c', I'], [e',i'],
2) [b, al, [I, h], [I', e'l, [I', a'],
3) [i, e], [e, d), [e', a'], [b', c'], [g', h'],

r-7(12,.23) :

Generator,:: A, BC2B, BACBC-I, H I (r,7L) = 7l2
,

Permutation repre3cntation: (JA =(2,3,4,5)(6, 7,8,9),
(TB =(1,2)(10,6)(12,8)(11,4)(3,5)(9, 7), uc = (1,10, 11, 12)(2~ 9)(6, 3)(5, 8)(4, 7).
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Edge identifictdionJ:
1) [a,/],[/,e],[c',I'],[e',i'],
2) [e, a], [c, d), [g, h], [d', e'], (g', a'],
3) [b, d], [i, h], [b, cl, [i, g], [b', 0'], [f', h'],

4) [b, al, [I, h), [/', e'l, [/', a'],
5) [e, d), [0, g], [e', a'], [c', d'], [g', h'],
6) [i, e], [I, cl, [b', d'], [i', h'], [b', c'], [i', g'].

4) [e, d),[e, d), (g, h], [c', b'], (g', i '], [e', i'],
5) [e, al, 19, a], [cl, 4], [e', tf], (g', h'],
6) [c, 11, [e, 11, [e', 0'], [h', a'l.

r -7(12,24) :

Generator,:: AC-1 ,BC4 ,AC3B, H1(r,7L) = 7l2 ,

Permutation repre,ent4tion: (7A = (1,2,3,4,5,6, 7, 8)(9, 10, 11, 12),
(7B = (1,5)(2,9)(8,12)(3, 7)(6, 11)(4,10), (70 = (1,2,3,4,5,6, 7,8)(9,11)(10, 12)w
Edge identification.s:
1) [0, f], [h, IJ, [d, b], [a, b), [h, i),
2) [c, b], [g, i), [e, i], [c', I'], [e', I'),
3) [a', I'], [h', I'), [d', b'], [0', b'), [h', i'],

From tbe permutation representations it follows that tbe following inclusioD relations are
up to PS~(O_7) conjugacy tbe only inclusions between the groUp8
r -7(12, 1), ... ,r-7(12,6) and tbe grOUp8 r -7(6, 1), .. · ,r-7(6,4):

r -7(12,3) < r-7(6,2); r -7(12,4) < r-7(6,1), r -7(6, 2)i
r -7(12,5) :5 r -7(6,3), r -7(6,4); r _7(12,6) < r -7(6,3).

Since tbe grOUp8 r -7(6,1), ... ,(6,4) are pairwise isomorphie [G,S,I], it follows that tbe
groups

r -7(12,3), r -7(12,4), r -1(12,5), r _1(12,6)

are pairwise isomorphie. From the M08toW rigidity tbeorem [Ma] we infer that tbe corre
sponding manifolds a.re pairwise homeomorphie.

Correspondingly the inclusions up to PSL2 ( 0_1 ) conjugacy between the groups
r _7(12, 7), ... ,r_7(12, 19) and r -7(6, 1), ... ,r-7(6,4) are:

r~7(12, 9) :5 r -7(6,3); r -7(12, 10) :5 r -7(6,4); r -7(12,12) < r -7(6,1);
r -7(12, 13) :5 r -7(6,2); r -7(12, 15) < r -7(6,2); r _7(12,16) < r-7(6,3).

It follows that the manifolds corresponding to tbe groups:

r -7(12,9), r -7(12, 10), r -7(12, 12), r -7(12, 13), r -7(12, 15), r -7(12, 16),

are pairwise bomeomorphic.
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§4. Handle decompositioDB of r\lH3

In this and in tbe next paragraph we study tbe topological type cf tbe quotient manifold
M = r\IH3 wbere r = r -et(m, n) and d, m, n take tbe following values:

d = 7 , m = 6, n = 1, , 5,

d =7 , m =12 , n =1, ,24 ·

It turns out that all these manifolds are link complements. The corresponding links are
identified and listed; see paragraph 6.

In order to obtain M we manipulate the identific:atiori complex Q of r descnbed in para--'
graph 3. For that we first assign to Q what we call its Whitehead graph G(Q). Then,
as a next step, we modify G(Q) in two ways. These modifications simplify the graph and
finally allow U8 to viBualize the manifold M as a link complement, see paragraph 6.

One of these simplifications diminishes the number of edges of G(Q). Following a sugges
tion of W. Haken, we refer to it as the Whitehead-Zieschang reduction process. Topologi
cally, this procesa meanB that the complex Q is replaced by a simpler Olle which ia obtained
from Q by a cut-and-paste process. By tbe other simplification we reduce ihe ntun:her of
vertices of G(Q). Topologically, tbis corresponds to cancelling a pair of eomplementary
handles in M, see 4.2.

We stress that both kinds of simplification alter the manifold M but not its topological
type. This fact implies that the links constrocted by U8 &ce only determined up 10 home
omorphisms. In general, a link complement admits many homeomorphisms which cannot
be extended 10 a self-homeomorphism of 53.

4.1 The Wbitehead graph of. Q

As before let Q be the identification complex obtained from Q as described in paragraph
3. Thus Q is either a double prism or a. pair of double prisms. When Q consists of two
pieces, we malre it connected by picking two r-equivalent faces, one of each componerit,
and glue them together.

Now we la.bel the oriented edges of Q by numbers 1, 2, ... , where r -equivalent edges get
the same label. Similarly, we label the faces of BQ by capitalletters A+, A-, B+, B-, ... ,
indicating that the face A+ has to be identified witb the fa.ce A-, etc. It turns out that,
once the edge labels are given, there ia exactly one possibility to glue pairs of races together
in such a way that the edge labels are respected.
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Canonica1 hMdle decomposition of M

The polyhedron Q admits a natural handle decomposition 'H. = 'H.o U 'Xl U 1i2 U 'H.3 (see
[RS; p. 74] for notation). Tbe dass of 3-handles 1-(.3 is formed by the stars of the vertices
of Q with respect to its second normal subdivision. The 2-handles 1i2 are given 88 product
neighbourboods of the edges, and the class of I-handles 'H.l consists of product neighbour
hoods of the faces of Q lying in its boundary. Finally, there is a single Q..handle, namely
Q minus the union of 1-, 2-, and 3-handles.

We observe that tbe handle decomposition 1{, of Q induces canoni~y a handle decom~
sition of M. Denote by Qo tbe polyhedron arising from Q by removing the interior cf the
3-handles belonging to 'H.3 • We tben have a quotient map p: Qo -+ M, and tbe i-bandles of
M are composed by tbe images of the i-handles of '20. To be more precise, each I-handle of

- M is of tbe form [-1,1] x 1)2 and is tbe union of two l-handles [0,1] x 1)2 and [-1,0] x 1)2
of Q associated with a pair of faces F+, F- and glued togetber along {O} x TfJ. We refer
to this handle as an F-handle. Similarly, every 2-handle of M is deßned 88 the union of
a class of 2-bandles of Q which belong to equivalent edges and which are glued together
along boundary disks of tbe fonn J x I wbere J c 81J2. Tbus the number 01 2-hanclles of
M equals tbe number of equivalence classes of edges of Q under the .action of r.

A Bat presentation of Q

As the next step we visualize tbe handle decompoeition 1t of Q on the topological 3-ball
(R2 x (-00, 0]) U {oo}. This is done in such a way that all edges of Q come to lie on
m.2 x {O}. To see what is meant by that first deform Q 80 that it becomes a convex subset
of m.3 , then apply stereographie projection. Figure 4.2 und Figure 4.4 show such a Hat
presentation of Q in the cases r -7(6,4) and r _7(12,22), respectively.

1

1

Figure 4.1: Q in the case r-7(6,4).
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Figure 4.2: Q made Hat

Figure 4.3: Q in tbe case r_7(12,22)

Whitehead grapns

A Wbitehead graph G ia a finite planar graph together with tbe following data:
(1) A fuced point free involution of tbe vertex set of G which preserves degree,
(2) a fixed embedding G c-+ IR?
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Figure 4.4: Q marle convex

. --~- ---_ .._. ~~--'

Figure 4.4 a): Q made flat
the lace E contains the point 00

A Whitehead graph ean be used to construet compact 3-manifolds with boundary. To see
how this works we choose lor each vertex v ol G c lR2 a small disk D" in m.2 centered at
v where all these disks should have the same radius. Then öD" meets the edges ol Gin a
set ol points whose number equals the degree d of v. H necessary, after an isotopy ol G in
m.2 we may aBBume that öD" nGis invariant under the rotation ol D" through the angle
21r/d. Now for each pair of vertices (v,v') of G corresponding Wlder the involution given
by (1) we attach a I-handle I x D v along D" and dv" This is done in such a way that ler
each x E öD" n G the are I x {x} connects x with x' E 8Dv' n G.

On the bOWldary of the handle body H, construeted in this way we have a system of.
(pairwise disjoint) circles arising from the edges ol G, together with the vanOU8 arcs I x {x}
on the attached I-handles. Now the compact 3-manifold we have in mind is obtained from
H - 9 by atta.ching a 2-handle D 2 x 1 along a tubular neighbourhCM>d of every of these
circles in 8H,. .

Two observations are in place here:

1. The handle body H - 9 can be realized in lR? X IR where the attached 1-handles lie in
IR2

X [0,00) and are unknot ted and unlinked.

2. The topological type of the 3-manifold constrocted above depends only on the isotopy
type of G in B2 = m.2 U {oo}. It is fixed onee we have specified, for each pair of
disks D v , D v', corresponding base points on 8Dv n G resp. öDv' n G and opposite
orientations for 8Dv and 8Dv"

Examples of Whitehead graphs arise in a natural way !rom a Hat presentation of any iden
tification complex Q. Namely, take G = G(Q) to be the dual graph of the I-skeleton of
Q in B2. Clearly, conditions (1) and (2) of the definition are satisfied. Figure 4.5 shows
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the Whitehead graph G(Q) for r -7(6,4). Tbe vertices are already indicated 88 disks
whose boundaries are oriented. Here and later on we adopt the convention that vertices
A - , B- , ... get clockWise orientation and vertices A+, B+ , ... get counter-clockwise orien
tation. Also hase points are already marked. Note that for every pair F+, F- the choice of
one of the two base points is !ree whereas after this the other base point is fixed aceording
to the identification prescription on 8Q.. Orientations and labels for the edges of G are
obtained by the following rule: -
Take any edge e, give it any of the two possible orientations, and"label it by 1.1. Now 10
the endpoint x af e, lying in some 8F%., corresponds a point x' E 8FT, and x' belangs to
a unique edge e'. Give e' the label 1.2 and orient it 80 that x' becomes its starting point.
Proceeding in this way one comes back to tbe edge 1.1 after finite1y many steps. Next take
any edge which is still unlabeled and repeat the same proced.W'e thus creating 2.1, 2.2, ....
As G is finite, this process stops.

We remark that orienting the edges is not necessa.ry. However, it will turn out to be useful.

I
I

.1

Figure 4.5: G( Q) for r -7(6,4)

Denote by M(G(Q) the 3-manifold obtained !rom the Whitehead graph G(Q).

4.1. Proposition: Let M = rynI3 be constructed via the identification complex Q,. Then
M = M(G(Q)).

Proof. Recall the canonical handle decomposition of M originating from the natural
handle decomposition of Q. We observe that this decomposition arises !rom the graph
G( Q) c B2 = 8«IR? x (-00,0]) U {oo}) by atta.ebing 1 - and 2-handles in just tbe same
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way as we did it when construeting M(G(Q)). The point is that, after attacbing an F
handle for every pair of vertiees F+ ,F- , the edges of G (together with the connecting arcs
on the F-handles) become the attaching spheres of the 2-handles ofboth M and M(G(Q)).
Thus M and M(G(Q)) are homeomorphic. 0

4.2 Whitehead-Zieschang reduction

In this section we sball see how a given marked and orientated ,Whitehead graph can
be modified into a. simpler one giving a homeomorphic 3-manifold. After finitely many
such simplifications we will be able to visualize the corresponding 3-manifold as a link
eomplement. .-"

Tbe complexity of a Whitehead graph G, denoted c(G), is defined to be the pair (g, n)
where 9 is half the number of vertiees of G and n is the number of edges. We order the
pairs (g, n) lexicographically. "

Diminisbing tbe number of edges

Assume we have found a simple closed curve Q in IR? with the following properties:

(1) Q does not meet the vertiees A±, B±, ... , of G.

(2) Q meets tbe edges of G transversely.

(3) Q seperates same pair of vertices F+ and F- and 10 n GI < degree P+ (where 1••• 1
denotes cardinality).

Clearly, abounds a disk P which is properly embedded in Mo = (IR? x (-00,0] U {oo}.
We give a the clockwise orientation and fix auy point of a n G 88 base point. Now we split
Mo along F and identify the two resulting 3-balls along P+ and F- in the obvious way.
This operation gives us a new Whitehead graph G' satisfying

c(G') = (g, n - degree F+ + degree p+)

=(g, n - degreeF+ + 10 nGI)

< c(G), by (3)

Moreover, G' is again rnarked and oriented, and a labelling of the edges of G yields a
labelling of the edges of G' in an almost canonical rnarmer. Fig. 4.6 a) reproduces Fig.
4.5 where a curve a has been drawn in. The vertices A+, B+, C-, D+ are seperated by Q

from A - ,B- , C+ ,D-, respectively. We select the pair D±. (The pairs B± or C± could
be taken either wayj the pair A± would not lead to a reduction of complexity.) Fig. 4.6
b) shows the new Whitehead graph.

4.2. Proposition: If G and G' are Whitehead graphs as abl?ve then M(G) = M(G' ).

This proposition is due to Zieschangj see [Z]. It is the geometrie counterpart to a corre
sponding result on equivalences of group presentations attributed to Nielsen (see [M,K,S],
[C,Z,1-3] for instance).
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Figure 4.6 a)

Figure 4.6 b)

With regard to Proposition 4.2. we refer to the process of constructing the graph G' out
of G as the Whitehead-Ziescbang reduction process.
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Handle cancelling

Next we describe a second modification a Whitehead graph G can be submitted to. Its
effect again is a reduction of complexitYi this time the number of vertices is lowered. The
process ia motivated by the geometrie operation of cancelling a pair of complementary
handles in the manifold M(G). This implies that the new Whitehead graph determines a
manifold that is homeomorphic to M(G). In order to understand how G is modified and
why this is done in such a way we have 10 reca1l how handle cancelling proceeds. Before
we can omit the F -handle H1 and the 2-handle H 2 we have to check that the atta.ching
sphere 8 of H2 intersecta the belt sphere of BI in exactly one point. But 8 arises from some
class of edges s.l, s.2, . .. 8. Thus, in terms of G, we have to verify that there is exa.ctly
one edge S./t leaving or entering P+. H this is the case then _we push HIwith one of its
"feetn , say F+ , along 8 until we come to F-. Of course, in doing so, we have to pull slang
with F+ all the ather cocores of 2-handles running over the F-handle BI' This explains
how the remaining edges of G adjacent 10 P+ or F- must be changed before P+, F
and 8.1,8.2, ... are erased. Note that the new graph requires a new edge labelling (and
sometimes also a marking of new hase points for some pairs of vertices).

Figure 4.7 iIIustrates the Whitehead graph G' we abtain from the graph G depieted in
Fig. 4.6 after cancelling A* and the edges 1.1, 1.2, 1.3, 1.4. (Other choices of vertices and
edg~ would be admissible 88 well.) In this case we have

c(G') = (3,14) «4,15) = c(G).

However, in general, the second component can increase when handles a.re cancelled. Note
also that in more complicated examples than r-7(6,4) W'e have to carry out several handle
cancellations and also more than only one Whitehead-Zieschang reduction before we arrive
at a Whitehead graph which does not allow any further simplification.
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Figure 4.7: The A-handle and the curve 1 are cance1led

§S Link complements

Dur goal in this paragraph is to show that for all values of d, m and n in the list at
the beginning of paragraph 4 the manifold M = r -d(m, n)\m:3 is a link complement.
Moreover, we determine the links explicitly, see paragraph 6. To begin witb we establish
a general criterion for tbe embeddability of M in SS..

A criterion for embeddability

Recall that the manifold M(G) arises from the Whitehead graph Gin two step8. First we
attach an F-handle for every pair P+, F- of vertices of G. The result of this is a standard
handle body H, in 53, together with a system 5 of orientated circ1es on 8H,. Then M(G)
is obtained from Hg by attaching 2-handles along S. Tbe question now is wbether these
2-handles can be realized within 53. Note that this is exactly the esse if every circle of S
spans a disk in tbe complementary handle body H~ = 53 - H,. In order to decide whether
disks of such a kind exist or not we dispose of tbe following algebraic criterion.

For each F-handle BI we choose a longitude /, i.e. a simple closed oriented curve on
anh which spans a disk in H; and which is of the form / = /0/1 where /0 runs over
BI from P- to F+ and 11 goes back on m.2 to the starting point. FUrthermore, these
longitudes should be disjoint and meet the system S transversely and only in IR2 • Now to
every system 3 = s.1,s.2, ... ,s.k. of edges of G we assign a word w{s) in the symbols I
as follows. Starting with s.l we write f if we traverse f from right to left, and 1-1 if we
traverse I from left to right. Then w.e proceed, still on s.l or with s.2, . .. until we reach
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a second longitude, and so on. Finally going along .,.k, we complete the definition of the
word W(3) = ff ... (e = ±1).
5.1. Proposition: H for every edge system s of G the word w{s) is trivial as an element
of the iree group generated by {f} then M{G) embeds in 53.
Proof: Recalling that the edge systems s of G are in canonical 1-1 correspondence with
the system S of attaching spheres on 8B" the condition w{.,) = 1 means~precisely that
the curve s on 8H; is null-homotopic in H~. As every null-homotopic simple closed curve
on aB; bounds a disk in H~, we see that we can attach the 2-handle along ., inside of H~.
A standard procedure finally shows that these handles can be found disjoint. 0

Finding the right longitudes

Gf course, if the condition for embeddability formulated in Prop. 5.1. ia not fulfilled then
this does not necessarily mean that the manüold M cannot be embedded in 53. It might
as weIl be that our choke of longitudes was not good. Ta' see what can happen let us
have a look at Fig. 5.1. The cliagram reproduces Fig. 4.7, with longitudes b, c, d drawn in
addition (it suffices to speci!y the part of the longitude lying in m.3 • First clisregarding d})
the curves 2 and 3 satisfy w(2) = bb-1 = 1 and w(3) = c-1c = 1. But if we replace the
longitude d by d1 then we get w(2) =bd11b-1d1 -:F 1 and w(3) = d1c-1cl}lC -:F 1.

,,,
•,
•••, .

f I, ,
I ,, '

, I

, "
~ ,
~ ,, ;', ~

.. " ....~ ... -- .... -,...~---
4..

Figure 5.1:

Thus our discussion proves that the manifold r-7(6, 4)\m:3 embeds in 53. The embedding
itself depends upon the choire of the longitudes b, c, d. Indeed, there are other good choices
of longitudes easily found in this example. These lead to different links with homeomorphic
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complements. Notiee also that a compact 3-manifold whose boundary consists of tori and
which ean be embedded in 53 is in fact a link complement.

5.2 How to determine the link

Now suppose we are given an explicit embedding of tbe manifold M into 53 as described
in seetion 5.1. Tben a final task remains 10 be done. We bave to determine tbe link L.
The components of L are provided by longitudes of tbe various bounclary eomponents of
M C 53. Tberefore, our problem consists in finding for each boundary torus Ti a pair
mi,li of simple closed curves in Ti which intersect (geometrically) in exactly one point and
such tbat mi (tbe meridian of Ti) bounds a disc in S3 - M. Tbe curves li tben form tbe
link we are looking for. It is convenient to search for mi and l i in tbe Whitehead grapb
G which, together witb tbe system {I} of longitudea on H" gives us tbe embedding of M
into 53. m.2 - G consists of c1asses of regions which belong to tbe same Ti. Within these
classes we bave to find mi and li. A necessary condition for rni to be a meridian of Ti
again is that tbe word w(mi) in f} obtained by going along rni in tbe same way as befare
when tbe worcls W(8) were defined must be trivia!. .

Figure 5.2 shows the system of meridians and longitudes for r _7(6,4)\183
• Tbe picture is

obtained by first deforming the graph of Fig. 5.1 so that tbe longitudes b, c and d hecome
straight lines. Tben the B-, C-, and D-handle should be imagined as a bridge lying
direetly over tbe corresponding lines. Figure 5.3 a) shows tbe desired link L we obtain
by simplifying the longitudes 11 ,12 ,13 isotropicaJJy. Finally, a Dehn twist along tbe cimtral
disk D yields tbe symmetrie 3-component link depicted in Fig. Sb).

a)
Figure 5.3:
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meridians

-.-.-.- longitudes

- - - - system S

'.

Figure 5.2
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§6. The list of links

This paragraph contains pictures of the links which come out of the program described
above camed out for the subgroups of index :S 12 in PSL2 ( 0_7 ). The details of the
computations are somewhat messy, we omit them here.

The manifolds r -7(6, 1)\IH3
, ••• ,r_7(6,4)\lH3 a.re pairwise homeomorphic, [G,S,l]. We

only describe the case:
r _7(6,4) :

The manifold r -7(6, 4)\lH3 is by our analysis in paragraph 5 homeomorphic to 8 3
- L

where L is the following link with 3 components:

Under an obvious Dehn-twist 8 3 - L is homeomorphic to 8 3 - LI where LI is the following
link:

. ---_.-~~-

These results are known, see the references in [G,S,l].
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r -7(6,5), r -7(6,6) :

Dur method shows that r -7(6, 5)\rn:3 is homeomorphic to 8 3 - L where L ie the following
link:

, ~

~.

-- -'--- - - ----~-_.- -~-----------

An obvious Dehn-twist gives a homeomorphism 53 - L ~ 53 - LI where LI is the following
link:

The manifolds r -7(6, 5)\IH3 and r -7(6, 6)\18:J are homeomorphic, [G,S,l].
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r -7(12,1) :

The manifold r _7(12, 1)\rn:3 is homeomorphic to 53 - L where L is the following link with
4 components:

r -7(12,2) :

The manifold r _7(12)2)\rn:3 is homeomorphic to 53 -"L where L is the following link with
4 components:
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r -7(12,3), r -7(12,4), r -7(12,5), r -7(12,6) :

These manifolds are homeomorphic to 53 - L where L is the following link with 4 compo
nents:

-~.

r -7(12,7) :

The manifold r -7(12, 7)\lli3 ie homeomorphic to 8 3 - L where L ia the following link with
3 components:
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r -7(12,8) :

The manifold r -7(12, 8)\lli3 is homeomorphic to 53 - L where L is the following link with
3 components:

1

I
I

-.__._-- __I

r -7(12,9), r -7(12,10), r _7(12,12), r _7(12,13), r -7(12,15), r -7(12,16) :

These corresponding manifolds are homeomorphic to 53 - L where L is the following link
with 3 components:

For the proof see paragraph 3 and [G,S,l].
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r -7(12, 11) :

The manifold r -7(12, 11)\IH3 is homeomorphic to S3 - L where L is the following link
with 3 components:

L(

r -7(12, 14) :

The manifold r -7(12, 14)\lH3 is homeomorphic to S3 - L where L is the following link
with 3 components:
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Under an obvious Dehn-twist B3
- L is homeomorphic to B3

- LI where LI is the following
slightly simpler link:

r _7(12, 17) :

The manifold r -7(12, 17)\IH3 is homeomorphic to 53 - L where L is the following link
with 3 components:

)
~---~
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r -7(12, 18) :

The manifold r -7(12, 18)\lH? is homeomorphic to 53 - L where L is the following link
with 3 components:

r -7(12,19) :

The manifold r -7(12, 19)\IH? is homeomorphic to 53 - L ·where L is the following link
with 3 components:
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r _7(12,20) :

The manifold r -7(12, 20)\IH3 is homeomorphic to 8 3
- L where L is the following link

with 2 components:

r _7(12,21) :

The manifold r -7(12, 21)\IH3 is homeomorphic to 53 - L where L is the following link
with 2 components:

Under an obvious Dehn twist 8 3
- L is homeomorphic to the complement of the following

link.
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r _7(12,22) :

The manifold r -7(12, 22)\lH3 is homeomorphic to S3 - L where L is the following link:

\
I

\
\,

\

\

\
I

\
-.-.--.--- - ------ --'-----~---

r -7(12,23) :

The manifold r -7(12, 23)\lH3 is homeomorphic to S3 - L where L is the following link:
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r _7(12,24) :

The manifold r -7(12, 24)\lH? is homeomorphic to 53 - L where L is the following link
with 2 components:
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