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§1. Introduction
Let H* be 3-dimensional hyperbolic space and Iso* (IH?) its group of orientation preserving
isometries. Taking the model

H)=CxRt={(z,r)|z€ C,r ¢ R,r >0}

the group Iso*(IH®) may be identified with PSLy(C). The action of PSLy(C) on HH? is
given by

(¢ %) G =F e+ DEF D+ atn)

with
N = |ez + d|? + |c[*r2.

Note that we do not, for this paper, distinguish between a matrix in SLy(C) and its image
in PSLy(C).

A subgroup T’ < PSL,(C) acts properly discontinuously on IH? if and only if it is discrete
in PSLy(C). If, furthermore T is torsionfree then the quotient space

T\IH?

gets the structure of a hyperbolic 3-dimensional Riemannian manifold from H*. If I'\H®
has finite hyperbolic volume then it can be compactified to

r\m?

1



so that the boundary 61"(11‘1a consists of finitely many tori. We are here particularly
concerned with cases where I'\IH® is homeomorphic to a link complement in 5%, We call
a torsionfree discrete subgroup I' < PSL,(C) a link complement group if

NH =S L

where L C S? is some link. -

An interesting class of discrete groups I' < PSL3(C) is the class of arithmetic groups. For
the notion of arithmeticity see [B]. A subclass of these is obtained in the following way.
Take d € IN a squarefree natural number and write

K 4=QVv-d)<C
for the corresponding imaginary quadratic numberfield. We define
O_4

to be the ring of integers in K_4. For a nonzero ideal A C O_4 we introduce the following
groups

a b

PSLy(O_g, A) = {( ’ d) € PSLy(C) | a,de€ O_g,b€ Ace A7),

The definition of A4~! is:
Al'={zeK_4 | z-a€O_yforalac A}.

Notice that PSLy(O_y) = PSLy(O_4,0_4) and that for a fixed d the groups PSL;(O_4, A)
are all commensurable. It is a well-known fact that two groups PSL,(O_4,.4;) and
PSL2(O_4, Az) are conjugate in PSLy(K_4) if and only if A; and A; represent up to
a square the same element in the idealclass group of O_4. Hence there are only finitely
many conjugacy classes of groups PSLy(O_4,.A) as A runs through all nonzero ideals of
O_q.

If I' < PSL;(O—,4) is a torsionfree subgroup of finite index then I'\IH® is the interior of a
compact 3-manifold bounded by finitely many tori. If I' £ PSL;(C) is an arithmetic link
complement group then I' is up to conjugacy commensurable with a unique PSL;(O_,).
This well-known result can be found in [R]. A first result in the search for torsionfree,
discrete arithmetic subgroups I' < PSLy(C) so that I'\IH® is homeomorphic to a link
complement is:

1.1. Theorem: Let I' < PSLy(C) be a torsionfree, discrete, arithmetic subgroup so that
I'\IH® is homeomorphic to a link complement then I is conjugate to a subgroup of finite
index in PSL2(O_g4,A) where A C O_, is a nonzero ideal and

de {1,2,3,5,6,7,10,11, 14,1519, 23, 31, 35, 39, 47, 55, 71,95, 119}.

2



This result is mainly contained in (B — N]. We shall comment on it in paragraph 2. In
some previous work [G, S,2] it was proved that if I satisfying the hypothesis of Theorem
1.1 is contained in a PSLy(O_4) then

de {1,2,3,5,6,7,11,15,19,23,31, 39,47, 71}.

An obvious consequence of Theorem 1.1 is

1.2. Corollary: Up to conjugacy there are only finitely many commensurability classes
of torsionfree, discrete, arithmetic subgroups I' < PSL;(C) so that I'\IH® is homeomorphic
to a link complement in $°.

For most d which are in the exceptional list in Theorem 1.1 it is not known whether there
is a link complement group I' < PSL,(C) commensurabel with PSL;(0O_4). For small d
like d € {1,2,3,7} there are many examples listed in [H] or [R]. It can be seen from these
examples that there are infinitely many conjugacy classes of arithmetic link complement
groups I' < PSLy(C).

Theorem 1.1 shows that all arithmetic link complement groups can be found as subgroups
of finitely many groups of the type PSL;(O_g4, A). The main result of this paper is a
method to single out link complement groups from the subgroups of finite index in a fixed
group PSL,(O_4, A).

Let d be fixed and small and let A € O_4 be a nonzero ideal. Then usually a nice
PSLy(O_4, A) invariant tesselation of IH® is known, see for example [G, G, M), [Sw), [H],
[Sch]. From this a presentation of PSL,(O_4,.4) is readily obtained. The presentation can
then be used to find all subgroups I' < PSL;(O_4, A) of a given (low) index n. This is
done with the help of standard computer programs, see [G, S, 1] for more details. Let T
now be from this list. It can be easily checked whether I is torsionfree. We are then left
with the problem to find necessary conditions for I' to be a link complement group. We
- state some in the following

1.3. Proposition: Let I' < PSL,(C) be a torsionfree link complement group. Then:
1) H,(T,Z) is torsionfree,
) l.llp(r C) - 0
3) I'*® is generated by images of unipotent elements,
4) T is generated by unipotent elements.

For more comments see paragraph 2. It is clear, see [G,S,1], that all these conditions can
be checked for a specific group I'. To follow the problem whether I'\IH* is homeomorphic
to a link complement we have now to employ more geometric techniques. The tesselation
of H? leads to a combinatorial description of I'\IH?. From this combinatorial description
we then have to decide whether I'\IH? is a link complement and also find the link. This
is in fact the most difficult part of our program. An elementary approuch to visualise the
manifold I'\IH® seems to be very difficult, see [Ba] for an attempt.
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A priori the combinatorial structure of I'\IH® depends on the presentation chosen for the
group I'. Its complexity increases with the index of I' in PSL,(O_4). However, in all
cases under consideration, a special type of handle cancellation permits us to simplify the
structure and thus to decide that I'\IH? embeds in $3. This simplification process is due
to Zieschang [Z] and is the geometric counterpart to the Nielsen-transformations of group
representations described in [M,K,S], [C,Z,1-3]. It is then routine work to find a system of
longitude-meridian pairs on &(I'\IH®) which gives us the desired links. We are indebted to
Wolfgang Haken for explaining the Whitehead-Zieschang technique to one of us.

We do not know whether the above process is an algorithm. In particular, we were not

able to decide the embeddability of I‘QIH"i in $* algorithmically. However in all cases we
have studied, we were, with some effort, able to do so.

We shall carry out the above program in paragraphs 3 - 5 on the subgroups of index < 12
in PSLy(O_7). In paragraph 3 we describe the conjugacy classes of torsionfree subgroups
of index < 12 in PSLy(O_7) which also have a torsionfree first homology group. We
then develop in each case a combinatorial description of '\IH?. We then apply to these
combinatorial manifolds the simplification process described above and prove that they are
embeddable in S* and thus are homeomorphic to link complements. We also were able to
find the corresponding links. We have listed them in paragraph 6. Our list contains many
examples of links which have not been found before.

We hope that our lists will shed some light on the following two problems.

Problem 1: For which links L is there a torsionfree, discrete arithmetic group I' <
PSL2(C) so that §* — L is homeomorphic to I'\IH* ?

The corresponding question for just torsionfree, discrete subgroups I' < PSL2(C) has been
answered by Thurston [Th].

The particular case of knot-complements was studied by Reid [R]. He proves that the figure
8 knot is the only knot whose complement is homeomorphic to T\H?® with I arithmetic.

Problem 2: Which torsionfree arithmetic subgroups I' < PSL,(C) are link complement
groups?

The examples we studied suggest that Proposition 1.3 has a converse. That is, we always
found if I' < PSL,(C) is torsionfree arithmetic, has torsionfree H; (I", Z) and is generated by
unipotent elements that I'\JH* is homeomorphic to a link complement. It seems plausible
that under these hypothesis it is possible to glue solid tori into the cusps which kill all of
the fundamental group. The resulting closed 3-manifold would have trivial fundamental
group and should be $3. Unfortunately we were not able to carry this idea through.

Amongst all subgroups of finite index in PSL2(O_7) those which are torsionfree and have
torsionfree first homology group and hence are potential link complement groups seem to
be quite rare. We put A, to be the number of conjugacy classes of subgroups of finite
index n in PSLy(O_7) and T, to be the number of conjugacy classes of subgroups of index
n which are torsionfree and have torsionfree first homology group. Note that T,, = 0if 6
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does not divide n. We report the following table:

n A, Tn
6 25 6
12 |- 197 24
18 1877 124

In all cases the links in paragraph 6 are covered by other links under cyclic coverings. By
this many other arithmetic link complements can be found. We mention only one example:
The link under I'_(6,4) can be arranged to look like » :

Figure 1.1
The links under Figure 1.2 then cyclicly cover the above link.

=

Figure 1.2

Obviously they all have 2 components. However for other links, for example I'_7(12,1)\H?
there are cyclic coverings with an increasing number of components. '



§2 Link complement groups in PSL,;(C)

We start off by discussing the proof of Proposition 1.3. Let I' < PSL,(C) be a link
complement group. That is T is torsionfree, discrete and I'\IH® is homeomorphic to $3 — L
for some link L C 2. Since

[ m(T\IH®) = n,(S° - L)

we may infere the first claim of Proposition 1.3 from standard properties of fundamental
groups of link complements [Ro). :
The second claim is proved in [Schw], note that

H},,,(T,C) = ker(H}(I'\H?*, €) — H'(3(T\H*), C)).

This standard condition gives a strong restriction on the groups I'.
The third claim is obviously implied by the fourth.

To prove the fourth we use that =,(S% — L) is generated by Wirtinger elememts They
go to unipotent elements under the isomorphism 7(S5® — L) 2 I'. See also [G S,1}. This
proves Proposition 1.3.

To prove Theorem 1.1 let I' < PSLy(C) be an arithmetic link complement group. Then
I'\IH? is not cocompact and hence a conjugate of T is commensurable with a PSL,(O_4),
[R] Proposition 1. By Proposition 1.3 T is generated by unipotent elements and hence we
infere from [R] Lemma 1 that I’ < PSL;(K_4). From standard properties [B} of arithmetic
groups it follows that I’ < PSL;(O_g4, A) for a suitable ideal A < O_4. Since H],,,(T,C) =
0 we get that also H;,,,(PSLy(O-4, A), C) = 0. By an application of the Lefschetz-tr&ce
formula J.Blume-Nienhaus has proved that this can only happen in rather restricted cases,
namely at most for the d listed in the theorem.



§3 Subgroups of index < 12 in PSLy(O_7).

Here we shall describe the combinatorial data which will be used to analyse the topology
of the quotients I'\IH® where I' < PSLy(O-1) are certain subgroups of finite index.

3.1 The group PSLy(O_7)

We start off by describing the group PSL,(O_7). We put
w= % + %\/ -T7.
We then have O_7 = Z @ Zw. The group PSLy(O_7) is generated by

(3.1) A=((1) }), B=(‘1’ “01), C=((1) ul’)

and presented by the relations
(3.2) B? = (AB)* = ACA™'C™!' = (BAC'BC)* =1.
We shall also need

. — _ 1 -1 - -1 _ W l-w
SI_AB“(l 0),U1_CBC -(1 _w),

0 1

Sy =571= (_1 1) Uz = ACT'BCA™! = (1“" “’“).

1 w—1

The groups A, A; generated by the following matrices

(3.3) A, =< §,U; >, A; =< 83,U; >

are finite and in fact isomorphic to the symmetric group on 3 symbols. We have
A NA; =< 8 >={1,5,5%).

It is well-known [G,S,1] that if I' < PSLa(O_7) is torsionfree of finite index then

6| |PSL:(O_7) : T|.
So we shall contend our study here to subgroups of index 6 and 12.

3.2 The snvariant tesselation

We shall proceed by giving a tesselation of H* by hyperbolic prisms. The vertices of these
prisms will be contained in 8IH* = IP'(C). In our model we think of

OH? = (€ x {0}) U {oo}

with PSL;(C) acting by linear fractional transformations. We define the following points
in OH? . .

a=(0, 0), b=(%, 0), c=(w, 0),
(3.4) d=(%+-‘§, 0), e=(1, 0), f=oo,

g=(%-—--‘§'~, 0), h=(1-w, 0), i=(1-%, 0).
Let P be the geodesic prism spanned by a,-- -, f and P, that spanned by a,e¢, f, g, h,i. We
have the following (euclidean) picture of the double prism P U P; in H* U 9H? :
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Figure 3.1: PU P,

We find [G,G,M] that A, is the normalizer of P in PSLy(O_7) and that A, acts transitively
on the vertices of P by the formulas:

a— f a—d
b—c b— e
c— d c— f
(3.5) Si1: d—bd Uy: d—a’
e a e— b
fre frc

The group’ A; is the normalizer of P; and also acts transitively on its vertices. We have
the formulas

are arri
e f e g
froa ‘ f—h
(3.6) Sz: gt Upy: g e’
hi—g he— f
t— h 1—a

It is known‘ that the union

U YPU U P

vEPSL(0. 1) YEPSLL(O_7)
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defines a PSL,(O-7) invariant tesselation of IH? U 8IH®. We put
Q = p U P].

The set Q NTH® is then the fundamental domain for the action of PSL;(O_7) on H?,

e

3.3 Subgroups of indez 6 in PSL;(O_7)

Let I' < PSL3(O_7) be a torsionfree subgroup of index 6 then both the sets A;,A; are
full sets of representatives for the cosets

P\PSL2(O—-7) = {Pglv R Pgﬁ}

This shows that the hyperbolic double prism with vertices removed shown in figure (3.1)
is a fundamental domain for the action of I’ on IH3. To get a combinatorial description of
the quotient T\IH? we need to find the identifications of the boundary of P U P; induced
by I'. To do this it is enough to describe the identifications of the oriented edges of PU P,
induced by I'. The identifications of the 2-cells then follow. Oriented edges will be denoted
by '
[z,v]

where z,y € {a,---,i}. This information can be extracted from the permutation represen-
tation '

o PSL2(0_7) —_— 83 = 8({1, . ,6})
on the cosets of I'. We have for g € PSLy(O_7):

glgi =Tgig™' = Log-1(t).

I' is the stabilizer of 1 under ¢ in PSLz(O_7). With the help of tables (3.5), (3.6) we now
pick for every oriented edge E of PUP; a vg € A; U Ay so that

E =7z5'[a, f]
Because of (3.5), (3.6) yg is unique. Two oriented edges E;, E; are then identified by T if
and only if

Vg, 7E. €T
This can again be checked by the permutation representation.

We shall give now for the relevant subgroups I of index 6 in PSL;(O_7) generators and the -
permutation representation on the generators A, B, C of PSL2(O_7). This is then sufficient
to compute the edge identifications which we will also give.

We infere from [G,S,1] that PSL;(O_7) has 6 conjugacy classes of torsionfree subgroups I’
of index 6 with torsionfree H{(I', Z). They are represented by the groups I'_7(6,1) up to
I'_;(6,6) in the numbering of [G,S,1]. We have
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I'_+(6,1):

Generators: C,A’, BCB , H,(T,Z)=7°

Permutation representation: 04 = (1,2)(3,4)(5,6), o5 = (1, 3)(2,5)(4, 6),

ac = (1)

Edge identifications: T'_7(6,1)\P U P; has 3 classes of oriented edges which can be read
off from: ‘

1) {a, f)[c, f) [ed), [3, gl [a, 9], 3) le,d},[b,a], [b,c], [A,1], [e,d].

2) [b,d),[h, g}, [k, fl,[e, £, (e, d],

P...-;(ﬁ, 2):

Generators: A,BC*B,BCA™*B , H,(T\Z)=2%Z°

Permutation representation: 04 = (2,3,4,5), o5 = (1,2)(6,4)(3,5),

ogc = (2a 4)(31 5)

Edge identifications:

1) |a,f], [ca fls[h, £l e, £, ) 3) [d,¢c],[d,el,lg,14],19,4al,[d, 8], g, A].
2) [e,al,[s,¢], (b, c,[a, 3], [A,i],

F_7(6, 3) .

Generators: A,C,BACB , H\(l,\Z)=12°

Permutation representation: o4 = (2,3,4,5), o = (1,2)(3,5)(4,6),

ogc = (2, 5, 4, 3)

Edge identifications: .
1) {a, fl,[c, f], [B, £, [, £, 3) [b,d],[b,a), [, ], [5, €], [6, ¢, [3, 9]
2) [e,a),[d, €], [c,d], [g, h],[a, 9],

P_'y(ﬁ, 4) .

Generators: A2, CA~',BCA™'B , H\(I\Z)=1%°

Permutation representation: o4 = (1,2)(3,4)(5,6), o5 = (1,3)(2,5)(4,6),
oc = (1) 2)(3,4, )(5$ 6)

Edge identifications:

1) [a, f], [A, f1, [d,.b],[a, b]’[hgi]! 3) le,al:lg,d],lc,d],[e, d],[g,R).

2) [e,b),]c, fl, [g, 4], [e, £), [e, 1],

F_1(6, 5) :

Generators: C,BAB , H'(I'Z)=7*

Permutation representation: o4 = (1,3,4,5), op = (1,2)(6,4)(3,5),

gc = (2" 6)

Edge identifications:

1) la, f],[c, f],[i, €], [a, €], 3) (e, ), [5, Al [e,d], [a, b], [1, ], [a, 4]
2) [f,e],ld, €], [d, b],[g, R}, [, R],
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I‘_7(6, 6) H

Generators: AC™',BAB , H,(I\Z)=1%?

Permutation representation: o4 = (1,3,4,5), op = (1,2)(4,6)(3,5),

oc = (2,6)(1,3,4,5)

Edge identifications:

l) [a! f]) [dl e]! [hv f]'n [as e]’ 3) [dl C], [h! g]! [d’ b]’ [a$ b]s [ha ']1 [a, g]
2) [f, e], [, ¢], [b, C], [fv C], [’, gl

3.4 Subgroups of indez 12 in PSLy(O_q)

Let T' < PSL2(O_1) be a torsionfree subgroup of index 12. Then there is a T € PSL(O_7)
so that the sets
Al U TA] and Ag U TA:

are full sets of coset representatives for I'\PSLy(O_7). We define
P =TP,P!' =TP.

We find that the union of the two double prisms
@=PUP,UP' UP,

with their vertices removed is a fundamental domain for the action of I’ on H2. For the
vertices we adopt the notation shown in the following picture
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Figure 3.2: Q=PUP,UP UP)

We infere from [G,S,1] that PSL;(O_;) has 24 conjugacy classes of subgroups of index 12
which are torsionfree and have torsionfree commutator quotient group. We list them here
together with their generators, permutation representations and the corresponding edge
identifications for @.

P_..7(12, 1) .

Generators: A,C,BC?*B,BCA*B, H,(I\Z)=127",

Permutation representation: o4 = (9,3,6,5,2,4)(8,7,12)(10,11),

op = (1,2)(4,5)(6,7)(8,9)(3,10)(11,12),0¢ = (2,3)(4,6)(12, 7, 8)(5,9)(10,11).
Edge sdentifications:

1) [ayf]s[c!f]’[haf]a[e)f]a 4) [b,a],[i,h],[c',b’],[g',a'],[e’,f'],
2) [d1 C], [d1 6], [ga G], [ili hl]) [ga h]v [d'v b']’ 5) [C, b], [h,) 9']1 [ea ’]1 [a" e']1 [f" C'],
3) [e,al,{H, f'],1f', 4], [d", V], 6) [bd],[g',i'], 5, 9], [, d'}, [¢', d'), [, ).

P_7(12, 2) :

Generators: A,C,BC3®B,BCA*B, H\(T,Z2) = %Z*,

Permutation representation: o4 = (2,3,4,5,6,7)(8,9,10)(11,12),

o5 = (1,2)(3,7)(6,8)(4, 10)(5,11)(9,12), oc = (2,6,4)(3,7,5)(8, 10,9).

Edge identifications:

1) {a, f), [, f1: [A, £, [e, £l 4) [d,e},[d", f'], [, €'], g, B), [, &),
2) [e.al,[d, €], [e', £'],[f, A, 5) [bal,[i,A],[6',d'], [, ¢l [, c], [, W],
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8) ld,d,[¢, 'L, 4], 19,a],[d', €], 6) [bd],[¥',a'},[¢',¢'),[g,a'), [3, 9], [¥', ).

F_7(12, 3) :

Generators:: A,C,BC*B,BCBC~'BC~!'B, H(,z2)=2*
Permutation representation: o4 = (2,3,4,5,6,7,8,9)(10,11),
o5 = (1,2)(3,9)(8, 10)(4, 11)(5,7)(6,12), ¢ = (2,8,6,4)(3,9,7,5). -

Ir'_7(12,4):

Generators:: C,BC?B,BCA*B,ABC*BA™t, H\(I'\Z)=17",
Permutation representation: o4 = (1,2)(3,4,5,6)(7,8,9,10)(11,12),
o = (1,3)(2,7)(4,10)(5,11)(6,8)(9,12),0¢ = (3,5)(7,9)(4,6)(8, 10).

I_7(12,5):

Generators: AC™,C? BACB,A"'BACBA, H\(T\%)=1%",
Permautation representstion: o4 = (1,2)(3,4,5,6)(7,8,9,10)(11,12)
op = (1,3)(2, 7)(4,10)(6, 8)(5,11)(9,12),0¢ = (1,2)(3,6,5,4)(7, 10,9, 8)(11,12).

P_7(12,6) .

Generators: A,C,BA*C?*B,BCBCB, H((,Z)=2%*
Permutation representation: o4 = (2,3,4,5,6,7,8,9)(10,11),
op = (1,2)(3,9)(5,7)(4,10)(6,12)(8,11),0¢ = (2,5,8,3,6,9,4, 7)(10,11).

I_2(12,7):

Generators:: C,A*, BCB,A"'BA*BA, H,(T'\X)=1°,
Permutation represeniation: o4 = (1,2,3)(4,5,6)(7,8,9)(10,11,12),
op = (1,4)(2,7)(3,10)(5, 12)(6,8)(9,11),0¢ = (7,10,9,12,8,11).
Edge identifications:

1) [a’f], [c’f]’ [C,d],[i’g][a,g], 4) [e’a],[b’a]’[d',b'], [ht,i'],[e',i'],

2) [b’ d]v [h’ g]a [c, d, [h" f']: e, f']’ 5) [4, c]’ [A, i], e, i, ¢, b']a lg's i'], [a', b’],

3) [h!f])[ea f]:[a’vf']a [C’) f']’ 6) [dt, C'], [h"g’L[g” a’]a [altella [e')d’]-
_7(12 8) :

Generators:: C,BACB,BAC~?B, H\(I,Z) =27,

Permautation representation: 04 = (1,2,3)(4,5,6)(7,8, 9)(10 11 12),

op = (1,4)(2,7)(3,10)(5,12)(6,8)(9,11),0¢c = (4,6,5)7,11,9,10,8,12).
Edge identifications:
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) [a, fl,[e, f],[¢',a'), [f', @), 4) [e,al,[b,c], [, £1], W, £), [, '],
2) [h,i],[e,d),[e’,a'), [¥',a"), [, &), 5) [d,c),[b,a,[g,d],[¢',¢'), [¢', f'],
3) lg,il, [~ flile, £}, [¥', 4], [, O], 6) [d,el,[g,h], 0", A'), [¥/, '}y [€',4'], [B, d].

l‘_7(12, 9) :

Generators:: C,BACB,ABC3AB, H(, %) =%, _ T
Permutation representation: o4 = (2,3,4,5,6,7,8,9)(1,11),
op = (1,4)(2,10)(3,9)(5, 7)(6,12)(8,11),0¢ = (2,9, 8, 7,6, 5, 4,3)(10, 12).

I'_2(12,10) :

Generators:: AC™',BAC~'B,BC*BC?*, H\(I\Z)=17,

Permutation representation:

oa =(1,2,6,5)3,4,7,8)(9,10)(11,12),

o5 = (1,3)(2,10)(4, 12)(5,11)(6, 7)(8,9), oc = (1,2,6,5)(3,4, 7, 8)(9, 11)(10, 12).

T_2(12,11):

Generators:: C,BC*A~'B,BCBA~*B, H(T,%)=2°,
Permautation representation: o4 = (2,3,4,5,6)(7,8,9,10,11),

o5 = (1,10)(2, 12)(3,6)(4, 7)(9, 11)(5,8), 0c = (2,7,3,8,4,9,5,10,6,11).
Edge identifications:

1) [a, fl,lc, f), [h, £ e £, 4) [b,d),[g,i), [, f']. [N, f'),[a, '),
2) v,d,[¥,d'}[g",¥), (g, 0", [¥', <], ", B'), 5) (d,e],[i,e],[b, €], g, ], [f' €],
3) [c,d],[a,b],[h,i],[a,g],[d’,c’],[i',h"], 6) [‘7"‘]![0':!'1:[‘f,C']y[i'aC']-

I_7(12,12) :

Generators:: C,BCB,A"'BCBA™!, H(T,Z) = 2Z°,
Permutation representation: o4 = (1,2, 3,4)(5,6,7,8)(9,10)(11,12),
o = (la 5)(2: 9)(31 7)(4’ 11)(61 12)(81 10)’ oc = (9: 11)(101 12)

I'_7(12,13):

Generators:: A,BC?*B,CBCA*B, H((T,Z) =23,
Permutation representation: o4 = (2,8,5,4)(3,10,6,9),
op = (1,2)(3,11)(4, 8)(5, 12)(6, 7)(9,10),0¢c = (1,7)(2,3)(4,9)(5,6)(8,10)(11,12).
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r_.(12, 14) :

Generators:: A,C?,CBCBC?*B,BACB, H,(T,Z) = 7°,

Permutation representation: o4 = (2,3,4,5,6)(7,8,9,10,11),

o5 = (1,2)(12,7)(3, 6)(8, 11)(9, 4), oc = (1,12)(2,6,5,4, 3)(7. 9, 11,8, 10).

Edge identifications:

1) [a, f); [e, £, [, £1), (W, £, 4) [b,d],[h,gl, [, €], (¥, ¢, [0' d}, ', ¢'l,
2) [e,a],[d, ¢}, [a,g), ¢, 4], [¢", W], 8) [fsch If,h), [fs €] [f, a7,

3) [ba),[c,d), (i, g), [V, &), [, K), [@', ¢'), 6) [b¢),[h,d),[e!,a'), [¥', '], [a', ¥].

P_7(12, 15) :

Generators:: A,C?,BC~'A?B,CBC?B, HT,2)=%
Permutation representation: o4 = (3,7,10,9,6,8,5,4)(11,12),
o5 = (1,3)(2,6)(4, 7)(5,11)(8,9)(10,12), o = (1,2)(3,10,6,5)(4,7,9,8)(11,12).

T'_2(12,16) :

Generators:: A,CBACB,BACBC™!, H(I',Z)=2T3,
Permutation representation: o4 = (2,3,4,5)(6,7,8,9),
op = (1,2)(6,10)(3,5)(7,9)(4,11)(8,12),0¢ = (1,10)(2,9, 4, 7)(6, 5, 8,3)(11,12).

I_(12,17) :

Generators:: A/CBACB,BA-'C*B, H(I,Z)="1",

Permutation representation: g4 = (2,3,4,5)(6,7,8,9),

op = (10,2)(1,6)(3,5)(8,11)(7,9)(4,12),0¢c = (1,10X2,8,3,9,4,6,5,7)(11,12).
Edge identifications:

1) [a, £}, [e, 1., £'), W, f’]» 4) ld,e], [i,el, [¥,d),[¢", '), [¥, €], [, W),
2) [f,e[f, AL [f"€), [, a'), 5) [e)a]![bvc]’[g’h]ild’ve']!["!C'L

3) [a: b]’ [a, g]: [e’s a’], [C'v d']s [h'ii,]i 6) [da C], ['.1 h]: [d’ b]s [ia g]v [b'a a’]a [g'a a']'

I‘_7(12, 18) :

Generators:: AC~*,CBC™'B,BA3B, Hy(T,Z) = Z*,

Permautation representation: o4 = (2,1,3)(4,5,6)(7,8,9)(10,11,12),

op = (2,4)(1,7)(3,10)(5,12)(6,8)(9,11),0¢c = (2,1, 3)(4, 7)(5,8)(6,9)(10,12,11).
Edge identifications:

1) [a, f), A, fl, e, d), e, d), [W, ¢'], 4) (b,a),[i,h],[d,¥'),[¢',a'],[¢', £,
2) [C, f]a [ha g], [8._. f]: [a, g]) [b's dt]& 5) [a’ c]y [a', f’]l [b': a'}! [ffs h']’

3) [bd),[i, g [¢',¥'), [ d), [e', d), €', 4], 6) [i,el,(b,cl, e, a'} [¢', f), g, ']
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I_1(12,19) :

Generators:: AC~1, A3, BAC~'B, BA*B, H((T,Z) =%,

Permautation representation: o4 = (1,2,3)(4,5,6)(7,11,8)(9,12,10)

o5 = (1,4)(2,8)(3,9)(5, 10)(6, 7)(11,12), 0¢ = (1, 2, 3)(4, 5, 6)(7.9)(3, 10)(11,12).
Edge identifications:

1) [o, 11, b L 4,8 0, 8L [h 1), 4) [eval[gyal, €@ [ a0,

2) [e,t] lov L el [0 FLIEDF)  8) [e,dLlerdl, o, M, 8, 1 [, 0 o', ),
3) fe, flile, fl,1a', 'L W', £'), 6) [c',b'],[b’,a’],[:',h'],[a',e'],[c',s']._

r_.(12,20):

Generators:: C,A*B,A*BA®*, H,(T,\Z)=17?,

Permutation representation: o4 = (1,2,3,4,5,6,7,8)(9,10,11,12),

o = (1,5)(2,9)(3,7)(4,10)(6,11)(8,12),0¢c = (9,12,11,10).

Edge identifications: '

1) [a, f}, lc, ], [e, d), [i, 9}, [, 9], 4) [b,d,h,d],[e,d), [0, d), [W', g'], [¢', &,
2) [b'ld]![h’ g]![ci d]l [h" f’]’ [e” f’]’ 5) [e’a]’ [b1 a]’ [b', c'], [h")g']! [c'!i'])

3) [, f1,1d, f, [, d), [, ¢') la, '), 6) (b, fl,le, fl,1¢',a'},[¥,a'].

r_,(12,21):

Generators:: A,BA*C~3B,BC~'BC™}, H(T,Z) = Z?,

Permutation representation: o4 = (2,3,4,5)(6,7,8,9)

op = (1,2)(3,5)(4,11)(6,10)(7,9)(8,12),0¢c = (1,10,11,12)(2, 8,4,6)(3,9,5, 7).

Edge sdentifications:

1) fa. ] lerf1, 1€ £, a4, &) el [ B U7 € 174

2) [e,a}, (b, c], [h, 1], [, ¥'], [, '], 5) [b,al,[i,e],[¢',a'), [V, ], [A, 9],

3) [d,c,lg,1],[d, b], [g,B], [d, €'), [, '], 6) lg,al,{f,c},|d, L[, ¢), [, ), [9', A').

F-7(12, 22) H

Generators:: A\ BC~'BC™',BA"'CBC, H,(I'\E)="12?,

Permutation represeniation: o4 = (2,3,4,5)(6,7,8,9),

op = (1, 8)(2,12)(3,5)(4,11)(6,10)(7,9),0¢c = (12,10,11,1)(2,9, 5, 8,4, 7, 3, 6).
Edge identifications:

1) [a? f], [e'l f]’ [c”f'], [e” i']’ 4) [g7 a]! [f’ -c]1 [d" c’]’[i"h']’ [d” b’]’ [i’,g’],
2) [b,a],[f,R),1f",€),1f",d), 5) (b,d], (9,3}, (b, ¢, 9, bl [, €], [f, ),
3) ["’ e]' [eid]’[e"a’]'i [b" c’]'l [g"! h']! 6) [d’ c]’ [" h]’ [a’e]’[b,’a’]’ [a"g,]'

I_,(12,23):

Generators:: A, BC?*B,BACBC™!, H\(T, %) =22
Permutation representation: o4 = (2,3,4,5)(6,7,8,9),
op = (1,2)(10,6)(12,8)(11,4)(3,5)(9, 7), oc = (1,10, 11,12)(2, 9)(6, 3)(5, 8)(4, 7).
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Edge identifications:

1) [a, f,[f, el ), [, 4'], 4) [b,a),[f, Al [f', €], [f' o],

2) [e,al, [c, d, lg,h}, [d',¢'), g, a'}, 5) [c, d),{s, g, ¢, a'), [¢, d),l¢', h'),

3) [b,d),[s, A}, [b, 4[5, g), (¥, a'), {f', ], 6) [i,e],[f,cl, (¥, d'], [¢', H'], [b’, c}, (¢, 9'].

I'.7(12,24) :

Generators:: AC~!,BC4, AC?B, H(T,Z) = 22,

Permutation representation: o4 = (1,2,3,4,5,6,7,8)(9,10,11,12),

op = (1,5)(2,9)(8,12)(3,7)(6,11)(4,10),0¢ = (1,2,3,4,5,6,7,8)(9,11)(10,12).
Edge identifications:

1) [a, f], [h!.f]v [d, b), (a, 8}, [A, 1}, 4) [c,d),[e,d),[g,h], {c', ¥}, [g", '), [¢', "],
2) [c, b, [9,1],le, 4], [, '), [, f'], 8) [e,al,lg,a,[¢, &), [¢', &), 19", W],

3) [ay £ (K £ [0, ), [, L 0,6, 6) e, £ e £ €' ') (W ).

From the permutation representations it follows that the following inclusion relations are
up to PSLy(O_;) conjugacy the only inclusions between the groups
I'_7(12,1),...,I'—7(12,6) and the groups I'_+(6,1),---,I'_7(6,4):

T'-7(12,3) < T-1(6,2); T'-1(12,4) < T_+(6,1),T_+(6,2);

I_2(12,5) < T'_4(6,3),T-+(6,4); T'_7(12,6) < T'_4(6,3).
Since the groups I'_7(6,1),...,(6,4) are pairwise isomorphic [G,S,1], it follows that the
groups

I'_7(12,3),T—7(12,4),T_7(12,5), T _1(12,6)

are pairwise isomorphic. From the Mostow rigidity theorem [Ma] we infer that the corre-
sponding manifolds are pairwise homeomorphic.

Correspondingly the inclusions up to PSLy(O_7) conjugacy between the groups
r_,(12,7),...,I'_7(12,19) and I' _4(6,1),...,T'_7(6,4) are:

I'_7(12,9) < T_+(6,3); T—7(12,10) < T_7(6,4); T-7(12,12) < T'_4(6, 1);
T'-7(12,13) < T_1(6,2); T'_2(12,15) < T_4(6,2); T'_7(12,16) < T_7(6, 3).

It follows that the manifolds corresponding to the groups:
r_,(12,9),I'-7(12,10),I'_7(12,12),I'_+(12,13),T'_7(12,15),I'_7(12, 16),

are pairwise homeomorphic.
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§4. Handle decompositions of I'\IH®

In this and in the next paragraph we study the topological type of the quotient manifold
M = T\IH® where T’ = T'_4(m,n) and d,m,n take the following values:

d=7T,m=6,n=1,...,5,
d=T,m=12,n=1,...,24

It turns out that all these manifolds are link complements. The corresponding links are
identified and listed; see paragraph 6.

In order to obtain M we manipulate the identification complex @ of I" described in para--
graph 3. For that we first assign to @ what we call its Whitehead graph G(@Q). Then,
as a next step, we modify G(Q) in two ways. These modifications simplify the graph and
finally allow us to visualize the manifold M as a link complement, see paragraph 6.

One of these simplifications diminishes the number of edges of G(@). Following a sugges-
tion of W. Haken, we refer to it as the Whitehead-Zieschang reduction process. Topologi-
cally, this process means that the complex @ is replaced by a simpler one which is obtained
from Q by a cut-and-paste process. By the other simplification we reduce the number of
vertices of G(@). Topologically, this corresponds to cancelling a pair of complementary
handles in M, see 4.2.

We stress that both kinds of simplification alter the manifold M but not its topological
type. This fact implies that the links constructed by us are only determined up to home-
omorphisms. In general, a link complement admits many homeomorphisms which cannot
be extended to a self-homeomorphism of $3.

4.1 The Whitehead graph of Q

As before let @ be the identification complex obtained from @ as described in paragraph
3. Thus @ is either a double prism or a pair of double prisms. When @ consists of two
pieces, we make it connected by picking two I'-equivalent faces, one of each component,
and glue them together.

Now we label the oriented edges of € by numbers 1,2,..., where I'-equivalent edges get
the same label. Similarly, we label the faces of 8Q by capital letters AY,A~,B*,B~,...,
indicating that the face A* has to be identified with the face A~, etc. It turns out that,
- once the edge labels are given, there is exactly one possibility to glue pairs of faces together
in such a way that the edge labels are respected.
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Canonical handle decomposition of M

The polyhedron Q admits a natural handle decomposition H = Hy U H; U Hy U H; (see
[RS; p. 74] for notation). The class of 3-handles H; is formed by the stars of the vertices
of Q with respect to its second normal subdivision. The 2-handles H; are given as product
neighbourhoods of the edges, and the class of 1-handles H; consists of product neighbour-
hoods of the faces of @ lying in its boundary. Finally, there is a smgle 0-handle, namely
@ minus the union of 1-, 2-, and 3-handles.

We observe that the handle decomposition H of @ induces canonically a handle decompo-
sition of M. Denote by @, the polyhedron arising from @ by removing the interior of the
3-handles belonging to H3. We then have a quotient map p : Qo — M, and the i-handles of
M are composed by the images of the i-handles of Q4. To be more precise, each 1-handle of
" M is of the form [~1,1] x D? and is the union of two 1-handles [0,1] x D? and [-1,0] x D?
of Q associated with a pair of faces F*, F~ and glued together along {0} x D?. We refer
to this handle as an F-handle. Similarly, every 2-handle of M is defined as the union of
a class of 2-handles of @ which belong to equivalent edges and which are glued together
along boundary disks of the form J x I where J C 8D%. Thus the number of 2-handles of
M equals the number of equivalence classes of edges of Q under the action of T

A flat presentation of Q

As the next step we visualize the handle decomposition H of @ on the topological 3-ball
(R? x (—00,0]) U {o0}. This is done in such a way that all edges of Q come to lie on
IR? x {0}. To see what is meant by that first deform Q so that it becomes a convex subset
of IR®, then apply stereographic projection. Figure 4.2 und Figure 4.4 show such a flat
presentation of Q in the cases I'_7(6,4) and I'_7(12, 22), respectively.

2 H
~ b 1 !
ct 3
® D-,,
ly b} 2 T
%
DT
5 al
1y 4 ) s
o A+ 3*
2 f

Figure 4.1: Q in the case I'_7(6,4).
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Figure 4.3: Q in the case I'_7(12,22)

Whitehead graphs

A Whitehead graph G is a finite planar graph together with the following data:
(1) A fixed point free involution of the vertex set of G which preserves degree,
(2) a fixed embedding G — R?.
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Figure 4.4: Q made convex Figure 4.4 a): Q made flat
the face E contains the point co

A Whitehead graph can be used to construct compact 3-manifolds with boundary. To see
how this works we choose for each vertex v of G C IR? a small disk D, in IR? centered at
v where all these disks should have the same radius. Then 9D, meets the edges of G in a
set of points whose number equals the degree d of v. If necessary, after an isotopy of G in
IR? we may assume that 8D, N G is invariant under the rotation of D, through the angle
27 /d. Now for each pair of vertices (v,v') of G corresponding under the involution given
by (1) we attach a 1-handle I x D, along D, and d,s. This is done in such a way that for
each £ € 8D, NG the arc I x {z} connects z with z' € 8D, NG.

On the boundary of the handle body H, constructed in this way we have a system of

(pairwise disjoint) circles arising from the edges of G, together with the various arcs I x {z}
on the attached 1-handles. Now the compact 3-manifold we have in mind is obtained from

H — g by attaching a 2-handle D? x I along a tubular neighbourhood of every of these
circles in 0H . '

Two observations are in place here:

1. The handle body H — g can be realized in IR? x IR where the attached 1-handles lie in
R? x [0,00) and are unknotted and unlinked.

2. The topological type of the 3-manifold constructed above depends only on the isotopy
type of G in §? = IR? U {o0}. It is fixed once we have specified, for each pair of
disks D,, D, corresponding base points on 8D, N G resp. 8D, N G and opposite
orientations for 0D, and dD,.

Examples of Whitehead graphs arise in a natural way from a flat presentation of any iden-
tification complex Q. Namely, take G = G(@Q) to be the dual graph of the 1-skeleton of
Q in S2. Clearly, conditions (1) and (2) of the definition are satisfied. Figure 4.5 shows
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the Whitehead graph G(@) for I'_7(6,4). The vertices are already indicated as disks
whose boundaries are oriented. Here and later on we adopt the convention that vertices
A~ ,B™,... get clockwise orientation and vertices A*, B*,... get counter-clockwise orien-
tation. Also base points are already marked. Note that for every pair F*, F~ the choice of
one of the two base points is free whereas after this the other base point is fixed according
to the identification prescription on Q. Orientations and labels for the edges of G are
obtained by the following rule: -

Take any edge e, give it any of the two possible orientations, and label it by 1.1. Now to
the endpoint z of e, lying in some 8F%, corresponds a point z' € 8FF, and z' belongs to
a unique edge €’. Give ¢’ the label 1.2 and orient it so that z’ becomes its starting point.
Proceeding in this way one comes back to the edge 1.1 after finitely many steps. Next take
any edge which is still unlabeled and repeat the same procedure thus creating 2.1, 2.2, .. ..
As G is finite, this process stops.

We remark that orienting the edges is not necessary. However, it will turn out to be useful.

Figure 4.5: G(@Q) for T'_7(6,4)

Denote by M(G(Q)) the 3-manifold obtained from the Whitehead graph G(Q).

4.1. Proposition: Let M = I'\IH® be constructed via the identification complex Q. Then
M =M(G(Q))-

Proof. Recall the canonical handle decomposition of M originating from the natural
handle decomposition of Q. We observe that this decomposition arises from the graph
G(Q) C 8% = 3((IR?* x (—00,0]) U {oc}) by attaching 1 - and 2-handles in just the same
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way as we did it when constructing M(G(Q)). The point is that, after attaching an F-
handle for every pair of vertices F'*, F~, the edges of G (together with the connecting arcs
on the F-handles) become the attaching spheres of the 2-handles of both M and M(G(@)).
Thus M and M(G(Q)) are homeomorphic. O

4.2 Whitehead-Zieschang reduction

In this section we shall see how a given marked and orientated Whitehead graph can
be modified into a simpler one giving a homeomorphic 3-manifold. After finitely many
such simplifications we will be able to visualize the corresponding 3-manifold as a hnk
complement. -

The complexxty of a Whitehead graph G, denoted ¢(G), is defined to be the pair (g, n)
where g is half the number of vertices of G and n is the number of edges. We order the
pairs (g, n) lexicographically.

Diminishing the number of edges

Assume we have found a simple closed curve a in IR? with the following properties:

(1) a does not meet the vertices AT, B%,..., of G.

(2) a meets the edges of G transversely.

(3) a seperates some pair of vertices F* and F~ and ja N G| < degree F* (where |...|
denotes cardinality).

Clearly, o bounds a disk F' which is properly embedded in My = (IR? x (—o0,0] U {c0}.

We give a the clockwise orientation and fix any point of MG as base pomt Now we split

M, along F and identify the two resulting 3-balls along F* and F~ in the obvious way.
This operation gives us a new Whitehead graph G’ satisfying

¢(G') = (g,n — degree F* 4 degree F't)
= (g,n — degree F* + |a N G|)
<G), by(3)

Moreover, G' is again marked and oriented, and a labelling of the edges of G yields a
labelling of the edges of G' in an almost canonical manner. Fig. 4.6 a) reproduces Fig.
4.5 where a curve « has been drawn in. The vertices A, Bt , C~, Dt are seperated by «
from A~,B~,Ct, D™, respectively. We select the pair D*. (The pairs B* or C* could
be taken either way; the pair A% would not lead to a reduction of complexity.) Fig. 4.6
b) shows the new Whitehead graph.

4.2. Proposition: If G and G' are Whitehead graphs as above then M(G) = M(G').

This proposition is due to Zieschang; see [Z]. It is the geometric counterpart to a corre-
sponding result on equivalences of group presentations attributed to Nielsen (see [M,K,S],
[C,Z,1-3] for instance).
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Figure 4.6 a)

Figure 4.6 b)

With regard to Proposition 4.2. we refer to the process of constructing the graph G’ out
of G as the Whitehead-Zieschang reduction process.
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Handle cancelling

Next we describe a second modification a Whitehead graph G can be submitted to. Its
effect again is a reduction of complexity; this time the number of vertices is lowered. The
process is motivated by the geometric operation of cancelling a pair of complementary
handles in the manifold M(G). This implies that the new Whitehead graph determines a
manifold that is homeomorphic to M(G). In order to understand how G is modified and
why this is done in such a way we have to recall how handle cancelling proceeds. Before
we can omit the F-handle H; and the 2-handle H; we have to check that the attaching
sphere s of H; intersects the belt sphere of Hj in exactly one point. But s arises from some
class of edges 3.1,s8.2,...8. Thus, in terms of G, we have to verify that there is exactly
one edge s.x leaving or entering F*. If this is the case then we push H; with one of its
“feet”, say F't, along s until we come to F~. Of course, in doing so, we have to pull along
with F* all the other cocores of 2-handles running over the F-handle H,. This explains
how the remaining edges of G adjacent to F* or F~ must be changed before F*,F~
and 3.1,8.2,... are erased. Note that the new graph requires a new edge labelling (and
sometimes also a marking of new base points for some pairs of vertices).

Figure 4.7 illustrates the Whitehead graph G’ we obtain from the graph. G depicted in
Fig. 4.6 after cancelling A* and the edges 1.1, 1.2, 1.3, 1.4. (Other choices of vertices and
edges would be admissible as well.} In this case we have

(G’) = (3,14) < (4,15) = ¢G).
However, in general, the second component can increase when handles are cancelled. Note
also that in more complicated examples than I'_7(6,4) we have to carry out several handle

cancellations and also more than only one Whitehead-Zieschang reduction before we arrive
at a Whitehead graph which does not allow any further simplification.
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Figure 4.7: The A-handle and the curve 1 are cancelled

§5 Link complements

Our goal in this paragraph is to show that for all values of d,m and n in the list at
the beginning of paragraph 4 the manifold M = TI'_4(m,n)\IH® is a link complement.
Moreover, we determine the links explicitly, see paragraph 6. To begin with we establish
a general criterion for the embeddability of M in S3.

A criterion for embeddability

Recall that the manifold M(G) arises from the Whitehead graph G in two steps. First we
attach an F-handle for every pair F'*, F~ of vertices of G. The result of this is a standard
handle body Hj in §3, together with a system S of orientated circles on dH,. Then M(G)
is obtained from H, by attaching 2-handles along S. The question now is whether these
2-handles can be realized within §3. Note that this is exactly the case if every circle of S

spans a disk in the complementary handle body H, = §% — H,. In order to decide whether
disks of such a kind exist or not we dispose of the following algebraic criterion.

For each F-handle H; we choose a longitude f, i.e. a simple closed oriented curve on
OH) which spans a disk in H, and which is of the form f = fofi where fo runs over

H, from F~ to Ft and f; goes back on IR? to the starting point. Furthermore, these
longitudes should be disjoint and meet the system S transversely and only in IR?. Now to
every system s = 38.1,8.2,...,3.k, of edges of G we assign a word w(s) in the symbols f
as follows. Starting with s.1 we write f if we traverse f from right to left, and f~! if we
traverse f from left to right. Then we proceed, still on s.1 or with s.2,... until we reach
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a second longitude, and so on. Finally going along s.k, we complete the definition of the
word w(s) = f°...(e = £1).
5.1. Proposition : If for every edge system s of G the word w(s) is trivial as an element

of the free group generated by {f} then M(G) embeds in S3.

Proof: Recalling that the edge systems s of G are in canonical 1-1 correspondence with
the system S of attaching spheres on dH,, the condition w(s) = 1 means-precisely that
the curve s on 8H| is null-homotopic in H;. As every null-homotopic simple closed curve
on OH, bounds a disk in H, we see that we can attach the 2-handle along s inside of H,.
A standard procedure finally shows that these handles can be found disjoint. [J

Finding the right longitudes

Of course, if the condition for embeddability formulated in Prop. 5.1. is not fulfilled then
this does not necessarily mean that the manifold M cannot be embedded in S3. It might
as well be that our choice of longitudes was not good. To see what can happen let us
have a look at Fig. 5.1. The diagram reproduces Fig. 4.7, with longitudes b, ¢, d drawn in
addition (it suffices to specify the part of the longitude lying in IR®. First disregarding d;,
the curves 2 and 3 satisfy w(2) = b6~! =1 and w(3) = ¢~!¢c = 1. But if we replace the
longitude d by d; then we get w(2) = bdy'b'd; # 1 and w(3) = dyc~1d7 c # 1.

Thus our discussion proves that the manifold I'_;(6,4)\IH® embeds in S°. The embedding
itself depends upon the choice of the longitudes b, ¢, d. Indeed, there are other good choices
of longitudes easily found in this example. These lead to different links with homeomorphic
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complements. Notice also that a compact 3-manifold whose boundary consists of tori and
which can be embedded in S® is in fact a link complement.

5.2 How to determine the link

Now suppose we are given an explicit embedding of the manifold M into S* as described
in section 5.1. Then a final task remains to be done. We have to determine the link L.
The components of L are provided by longitudes of the various boundary components of
M C 83. Therefore, our problem consists in finding for each boundary torus T; a pair
m;, l; of simple closed curves in T; which intersect (geometrically) in exactly one point and
such that m; (the meridian of T;) bounds a disc in S* — M. The curves [; then form the
link we are looking for. It is convenient to search for m; and [/; in the Whitehead graph
G which, together with the system {f} of longitudes on H,, gives us the embedding of M
into $3. IR? — G consists of classes of regions which belong to the same 7;. Within these
classes we have to find m; and /;. A necessary condition for m; to be a meridian of T;
again is that the word w(m;) in f} obtained by going along m; in the same way as before
when the words w(s) were defined must be trivial. '

Figure 5.2 shows the system of meridians and longitudes for I'_;(6,4)\IH*. The picture is
obtained by first deforming the graph of Fig. 5.1 so that the longitudes b,c and d become
straight lines. Then the B—,C—, and D-handle should be imagined as a bridge lying
directly over the corresponding lines. Figure 5.3 a) shows the desired link L we obtain
by simplifying the longitudes Iy, I3, I3 isotropically. Finally, a Dehn twist along the central
disk D yields the symmetric 3-component link depicted in Fig. 8b).

Figure 5.3:
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§6. The list of links

This paragraph contains pictures of the links which come out of the program described
above carried out for the subgroups of index < 12 in PSL3(O_7). The details of the
computations are somewhat messy, we omit them here.

The manifolds I'_7(6,1)\IH?,---,T'_7(6,4)\IH® are pairwise homeomorphic, [G,S,1]. We
only describe the case: -
P_7(6, 4) :

The manifold I'_7(6,4)\IH® is by our analysis in paragraph 5 homeomorphic to S* — L
where L is the following link with 3 components:

Under an obvious Dehn-twist $® — L is homeomorphic to $3 — L; where L, is the following

(&

These results are known, see the references in [G,S,1}.
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F_7(6,5), P—7(636) :
Our method shows that I'_7(6,5)\IH® is homeomorphic to S* — L where L is the following

. k.j‘ .
yaed i

@ .
-e

An obvious Dehn-twist gives a homeomorphism $§* - L = §3 — L; where L; is the following
link:

The manifolds '_7(6,5)\IH* and I'_7(6,6)\IH® are homeomorphic, |G,S,1].
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F_7(12, 1) :

The manifold I'_7(12, 1)\IH* is homeomorphic to $% — L where L is the following link with
4 components:

> .

I_,(12,2):

The manifold I'_7(12, 2)\IH? is homeomorphic to $° — L where L is the following link with
4 components:

=
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F_7(12,3), F-7(12,4),F-.7(12,5), I‘_7(12,6) H

These manifolds are homeomorphic to $* — L where L is the following link with 4 compo-
nents:

I'_7(12,7):

The manifold I'_7(12, 7)\IH® is homeomorphic to §% — L where L is the following link with
3 components: '

/
- /\/
("(“ ol



I_1(12,8):

The manifold I'_(12, 8)\IH? is homeomorphic to $% — L where L is the following link with
3 components:

I'_7(12,9),T_7(12,10), T7(12,12),T'~7(12,13), T _7(12,15), T_7(12, 16) :

These corresponding manifolds are homeomorphic to $* — L where L is the following link
with 3 components:

(D

N/

For the proof see paragraph 3 and [G,S,1].
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r_,(12,11):

The manifold T'_7(12,11)\IH® is homeomorphic to $* — L where L is the following link
with 3 components:

1 |
——

P_7(12, 14) :

The manifold I'_7(12,14)\IH® is homeomorphic to $* — L where L is the following link
with 3 components:
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Under an obvious Dehn-twist S* — L is homeomorphic to S® — L; where L, is the following
slightly simpler link:

P_1(12, 17) .

The manifold T'_7(12,17)\IH® is homeomorphic to §3 — L where L is the following link
with 3 components:
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I'_7(12,18):

The manifold I'_7(12,18)\IH® is homeomorphic to $* — L where L is the following link
with 3 components:

70

\SE

P_7(12, 19) :

The manifold T'_7(12,19)\IH* is homeomorphic to $3 — L where L is the following link
with 3 components:
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P_7(12, 20) :

The manifold I"_7(12,20)\IH® is homeomorphic to $* — L where L is the following link
with 2 components:

N
£

St

T_,(12,21) :

The manifold I'_7(12,21)\IH* is homeomorphic to §* — L where L is the following link
with 2 components:

)

Under an obvious Dehn twist S® — L is homeomorphic to the complement of the following

D

o\
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r-2(12,22) :
The manifold I'_7(12,22)\H? is homeomorphic to $* — L where L is the following link

O

I'_;(12,23) :
The manifold I'_7(12,23)\H? is homeomorphic to S* — L where L is the following link:

o

LN
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1‘_7(12, 24) .

The manifold I'_7(12,24)\IH® is homeomorphic to $* — L where L is the following link
with 2 components:

> |

e ———

a__ D

i
oL
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