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Introduction

For an integer k > 0 let
(0.1) Hk+2

stand for (k+-2)-dimensional hyperbolic space. Here we shall be concerned with two models
of H*+2. We write:

(0.2) ]I{k+2 , H k-2

for the hyperboloid or upper half-space model,respectively.

Assume that I’ is a discontinuos group of hyperbolic motions so that I'\#**? has finite
hyperbolic volume. A central theme in Selberg’s theory of harmonic analysis on weakly
symmetric spaces is the study of the spectral theory of —A acting on a suitable dense
subspace of L2(I'\H**2)". Here A denotes the Laplace-Beltrami operator attached to the
hyperbolic metric. The operator

—A : CP(T\HF?) o LHT\H*?)

is known to be essentially self-adjoint and positive. Here C$°(I'\'H*+2) stands for the space
of T-invariant functions on H**? which are infinitely differentiable and have compact
support modulo I'. Let —A be the unique self-adjoint extension of —A. The continuous
spectrum of —A is easy to describe. It is empty if T\'H**? is compact and equal to the
intervall [(k+1)?/4, o[ otherwise. Even a description of the continuous part of the spectral
family can be given in terms of the analytically continued Eisenstein series. The discrete
spectrum of —A is a discrete subset of [0, 00[ containing 0. Apart from the usual theory
for spectra of Laplace-Beltrami operators on Riemannian manifolds of finite volume very
little more is known about the discrete spectrum. As a general notation we write:

(0.3) AT

for the smallest eigenvalue # 0 of —A on L2(I'\H**?),

In dimension two there is a famous conjecture of Selberg ([62]) which can be stated in
the following way. The group SL,(IR) acts in a natural way on the upper half-plane H?
and all subgroups of finite index in SL;(Z) act discontinuously and with a quotient of
finite volume on IH?. The conjecture of Selberg says: If T is a congruence subgroup of the
modular group SLy(Z), then we have

(0.4) A2

b

N

that is, the non-trivial discrete spectrum is contained in the continuous one. This con-
jecture is known to be very deep and to have profound consequences. It is known to be
a consequence of the general conjectures of Langlands. It i1s also known that there are
subgroups I of finite index in SLy(Z) so that Al is arbitrarily small. See for example the
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chapters by Randol in [9]. So far, Selberg’s conjecture has been proved only for a rather
small set of congruence subgroups of the modular group. The first general non-trivial lower
bound for Al was established by Selberg [62] who proved that:

3

T

(0.5) A 2 16

for all congruence subgroups of the modular group. The strict inequality A\l > 3/16 was
proved by Gelbart and Jacquet [24] by means of a lift from GL{2) to GL(3). Despite
considerable efforts a strictly larger lower bound that holds for all congruence subgroups
has not been established so far. We refer to the recent papers of Iwaniec [34-39] and the
references in these papers for a survey on the state of the art with respect to Selberg’s
conjecture.

Selberg’s proof of (0.5) is based on an ingenious argument that relates the existence of
small eigenvalues of —A to the abscissa of convergence of the Dirichlet series:

Z(m,n;s) = Z %

c#£0

where S(m,n; c) denotes the usual Kloosterman sum. Then Weil’s estimate of Kloosterman
sums [68] guaranties that Z(m,n;s) is holomorphic in a suitable half-plane. This yields
that the crucial poles do not exist and (0.5) follows.

In the case of dimension 3 the groups SL2(O) serve as a kind of substitute for the rational
modular group. Here, O denotes the ring of integers in some imaginary quadratic number
field. The continuous spectrum of —A on L?*(I'\JH?) is equal to the interval [1,c0[. So far,
the analogue of Selberg’s conjecture for dimension 3, that is

(0.6) A > 1,

has been proved only in the special examples ' = SLy(Z[7]) and T' = SLy(Z[/-2]) (see
[18]). The analogue of (0.5) for all groups SL;(O) 1s due to Sarnak [58], who proved that
3

) AP > =
(©1) P>

Sarnak’s proof adapts Selberg’s arguments to the three-dimensional case. His method also
works for all congruence subgroups of the groups SL2(O).

In the present paper we generalize Selberg’s result to congruence groups acting on the
higher dimensional spaces.

Our results can conveniently be stated in terms of the hyperboloid model IK**2. The
space IK¥*? is naturally acted on by the component of the identity SO°(1,k + 2) of the
orthogonal group SO(1,k + 2). Identifying the group SO°(1,k + 2) with the group of
orientation preserving isometries of IK**2 we get an identification:

(0.8) K2 = S0°(1,k+2)/SO(k +2).
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The orthogonal group SO(k + 2) is the stabilizer of a suitable point in IK¥*?. The congru-
ence subgroups of SO°(1, k+2) are constructed in the following way. Let ) be a quadratic
form with rational coefficients which is of signature (1,% + 2). The group of units

S0 13(%Z,Q) : = 80,43(Z,Q) NSO (R, Q)

acts via

$0:43(%Z,Q) < S0 3(R,Q) = S0°(1,k + 2)

on IK**2, A subgroup T < S0%.,3(%Z, Q) is called a congruence subgroup if it contains
505,4(%, Q) N (I + &(M4a(%))

for some ¢ € Z\{0}. The symbol M} (%) stands for the ring of (k + 3) x (k 4 3) matrices
over Z. For each group I' the quotient I‘\]K""'2 is always of finite volume, it is compact if
and only if @ is Q-anisotropic.

Theorem A. Let k& > 0 be an integer. Let @) be a quadratic form with rational
coefficients. Assume that @ is of signature (1,k + 2) and isotropic over @. For any
congruence subgroup I' < SO 5(Z, Q) we have

3
— if k=0,
/\E 16

2\ 2k+1

2 if k>0.

The case k = 0 is easily derived from Selberg’s result (0.5) using the exceptional isomor-
phism:
PSL,(IR) 22 SO°(1,2).

The result in Theorem A was announced by the authors in [16]. Li, Piatetski- Shapiro
and Sarnak [45] have recently also announced the same result.The proof indicated by Li,
Piatetski- Shapiro and Sarnak seems to be quite different from ours.

Notice that the Theorem of Hasse and Minkowski implies that there are no rational
anisotropic quadratic forms @ of signature (1,k + 2) if £ > 2. In the remaining cases
(k =1,2) a result analogous to (0.5) and (0.7) can be derived from Langlands’ correspon-
dence; see for example {17].

In principle, our proof of Theorem A is based on Selberg’s approach using the upper half-
space model H¥*2 of hyperbolic space.Instead of S0;3(Q, Q) we work with Spin,_ 5(Q, Q)
and its congruence subgroups I'.'Theorem A is then deduced using the spin-homomorphism:

(09) 0. Spink+3(Q)Q) - 02‘+3(Q1 Q)

)



We use a particular representation of Spiny ;(Q,Q) as a Vahlen group SV,(Q, g) of cer-
tain (2 x 2)- matrices over a rational Clifford algebra C(q) defined for a negative definite
quadratic form ¢ suitably related with Q. If ¢ is any negative definite quadratic form over
Q in k variables, then the group SVi(IR, ¢) acts naturally on the upper half-space model
H**?. We develop the necessary background on Clifford algebras, the Vahlen group and
arithmetic subgroups of the Vahlen group in paragraphs 1, 2. In particular, we define suit-
able congruence subgroups of SV(Q, ¢) in paragraph 3 and relate them to the congruence
subgroups of O3,,(Q, Q) for an appropriate quadratic form Q.

An important idea in Selberg’s approach is to introduce suitable Poincaré series and to
compute the inner product of these series. Here our work was inspired by recent develop-
ments due to Bump,Deshouillers, Friedberg, Goldfeld,Iwaniec,Kuznetsov,Piatetski-Shapiro
and Stevens (see [6,7,13,23,25-28,34-39,43,52,65]).

We develop the necessary machinery for our case in paragraphs 8, 9. There a certain
Dirichlet series

(0.10) Zuis) = Y T,

the so-called Linnik-Selberg series, comes up, and the half-plane of absolute convergence
of this series is intimately connected with the small eigenvalues of —A (see §10). The
coefficients of (0.10) are a new type of Kloosterman sums attached to Vahlen groups, and
one of the most difficult parts of this work is to establish non-trivial bounds for these
generalized Kloosterman sums. We define the generalized Kloosterman sums in paragraph
4, and in paragraph 5 we decompose them into certain local factors Sp(u,v;%). These
local factors are related with classical Kloosterman sums in paragraph 6, and then Weil’s
estimate [68] gives estimates for the S;(u, v;7).

This approach is different from the method indicated in [16]. In [16] our computations of the
coeflicients was less specific than in the present paper. We then had to use other estimates
for exponential sums from Deligne’s theory [12]. We here only need Weil’s bound. This,
of course, means a noticeable simplification with respect to the tools used. Qur estimates
for the Sp(u,v;v) combined with certain results on congruential representation numbers
of quadratic forms lead in paragraph 7 to the result that

(0.11) Z(u,v;s) converges absolutely for Res >k +1/2

whenever £ > 1 and p,v are both nonzero. We also have proved that Z(u,v;s) has a
meromorphic continuation to the entire complex plane. This will be reported on in a
subsequent publication.

In paragraph 10 we then deduce from (0.11) that:

2k +1
(0.12) AT > .



whenever & > 0 is an integer , ¢ is a negatively definite rational quadratic form in &
variables and I' < SV (@, @) is a congruence subgroup.

The case k = 1 is just Sarnak’s result {(0.7). Our proof works uniformly only in case k > 2.
We indicate in paragraph 7 the changes which have to be made to obtain Sarnak’s result.

The result (0.12) implies Theorem A and also the following:

Theorem B. Let k& > 0 be an integer and @ a rational quadratic form which is of
signature (1, k + 2). Assume that @ is Q-isotropic. Let

© : Spin,14(Q, Q) — OZ+3(QaQ)

be the spin homomorphism. Let I' < 03,3(Q,Q) be a subgroup so that ©7}(T) is a
congruence subgroup of Sping (@, Q). Then

2k +1
.

r
A >

Theorem B is slightly better than Theorem A since the image under © of a congruence

subgroup in Spin; , 3(®, @) need not be a congruence subgroup. See paragraph 3 for more
explanations.

Using our approach we have proved asymptotic relations for sums of certain exponential
sums. These results are inspired by the paper of Deshouillers and Iwaniec [13]. We hope
to come back to this in a future publication.

Another application of our result is that the error terms in various asymptotic laws con-
nected with the hyperbolic lattice point theorem can be explicitly estimated. See [17] for
some number theory in this connection.

In contrast to the Selberg conjecture in dimension 2 and 3 ((0.4),(0.6)) we want to point
out that the naive generalization of Selberg’s conjecture to the higher-dimensional cases,
namely

(0.13) AT > (k+1)%/4

does not hold for all congruence subgroups of SVg(Q, ¢) for k > 2. Eigenforms of the
Laplace-Beltrami operator can be constructed by lifting certain holomorphic modular
forms. See [45] for an announcement. This phenomenon was also noticed in conver-
sations of S. Rallis and the second author. So perhaps all eigenvalues in the interval
[(2k +1)/4, (k + 1)? /4] are obtained by this process.



§1. Clifford Algebras, Vahlen’s Groups and Hyperbolic Spaces

§1. Clifford Algebras, Vahlen’s Groups and Hyperbolic Spaces

This paragraph gives the construction of Vahlen’s groups and their action on hyperbolic
spaces. The present work relies heavily on [15]. We briefly recall the basic definitions and
fix the notations. Suppose that K is a field with char K # 2 and F is a k-dimensional
(k 2 0) K-vector space with non-degenerate quadratic form ¢: E — K. Let C(g) be the
associated Clifford algebra (see [5], [10], [14]); for £ = 0 we have C(g) = K. We identify K
and F with their canonical images in C(q) and define

(1.1) V,: =K -1® E CC(C(g).
Let e,...,ex be a basis of E orthogonal with respect to ¢. Then we have in C(q)
(1.2) er =qley), euer =—epey (pr=1,...,k p#v).

Denote by &£ the set of all subsets of {1,...,k}. For M € &, M = {v,...,v,.} with
vy < ... < v, we define

(1.3) eMi=¢€, ‘... e, eg:=1€C(q).

Then {ep : M € £} is a basis of C(g¢) over K. There are three important linear involutions
defined on C(q) by means of

em = (=17 2 ey,
(1.4) em = (—1)"en, (M € &, r = |M]|).

e;w = (_l)r(r-—l)/2 e

The linear extensions of ~,’ and * are commuting linear automorphisms of C(g) such that
z* =1z’ forall ze€C(qg),
(1.5) T=—-z,2 =—z,2°=z forall z€E,

Ty =77, (zy) =2y, (zy)" =y"z* forall z €C(g).

The automorphism * is called the main antiinvolution, and ' is called the main involution

of C(g). The trace map tr:C(q) — C(q) is defined by
(1.6) trr=z+4+7T.

In the following we always assume K = @ or K = IR. We need the following concept:



81. Clifford Algebras, Vahlen’s Groups and Hyperbolic Spaces

1.1 Definition.  Assume that ¢ is negative definite. An element v € C(q) with v # 0 is
called a transformer if there exists a linear automorphism ¢,: V; — V such that

(1.7) vz = py(z)v' forall z €V,

Let T'(q) denote the set of all transformers contained in C(q).

We know from (15}, Proposition 3.6 that T(q) is the multiplicative subgroup of C(q) gen-
erated by V,\{0}. It follows that every x € T(q) satisfies Tz € K'\{0}.

Let k be a non-negative integer. For K = R, E = R* and
-1 0 ... 0

: -0

0o ... 0 =1
the negative definite unit form, we write Cx, Vi1, Tk for C(q), Vg, T(gq). We denote by
1,...,2% the canonical basis of RF and by {ism : M € &} the associated basis of C. We

tacitly identify Cy with the obvious subalgebra of Cx4+y by means of the inclusion &£ C x4 1.
By definition, Cp = IR, C, = C.

We equip Vi4q with the scalar product
1,
(1.8) (v,w) = §trvw (v,w € Viq1).

Then {1,71,...,2x} becomes an orthonormal basis of V4. For

= Y Amim€Cr (Am€R)
Meé,

let

(1.9) o] = (D M)

Meé€,

denote the Euclidean norm of z. Then we have

(1.10) v =vG=%v forall veT;
and in particular

(1.11) lvw| = |v]|w] forall v,w € Tk.
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§1. Clifford Algebras, Vahlen’s Groups and Hyperbolic Spaces

Moreover,

(1.12) |lz| = (z,2)!/? forall z € Viy.

For any lattice M C Vi1 we denote by

(1.13) M* ={yeViyy | (z,y)€Z forall ze M}

the dual lattice of M.

The set underlying our model of (k + 2)-dimensional hyperbolic space is the upper half-
space

IHk+2 = {330 + 33121 + ...+ .’,Ek+12'k+1 | b PRI 4 W | € IR,E};+1 > 0}
Define maps z: H**? — Viyq, 7 H**? ]0, 00[ by

(1.14)

2(P) = zo + 2181 + . .. + Tii,
T‘(P) =Tk

for P=xg+ 2101+ ... + Tpp1tpe1 € H**2. Then (1.10) yields
(1.15) |P|? = |2(P)|* + 7(P)? forall P e HFZ
IH**? with the Riemannian metric

dzo® + ... +dzi,,

We endow

ds? =
"rk+1

and obtain the model (IH**?,d) of (k + 2)-dimensional hyperbolic space. The hyperbolic
distance d(P, Q) of two points P,Q € H**? is given by

(1.16) 2coshd(P,Q) = §(P,Q),
where §(P, Q) is defined by
|2(P) — (@) +(P)* +r(Q)?

1.17 §(P,Q) =
(see [17], Prop. 1.4). The volume measure associated with the hyperbolic metric ds? is
dﬂio A d.’L'] A dxk-{-l
(1.18) dv = k+2
Trt1

and the corresponding Laplace-Beltrami operator is

o* 0* 0
= 72 —_— ) -

0T k41

The group of orientation preserving isometries of IH**? can be described by means of a
certain group of (2 x 2) - matrices over Cg, the so-called Vahlen group. This description is
due to Vahlen [66]; see also [1], [2], [3], [15], [17], [47].
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§1. Clifford Algebras, Vahlen’s Groups and Hyperbolic Spaces

1.2 Definition.  Let M;(Ci) be the set of (2 X 2)- matrices over Cx and define the
Vahlen group SV; by

a B (i) «B,7,6 € Tr U{0},
SVk = ( 5) € Mg(ck) (11) Eﬁ,76 € Vk+1,
! (i)  af*—py" =1

Clearly, SVo = SL2(IR),SV; = SL2(C). We infer from {1-3] or [15] or {47] that SV} is a

group under matrix multiplication with inverse

(1.20) (: ?)" _ (_57 —;ﬁ)

The group SVi was discussed in a more general context in [15], and Theorem 3.7 of the
latter paper gives two more descriptions of SV. We remark that SV} is generated by the

matrices
0 1 1 =z
(—1 0) ’ (0 1) (2 € Vira)

(see [15, Proposition 3.8]). The importance of SVi for hyperbolic geometry is manifest
from the next theorem which collects some results from [15], §5; these results may also be
drawn from [1-3, 47, 66].

1.3 Theorem. Suppose that o = (: ‘g) € SVi and P € H*2. Then yP+6 € Tiyy,

(1.21) oP := (aP + B)(vP + 6)~' € H¥+?,

and the map P — oP is an orientation preserving isometry of H*t2. The correspond-
ing group homomorphism induces an isomorphism of SVi/{I,—I} onto the group of
orientation-preserving motions of IH**2. The action of SVi on H**? is both transitive
and transitive on pairs of points with fixed hyperbolic distance.

Let z = z(P),r = r(P). Then (1.21) may be rewritten in the form

_ (az 4+ B)(yz +6) + a7r?
(1.22) | 2(cP) = vzt 6 + [y

?

7

vz + 82 + |y[*r*’

(1.23) r(oP) =
The following technical lemma is contained in [15], Theorem 3.7.
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§2. Some Arithmetic Subgroups of the Vahlen group

1.4 Lemma. If (: ‘?) € SVi, then

(1) ay, ﬂg € Vk-l-l)
(ll) a:c3+ BTy € Vk+1 forall z€ Vk.|.1,
(i) azf + pT @, vz6 + 6Ty € R for all z € Viys.

Recall that
Reaw-i-b _ & Re(cw+d)
cw+d = ¢ clew+d)?
for all (i 2 € SLy(R) with ¢ # 0 and w € H?. The following lemma is a kind of

substitute for this rule which holds for the Vahlen group.

1.5 Lemma. Ifo = (: g) € SVj with v # 0 and P € H**? 2(P) = 2,7(P) = r,
then

(vz + 6)
lyz + 612 + |y[2r?

(1.24) ZoP)=ay™ = (v)7

Proof. Using (1.10) and the “determinant condition” fy* = aé* — 1, we rewrite the
numerator in (1.22) as follows:

(az + B)(vz + 6) + oir® = (az + |y'[7*B7"Y) (72 + 6) + o7
= (az + Y [72ab*y)(vz + 8) + ayr? — (v*) (72 + §).
Here, the last term yields the second term on the right-hand side of (1.24). Now the
assertion follows from
(az + |¥'|2aé*y')(yz + 8) + a7’

=y ((v2 + W78 Y )(ve + 6) + |yI*r?)
=ay vz + 8* + v [*r?),

since |y'|~2y6*y' = 6, because of Lemma 1.4 (i) applied to 0™! and since the elements of
V41 are invariant under the anti-involution *. {J
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§2. Some Arithmetic Subgroups of the Vahlen group

§2. Some Arithmetic Subgroups of the Vahlen Group

Let K be a field with char K # 2 and k£ > 0 an integer. F is a k dimensional vector space
over K with non-degenerate quadratic form ¢: E — K, and let C(q), V, be defined as in
paragraph 1. The Vahlen group for ¢ is defined by

4 (Z) aét_ﬂ'y*=1, 3
(i) af® = Ba*, ¥6* = 677,
(ii1) o@, BB, 77, 66 € K,
e s ={(2 §)emew) | ) o e, g
(v) azf + BT @, yzb
+ 635 € K (Vo € V,),
\ (vi) azb+ BTy € Vy(Vz € V) |

see [15). Then SVi(K,q) is a group under matrix multiplication with inverse (1.20), and
we proved in [15], Theorem 3.7 that

(2.2) SV(R, —Ii) = SVi

with SVi from Definition 1.2. Note that SVi(K,g) is the set of K-rational points of an
affine algebraic group defined over K.

Suppose now that ¢, is another non-degenerate quadratic form on the K-vector space E,;
such that ¢y o f = ¢ for some linear isomorphism f: E — FE,. Then there exists a unique
isomorphism

(2.3) f:C(g) = Clar)

such that f | E = f (see [5], §9, no. 2, p. 140). Moreover, f commutes with *, / and .
Hence f induces an isomorphism

(2'4) f:SVk(K1Q) _’SVk(Kaql)'

For the rest of paragraph 2 let K = Q, assume that ¢ is negative definite, and let

E,q,C(q), SVi(@,q) be as above. Recall that a Z-order in a Q-algebra A is a subring R

such that the additive group of R is finitely generated and contains a Q-basis of A. Rings

and algebras are always (tacitly) assumed to have a unit element and substructures are
supposed to contain the unit element.
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§2. Some Arithmetic Subgroups of the Vahlen group

2.1 Definition. A subring R C C(g) is called compatible if it is stable under the
involutions * and ' of C(q). For a compatible subring R C C(g) let

(2.5) V(R):= RNV, T(R):=RNT(q),

(2.6) SVi(R) := SVi(Q, g) N Ma(R).

For n € IN and J C C(q) a compatible Z- order let

2.7) SVi(J;n) = {(ff" g) € SVi(J)

a—l,ﬁ,'y,é'—l(-:n.]}

denote the principal congruence subgroup of SVi(J) of level n. A subgroup T <
SVi(J) is called a congruence subgroup if SVi(J;n) < T for some n € IN.

The set SVi(Q, ¢) is the group of Q-rational points of a connected and simply connected
affine algebraic Q-group of both rational and real rank one. (In fact, we show in §3 that
SVi(®Q, g) is isomorphic to a certain spin-group which is known to be simply connected.)
Let f be an isomorphism of F @g IR onto IR* such that ¢ = —Ix o f. (Such an f exists by
Sylvester’s inertia law.) The groups fgSVk(J; n)) C SVi (n € IN) (see (2.4)) are discrete
and hence act discontinuously on H**2, If f, and f, are two choices for f, then the groups
fl(SVk(J; n})), and fz(SVk(J;n)) are conjugate in SVj. Our next aim is to show that the
groups f(SVi(J;n)) are cofinite. For this we need a little lemma.

2.2 Lemma. Let ¢ be negative definite, n € IN, and assume that Ji, J; are compatible
Z-orders in C(q). Then there exists an m € IN such that

SVk(Jg; m) < SVk(Jl;n).

Proof. There exists an £ € IN such that

£, +8Jy C Ji 0 Js. 0

Sometimes it is convenient to restrict to a special set of forms g which contains a represen-
tative of each equivalence class of quadratic forms. For d = (di,...,dx)' € N¥ (k> 0)
let qd - Qk - QJ

k
(2.8) ga(z) == Zdﬂ;? for (z1,...,2;:) € QF
=1

14



§2. Some Arithmetic Subgroups of the Vahlen group

and

(2.9) Ca :=C{—qq).

The generators ey, ... e of Cq satisfy

(2.10) e =—d,, ese,=—e,e, (pv=1,..k pu#v).
Hence we may embed Cy as a subalgebra of C; via the map

(2.11) eyH\ﬂi:i,,, v=1...,k.

With respect to this embedding we have the identifications

(212) V_qd - Cd N Vk+],

(2.13) SVi(Q, —qq) = SVi N M3(Cq).
In the sequel we always embed Cq4 tacitly into SVi as above. Note that

(2.14) Jii= & ZLepy
Me&E,

is a compatible Z-order of C,.
2.3 Proposition. Let g be negative definite, and let f : EQq IR — IR* be an isomor-

phism such that ¢ = —I o f. Assume that J is a compatible Z-order in C(q) and n € IN.
Then f(SVi(J;n)) C SVi is a cofinite discrete non-cocompact group.

Proof. By the above arguments, f(SVi(J,n)) is conjugate to a group which is com-
mensurable with SVi(J4) (see (2.14)). The assertion for SVi(Jy4;n) was proved in [17].
O
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§3. The Isogenies of Vahlen’s Groups and Orthogonal Groups

§3. The Isogenies of Vahlen’s Groups and Orthogonal Groups

Although our later considerations will be in terms of the Vahlen group, we also want to
formulate our results for orthogonal groups. For this we recall the hyperboloid model of
hyperbolic space (see [15], Section 5): For k > 0 let §; be the following quadratic form in
k + 3 variables:

ak(yf):yl:yhxlv"wmk) = yg ﬂyf _yg —CC? - ... —-:C%.
The set underlying the hyperboloid model is
(3.1) K2 o= {y = (Yo, ¥1,¥2, 15, Tk)" | o > 0,dx(y) =1}.

The line element

ds® = —dy} + dy? + dyl + dz? + ...+ dz?

defines the hyperbolic metric on IK**2. We denote by Iso(IK**2) and Iso™(IK*¥*?) the sets
of isometries and orientation preserving isometries of IK**2, respectively.

If ¢ is a non-degenerate quadratic form on the vector space K" over a field K and R C K a
subring of K, we denote by 0,(R, ¢) the set of elements of the orthogonal group 0,(K, q)
of g over K with entries in R. This notation follows the book of Diecudonné [14]. Let
09(1: k + 2) = 0:—}-3(1&1 ‘ik):

SO°(1,k +2) :=S0; .3(IR, §x)
be the components of the identity element in O443(IR, §x) and SOz43(IR, i ), respectively.
These groups act on IR by left multiplication and stabilize IK**%. The resulting bijec-
tions of IK¥*? are isometries, and we have the identifications

0°(1, k + 2) = Iso(IK**?),
(3.2) SO°(1,k + 2) = Isot (IKF1?),
K 2 = 0°(1, k + 2)/0(k + 2),

where O(k + 2) denotes the stabilizer of (1,0,...,0)t € K**2 in 0°(1,k + 2).

In the following we introduce certain arithmetic subgroups of Iso(IK**%). Let ¢ be a
quadratic form over Q in k-3 variables which is equivalent to ¢x over R. If f € GLi3(IR)
satisfies g = ¢ o f, then conjugation by f induces an isomorphism

@5 0k r3(R, q) = O 5 (R, Ge)-
We define

(33) { ;+3(QsQ) = 0k+3(Q7 Q') N 02+3(IR,, q),

;+3(%’ Q) = 0k+3(ms 9) n 02+3(IR7Q)1
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§3. The Isogenies of Vahlen’s Groups and Orthogonal Groups

where 0f, 3(IR, ¢) denotes the component of the identity in Ox43(IR, g).

The group (0}, 1(%Z, q)) acts discontinuously on K**%. The various choices for f lead to
a 034 3(IR, ¢)-conjugacy class of discontinuous subgroups of 03, 3(IR,q). It is well known
that ¢7(0%,3(%, q)) acts with compact quotient if and only if ¢ is anisotropic over @ (see
[4]). Note that this is only possible for k¥ < 1 by the Hasse-Minkowski Theorem.

For 2 € IN the subgroups

(3.4) { Ok43(Z,q,¢) := {g € Ox13(%Z,q) | g=1Imodf}

213(Zy 0, €) 1= 04 y3(%,q,8) N O}, 5 (Z,q)

are called principal congruence subgroups of level £. These groups are of finite
index in Ox43(Z, ¢) and O} 5(Z, q), respectively. A subgroup I' < Ox43(Z, q) is called a
congruence subgroup if it contains a principal congruence subgroup 03, 4(%Z,q,¥) for
some £ € IN.

We briefly recall the relation between the Vahlen and orthogonal groups (see [15]). Equip
Ey := Q® with the quadratic form

20 (Yo, y1,¥2) == Vo — ¥3 — ¥4

and let E be a k-dimensional vector space over @ with ndn-degenera.te quadratic form g¢.
The non-degenerate quadratic form

(3.5) d:=¢qoLgq

on E := Ey @ E defines an associated Clifford algebra C(§). Let C*(§) be the subalgebra
of C(§) spanned by the basis elements epr(M € Exy3) with |M| = 0 mod 2. Writing

f(l = (I,0,0)t, fl = (Oa l:o)ta .f2 = (0’ Oa 1)t

for the standard basis of Ey we define the following elements of C(go):

U=

(I+ fof1), wi:= %(fo — f1)fa,

(3.6) 1
(fo+fi)fe, v:= 5(1 - fof1).

Wy =

BN — DI —

The Q-linear map
B — CH(g),

€ — & := fofifaz

extends by [15], Proposition 2.4 to an injective Q-algebra homomorphism
:C(g) = C*(9)

17



83. The Isogenies of Vahlen’s Groups and Orthogonal Groups
which commutes with the antiautormorphism *. The map

T: M2(C(q)) — C(3),

¥ ((: g)) = d:u+,9w1 + Jwy + v

is a Q-algebra isomorphism which restricts to an isomorphism
©: SVi(Q, 4) = Spinga(@, )
of the Vahlen group SVi(@Q,q) onto the spin-group
Sping,3(Q, ) = {s € C*(§) | sEs* C E,ss* =1}

(see [15], Theorem 4.1). There is a ca.nonicall homomorphism

©: Spin, 13(Q, §) — S0;,3(Q,9)
mapping an element s € Spin; , ;(®, §) to the endomorphism

O(s):E - E, 0O(s)(z):=szs* (z€E).

Defining 7 := © o ¥ we obtain an exact sequence
(3.7) 1— {1,—1} = SVi(Q,9) — S0«13(®,§) — Q*/(Q")* — 1

(see [15], §5). The map o is the spinoral norm ({14}, §7 and §10). An analogous construction
holds over IR instead of Q.

Assume now that ¢ is negative definite. Every linear isomorphism f: E ®q R — R*
satisfying ¢ = —Ij o f extends to a linear isomorphism f: E ®¢g IR, — R**® such that
§ = §x o f and we have the following commutative diagram (remember (2.4)):

SVi(Q,q) C SVi(R,q) i’ SVi = Iso+(IHk+2)

'!' Tq l Tq ~l— T-I,
[+ ~ o] ar wf [+] -~
$0;.3(Q,4) C S0;3(R,§) — SO;.3(R,d) = Iso"'(IKH'?),

where the indices at the various maps 7 indicate the underlying quadratic forms. In [15],

Proposition 5.3 we explicitly wrote out a 7,-equivariant rational bijection o HE
IK**2. The 7,-equivariance of ¥ means that

(3.8) To(f(9)P) = ¢ 5(7(9))(¥o(P))
for all g € SVi(IR,¢) and P € H**2,

18



83. The Isogenies of Vahlen’s Groups and Orthogonal Groups

3.1 Proposition. Let ¢ be a negative definite form in & variables with rational coeffi-

cients and let I' < Ox43(Q, §) be a congruence subgroup. Then there exists a congruence
subgroup A < SVi(Q, ¢) such that 7,(A) < T

Proof: Let £ € Z be an integer with
Or+3(Z,4§,¢) <T.

The quadratic form ¢ is defined on Q*. We choose orthogonal elements g, ..., gx € Z* so
that ¢(g1),...,9(gx) € Z. Then

AN=ULn ... & Lg:
has finite iqdex in %Z*. We further choose an integer m; with
my - Z* < A.
We define J to be the subring of C(g) generated by A. J is an order in C(g) with
JNV,=A.

We define
A= SVi(J,my - £).

and prove now that 7,(A) < T': We define A to be the lattice in C(§) generated by A and
fa. f1, f2- The following inclusions are then trivial:

(3.9) my - 5 < A,my A <my ZF.

For an element ¢ € A it is clear that Tq(g)(ﬂ) < A. We conclude from (3.9) that
7o(9)(Z**3) < Z**® and 7,(g) = T mod £. O

3.2 Remark. It is in general not true that the image 7,(A) < 03, 3(Q,§) of a con-
gruence subgroup A < SV(Q, ¢) is a congruence subgroup. Consider the following exam-
ple. Let ¢ be negative definite definite form in £ > 0 variables with rational coefficients.
Let J C C(q) be any Z-order and let p;,p; be two distinct odd primes. Then clearly
74(SVi(J,p1 - p2)) is not a congruence subgroup. See [53] for some general theorems in
connection with this phenomenon. It is interesting to note that the subgroup

{z € 0x43(Z,q) | ofz)=1}

of elements of spiniorial norm 1, is always a congruence subgroup of Ox43(%,§). This is
proved in {51] and [55). :
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3.3 Remark. Let again ¢ be a negative definite form in k¥ > 0 variables with ratio-
nal coeflicients. The congruence subgroups A < Spin; 4(Q, §) are defined to be those
subgroups which contain a group of the form

{9 € Sping43(Q,9) | g-1enJ}
for some n € IN and some compatible Z-order J < C(g). It is then clear that both

¥ : SVi(Q,q) — Spin;,5(Q, )

and its inverse map congruence subgroups to congruence subgroups.

§4. Generalized Kloosterman Sums and the Linnik-Selberg Series

This paragraph introduces the generalized Kloosterman sums and the Linnk-Selberg se-
ries. We fix the following hypotheses and notations for paragraph 4:

k — a natural number or 0,

g — a negative definite rational quadratic form on a k-dimensional
rational vector space E,

J < C(g) — a compatible order in the rational Clifford algebra C(g),
n — a natural number.
In addition we introduce
Vi=Q-1®ECC(g), T(9)

as in paragraph 1. We furthermore put:

V(J)=V,nJ,

T(J)=T(g)NJ,

SVi(J) = SVi(Q, q) N M(J),

I‘:=SVk(J,n)={($ ?)GSVk(J) ‘ a—l,ﬁ,y,é—lEnJ}.

The bilinear form 1

(z,y) = Etr zy (z,y € Vg)
is an inner product on V;, and we denote by A¥ the dual of the lattice A C V. Obviously,
a matrix (1 w) belongs to I if and only if w € nV(J). Put

0 1
r;::{(é ‘f) ‘ wEnV(J)}.
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§4. Generalized Kloosterman Sums and the Linnik-Selberg Series

One main aim of paragraph 4 is to describe explicitly a representative system of I', \I'/T"_.
The result will be given in Theorem 4.7. Another aim is to introduce a certain type of
generalized Kloosterman sums for Clifford algebras. These sums will come up in our
discussion of the scalar product of two Poincaré series in paragraph 9. The following
definition will play a major role in what follows.

4.1 Definition. For v € nT(J) let

(4.1) T(y):={a€JdJ | a=—1lenJ , ayenV(J)},
(4.2) Te(y):={6eJ | §=1ent , F5enV(J)}

If (: ?) € T and v # 0, then v € nT(J) and & € Tr(7), § € Te(v). If v € nT(J)

and k = 0 or k = 1 then it is easy to see that T,(y) # 8, Te(v) # 0. However, the latter
conclusion does not hold unconditionally if k > 2: By way of example, let k =2 and F =
Q?, ¢(z,y) = —z*—y? for (z,y)' € E. Put e3 = eyey and define J := L+ Ze; + Ze, + Le,.
Then for n = 2, we have

v :=2(2+ 2ey +2e2 + e3) € 2T(J) -
and T,-(’T) = @, Tz(‘f) =0.

4.2 Lemma.  Let v € nT(J). Then the additive group nV(J)y acts on T,(v) via
a—a+z (o€ T (y),z€nV(J)y), and we have

I Te(7)/nV ()] < (F7)5F.

An analogous statement holds for Ty(«y) with nyV(J) instead of nV'(J)y.

Proof. The assertion is trivially true if T,.(y) = §. Suppose now that T,.(v) # @. Obviously,
nV(J)y acts on Tr(vy). Fix ap € Tr(y) and let M := {a@ — ap : « € T;(y)}. Then M is
an additive abelian group, and nV(J)y is a subgroup of M. For any z € M we have
2y € nV(J) and hence z5y € nV(J)y where ¥y € IN. This implies that the rank of M
equals £ + 1 and

(M :nV(J)9] < (Fr)*.

Since the map
T()/nV(I)y = M[nV (),

a+nV(J)yy = a—ay+nV(J)y

is a bijection, the assertion follows. [J
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84. Generalized Kloosterman Sums and the Linnik-Selberg Series

4.3 Lemma. Let y € nT(J) and y € Ty(7y). Then

yy* € VN Jyt.

Proof. Since Jy € nV(J) C V,, we have from (1.7):
YY" = ox(Fu)r' v € Vq

and hence
yyr e v, nJy"

But the antiinvolution * leaves every element of V; fixed and hence

vy =Yy =yyt € Jy. 0

4.4 Lemma. Assume that v € nT(J) and z € T,.(7), y € Te(v), zy* — 1 € nJv*. Then
there exists some g € nJ such that

(: 5) € SVi(J,n).

Proof. There exists some 8 € nJ such that zy* — f4* = 1. In order to show that
B satisfies our requirements we use [15], p. 376, Theorem 3.7, condition 3: Obviously,
z—1,8,v,y—1€nJ and v € T(q), z,y € T(q) U{0}. Now we have

zh = (Tzy*y — 27 )F) 7,
y* Y = (Fy)* €V,
@) =" (a7n(Fn
= py(27) € Vg

and hence T € V,. The condition Fy € V; is clearly satisfied. Now if z # 0, we have
T € T(q) and hence § € T(g) U {0}. For z = 0 we have —fy* = 1 and hence 8 € T(g). O
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4.5 Lemma. ~ Assume that v € nT(J) and
(z,9), (w,9) € T(7) x Te(y), «y" —1€ny’, wy™—1€nJy"
Then we have z — u € nV(J)y.

Proof. Using Lemma 4.4 we find 3,b € nJ such that

z p u b
= SV, J, ) = SV ‘I: .
7 ("Y y) € SVil/im) i (7 y) € SVilhim)
Hence using Lemma 4.3 we obtain

-1 _ 1 —uﬁ* + bil'* '
ToT T = (0 1 €My

and hence —uf”* + bz* € nV(J). O

4.6 Theorem. Let v € nT(J). Then « is the lower left entry of a matrix

(3 ?) € SVi(J,n)

if and only if (@, 8) € Tr(7) X Ty(y) and ab* — 1 € nJy*.

Proof. If (@, §) € T () x Te(v) satisfies aé* — 1 € nJ*, the existence of § follows from
Lemma 4.4. The converse is obvious from the remark after Definition 4.1. [

4.7 Theorem. For v € nT(J) let

43)  D(y):=A{(=,y) € (L:(M)/nV(N7) x (Te(v)/myV () | 29" ~1enJy"}
Then D(7) is well-defined and

(4.4) {(: ?) € SVi(J,n) i ~ € nT(J),(a,8) € D(7)}

is a representative system of the set of elements o = (f; g) € L \T/TL, with v # 0.

Proof. Lemma 4.3 yields that D(7) is well-defined. The rest follows from Lemma 4.5 and
Theorem 4.6. O

We now introduce the generalized Kloosterman sums which naturally come up in the
present framework.
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4.8 Definition. For g,v € (nV(J))# and v € nT(J) let the generalized Klooster-
man sum S(u,v; ) be defined by

1 Cm 1o

S(wviv) = Y e(5tr(zy "+ yD))

= Y @)+ (v )
(2,4)€D()

with D(y) from (4.3), where e(z) = exp(27iz) (2 € C).

The sum (4.5) contains only finitely many terms since

(4.6) DI} S AT () /nV (Il < (F7)FH
by Lemmas 4.5 and 4.2. It is readily checked that S(u,v;v) is well-defined.

4.9 Examples.

a) For k = 0 we have J = V(J) = Z, and for n = 1 one has the classical Kloosterman
sum for the modular group. For n > 1 one obtains the general Kloosterman sums for the
principal congruence subgroups of SL,(%Z) as considered by Selberg [62].

b) Let k = 1, E = Q, D € IN a square-free natural number, ¢(z) = —Dz? (z € Q), and let
J be the ring of integers in Q(+/—D). Then the corresponding generalized Kloosterman
sums coincide with the sums of Kloosterman type considered by Sarnak [58].

c) Let ¢: QF — @ be a negative definite quadratic form and define the positive definite
quadratic form Q: Q & Q* — Q by

Q(z) := 2% — q(z1,...,Tk)

for z = (zg,...,7%) € QP Q*. Suppose that J C C(q) is a Z-order, let u,v € V(J)¥#, and
define the linear forms Ay, A: V; — Q,

/\1(33) = (,u,a:), )\2(3:) = (V,:B)
(z € V). Consider the special case v € Z. Then we have Tr(y) = Te(v) = V(J), and we

find
21 Aa(x)
S(p,v;y) = exp | — (M (=) + ) ).

Exponential sums of these types have also been considered by Deligne [12].

Following Linnik [46]) and Selberg [62] we consider the Dirichlet series associated with the
generalized Kloosterman sums (4.5).
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4.10 Definition. The Dirichlet series

S vi7)
(4.7) Z(p,v;8) = —_—
,rEnzT:( n 7

(s, v € (nV(J))#) is called the Linnik-Selberg series.

By (4.6), Z(p,v;8) is termwise dominated by

Z (77)k+l—Re s

~ENT(J)

Since 7 is contained in a lattice in C(g) which is a vector space of dimension 2¥, one finds
that Z(p,v;s) converges absolutely for

(4.8) Res>2F 1+ k41,

Of course, one expects a much larger half-plane of absolute convergence. We shall spend
much effort in paragraph 7 and actually prove that the Linnik-Selberg series converges
absolutely for

1
(49) RGS > k + 5,

(see Theorem 7.17). This will be crucial for the lower bound for A;.

§5. Factorization of Generalized Kloosterman Sums

In this paragraph we study the exponential sums S(,v;7) introduced in paragraph 4. We
consider the following objects to be fixed:

k — a natural number or 0 ,

q ~ a negative definite rational quadratic form on a k-dimensional rational vector
space E,
J < C(q) - a compatible order in the rational Clifford algebra C(g),
n — a natural number.

We shall decompose the sums S(u, v; v) as a product of exponential sums which are defined
over the localizations of the order J. These “local” exponential sums are easier to compute,
as the next paragraph will show.

As for the general notation (as V(J),T(J),...) we refer to paragraphs 1 through 4. We
further introduce:
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5.1 Notation. Let N be a natural number. We put

z(N)={% | a€Z,beN, (b N)=1}.

If R is a subring of a Q-algebra A we define

Riny=R®z Zn < A

Z Ny always is a semilocal ring. If N is a prime number then Zyy is the localization of
Zat N-Z.

5.2 Notation. For M,N € IN we define Njs to be the smallest divisor of N which
satisfies (N/Np, M) = 1.

Note that N, - Nag, = Nag,.m, whenever (My, My) = 1. The following definition is the
first step for the introduction of the “local” exponential sums.

5.3 Deflnition. Let R < C(q) be a compatible subring and ¥ € nT(R) an element with
¥y = N. We put:

T.(R,v) = {z € nV(R) | zy — N € nNR},
Te(R,v)={y €nV(R) |yy — N € nNR},
T°(R,~) = {z € nV(R) | zv € nNR},
T;(R,7) = {y € nV(R) | yy € nNR}.

The definition makes it clear that T,(R,7) C V(R) is the set of solutions of an (inhomoge-
neous) system of R-linear equations. The set of solutions of the corresponding homogeneous

system is f,?(R, v).
The sets T.(R,v) and Ty(R,~) are additively acted on by the group nNV(R). Note that

in case n = 1 the defining conditions for T-(R,~), T¢(R,~) can be expressed as zy € NR
and yy € NR.
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85, Factorization of Generalized Kloosterman Sums

5.4 Lemma. Let v € n-T(J) be an element with 3y = N. Then the following maps
are (well-defined) bijections:

pr: Te(7) [0V (I Yy — To(J,7) [NV (J),
Py T —+ T,

e Te(y) vV (1) = Te(J, ) /nNV(J),
Yy — Y.

Proof. It is clear that the maps ., @, respect the defining conditions and are well-defined.
Their inverses are

- 2y - Yz
=2, =2 o

5.5 Lemma. Let R < C(g) be a compatible subring and v € n - T(R) an element with
¥+ = N. Then the following map is a bijection

d}: Tr(R)'Y) - ff(va):

==t

P T HI%L

Proof. Any z € fﬁ(R, v) is in n - V(R) hence the condition on -y implies that

_AEY
- N

y € V,NnR =nV(R).

By direct inspection it can also be seen that y € fg(R, v). The inverse of 3 can be
computed as

1,8 Y7
Note that the bijections ¥ : fr(R,’y) — fg(R,'y) do in general not induce maps between

T.(R,y)/nNV(R) and Ty (R,v)/nNV(R).
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5.6 Definition. Let R < C(q) be a compatible subring and v € nT(R) an element with
¥y = N. We define

B(R,7) = {(2,v) € (B(R)/nNV(R) x (TR, ) nNV(R) | 3T VI~ 1 € ny*).

To see that Definition 5.6 makes sense we use considerations similar to those in paragraph
4 after the definition of D(v).

5.7 Lemma. Let ¥ € nT(J) be an element with 7y = N. Then the maps ¢,, ¢, induce
a bijection

orx e D(v) —  D(J7),
er X g (a,6) = (p(a),pe(6))

For p,v € (nV(J))# the exponential sums of paragraph 4 can be computed as:

1  up+ov
s = L e(prE).
(u,0)€D(J,7)

Proof. Using the fact that every element from V is left fixed by the involution * the first
part is obvious. For the second we find

S(pvin) = Y, e (%tr(m"ﬁ + 7'1y?))

(z,¥)€D(7)
) _
= > e(—tr(%}'ﬁ%- %E))
(z,y)€D(7)

= e(%tr(uﬁ;vﬁ)). | O

(u,w)eD(J,7)

The following contains our definition of the local Kloosterman sums.
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5.8 Definition. Let M be a natural number and v € nT(J(a)) with 3y = N. The
number nN € Xy can uniquely be written as

nN=L-n
where 7 € Z{py and L € IN with Ly = L. The inclusion V(J) < V(J(sr)) induces an
1somorphism
i V()/L-V(J) = V({Jan)/nN - V(Jan).
For p,v € (nV(J))# we define
1 zp+4yv
Smp,viy) = > e (Etr(#L—y)) :

(2.0 EV(I)/LV(J))?
(i(=),i(w)) €D a1y, 7)

Note that Sp(p,v;7) = Spe(p,v;y) for a prime p and every e € IN. The connection with
our previous exponential sums is given by the following:

5.9 Lemma. Let~y € n-T(J) be an element with ¥y = N. For any p,v € (nV(J))#
we have:

Sn(p,v;v) = S(p, v; 7).

Proof. Since n|N the number L from Definition 5.8 is equal to n - N. By elementary
considerations we find that for

(z,y) € V(J)/aNV(J) x V(J)/nNV(J)

the condition (i(z),i(y)) € ﬁ(J(N),'y) is equivalent to (z,y) € D(J, 7). The result follows
from Lemma 5.7.

5.10 Lemma. Let M, A be natural numbers with (M, A) = 1. Let v € nT(J(p)) be an
element with 3y = N. Then Ay € n - T(Jp)) and for any u,v € (nV(J))# we have

Sm(u,v; Ay) = Sp(A, Av; ).

Proof. The proof results from a straightforward check of the summation conditions. [J
The following describes the multiplicative behaviour of the exponential sums Sar(g, v; 7).
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5.11 Proposition. Let M;, M,, € IN be coprime natural numbers. Let
v € nT(J(a, M,)) be an element with ¥y = N. Choose L;, Ls, 11, [z € IN with

nN . nN .
I, €Ly T €Ty

and Lil; — 1 € M;Z for i = 1,2. For u,v € (nV(J))# we have:

SMle(#s vy 7) = SM1(12F‘J [21/; 7) : SMz(II#a Ilu; 7)'

Proof. Note first of all that the L found in the Definition 5.8 for Sas, am,{g, v; ) is equal to
L, - L. The summation in the definition of Sp, p, (4, v;v) extends over certain elements

(z,y) € V(J)/Ln - LoV(J) x V(J)/ Ly - LV (J).
The elements z,y can be written as
= Lizy + Leza, y=Liyi + Laya

where z1,¥; are uniquely determined modulo L,V (J) and z,,y, are uniquely determined
modulo L, V(J). It is straightforward to check that the condition

(i(2),i(v)) € D(I(pt, m2),7)

is equivalent to the following two conditions:

(i(Lr21),i(Lavn)) € D(Tara), ),
(i(L22),i(L2y2)) € D(J(ay),7)-
The proposition follows. [

5.12 Corollary. Let v € nT(J) be an element with 7y = N. Assume that
N=pi'...p¥

is the prime factorization of N. For ¢ = 1,...,r there are A; € IN with (A;,p;) = 1 such
that '

S([—l; V;'f) = HS ;(Ai/l) ’\iy; 7)
=1

for all u,v € (nV(J))*.

Proof. The corollary follows from Lemma 5.9 and Proposition 5.11. O

Corollary 5.12 contains a formula given by Estermann {19] for the classical Kloosterman
sums; see also Sarnak [58].
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§6. Relations with Classical Kloosterman Sums and Estimates for Generalized
Kloosterman Sums

This paragraph contains certain estimates of the exponential sums S,(u,v;7) defined in
paragraph 5. These will be important for our estimates of the coefficients of the Linnik-
Selberg series. Under a certain hypothesis on v we shall be able to compute S,(g,v;v) in
terms of classical Kloosterman sums. The required estimate will follow from the bounds of
Weil [68] and Salié [56], [57]. In the remaining cases we study the summation condition and
estimate the exponential sum S,(g,v;v) by the number of summands. These last results
are far from being optimal. But for our purposes here they turn out to be sufficient.

As for this paragraph we consider the following objects to be fixed:
k — a natural number or 0,

q — a negative definite rational quadratic form on a k-dimensional
rational vector space F,

J < C(gq) - a compatible order in the rational Clifford algebra C(gq),
n — a natural number, ’
p — a prime number,
np, - the maximal integer such that ps|n.

For our later considerations it will be useful to introduce the following classification of
elements of C(q).

6.1 Definition. Let R < C(q) be a compatible subring. Put Ry = RNQ-1. An element
v € T(R) is called (Ry,n)-primitive if the equation
reog=vy

for n € R and r € Ry implies that r divides n in Rg. A (Ro, n)-primitive element v € T(R)
is called (Ry,n)-degenerate if there is a non-unit A € Ry with:

(i) A,
(i) T(R,7) CA-nV(R) or TyR,vy)C A -nV(R);

7 is called (Ry,n)-nondegenerate otherwise. Rg-primitive or Rg- degenerate is defined
as (Rp, 1)-primitive or degenerate.

For an element vy € T(J) the following statements are equivalent:

(1) v is (Z,n)-primitive .
(ii) 7 is (Zg), n)-primitive for all primes .
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(iii) v is (Z(a1), n)-primitive for all M € IN.
For a (%, n)-primitive element v € T(J) the following statements are equivalent:

(i) # is (Z,n)-nondegenerate .
i1) « is (Zg, n)-nondegenerate for all primes £.
(i) 7 is (Zqy g

(i1 ) ~ is (Z(pry, n)-nondegenerate for all M € IN.

Every (Z(y), n)-primitive element v € V(J(;)) is also (Z;), n)-nondegenerate. Note further
that every element § € n - T(J,)) can be written as

§=ply
with f > 0, where v € n- T(J(p)) is (Z(p), n)-primitive.

The following is more or less obvious.

6.2 Lemma. Let §,v € nT(J,)) with § = p/ - v for some f € INU {0}. Then:

j‘1‘.1'(‘](;7)16) = pf fl‘(J(p)!'Y)*) T!(J(p)&ﬁ) = pf fl(J(p),7)>
T2 (), 8) =P T2 (Ui, v)s Te(Jipy» 8) = 2 T (i) 7)-

The following lemma is useful for the final computation of our exponential sums.

6.3 Lemma. Let p be a prime and v € nT(%Z,)) a (Zp), n)-primitive element which is
(Z(py,n)-degenerate. Then:

D(Jpy,pf7) =0
for all f € INU {0}.

Proof. We first consider the case f = 0. Take an element
(2,9) € Tr(J(p),7) X Te(I3)57)

so that its image lies in ﬁ(J(p), ¥).
If y € pnV(J(p)) we consider the equation

=y
p’™m P

—lenipy”
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86. Relations with classical Kloosterman Sums
where 7y = p™n with a unit 7 and » € IN. Notice that r = 0 is not p0331ble because ¥ is
(Z(p), n)-degenerate. Multiplication by 7' yields

zy
PN

This contradicts the fact that v is (Z (), n) primitive.
If z € pnV(J(p)) then using Lemma 5.5 we write:

with a suitable z € f,.(J(p),*y). The defining equation for (z,y) € ﬁ(J(p),'y) yields

Y AT _1= 2

p’m p'm-py P

-1€ ﬂ..](p)’}’*.

We multiply by ' and obtain

!

v r.
oy~ €MwP”

z -

2‘: .

This again is a contradiction against v being (Z(,),n)-primitive. This finishes the case
f=0.
The case f > 1 follows with the help of Lemma 6.2 and similar arguments. [

6.4 Corollary. Let v € nT(J) be an element which is (Z, n)-primitive and (Z,n)-
degenerate. Then:

S(p,vity) =0
for all t € Z\{0} and p,v € (nV(J))¥.

Proof. This is deduced from the above and Corollary 5.12 which describes the multiplica-
tive decomposition of S(u,v;ty). O

To proceed with our computations we need the following definitions.
6.5 Definition. Let R < C(g) be a compatible subring. Put By = RN Q-1 and

Vi(R)=RNE.
Define R to be the Rg-algebra generated by Vi(R) in C(q).
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6.6 Definition. We define pf(®7) to be the exponent of f(,,) in Jpy, that is

f(p,J) =min{f e NU{0} | p/Jy) < Jn}

We call J to Zp)-diagonal if f(p,J) =0.

Notice that f(p, J) is well-defined since J(,) has finite index in J(,). Since J also has finite
index in J, the Z-order J is Z(,)-diagonal for almost all primes p.

The two following lemmas are used to compute f,-(J(p), 7v) for certain elements +.

6.7 Lemma. Let p be an odd prime and f € INU {0}. Let u € V(J(;)) be a Z,-
primitive element with
uu = pt K

where t € INU {0} and & € Z,) is a unit. Then we have:
{zeV({Jp) | =zu Epr(P)} C
M7+ pf*f(p.J)z | Me z(p) npf—f(p,J)—t%(P), z € V(J(p))}-

Equality holds if J is Z,)-diagonal.

Proof. Since J(,) is a compatible subring of C(q) and p is odd we have
Vi) = Z¢) © Vi(Jip)-

Take a Z,y-basis fi,..., fr of Vi(J(,) = Jip N E and write
z=zo+z1fi+...+ xSk,
u=ug+ufi+...+ugfr.

We compute

k

(6.1) Tu=a-++ Z(-’L‘oui + uoz;) fi + Z(ﬂiiuj —u;iz;)fif;

=1 1<y

with some a € Z,). Clearly for zu € p’ J(p) it is necessary that pf=7(»J) divides the
coefficients of the expression (6.1). Hence the (2 x 2)-minors of the matrix

o ry...Tk
“—Ug U1...Up
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§6. Relations with classical Kloosterman Sums
are all divisible by p/=f(®/), By linear algebra (u is Z(p)-primitive!) this implies that
(6.2) z=u+p/~f»D;

for some A € %y and z € V(J(p)). From (6.2) we compute z -« and find the condition for
A

If f(p,J) =0 then the other inclusion is obvious. [

The prime 2 plays a somewhat particular role:

6.8 Lemma. Let f € INU {0} and u € V(J(3)) a Z(y)-primitive element with
wu=2" &
where t € INU {0} and & € Z3) is a unit. Then

{zeV(g) | zueliy}c
{/\ﬂ_’_pf—f(zr'])_zz l /\ € %(2) n 2f_f(2"])-t"2%(2)1 zZE V('](Z))}

Proof. The compatibility of J(3) implies that
2-V(J(2)) < Zgy ® Vi(J(2))-

As in the proof of Lemma 6.7 the elements 2z und 2u can be suitably expressed and the
proof is finished by the same argument. O

6.9 Corollary. Let v € nT(J(;)) be a (Zy), n)-primitive and (Z,), n)-nondegenerate
element with ¥y = N = p"n where r € INU {0} and 7 is a unit in Z,). Then

1T (J(p), 1)/P 7V (Jp)| < pHEFDU B D 4npta5)

(59 (T 1)/07 0V (Jpy)| < pHEFDU D bnstar),

Here, a, = 0 if p is odd and a3 = 2.

Proof. Take an element z € T,(J(),7) which is not contained in p™*+1V(J,). Let
y € ﬁ‘.’(](,),’y). The two equations

(6.3) zy — N € nN Jy,) , yy € nNJ(p)
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imply
= epJ
y pnr P Y(p)»

and since T/p"r is Z(p) primitive Lemmas 6.7 and 6.8 apply.

The statement about TP(J(p),fy) follows by using the antiinvolution ~. O

For the following note that if p does not divide n (i.e. n, = 0) we have

fr(‘](p)s 7) = fvE)(J(p)’ 7)

for all vy € nT(J(p)) = T(J(p)).

6.10 Corollary.  Assume that p is an odd prime and that J is %Z,)-diagonal. Assume
further that n, = 0. Let v € T(J(;)) be Z,)-primitive and Z(,)-nondegenerate with
7y = p"n where r € IN U {0} and 5 € Z,) is a unit. Then the groups

To(Jipy,1)/P"V(Jimy) and  Te(Jipy,7)/0"V (i)

are cyclic of order p.

Proof. Follows as in Corollary 6.9 from Lemma 6.7. [J

6.11 Remark. The structure of the groups ﬁ’(.}, v)/nNV(J) can also be described in
the case where v is Z-degenerate. We wish to mention the following result which we shall
not prove here. Let n = 1 and assume that J is Z-diagonal. Let ¥ € T(J) be a Z-primitive
element with ¥y = N. Then

64) 72(J,7)/NV(J)| = N.

We also have obtained results on the exact cycle structure of the groups T°(J,v)/NV(J).

Under the assumptions of Corollary 6.10 we shall now compute the exponential sums
Sp(#t,v; 7). We remind the reader now of the definition of the classical Kloosterman sums
[13], [56], [68].
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6.12 Notation. Let N, a, b, ¢ be integers with N # 0. Then the (classical)
Kloosterman sum is defined as:

za + yb

(6.5) KS(a,b;e,N) = Z e(
z,y€EZ/NE
zyc—1ENT

).

The following definition is made possible by Corollary 6.10.

6.13 Definition.  Assume that p is an odd prime and that J is Z,)-diagonal. Assume
further that n, = 0. Let v € T(J(;)) be a Z(,)-primitive and nondegenerate element with
¥y = p™n where r € INU {0} and 5 € Z,) is a unit. Define

vy € To(Jp)y7)s  wy € Te(J(p),7)

so that their residue classes [v,] and [w,] generat;e T,.(J(p),'y) /p"V(J(p)) or
Te(Jip)>7)/P"V(J(p)) » respectively.

6.14 Proposition.  Assume that p is an odd prime number and that J is Z(;)-diagonal.
Assume further that p [ n. Let v € T(J(;)) be a Z,)-primitive and Z(,)-nondegenerate
element with Fy = p™n where r € INU {0} and 7 € Z(;) is a unit. Choose v, wy as in
Definition 6.13. Let t1,t2,ts € Z(p) and u € V(J()) be chosen so that

F(tivy + pu)y’
(66) w"Y = 7Pr7] ’
(6.7) ty = —M ts = VT + T

Define d = d(v, v,,wy) to be d = t1t5 + t3. Then the following statements hold:
(i) For z,y € Zp) the conditions

(alv4], ylwa]) € D(J53,7)

and
dry — 1 € p"Z,)

are equivalent.
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§6. Relations with classical Kloosterman Sums

(ii) For p,v € (nV(J))¥* put
a = (vy, p) ) b= (vy,v).

Then we have

Sp(p,v;v) = KS(a,b;d,p").

Proof. Notice first of all that the choice of t1,12,1; is possible because of Lemmas 5.5 and
6.7. The condition (z[vy],y[w,]) € D(J(p),7) is equivalent to

TUyY YwyY' .
6.8 . X _1e Y.
(6.8) on (»)

We substitute (6.6) and (6.7) into (6.8) and multiply by +' from the right and find that
(6.8) is equivalent to

(zyd — 1)v' € p"J(p)-

Since 7y is Zp)-primitive the claim (i) follows. (ii) is an obvious consequence of (i). O

The formula for the S,(i,v;v) can now be used to evaluate our generalized Kloosterman
sums in terms of classical Kloosterman sums.

6.15 Corollary.  Assume that n = 1 and that J is Z-diagonal. Let v € T(J) be a
Z-primitive and Z-nondegenerate element with 7y = N. For every u,v € V(J)# there
are a, b,d € Z so that

S(p,v;v) = KS(a,b;d, N).

Proof. This fact follows from the multiplicative decomposition in Lemma 5.5. Notice that
for the classical Kloosterman sums the same formulas hold, [19]. O

The assumption n = 1 in Corollary 6.15 can easily be removed. One gets a similar formula
where the Kloosterman sum on the right has to be replaced by a somewhat generalized
exponential sum.
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6.16 Remark. Proposition 6.14 is a special case of a great variety of special formulas
for the Sp(u,v;7v). As these play no role in the present proofs we do not treat them in
detail. We want to mention here the case that v = pf~, where 7, is Z-primitive and f > 1.
In this case we report on the following (generic) special case. Assume that p is a prime and
r,f € NU{0}. Assume further that Ji,) is Z,)-diagonal and that V(J(,))/p" 2/ V(J(,))
has a basis

(69) 1$6=f1:f2)-~-1fk
with
fifi=—fifi for 4,5=1,... kwithi#j
and _
fifi=XA for 1=2,...,k
and

?1 h=ov=p".
It follows from the above that

Tr('](p)apf”) = ﬁ(J(P),‘pfv) =

k
= {wpf5 +pH (zo+ ) =ifi)

=2

T,T0,Z2,...,Tf € Z(p)}

We write [u] for the residue class of u € V(Jiy)) in V(J(p))/p"t* V(J,)). Then the
condition

1=2 =2

k k
([:mvf5 S AMCEDIETD NN RS ALY y.—f.-)]) € D(Jpy,p'v)

is equivalent to the following set of equations:

{

k
Y — 1+ pr(a:OyO + Z Aixiyi) epr-{-'f%(p))

=2
(6.10) < zy; + yz; € p-f%(p) for 1=0,2,...,k,
ZoY; + Yoz; € pf%(p) for 1 =2,...,k,

L Tiy; — Y;Ti € pr(p) for 1,7 =2,...,kwithi # 7.

From (6.10) a description of the exponential sums S,(4, v; p/v) can be derived.

For the formulation of our final results we give the following definition.
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6.17 Definition. For u € (nV(J))* and N € IN we write un for the following homo-
morphism

pn:nV(J)/aNV(J) — Z/NZL,
z+nNV(J)— (z,u) + NZ.

6.18 Theorem. Let p be a prime and let g € nT(J(;)) be a (Z(,), n)-primitive element
with 59 = p"n with » € INU {0} and (p,n) = 1. For f € INU {0} consider v = p/7,.
Then the following statements hold:

(i) There is a constant ¢, (depending only on p and not on ) such that

1S, (p v;7)| < cpp™HEHD

for all p,v € (nV(J))# and v as above.
(ii) If J(p) is Z-diagonal and if n, = 0 then

|Sp(p,v; )| < prH D

for all y,v € V(J)# and v as above.

(iii) Let J(,) be Z(,-diagonal and assume that r = 1 and f = 0. Let v,,wy be the
elements defined in Definition 6.13. Then

p—1 if [uy] € ker up and [w4] € kerv,,
if [vy] & ker pp and [w,] € ker vy,
if [vy] € ker pp and [w] & kerv,,

2,/p if [vy] € ker yp and [wy] € ker v,

|SP(“‘1 vy 7)[ S

Proof. In case f = 0 the statements (i) and (ii) follow from Corollary 6.9 and 6.10.
The case f > 0 is easily derived from this and Lemma 6.2. Statement (iii) follows from
Proposition 6.14 together with either trivial considerations or as in the last case from Weil’s
estimate [68] for Kloosterman sums. [J
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87. An upper bound for the abscissa of absolute convergence of the Linnik-
Selberg series

Here we shall use our estimates of the generalized Kloosterman sums from paragraph 6 to
obtain results about the region of absolute convergence of the Linnik-Selberg series defined
in paragraph 4.
We consider the following objects to be fixed:

k — a natural number or 0,

g — a negative definite rational quadratic form on a k-dimensional
vector space E,

J < C(q) - a compatible order in the rational Clifford algebra C(q),
J1 — is the set of transformers of norm 1 in T(J),
wy - is the cardinality of J?,
n — a natural number. _
Notice that J' = {e¢ € T(J) | €€ =1} is finite because of (1.10).

We start by introducing the coefficients of the Dirichlet series represented by the Linnk-
Selberg series.

7.1 Definition.  For every u,v € (nV(J))# and every N € IN we put
AlwviN) = > S(u,v;7).

vyEnT(J)
Fy=N

For a d € IN with d?|N we put
Ag(p,v; N) = Z S(u,v;déb).
s€nT(J)

6 is (Z,n)—primitive
d¥§6=N

With our definitions from paragraph 4 we find
o S Al N)
(71) Z(,u,u,s)— Z Ne y
N=1
Obviously we have
(7.2) A(p,v; N) = Y Aa(p, v N).
d2|N

Next we shall replace the summmation over « in the definition of A(y,v; N) by the summa-
tion over certain subgroups of V(J)/nNV(J). In the following we shall think of N,d, M
as natural numbers satisfiying N = MdZ.
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7.2. Definition. Let M > 1 be an integer. A subgroup U < V(J)/nMV(J) is called a
liftable 1-dimensional isotropic subspace if there is an a € nV{J) with the following
properties:

(1) the residue class a + nMV (J) generates U,

(i1) a@ = Mt and (M,t) =1,

(iii) a/n is Zpry-primitive.
The element a is called a distinguished generator for U. We write I(M) for the set of
liftable 1-dimensional isotropic subspaces in V{J)/nMV(J).

7.3 Definition. Let N,d,M > 1 be integers with N = Md®. Let v € nT(J) be an
element with ¥y = N so that v/d is (Z,n)-primitive. A liftable 1-dimensional isotropic
subspace U € I(M) is called attached to v if there is a distinguished generator a of U
with

day — N € nNJ.

We write I(+) for the set of U € I(M) attached to v.

7.4 Lemma. Let N > 1 be an integer and v € nT(J) be an element with ¥y = N.

Assume that R
D(J,7) # 8.
Then I(y) # 0.

Proof. The hypothesis being satisfied choose (z,y) € To(J,~) x Te(J, ) with

. yr* .
(7.3) ~ T~ 1E€nirt
By Lemma 5.5 we find a z € T.(J,v) with
_7z
y - N .
Equation (7.3) implies:
(7.4) "}’v—z —1€nJvy".

It follows from the definitions that N|u%@ for every u € ’f,.(J,'y). We define t,, to be the
integer satisfying Nt, = uu. From (7.4) we get by taking norms:

TZ + 2T

(7.5) toty — +1€nN-Z.
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Using the Chinese remainder theorem we see that there are r, s € Z with
r—s—1€en
(7.6) ) ’ )
(rét, —rstyt, —rs+8°t,,N)=1.

We define

b=rz — sz.
Clearly we have:
(7.7) by— N enNJ.

Let d be the natural number so that y/nd is in J and is Z-primitive. We infer from (7.7):
b—7% € nJ¥. This implies that b/nd € V(J). Multiplying (7.7) from the left by & we
find ty — b € bnJ where t satisfies bb = Nt. This implies that a = b/d is Zn)-primitive.
It is easy to check now using (7.5), (7.6) that a is a distinguished generator for a liftable
1-dimensional isotropic subspace in I(M) which is attached to v. O

7.5 Lemma. Let N,d > 1 be integers with d?|N. Suppose that v,,7, € nT(J) are
elements with 7,71 = J3v2 = N and such that vy, /d and v, /d are (Z, n)-primitive. Assume

that
I(m)NI(y2) #90

then there is a unit € in J' with
' Y2=7 €.

Proof. Take U € I(71) N I(7,) and distinguished generators a, b for U with
da'y] = N]] and db‘)’z = Nbl

with suitable 71,4, € J. Since we have

a=Ab+nMc
with some ¢ € V(J) and A € Z we have
(7.8) a1 =Nj and ay, =Ny,
with suitable j; € J. Let t be the integer satisfying a@ = Nt, (V,t) = 1. Put
e

g = N .
From (7.8) we get _

€= j1j2'

14

Since the denominators N and t are coprime we have ¢ € J. Clearly ¢ satisfies the
conclusion of the lemma. O

The following sets of primes play a somewhat exceptional role in our arguments.
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7.6 Definition. For the order J < C(q) we define the following set of primes.

B(J,n)={2}U{p | J(p)is not Z(,) -diagonal}
U{p | the quadratic form z — 27 on V(J)/pV(J) is degenerate}
U{p | pln}

For p € (nV(J))#\{0} we define

B(p) = {p| pp =0}.

For the definition of p, see Definition 6.17. Notice that both sets of primes B(J,n) and
B(p) are finite.

Let N be an integer and p a prime then we use
(7.9) plIN

to indicate that p divides N exactly once.

7.7 Definition.  For an integer M > 1 and an element p € (nV(J))# with p # 0 we
define the following set of primes:

P(u,M)={p | pM, p¢gB(J,n)UB(un)}.

Let N,d, M be a natural numbers with N = Md?, P C P(u, M) a subset and
i € (nV(J))*. We define

((i)) 77 = N, -
_ _ 1 Yy=d:7 with ~¢ (%, n)-primitive,
T(N,d; P,p) = { v € nT(J) (1i1)  v(p,70) & kerp, if pelP,

(iv) v(p,70) € kerp, if pe P(u, M\P.

The elements v(p,¥o) € V(J)/pV(J) are the residue classes of the elements v, defined in
Definition 6.13.

Obviously we have

(7.10) Ad(pviN) = ) >, Sy

PCP(p,M) vET(N,d; P,p)

In Theorem 6.18 we have given an estimate of Sp(u,v;y) for ¥ € T(N, d; P, u) which does
not depend on 4. Considering an estimate for A4(y,v; N) and the equation (7.10) we are
left with finding the sizes of the sets P(u, M) and of T(N, d; P, i) for a subset P C P(u, N).
To do this we define:
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7.8 Definition.  For an integer M > 1, a subset P C P(u,M) and an element
p € (nV(J)# with u # 0 we define
U has a distinguished generator a with
IM;Pp)y= U € I(M) (i) a+pV(J)Ekerp, ifpeP,
(1) a+pV(J) Ekerp, ifp€ P(u,M)\P

7.9 Lemma. Let N,d,M > 1 be integers with N = Md? and P c I(M) a subset and
g € (nV(J))#*\{0} an element. We have

|T(N,d; P, )| < wy - |I(M; P, p)|.

Proof. This is an obvious consequence of Lemmas 7.4, 7.5. O

For our estimates we need now some considerations about representation numbers of
quadratic forms.

Let p be an odd prime number and let V' be a vector space of dimension m > 0 over the
field IF, = Z/pZ. Let q be a quadratic form on V. A subspace U < V is called isotropic
if g(u) = 0 for all u € U. If ¢ is nondegenerate it follows from [32], Theorem 5.2.6 that

(7.11) HW <V | W isa l-dimensional isotropic subspace}| < m - p™ 2.
See also [60]. We notice that (7.11) implies
(7.12) [{zeV | q(z)=0}<crp™

with a constant ¢; independent of ¢ and p.

Every quadratic form ¢ over I, can be decomposed as orthogonal sum ¢ = ¢; L ¢o, where
qo is 0 and ¢ is nondegenerate, [8]. Hence (7.11) holds for every nonzero quadratic form
q. This implies:

7.10 Lemma. Let p be an odd prime number and k > 2 an integer. Let V be a
(k + 1)-dimensional IF,-vectorspace with nondegenerate quadratic form ¢. Let U be a
k-dimensional subspace. Then

{W <U | W isl-dimensional isotropic subspace}| < (k + 1) - pF~2,

Proof. By the above remarks it is enough to notice that ¢ restricted to U cannot be the
zero form. [J

We also need the following result on congruential representation numbers which is inti-
mately related to (7.12).
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§7. An upper bound for the abscissa of convergence

7.11 Lemma. Let p be a prime and let Z, be the ring of p-adic integers. Let @ be a

nondegenerate quadratic form in m > 0 variables with coefficients in Z,. For an e € IN
define

N(Qe)=|{z €L} /pL] | ogp LT +p°EL , Q(z)=0modp}]

Then there is a k > 0 so that
P~ N(Q, )

is independent of e for all e > «.

Proof. For an element v € Z,' write A(v) for the Zp-ideal generated by

{gg(v) | i=1,...,m}.

There i1s a t € IN depending only on @ so that

p'Z, < A(v)

for every vector v € Z, with v & pZ;’. For p odd this follows since @ is equivalent to a
diagonal form [40]. For p = 2 the result can easily be checked for the normal forms over
Z, in [40], Theorems 33, 33a.

We finish the argument by the usual Hensel’s lemma type considerations. See for example
[33], Appendix to Chapter 3. O

7.12 Lemma. There is a constant ¢, (independent of p) such that for all primes p and
all integers r > 1

< C2prk.

{:12 € V(-I)/prV(J) ‘ (EZ) r ¢ PV(J) +p"V(J), }

1) 2T = 0 mod p”

Proof. If p is odd and if the quadratic form induced by z — 2T on V(J)/pV(J) is
nondegenerate we prove our result from (7.12) by means of Hensel’s lemma and obtain a
constant ¢; independent of p. In the finitely many remaining cases we use Lemma 7.11. [J

46



§7. An upper bound for the abscissa of convergence

7.13 Lemma. Assume that & > 2. There is a constant ¢3 > 0 so that

IM; P)| < ] eap™™ 0 [ e [[ep*™ [  ep*?
M rllM PEP PEP(u,M\P
PEP(p,M)

for every integer M > 1 with prime number decomposition

M= HPr' (rp € NU{0})

P

and all subsets P C P(u, M) and all x4 € (nV(J))#\{0}.

Proof. Let U € I(M; P,u) and let a € U be a distinguished generator. For every prime
p dividing M we associate to U the subgroup of V(J)/p™V(J) generated by the Z,-
primitive element a/n. The residue class of a in V(J)/nMV(J) is determined by the
collection of these elements in the various V(J)/p™V(J). Using Lemmas 7.10 and 7.12 we
find our constant c3. [J

7.14 Proposition. Assume that k > 2. For u,v € (nV(J))#\{0} put
B = B(J,n)U B(p).

(i) There is a constant ¢4 so that

-1 .
|[Aa(p, v; N)| < H capt T H cap® - H cap®*

FIN pIN p2|N
pegB pEB

for all natural numbers N with prime number decomposition
N=]]»"
P
(i1) For every e > 0 there is a constant ¢, > 0 so that

|A(#,vs N)| £ H CePk_]’L-H H ceptte H cep9r{kte)

PIN PIN P3N
PEB pcB

for all natural numbers N with prime number decomposition
N = H pir.
2
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§7. An upper bound for the abscissa of convergence

Proof. (i) With our usual conventions (in particular N = Md?) we find from (7.10) and
Corollary 5.12:

|Aa(p,v; N) < ) DR R79)]

PCP(u,M) y€T(N,d;P,p)

< Z Z H ISp(/\p/-"a /\pV; 7)'

PCP(u,M) ~€T(N,d;P,u) p|N

with suitable elements A, € Z{,). We use Theorem 6.18 to conclude:

lAa(m ;NI < S TN, &, P,p)| - ] cppm+or 4D

PCP(P‘)M) PlN
pEB
. H prﬂ+fP(k+l) N H 2p1/2 N H p .
p?|N plIN PIN
p€B pEP pEP(u,M)\P

We use Lemmas 7.9 and 7.13 and the fact 2k > k£ + 1 to find
a(p,viN) < D [T esp® - [T esp®*

PCP(p,M) p|N p2|N
pEB peB
k—1/2 k-1
e T s
pliN plIN
pEP PEP(u,M)\P

with some constant ¢;. We then find a constant ¢g > 1 so that:

Aa(, v M) < [T eopt - T eort

plIN p?|N
pEB
( Z H cspk—l/2. H Cspk+1)
PCP(u,M) plIN pIN
p€EP PEP(u,M)\P
< H cep” - H cep*
pliN PN
pEB
II (cep* /% +cep* ™).
PEP(p,M)

Part (i) is now proved since

P(u,M)={p | plIN,p¢gB}

Part (i1) follows from the fact that the number of divisors of a natural number N is O(N¢)
for every € > 0, (see [29],Theorem 315). O

To obtain the desired result on the abscissa of convergence for Z(u,v;s) we need the
following elementary lemma on Dirichlet series.
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§7. An upper bound for the abscissa of convergence

7.15 Lemma. Let

D=3
N=1 N’

be a Dirichlet series so that there are constants ¢ > 0 and r € IR and a finite set of primes

B so that
lan < [T eo™H I[ o™ J] 0®"
N PN P3N
p€B pEB

for all natural numbers N with prime number decomposition

N =]]»*".
JJ
Then D(s) converges for
Res > r + z
5

Proof. For any ¢ > 0, the various factors c are less than p® for almost all primes p and
hence yield a factor in the upper bound for |a,| which is O(n€). This factor does not affect
the final bound for the abscissa of absolute convergence. Hence we may assume without
loss of generality that ¢ = 1.

Now we have for s € IR

oo
S| e ot o |2
n=1\ p||N PN p?N
pEB pEB
<Tla-»7 [a+r )
pEB PE€B

o0
. H(l + Z pm(r—a))’ .
pé&B m=2

and the product on the right-hand side converges if the series

Zpr—lz'--—a’ E f: pm(r-—a)

pé€B pgB m=2

converge. Obviously, both series converge for s > k + 3. O
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§8. Poincaré Series and Eigenfunctions of the Laplacian

7.16 Remark. The present proof for Theorem 7.17 excludes the cases ¥ = 0,1. The
case k = 1 can be handled by the same argument together with the remark that in this case
for a fixed p € (nV(J))#\{0} there are only finitely many primes p so that the kernel of
jtp contains a nonzero element z with Z = 0 mod p. Enlarging our set B(u) we can prove
Lemma 7.13 also for £ = 1, and the rest of the argument survives. For k£ = 0 the arguments
are correct until Proposition 7.14 (i). Here it is necessary to give better estimates of some
of the Kloosterman sums. But this would be the old proof of Selberg.

An obvious consequence is:

7.17 Theorem. Assume that £ > 1 and let p,v € (RV(J))# be both nonzero, then
Z(p,v;s) converges absolutely for Res > k + 1.

To obtain a proof of Theorem 7.17 in case k = 1 we could either carry out the content of
Remark 7.16 or quote the paper of Sarnak [58] which contains this result.

§8. Poincaré Series and Eigenfunctions of the Laplacian

The following assumptions and notations will be kept fixed throughout paragraphs 8-10:
k — a natural number or 0 ,

g — a negative definite rational quadratic form on a k-dimensional
rational vectorspace E,

J < C(g) — a compatible order in the rational Clifford algebra C(q),
n — a natural number.
We furthermore define:

V() :=V,nJ , T(J):=T(g)nJ,
SVi(J) := SVi(Q, ¢) N Ma(J),

T = SVi(Jin) = {(‘j; ?) € SVi(J)

a—1,8,v,6-1 EnJ}.

Once and for all we fix an isomorphism f: F ®¢ R — IR¥ such that g =—Irof, and
we fix the associated monomorphism (see (2.3), (2.4)) f: SVi(Q,q) — SVi. The elements

50



§8. Poincaré Series and Eigenfunctions of the Laplacian

o€ SVi(®Q,q),0 = (: ‘g) act on H¥*? via this monomorphism f, and we simply write

e.g.
oP=(aP+B8)(yP+6' (PeH"*

instead of
(F()(P) = (F(@)P + FB)F (P + F(8)~".

In this way I' is a cofinite discrete non-cocompact subgroup of SV, (Proposition 2.3). In
the special case ¢ = —qq (see 2.8)) an embedding f is explicitly given by (2.11). Finally,

we define I to be the set of all elements w) € I'. Recall that (1 w) e I'iff

1

0 1 0 1

w € nV(J). The set A := f(nV(J)) is a lattice in Viy,, and we denote by A# the dual
lattice. Sometimes we tacitly identify A with nV (J).

8.1 Definition. For y € A#* P e H**? and s € € with Res > k +1 let

(8.1) Uu(P,s):= Y r(oP)e(iluir(cP) + (2(aP), 1)),
g€l \I'

where e(w) := exp(2miw) for w e C.

The function (8.1) generalizes the series introduced by Selberg [62] and Sarnak {58], [59];
compare also [28], [43]. The function Uy is an Eisenstein series, and U, converges absolutely
and uniformly on compact sets in H**% x {s € € | Res > k 4 1}. Moreover,

(8.2) Uu(-,8) € H(T\H*?) if pe A#* u#0, Res> k+1;

in fact, we shall compute the inner product of two Poincaré series in paragraph 9.
A quick check proves that the function ¢,(-,s): IH¥*? — € which is defined by:

@u(P,s) = r(P)e(ilu|r(P) + (2(P), 1))
(P € H**?) satisfies the differential equation
(—A —s(k+1—s))pu(P,s) =2m|p|(2s — k)pu(P,s + 1),
and hence we have
(8.3) (—A = s(k+1—s)Uu(P,s) =2n|p|(2s — k)Uu(P,s + 1)

for all 4 € A* and Res > k+ 1. For g = 0 this is the usual differential equation of the
Eisenstein series.
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§8. Poincaré Series and Eigenfunctions of the Laplacian

8.2 Proposition. Let f € C?(T'\IH**?) satisfy the differential equation

(8.4) -Af=Af

for some A € C, and assume that f is of polynomial growth at the cusp infinity, that is:
flz+7rig41) =0(r*) as r— o

uniformly in z € V41 for some constant o > 0. Put

k41 E+1)\? k+1
(8.5) t—T+\/<T) —)\—T+P,
that is:
k+1\?
(8.6) , A=tk+1-1t)= —) —°

Then f has a Fourier expansion of the form

(8.7) flz +riggr) = aort + borFt1=t 4 Z a(w)rLPKp(21r|w|r)e((w, z))
) WEAM w0

provided that A # (k4 1)2/4. For A = (k + 1)?/4 the zeroth term must be replaced by
a,rt + bortlogr.

The proof requires a routine computation based on [48], p. 77, or the result may be drawn
from [47]. The next proposition is now obvious.

8.3 Proposition.  Suppose that f € C2(I‘\]Hk+2) satisfies the differential equation (8.4)
and is square integrable over a cusp sector at infinity:

[ ipPa) < oo,
Px[1,00]

where P is a fundamental parallelotope for A. Then f has a Fourier expansion of the form

(8.7), where
(i) ag=by=0 if A> (&))",
(i) bo=0 if Rek<0,

(i) @ =0 if ReX>0.
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8.4 Proposition.  Assume that f € LA(T\IH**?)nC?(T\IH**?) satisfies (8.4) and (8.7),
and let 4 € A# 4 #0, and Res > k 4+ 1. Then we have

(s=t)(s—(k+1-1))
T(s - 3)

(88)  (F, Uu(+8))r = nv/m(anlu)) 5. = Va(u),

where V' denotes the covolume of the lattice A in Viyy and n = [T'N {1}

Proof. Let P be as in Proposition 8.3. Unfolding the Poincaré series we obtain

(£, Uu(-s5)r
— 7]/ f(P)rae—-21ri(z,p)-21r|p|rdv(P)
P x]0,00(
= na@)V [ r MR 2l
0

and [31}, p. 50, (26) yields the result. (O

§9. The Inner Product of Two Poincaré Series

The aim of this paragraph is to compute the inner product of two Poincaré series. We
maintain the notations established at the beginning of paragraph 8. In addition, let P
denote a fundamental parallelotope for A and V its volume. For P € HH**? we always
write P = z + rigqq with 2 € Viyq and r > 0, and we denote by dz = dzg A ... A dz the

Lebesgue measure on V. Further, we tacitly write o = (: ’?)

Let s, v € A# be elements with x4 # 0,v # 0 and let s,t € C,Res > k+ 1, Ret > k + 1.
The goal of the present paragraph is to compute the inner product

(9.1) ( Uu(-,8) Uu('az»r = /Uu(P’S) U.(P,t) dv(P),
f

where F denotes a fundamental domain for T' in IH**2. The final result will be collected
in Theorem 9.1. First we do the necessary computations. Additional hypotheses will be
introduced when required.

Unfolding the Poincaré series in (9.1) we obtain:
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§9. The Inner Product of Two Poincaré Series

(9'2) (U.u (':3) > Uu('aﬂ)r* =

o0

—2x|v|r —2mi{z, v dr
=/r‘e 2mlv) /U#(P,s)e 2milz, )dzrk+2,
0 P

(9.3) fU,,(P,s)e_2"i<z’")dz
P

_ / r(o P)? =2y 014 )T 2w P) )= (20)) g
cel A\l p
First we determine the contribution of the elements o € I',_\I" with v = 0: For v = 0 we
have aé* = 1 and hence by (1.11) |a||§| = 1, that is, |a| = |§] = 1 (since |o|? € %, |6]* € Z).
By (1.22) and (1.7) this implies:
z(oP) = (az+ B)§

= (pa(‘z) 03'3—}- ﬁg

= pa(2) + 6
where @q: Vigr — Via1 is an orthogonal linear map (by [15], Proposition 3.6) and 86 €

Ve NnJ = nV(J) (by Lemma 1.5). Denoting by ¢}, the dual map of ¢, with respect to
(-,-) we obtain for the contribution of ¢ to the right-hand side of (9.3)

(9.4) /Tse—2ﬂ|#|r+27ri(z,qo;(u)-")dz = e 2mlBiry

P

(with Kronecker’s symbol §). Incidentally, we have used that ¢% () € A#, and this follows
from

o5 (n),v

(v,05(1)) = (palv) o'6, p) = (avé, p) € Z
for all v € A. Moreover, the consideration above yields that every o € T._ \I" with vy =0
has a representative with # = 0. Hence the number of elements o € I',_\I' with v = 0
is finite, and we let Cy,, denote the number of elements o € I, \I' with ¥ = 0 such that
pa(u) = v. (Note that C,, = 0 if |u| # |v|.) We have now finished to compute the
contribution of the elements ¢ € I',_\T" with v = 0 to the right-hand side of (9.2)

(o]

Z /rte—2ﬂ’|v|r/rse—21rlu|r+21ri(z,:,o;(;;)_,,) dz fiz
r
g€l \L P
=0
Ji d
(9-5) = Cp,uV/r’+t-k—le‘2"‘(|;‘1+lv|)r7r
0

= @2n(lul + W) T (s + t = k= 1)C, Y
= (4r|u)) 1 D+t — k- 1)C, V.
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Second we deal with the contribution of the elements o € T, \I" with v # 0 to the right-
hand side of (9.3). To that end, let

©6) Hir)= Y f (0 P) e~y 6+ ) 2mi(so Py =) g,

o€l \I' p
+¥#0

Using (1.24) we obtain

Hr)=

o€l _\I
‘7%0

el — () GE+re)y —(z,v) | dz
( < ik |z+7‘15I2+r2’#> (2, >)d'

Using Theorem 4.7 we rewrite the summation condition as follows:

6( ay -1 ) V/exp(_zl%lﬁimm)

Ivl (lz+ 7716 +1%)°

H(r)= Z re Z -1 exp(_%l}llz+v“6;wl’+r’) ]

Ty e({ay™, p =
i (,8)€D(7) ! ) (Iz+7716 +wl? +r?)

wEA
(v G+rie4w)y
.e(_< RE o+ 718w 47k ) ~lev) [

T.k+1—s

= > Tyl Yo ey )+ (v )

vyeRT(J) (o, 8)ED(Y)

O oo B G B S

Wi 41

~YenT(J)

— rk-{-l—a Z 5(#:”;7).

2s
ety
-/ o (S | sermt N
ST AR AN Ak
k41

where the generalized Kloosterman sum S{u,v;~) is defined by (4.5). Consider the last
integral: For |y| large the exponentials are nearly equal to one. Hence we decompose the
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89. The Inner Product of Two Poincaré Series

contribution of H(r) to the right-hand side of (9.2) as follows:

/ t —'21r|u|rH( ) k+2
0

(o) .
(9.7) e Z M lrt—‘,_l 6—211."!!'1" / ?L(Z’U)dz dr
2 T hP (=P 1)
0 Vit
S(u,viy
+ Z l |2, ) #,p(S,t;‘}’)
yenrT(J)
with
(o)
. —2wir{z,v)
R ¢ — t—s—1_=2x|v|r € i
F;U(‘s) 17) /7’ € (|Z|2+1)5
(9.8) 0 Vit

orlu] 1 -<(7*)‘1?7‘1 - >) )
-|lexp | — - 2m{ ——, —1)dzdr.
(o (-5 s o r(l=F 1) " o
We evaluate the integral over Vi, on the right-hand side of (9.7): Obviously,

e—-?rrir(z,y) p
| G

Vg

; 1
—_ —2wir|v|zo . .
(9:9) /e /(m%-r—z%+...+m';;+1)"dm1 e do

——2mr|v|u 1
duy - ... duy.
/(u2+1’ k/2 ﬁ[(u%-}—...—{-ui+1)’ ! g

Here we have by [48], p. 85:

+o0 e—2mirlv|u ) o—k/2 s (k41)/2
(9.10) mdu = m?’f (|v|r) . K,_(k+1)/2(27r|l/|7‘).
—00

Further, putting Iy := 1 we have for k¥ > 1:

1 k-1
(0.11)  L(s):= / AT = Dl g )
Rk
that is,
k-1 k-2
(912) Ik(s)=-[1(3_T)'II(S*T)"--'II(S)-



89. The Inner Product of Two Poincaré Series

Since

VAT(s - 1)

(9.13) Ii(s)= T(s)

(see [48], p.6), we get from (9.9) - (9.13)

8

~2mir{z,v)
—_—y=1 - € !
pt=o=leg=2mlvlr ——————dzdr

Vi1
(9.14) N
— 21r’|v|’_(k+l)/zf‘_1(s)/r‘_(k“)/z_le_z"l”l’"K,_(H_l)/g(21r|1/|r) dr

o,
I~
~
e
+

—
p—
«

Now we introduce the additional hypothesis
(9.15) Ret > Res.

Then the last integral may be evaluated by means of [31], p. 50, (26), and we obtain

o0

/rt—"_le—zﬂ'lylr / Mdz dr
(lz]> + 1)
(9.16) 0 Vk-i-l

— 2k+2—‘217rs—t+1+k/2|yls—t Lt +s—k—1I(t - s)
T(s)I'(t-%/2)

Collecting terms from (9.2), (9.3) (9.5), (9.6), (9.7), (9.16) we obtain the following result.

9.1 Theorem. Suppose that s,? are complex numbers with Ret > Res > k + 1, and
let u,v € A¥ = (nV(J))¥ satisfy p # 0,v # 0. Then we have

( U#(-,S) s UV("Z) )F
= (Ar|p))F 1 TIN5+t — k= 1)C,,V

—2t_s— . T +s—k-=1T(t-s)
) 2k+2 2t a—t4+14-k/2| |5—t A .
(9.17) + s |v] T = £/2) (p,v;8)

Sy, v;
+ Z (‘u Ig,’y) #,V(sat;')'),

+ERT(J)

where R, ,(s,t;7) is given by (9.8) and where Z(y,v; s) denotes the Linnik-Selberg series
(4.7). The function R, ,(s,t; ) satisfies the inequality

(9.18) |Ryu(s,t;7)] < My~
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for some constant M > 0 (depending on s,t, i, v), provided that Ret > Res + 1.

Proof: Having established (9.17) above, we still have to prove (9.18). To that end we split
in (9.8) the interval )0, 0o[ into the subintervals |0, |v|~2] and [|y]|~2, co[. For brevity, put

—27| | 2mi
w =

= PGP D) ThPEPF D ) E T

Then the integral over ]0, || ~?] gives a contribution to R, ,(s,t;v) which is dominated by

7

f FRe(t—2)=1,—2x|v|r f (|2} + 1)"R“|e"’ —1|dzdr
0 Vit
(9.19) e
S 2Ik+1(R€ S) / T'Re(t_’)-l dr
0
ok /I Re s — (k +1)/2). _ _
— |’Y| 2Re(t—s)
Re(t — s)I'(Res) '
Since |[(v*)"'z¥| = |z|, we have for r > |y|™?2
2m|pl 14 |2 3r
) < 2 Lkl Sl g
riy* 14z = rlyl
and hence

©o v—1

v!

This implies, that the integral over [|y|~%, oo gives a contribution to R, ,(s,t;v) which is
dominated by

o0

[v[-2 Vi
= I;y1(Re s)edml#l|y|~2 pRe(t=9)=2 =2rv[r 5.
|v|=2
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If moreover Ret > Res 4 1, then the last expression is dominated by
o0
Liga(Res)e™Hl |42 f PRe(t=a)=2,=2nvlr g,
JvI=2

< Iip1(Re s)e*™AID(Re(t — s) — 1)(2x|v])~Ret—2=1) 4|2,

(9.20)

Now (9.19) and (9.20) yield (9.18). O

Combining (9.17) with (9.18) we get an interesting consequence: Suppose that Ret >
Res + 1 and fix ¢ such that Ret > k + 2. Then (9.18) and Theorem 7.17 imply that

S(ssv37)
> WRu,y(s,t;'y)
~EnT(J)

is a holomorphic function of s for Ret —~1 > Res > (k+ 1) — 2, whereas the term involving
the Linnik-Selberg series on the right-hand side of (9.17) is holomorphic for

1
Ret—1>Res>k+§.

§10. A Lower Bound for the Smallest Positive Eigenvalue of the Laplacian for
Congruence Subgroups Acting on Hyperbolic Spaces

The aim of paragraph 10 is to prove the main results described in the introduction. We
maintain the notations introduced in paragraph 8.

10.1 Theorem. Suppose that I' < SV (®,¢) is a congruence subgroup. Then the least
positive eigenvalue Al of the operator —A acting on its domain in L2(T\IH**?) satisfies

A{zi(zku), if k>1,
3
r
> — =
N2 i k=0

Proof. The proof is based on ideas of Selberg [62] which were also used in [28], [43],[58],
[59]. We restrict to the case k > 1; the case k = 0 is dealt with in the same way.
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§10. Lower Bound for the Smallest Positive Eigenvalue

It suffices to prove the assertion for I' = SVi(J,n). Assume to the contrary that there is
an eigenvalue A; of —A with 0 < A; < (2k + 1)/4. Then we have

L+1 E+1\?
k+1>t1:=L+\/(L) -A > k+l,

2 2 2

that is, ¢; belongs to the half-plane of absolute convergence of the Linnik-Selberg series.

Denote by p(— A) the resolvent set of the unique self-adjoint extension
—A:D — LAT\IH**?) of the operator —A: CP(T\IH*+?) — L2(P\IH**?), and let

Ry:=(—A—-X)"  (rep(-A)

be the resolvent operator. As is well known from Selberg’s theory of the eigenvalue problem
of the automorphic Laplacian, the operator R,(.41_,) is holomorphic for Res > k +1
and meromorphic for Res > (k 4+ 1)/2 with at most finitely many poles of order one in
J(k +1)/2,k + 1] (see [21], [22],(30],[42], [44],[54],[61],163], [67]).

Invoking (8.3), we have for 4 € A#, P ¢ H*"?
Uu(P,s) = 2mlul(2k — k) Ry(ipr—nyUn(P, s + 1).

Here, U,(P, s + 1) is even holomorphic in s for Res > k, whereas the resolvent operator is
meromorphic in this half-plane. (Note that & > (k + 1)/2 since k¥ > 1.) This implies that
U,(P,s) is meromorphic in s for Res > k. In particular, U,(P, s) has at most a simple
pole at s = t;. For brevity, put :

A=s(k+1-—3s),

and we have
/\—/\] =(S—t1)(k+1—(3+t1))

Recall that for any f € L2(I\\\]Hk+2)’
res(Ra; A = Ai)f = pry, (f),

where pry denotes the orthogonal projection of L2(P\IH**?) onto the eigenspace of —A
for the eigenvalue A; (see [41, V, §3, 5]). Computing the residue of U,(P,s) at s = t;, we
find

res(Uy(P,s);s = t1)

_ 2m|p|(2t; — k)
= 1oz, o (- ARIUC e

_ 2nlpl(2t — k)

ry, (Un(h i + D))lp

E+1-2
(2t — K)
T Tkt1-24 2; »t D vsevs(P),
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where v;,...,vp 1s an orthonormal basis of pr,\l(Lz(F\]Hk"'z) The function v; has a
Fourier expansion of the form (8.7) with ag = 0 (Proposition 8.3). For w € A# w 3 0 let
a;(w) be the w-th Fourier coefficient of v; (1 < j < p). Then we have by (8.8)

res(U,(P,s);s =1;)

_ P(2t1 -1
_- (k+1)/2-t4 E
U\/;V(‘lﬂlﬂl) tl _ k/2) = UJ(P

(10.1)

Now we fix t € C with Ret > k + 2, fix v € A¥ and obtain from (10.1) and (8.8)
(res(Up(',8);5 = 1), U (-, D))r

= —n?n V2 (dn|u|)*HD/24 (4 ) D2

Pt —k-1) TE-t)T(¢+t —k-1)

(102) Tt = %/2) TG = k/2)
-2 ai(ma;(v).

In particular, (10.2) reads for g = v as follows:

(res(Uu(-,s); $ = tl)! U#('aﬂ)r
2yt kti—t—n D@0 = B = DO = t)D(t + ¢ — k —1)
(10.3) =~V (dru)) T(t; — k/2)T(t — k/2)

3 layf®

Since A; is an eigenvalue of —A, we may choose g in such a way that the right-hand side
of (10.3) is different from zero. Then (U,(+,s),UL(-,?))r has a pole at s = #;. On the other
hand, Theorem 9.1 combined with Theorem 7.17 implies that the latter scalar product is
holomorphic for Res > k + 1/2. This contradiction proves Theorem 10.1. []

We proceed to reformulate Theorem 10.1 in terms of orthogonal groups. For that end
we need the results of paragraph 3. This reformulation of Theorem 10.1 is contained in
Theorems A,B of the introduction. We shall indicate a proof now:

Proof of Theorems A,B: Let Q) be rational quadratic form of signature (1, k¥ +2) which
is Q-isotropic. It is elementary to see that @ is Q-equivalent to a quadratic form

Afgplg=rg
where ¢ is negative definite with rational coefficients and

90 (vo,¥1,92) =y5 — ¥i — v3

and A € @, A > 0. The statements then follow from Theorem 10.1 together with Lemma
3.1 and Remark 3.3. O
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