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Abstract

Linear ordinary differential equation of order m with a parameter and with smooth coef­
ficients is considered. It is assumed that equation has turning point of infinite order. The
fundamental system of the solutions with J\VKB-representations is constructed.
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2 Section 0

o. Introduction

We consider the linear ordinary differential equation

D'('u + L aj,a(t)~a IXu = 0
j+la I5mJ<m

(0.1)

with the parameter ~ E !Rn and smooth coefficients aj,a E COO(J). Here J = [0, TJ,T >
0, Dt = -id/dt, a = (0'1,0'2, ... , an) is a multi-index, I Q' 1= 0'1 + 0'2 + ... + an. We call
the point t a E J a turning point of the equation (0.1) if there is a ~ i= 0 such that the
roots ..\l(t,~) (l = 1, ... , m) of the characteristic equation

(0.2)
j+lal=m,j<m

coincide at the point ta. In the present paper we consider the equation (0.1) with the
single turning point t a = 0 and such that

..\j(O,~) = 0 for all ~ E Rn and all j = 1, ... , m.

Further, the turning point ta = 0 is said to have the order K. (infinite order), if

(0.3)

j=I, ... ,m, I=O, ... ,K.-l

(for all I = 0,1, ...).
(0.4)

Dur goal is the construction of linear independent solutions Uj( t,~), j = 1,2, ... , ffi, of
(0.1) which can be represented in the following way:

u;(t,~) = e4aj (t,e)a;(t, ~), j = 1, ... ,m, (0.5)

where 4>j(t, ~), j = 1, ... , m, are phase functions will be described later and where aj(t, ~),

j = 1, ... , m, are the amplitude functions such that with some nonnegative numbers
mj,j = 1, ... , m, for every k,O', k ~ m, they satisfy with a constant Ck,a following
inequality

(0.6)

(0.7)
(0.8)
(0.9)

(0.10)

c..\ (t )/ A(t) <
~-llInA(t)1 <

1..\(k)(t)1 <

(:tr (:~r aj(t,O ~ Ck,o <~>mj-lol+k/2

for all t E J and eE IRn
• Here <e>= (1 + lerl )1/2.

We describe the dass of equations (0.1) by means of a real-valued function..\ E COO(J)
such that ..\(0) = ..\'(0) = 0, "\'(t) > 0 when t > o. In the following "\' means d..\/dt. For
..\(t) we define A(t) = J~ A(r) dr and assurne that

..\mA 1
-

m E COO(J),

..\'(t)/..\(t) ~ Co..\(t)/ A(t) for all t E J \ 0,

A'(t)/..\(t) S; c~lln ..\(t)IC~ for all t E J \ 0,

ckl..\'(t)/..\(t)lk-I"\'(t) for all k = 1,2, ... , tE J\O,
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with non-negative constants c, CO, da, Ck, where C > (m - 1)/m.
It is easy to see that (0.9) implies

A(t) ::; exp{ -cot-~l} for all t E J \ 0,

3

with some positive co and Cl.

Furthermore, we assurne that the coefficients a;,CI satisfy for every k,j, a, lai =F 0, an
inequality

]Dk a. (t)1 < C A(t)m-; (llnA(t)l)m-;-lol (A(t))k
t ),CI - k . A(t) A(t) , (0.11)

for all t E J \ 0 with some constant Ck • Moreover, we assurne that same positive constant
8

11m (Al(t,~) - Ak(t, ~)) 1 2:: 8A(t)lcl, 1"# k, for all ~ E Rn, t E J,

IlmAI(t,~) I 2:: 8A(t) I~l, I = 1, ... , m, for all (E Rn, t E J.

(0.12)

(0.13)

Equation withaturning point of fini te order has been extensively studied by many au­
thors, see, for instance, the books [3], [7], [14], [15], [18], [20], and articles [10],[11],[12],[13].
Equations with a turning point of infinite order is studied in the case of real charaeteristie
roots Al(t,~) only [22], [23]. Therefore in the present paper we deal with the equations
with non-real Al(t,~) which have oue turning point to = 0 of infinite order.

The methods giving the uniform asymptotic developing for the equations with turning
points are based on the reduction of (0.1) in a small neighbourhood of turning point
either to well-known special differential equation or to ordinary differential equation with
polynomial coeffieients [18], whieh have solutions with already determined asymptotic
behaviour. These methods are quite successful for the second order equations with a
turning point of finite order when oue can apply to t-.1algrange's preparation theorem
[6]. Tbus, the applications of these Inethods are restricted to the case of finite order
turning points. Nevertheless we will give an example (Example 1) of an equation witb
a turning point of infinite order which can be reduced by Langer transformation [14] to
Kummer's equation [2] for confluent hypergeometrical function. Firstly this example was
considered by Alexandrian [1] (with 4> = 7r /2) for the sake of an investigation a propagation
of singularities of solutions of weakly hyperbolic equation and then by Hoshiro [5] (with
4> = 0) and independently by Reissig and author [16] (for 4J E [0, 1r /2)) in tbe investigation
of hypoellipticity property of partial differential operators of second order.

It should be noted that equations with one turning point playaspecial role in quan­
tum mechanics [8], [9], geometrie optics and in hydrodynamical stability [20], and in the
theory of partial differential equations.



4 Section 0

Inequality (0.11) for ai,Cl with j + lai < m, lai =I- 0, is called Levi condition in
the theory of partial differential operators. This condition has strong influence on well­
posedness of the problems for partial differentia.l operators with multiple characteristics.

The following example hints at construction we are looking for.

Example 1. [16] Let us consider a second order equation

2 2 2 '\~(t)
(d/dt) u - ~ '\~(t)u + ~bA4J(t) u = 0,

where with b E C, ~ E IR+

(0.14)

At the point t = 0 some of the coefficients of operator have a zero of infinite order.
Equation (0.14) has the following two independent solutions :

where a = (1 - b)/2 and \IJ (a,l; z) is a solution of confluent hypergeometric equation
having an integral representation

(0.16)

-1r /2 < 'P + arg z < 1r /2, arg t = cp at the starting point, and r(a) is Euler's function [2].
In the case when a = -n" = 1, n is non-negative integer,

w( -n, 1; z) = (-l)nn!L~(z), n = 0,1, ... ,

where L~(z) = ~ezD~ (e- Z zn) are Laguerre's polynomials.n.
The function '1'(0', ,; z) has for small z the following behaviour

1
\}1 (0:, ,j z) = - r(Q) [In z +1jJ(a) - 2,J +o( Iz In z I),

(0.17)

(0.18)

(0.19)

where I is Euler's constant and 1jJ(z) is the digamma function (psi function of Gauss)
'ljJ(z) := f'(z)jr(z) while for large z there is the following asymptotic expansion:

Ilt(a, ,; z) ~ z-o [1 +~(_l)k (a)k(a :,' + l)k z-k] ,

when z --+ 00, _3
2

71" ~ arg z ~ 3
2
71". Here (0'),1; := O'(a + 1)··· (a + k - 1).
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Thus formulas (0.15), (0.16), (0.17),(0.18),(0.19) give the complete asymptotic rep­
resentations of the solutions (0.15).

The outline of our construction is the following. The main difficulty in carrying
out classical construction is that inserting Anzatz (0.5) into (0.1) and using the classical
approach we get for the first terms of asymptotic developments of aj equations with
unbounded coefficients which, in general, are not of Fucshian equations. On the other
hand any solution u(t,~) of (0.1) generates a solution U(t,~):= (Ul(t,~), ... ,Um(t,~)):=
t(u(t, ~), ... , Dm-l u(t,~)) of the system

d
dtU = A(t,~)U

where A(t,~) can be written explicitly by means of aj,a(t), and converseIy. Then, there
exists an "explicit" representation formula (so called matritzant [4])

U(t,~) = U(O,~) +(f r' dS i (" dS 2 •••

/;;;;1 Jo Jo
... ['-I ds1A(SI, 0 ... A(sl, 0) U(O, O. (0.20)

Nevertheless, it is very difficult to get from tbe last representation uniform with respect
to t E J asymptotic behaviour of U(t,~) when ~ ~ 00, even in the case when U(O,~) is
independent of~. At tbe same time if we restriet ourselves to consideration a set

Zi"t(M, N) = {(t,~) E J x nt" I A(t) <~>~ N In <~> ,<~>2:: M} ,

where M and N are positive constants, from tbe formula (0.20), keeping in mind

(0.21)

l±j-nI

[ laj,Q(t,~)f~1 (1+ <,> A:~~t/t) (In <,>)m-i) nI dt ~ const In <~>
J(t,e)EZint(M,N)

for all ~ E 1It", <e >~ A1 > 0, without difficulties we can get polynomial asymptotical
behaviour of U(t, e) and corresponding JWKB representation for u(t, e). It remains to
consider the set

Zut(M, N) = {(t,~) E J x IR" I A(t) <~>2:: N In <~> ,<e>2:: M}. (0.22)

But this set is far away from the points (O,~) E Zint(M, N) whose projections on the
base coincide with tbe turning point t = O. Tbat gives the chance to get a success
using "almost" classical approach with modified definitions of symbol classes, asymptotic
summation and integral equation. In this way we get global with respect both t and ~

asymptotic representation and behaviour.
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To formulate main result of present paper we consider zeros of complete symbol of
the operator (0.1) that is the continuous roots il ( t, ~), I = 1, ... , m, af the equation

im + L aj,o(t)~oij = O.
j+lol:$m,j<m

(0.23)

These raots are smooth functions (Proposition 1.1) in the domain Z~t(M,N) for M
and N large enough. Further, let X(x) be a Cco·function on the real line satisfying
o:::; X(x) :::; 1, x(x) = 1 for lxI:::; 1, and X(x) = 0 for lxi ~ 2.

Theorem 0.1. Assume that (0.7)-(0.10),(0.11)-(0.13) are satisfied. Then there are lin­
ear independent solutions Uj( t, ~), j = 1, ... ,m, having representations (0.5) with phase
functions

~j(t,O = l' {X (~(;~ ~::) '\j(s,O + (1- X(~;~ ~::)) Tj(s,e)} ds,

and with amplitude functiolls aj(t, ~),j = 1, ... , m, satisfying (0.6).

(0.24)

(0.26)

According to the following theorem one can get a representations with a homoge~

neous with respect to ~ phase functions provided that coefficients am-l-lol,o satisfy more
restrictive conditions.

Theorem 0.2. Assume that (0.7)-(0.10),(0.11)-(0.13) are satisned. Moreover, let tbe
coeflicients am-l-lol,o, 10'1 :j:. 0, satisfy for every k, 0', an inequality

for all t E J \ 0 lvith sonle constant Ck • Then there are linear independent solutions
Uj(t, e), j = 1, ... ,m, having representations (0.5) witb phase functions

~j(t,0 = l' '\j(s, e)ds, j = 1, ... , m,

and witb amplitude functions aj(t, e), j = 1, ... , m, satisfying (0.6).

We notice here that the condition (0.11) is sharp. In further paper we prove that if
(0.11) is violated for sonle aj,o,j + 10'1 < m, 1a1 f; 0, then there do not exist fundamental
system linear independent solutions of the equation (0.1) with the representation (0.5)
and amplitude functions Gj satisfying (0.6).

Then it should be noted that our main goal is a construction presented below. Fol­
lowing it one can get the quantities mj, as weIl as more precise estimates in (0.6) for
k = 1,2, ....
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1. On the zeros of the complete symbol
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Firstly we consider the exterior zone Zert(M, N) defined for positive numbers M and N
in (0.22). It is evident that if A1' 2:: M and N' 2:: N then Zext(M', N') C Zext(M, N).

Further, let us denote for ~ E !RÄf := {~ E Rn I <~>~ M > O}, M ;:::: e, by te a root
of

A(t) <~>= N In <~> . (1.1 )

Lemma 1.1. The function te is a smooth function of ~ defined on RÄf and such that one
has

8te N(l -ln <~» .
8~j = <~>3 A(te) ~j J = 1, ... ,n,

while for every multi-index 0', 10'1 f. 0, the following estimate holds:

I(~)O tel< C <~>1-101 I ate I for all ~ E IR~.a( - 0 a<e>

(1.2)

(1.3)

Proof. First formula is obvious, while to prove the last estimate an induction cau
be applied. The lemma is proved.

Further a surface t = te splits set [0, Tl x IRAf into two domains (zones):exterior zone
Zext{M, N) and interior zone Zint{!I1, N). In each domain the equation (0.1) is to be
examined separately by suitable technique. \Ve start from Zext{M, N) where "almost"
semiclassical approach works.

Proposition 1.1. The assumptions (0.11)-(0.13) are equivalent to the following:
there exist positive constants A1, N such that the zeros Tl{t, e), 1= 1, , m, are defined
in zone Zext{A1, N) smooth functions, Tl E C OO {Zext{A1, N)), 1 = 1, , m, which satisfy
for every k, I, 0', an inequalities

(
8 ) k ( 8 ) 0 (t') < C <'>1-10I A(t) (A (t) ) k
Bt 8e Tl,,-> - k,o '-> A(t)

Moreover with same positive constallt 8}

IIm (Tl ( t, ~) - Tj ( t, ()) I > 81IA(t)11cl, 1f. j,

11m T/(t, ~)l > b1 A(t)lcl

for all (t,~) E Zext(A1,N), l,j = 1, ... ,m,.

(1.4)

(1.5)
(1.6)
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(1.7)

(1.8)

Proof. First of all we note that there are the positive constants Cl, C2 such that for
all sufficientIy Iarge Al and N

Cl In <c>~ Iln ..\(tdl ~ c11 1n <c> for all ~ E !RÄf,

c21n <~t>~ I1n ..\(t)1 ~ C;1 In <Ct> for all t > O.

Here <~t> denotes the root of the equation (1.1) with respect to <c>.
Let us proof an implication (1.4)&(1.5)&(1.6) => (0.11 )&(0.12)&(0.13). If j + lai =

m, t ~ te and CE Ru, then, for every k, the inequality

holds with some constant CJe which does not depend on t and c. The inequality (0.11) for
the coefficients aj,OI' with j + 10'1 = m -/ (I = 1, ... , m - 1), can be proved by induction.
Indeed, for j + 10'1 = m - 1 - / it holds

( ) _ 1 "IOIIDOI '"" ( ) t"Y 1 'IOlIDOI '"" ( )naj,o t - ,l e L-J aj,-, t ~ - ,t e L.J aj,-, t ~ .
a. a.

hl~m-j hl;::m-j-l

Hence,

jD7aj,o(t) I <

< ~! D~D'( L Ti. (t,O··· Ti~_j(t,~) + ~! D~D'( L aj,"y(t)C
i 1 < ...<im_j hl2:m-j-l

< c ..\m-j (t) (..\(t}) Je { <~>m-j-Iol
Je A(t}

+ L <~>rr-ol Iln~A~t)llm-j-nl }.
hl;::m-j-l ( )

For the completion of the proof of (0.9) it is enough to put <~>=<et> and to use the
induction assumption in view of (1. 7),( 1.8).

In order to prove (0.12),(0.13) we make change of variables ..\ = ..\(t)I~lp, T = ..\(t)leh'
and the equation (0.2) and the equation (0.23) for the zeros of the principal symbol becorne

(1.9)
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,m + L { L (A(t)l<l)j-maj,a(t)~a + Bj+1+ ßBj+l} ,j = 0, (1.10)
0:5j<m lal=m-j

respectively, where ßBj+1 = 0 and

Bj+1= Bj+1(t,e) = L (~(t)I~l)j-maj.a(t)~a, j = 0, ... ,m - 1. (1.11)
lal:5m-j-l

In accordance with (0.9), for (t,~) E Zh(M, N) we have

(:tY (~rBj+I(t,~) :::; Ck,,, <~>-IQI ()..(t)/A(t))k/N (N > 1), (1.12)

(1.13)

(1.14)

(1.15)

and therefore we consider (1.9) as perturbed equation (1.10) with the perturbations ßBj =
-Bj(t,~), j = l, ... ,m, in coefficients. Oue to (1.5) the roots of (1.10) depend analytically
on the perturbation ßB = (flBI, ... , flBm) E cm in some neighborhood of the origin.
Clearly,

(:t) k (~) Q 'Yj(t, 0 :::; Ck,Q <~> -J"I ()..(t)/ A(t))\

II7n (,{(t, <) - 1j(t, ~)) I ~ 01 > 0, I # j,

11m '''fj(t, <)1 ~ 01, j = 1, ... ,m,
for all (t, <) E Zh(M, N) and all j, I = 1,,. , ,m.

Furthermore, it is sufficient to show that, upon perturbation by some particular
flBj+1 = -Bj +1(t,~) with flB l = ... = b"Bj = flBj+'l = ... = flBm = 0, the roots
Pl(l = I, ... ,m) of the equation

P(t,<;p) - pjBj+1(t,~) = 0,

where P(t,~; p) = (Jl - 11 (t, ()) ... (Jl - 1m (t, <)), inherit properties (1.13)-( 1.15), may be
with new constants Al, N, 01, Ck,o. Indeed, by virtue of (1.14) we have

00

Jll(t,~) = I'I(t,e) + Lc~)(t,~)(-flBj+lr, 1= 1, ... ,m, (1.16)
n=l

where

(w -1'/(t,())(wP~(t,Cw) - jP(t,<,w))win- l dw
(P(t, e, w))n+1

1
=---

(n - I)!

[
tr-1 {[W - il(t, ()] n+1 ( I ( )' ( )) 'n-l}]

X dwn - I P(t,~, w) wPw t,~, W - J P t,~, w ur w;.,,(t,e} ,
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Therefore for 0 < 2p < 81 we have the inequality

Ic~)(t, ~)I ::; c8f-m(c2m- 1/(p8~-1))n for all (t,~) E Zh(M, N), (1.17)

with a constant c independent of t, ~ and j. Therefore, the radius of convergence rj+l of
tbe series in (1.16) (IßBj+d < rj+d is independent of (t,~) E Zh(M, N), j, I, provided
that N is large enougb.

Furthermore, (1.16) and (1.1 7) yield

IIm(1l1(t,~) - Ilj(t, e))1 ~ D'J > 0, I i= j,

(:t) k (~) 0 Jlj(t, 0 ~ Ck,o <~> -101 (>.(t)j A(t))k,

(1.18)

(1.19)

for all (t,~) E Zh(Af, N) may be with new constant N. Indeed, (1.18) is evident while
for the proof of (1.19) one can apply the formula of derivative of an implicit function. To
this end we denote for fixed I

and y = (t,~) E J x IRn ~ JRn+l. According to above mentioned formula one has

a:Jll = (P~(y; Jll(Y)) - jJl:- 1(y)Bj +1(y))-1Et(y),

where
m

Et(y) = {L(a~1'k(y))(rr zr(Y))
k=l r#:k

8!L 8
1
! .•• 8m! {a:1zl(y)}'" {a:mzm(y)}

61 + ...+6m :;;6, 61 :f.6•... ,6m :f.6

""" 8! 6
LJ 8 I ... 8.'8. , {ay

1
Jll (y) }

I· J' J+I·61 + ...+6j+6jt. :;;6, 6. :f.6,... ,6j#:6,6j+t:f.6

••• { ~jJll(Y)} {a:i +1 Bj+l (y) } } .

Hence (1.19) follows from (1.16) ,( 1.17) ,( 1.18) by induction on 181. Furthermore,

IImJld > Ilm,d -!Imcil)IIBj+d
00

- Ici')IIItnBj+d - IBJ+II L c~1)IIBj+1In-'J.
n=2

It follows from (1.11) that if M and N are Iarge enough then

2 ( IInA(t)1 )2
IBj +1(t, ~)I ::; c <~> A(t) ,

00

""" c(l)IIB· In-2 < CLJ n J+1 -,

n=2

(1.20)
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for all (t, e) E Zh(Af, N), I = 0, ... , m - 1.
The implication (1.4)&(1.5)&(1.6) => (0.11)&(0.12)&(0.13) has been proved.

The proof of the implication (0.11)&(0.12)&(0.13) => (1.4)&(1.5)&(1.6) is almost
identical: tbe equation (1.10) is considered to be a perturbed equation (1.9). This com­
pletes the proof of the proposition.

Corollary 1.1. JE coeflicients am-I-lol,en 101 =f:. 0, satisEy inequalities (0.25) then

Proof. It is consequence of the representations (1.16) and the estimates (1.20).

2. Classes of Symbols

For tbe constructions in the exterior zone Zext(M, N) where "almost semiclassical" ap­
proach will be carried out, we need some tools. These tools are special classes of symbols
as well as corresponding asymptotic calculus.

The classes of symbols aj(t, e) with parameter twill be presented below are basing
on the estimates (1.4).

Definition 2.1. Let mI, m'l, m3, p be real nUlllbers while M and N are positive numbers.
By Sp{ mI, m2, m3} M,N we dellote the set ol all Eunctions a(t,~) E COO(Zert(M, N))
such that for any k,o there exists a constant Ck,CJ such that

(a) k ( a)a (t t) < C <t'>m1-p!al A(t)m2 (A(t)) m3+
k

at a~ a, ~ - k ,0 ~ A(t )

for all (t, e) E Zert(M, N). (2.1)

We also denote

00

1ip{mI, m'l, m3}M,N = nSp{ml - k, m2 - k, m3 + k}M,N.
h=O

In wbat follows we drop p and write shortly S{mI,m2,mJ}M,N, 1i{mI,m'l,m3}M,N

when p = 1.
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Proposition 2.1. Suppose that ak(t,~) E Sp{ml - k,m2 - k,m3 + k}M,N , k = 0,1, ... ,.
Then there exists a symbol a(t,~) E Sp{ml, m2, m3} M,N such that

in the sense that

a ,...., ao + al + a2 + ... (2.2)

(a-aO-al-oo.-ak-d E Sp{ml-k,m2-k,m3+k} for a11 k, (~~.3)

and any symbols with the property (2.3) differ by the elements of'Hp{ml, m2, m3}M,N.

Proof. Let X(x) be a Coo-function is described before Theorem 0.1. We also deHne
the function

,~(t,~) = 1 - X(cA(t) <~»

and note that

for a11 (t,~) E Zert(A1,N), 0 < c::; 1. A sequence {ck}g' ,1 2:: eo > cl> ... > ek > ... ,
ck -+ 0, can be chosen in such a way that for for a11 (t,~) E Zert{M, N), we have

for a11 k,a, k +lai ~ j,j = 0,1, .... Therefore, for the remainder of the series

00

we have

L I~j(t,~)aj(t,~)
j=O

(2.4)

\
\

Thus, L:~T+l I~j (t, ~)aj(t,~) E Sp{ml - r, m2 - r, m3 + r} M,N. It fo11ows that the se­
ries (2.8) defines the function a(t,~) E Sp{ml,m2,m3}M,N and that (2.2) holds. The
proposition is proved.

If A(t,~) is a matrix-function, then A(t,~) E Sp{mI,m2,m3}M,N means that the
elements ajk(t,~) of A(t,~) belang to this dass for all i and j.
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Lemma 2.1. Assume that a sequence of matrix-functions N(j)(t,~) E S {-j, -j, j}M,N,

j = 1,2, ... , is given. Then there are the matrix-functions N(t, ~), N#(t,~) E
S {O, 0, O} M,N such that

N "V I + N(l) +N(2) +... mod 'Hp {mI, m2, m3}M,N,

and

may be witb a new M,N.

Proof. The existence of the N(t,~) is a consequence of the Proposition 2.1. In order
to prove the existence of N#(t,~) we note that N(t,~) - I E S{-1,-I, I}M,N implies

IIN(t,~) - 111 ~ const < 1 for all (t,~) E Zext(A1t, N)

when MI is large enough. Therefore, if we choose for (t,~) E Zert(M, N) the reciprocal
matrix N-l(t,~) as N#(t,~) then the last assertion of the lemma will be satisfied. The
lemma is proved.

3. Reduction to a "First Order Diagonal" System in Exterior
Zone

In exterior zone Zert( A1, N) the equation (0.1) can be reduced to a "first order" system
as folIows.

Let Hext(t,~) be a diagonal Inatrix-function

(
hm-l(t,~) 0° hm-2(t,~)

· .· .· .
o 0

... 0)... °

. . ,. .

. . . 1

where h(t,~) = ..\(t) <e>. Introducing the vector U = t(U1 , U2 , ••• , Um) =
Hext(t,~)t(u,Dtu, ... ,D;n-lu), the equation (0.1) cau be transformed to the system

LoU =° ,
where

(3.1 )

We are restricted ourselves to exterior zone, hence with some positive M and N we have

A(t,~) E S{I, 1,0}M,N. (3.2)
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Further, for the function

ß(t,~) = II (Ti(t,~) - Tj(t, ~))I h(t,~))
j<i~m

we have

Section 3

ß E S {O, 0, O} M,N, (~L3)

°< const ~ Iß(t, ~)I ~ const for all (t,~) E Zext(M, N). UL4)

For the system {TAt, e)1h(t, e) }~l we form the Vandermonde matrix M#(t,~) =
V( Tl 1h, T21 h, ... , Tmlh). Let Al(t, () be its inverse matrix. According to (3.3),(3.4) we
have

Al#(t, (), A1(t, e) E S {O, 0, O} M,N.

Then the vector V = Al(t, ()U is a solution of the system

(3.5)

DtV - Al(t, e)A(t, ()Al#(t, e)V + iA1(t, ()(8tHext (t, ())H~~(t, ()M#(t, ()V
- iAl(t,()(8t A1#(t,())V = 0. (3.6)

Lemma 3.1. The system (3.6) can be rewritten in the following form

DtV +iV(t, ()V +8(t, ()V = 0, . (3.7)

where V(t, () is a diagonal matrix-function with elements -iTl(t, (), -iT'2(t, (), ... ,
-iTm(t, (), and where 8(t, () E S {O, O,l} M,N.

Proof. From the definition V( L, () we get

8(t, () = -iV(t, () - Al(t, ()(A(t, ()
- (8t Hext (t, ()) H:r~ (t, () )Al# (t, () - iAl(t, e)8t M# (t, () .

The last assertion of the lemnla follows immediately from definition of Hext(t,~) and from
(3.5). The lemma is proved.

Proposition 3.1. There exist matrix-functions N(t, (),.1"(t, (),1(,(t, () sucb that the {01­

lowing operator-valued identity

(D t + iV(t, () + 8(t, ())N(t, () = N(t, e)(Dt + iV(t, e)
+ .1"(t, () - 1(,(t, ()), (3.8)

holds and

(i) N(t,c) E S{O,O,O}M,N, IdetN(t,c)1 ~ const > °for all (t,c) E Zext(M,N)
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(ii) .F(t,~) is a diagonal matrix, :F(t,~) E S{O,O, l}M,N ,R(t,~) E 1-l{0, 0, l}M,N.

Proof. We look for N(t, ~), :F(t,~) having the following representations:

{

N(t,~) "" I +N(1)(t,~) +N(2)(t,~) +... mod1-l{O, 0, o} M,N

N(v)(t,~) E S{-v, -v, v} M,N , v = 1,2, ... ,

{

:F(t,~) "" :F(O)(t,~) + :F(t)(t,~) +.. . mod 1-l{0, 0, 1},

:F(v) ( t, ~) E S { - v, - v, v + 1} M ,N , V = 0, 1, 2, . . . .

Let us choose :F(O)(t,~) = diag[ß(t, ~)]. Here diag[ß] is a diagonal part of the matrix
B . If we set B(O)(t,~) = B(t,~) ,

v+l v+l v

B(v+l) = (Dt +iV+B)(l +L N(/J») - (I +L N(Jl»)(Dt +iV+ L P/J») , v = 0,1, ... ,
IJ= 1 Jl= 1 Jl=O

:F(v)( t,~) = diag[B(v)(t, ~)], v = 0, 1, ... ,

N~~+l)(t,~) = { Bj~tl)(t, e)/(.Tj(i,~) - Tk(t, e))., when j =1= k,
J, 0, when ) = k, for all ), k = 1, ... , m,

then (i),(ii) follows {rom Proposition 2.1. For

'R = -N#{(Dt + iV +B)N - N(Dt + iV + :F)}

the property (3.8) holels. The proposition is proved.

4. Construction of exact solutions in exterior zone

Now we are going to construct linear independent solutions }j(t, ~), j = 1, ... , m, of the
system

(D t + iV(t,~) + :F(t,~) - R(t, ~))Y = 0.

We are looking for a solutions having representations

(4.1 )

j = l, ... ,m, (4.2)

where

4>j(t,O = l (rj(s, 0 - ifj(s, 0) ds,
J

anel tj, j = 1, ... , m, are the points of [te, T].

j = l, ... ,m, (4.3)
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Ir we denote diagonal matrix V(t,e) - i:F(t,e) by Q(t,e) with the elements qj(t,e)
t hen we can rewri te (4.1) in t he followi ng form

8tY = Q(t, e)y + iR(U, e)y (4.4)

for the vector Y(t,e) = tr (Ydt,e)'Y:l(t,e), ... ,Ym{t,e)). Let tj, j = l, ... ,m, be the
points of [te, Tl, then from (4.4) it follows

Hence

Yj(t, 0 = Yj(tj, OeJ.>j(T,(ldT + l ef: qj(z,e)dz (i'R.( r, OY(r, O)j dr, j = 1, ... , m. (4.5)
)

For the silnplicity of notations we will construct solution Y1 of (4.2), which we denote
by y = tT(Yh Y2, . .. , Ym) and which has representation

(4.6)

where eI = tT(I, 0, ... ,0). Thus we have to find vector-function W only. If we choose

then for lV = tT(Wh' .. , Wm ) we get

Wj(t,O - l e!:(qj(z,O-q,(z,())dz (i'R.( r, Oel)j dr
)

+ l ef:(qj(z,(l-q,(z.())dz (i'R.(r, ~)Y(r, O)j dr, j = 1, ... , m. (4.8)
)

The functions <pj(t,e) =Re(qj(t,e) - Ql(t,e)) keep a constant sign for all (t,e) E

Zext(M, N) if M large enough. Indeed,

IRe(Qj(t,~) - Ql(t,~)) I = IIm(Tj(t,~) - Tl(t,~)) + Im(fj(t,~) - fdt,~)) I
> 61'\(t) <~> -const'\(t)/A(t) ~ h2 A(t) <~>

for all (t,~) E Zext(A1, N) provided that M is large enough and j f. 1.

Thus one can rewrite (4.8) in the following way:

IV = F + K:IV, (4.9)
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where F = tr(!l' 12,' .. , Im),

fj(t,~) = l' eJ:<q} (z,O-qJ(z,())dz (in(T,Oei)jdT, j = 1, ... ,m, (4.10)
J

(KW)j(t,~) 1t

ef:(Qj(z,el-Ql(Z,endz (in(r,~)W(t'~))j dr, j = 1, ... ,m, (4.11)
tj

In (4.9)-(4.11) we set tj = te when c.pj(t,~) ~ 0, while set tj = T when <pj(t,e) > o.

Lemma 4.1. There exist positive constant M and N such that the equation (4.9) bas a
solution W(t,~) E COO(Zezt(AI, N)) which for every R, hand 0' satislies inequality

(:t) k (:~)" W(t,O ~ GR,k,G G~~D k <~>-I"I (In <~»-R (4.12)

for all (t,~) E Zezt(A1, N)

Proof. From (4.11) we have

I(JCW)j(t,OI < [lIn(T, OIIIIW(T, meJ;"';(z,OdzdT ~ [lIn (T,mIl W(T,e)lI dT
J J

< CR 1t

A((r)) (A(r) <~»-R II~V(T,~)lldT , j = 1, ... ,m,
tj A r

where IIW(r,~)ll denotes the nornl of the vector-function IV at the point (r,~).

In view of (0.8) and (0.9) we obtain from the last inequality

I(JCW);(t,OI ~ GR(ln <e>tR l' IIW(T,~)lIdT, j = 1, ... ,m,
J

may be with new Rand CR - For every fixed ~ let consider the Banach space C([t(, Tl) of
all continuous vector-functions W(t,~) with the nonn

Then

IlKlVIL\f,N,( ~ dllIV1LH,N,(

where constant is independent of ~,N and can be chosen arbitrary small by increasing
Mo uniformly with respect ta AI E [Alo, 00]. By the principal of contraction mappings,
equation (4.9) has a solution lV E C([t(, Tl) which satisfies an estimate

sup 1!lV(t, ~) 11 :::; C sup 1I F(t , ~) 11
(t,()EZe.rdM,N) (t,()EZezt(M,N)

(4.13)
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where constant C is independent of M, N. Moreover, it is evident that W E

COO(Zert(M, N)) and that in view of Lemma 1.1 induction in (4.9) can be applied to get
an estimate (4.12). Lemma is proved.

Thus, going back to equation (0.1) we get the following

Theorem 4.1. Assume that (0.7)-(0.10),(0.11)·(0.13) are satisfied. Then there exist con­
stants M and N such that in Zert(M, N) an equation (0.1) has linear independent solutions
Uj(t, '),J = 1, ... ,m, having representations

1:' Tj(.s,{)d.s .
Uj(t,<) = e ( aj(t,<), J = 1, ... ,m, (4.14)

with amplitude functions aj(t, <), j = 1, ... ,m, such that (0.6) holds for all (t, <) E

Zext(M, N).
JE in addition to (0.11) the condition (0.25) is satisfied then there are linear indepen·

dent solutions with representations

(4.15)

Proof. We have proved that }j(t, <), j = 1, ... , m, of (4.2) exists with corresponding
Wj = tr (WjI, Wj2, ... , Wjm) satisfying (4.12). It follows that for Aj ( t,~) of (4.2) for every
k, 0, t: > 0, an inequality

(4.16)

holds for all (t,~) E Zext(A1, N). Further, there exists a constant I< such that for every k
and a the inequality

holds for all (t, e) E Zert (M, N). This proves a representation (4.1 7).
If (0.25) are satisfied then according to Corollary 1.1 one has

( 8)k(8)Ct lt (;\(t))k
{)t {)~ exp 'j (Tj(S, 0 - Aj(S,mds ::s: Ck,o A(t) <~>K-Iol (4.18)

Hence this term can be included in the amplitude function, and we can replace Tj in (4.17) .
on )..j and get (4.18). Theorem is proved.
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5. Construction in "inner" zone

Let p(t,~) be a positive root of the following equation

Lemma 5.1. For every positive c and every Q, k the {ollowing inequalities:

19

(5.1 )

I(:(r p(t,O!

(:t) k (:() Q p(t,O < C <,>~+k-Ierlk,er, , k ~ 1,

(5.2)

(5.3)

hold for all t E J and alJ ~ E !Rn. A1oreover,

p(t,O E S{I, I, O} M,N, l/ (p(t,O + ;g::n dt ~ [( In «> (5.4)

Proof. First, we prove the inequality

18ep(t, ~)I ~ Co <~> -Ierl p(t,~) for all (t,~) E J X IRÄf. (5.5)

Indeed, if we denote A(t,~) = 1+ <~> Am(t)1\(t)l-mlln <~> Im-t,y = (t,~),c5 = (j,a),
then we have

For c5 = (0,0) (5.6) gives (5) by induction on 101. It follows from (5.4) that for every
positive €

18taeP(t,~)1 ~ Cer,~ <~>l+~-Ierl for all (t,~) E J x !RM. (5.7)

The inequality (5.7) proves (5.2) and (5.3). The last assertion of the lemma follows from
the following inequality:

In: Dce p(t, ~)I ~ ei,er <~>l-lol A(t)i+ l 1\(t)-i for all (t,~) E Zext(Mt, N). (5.8)

The proof is completed.

Furthermore, by means of nlatrix-valued function

!) .
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for the vector U := t(Ull U2 , ••• , Um) = Hint (t, ~)t (u, Dtu, ... , D;n-lu), the equation (0.1)
leads to the system

d
dtU = A(t,~)U. (5.9)

Every solution U(t,~) of (5.9) can be represented by the following explicit formula

U(t ,e) = U(te, e) + (f l t
dS I 161

dS 2 •••

1=1 te t(

... {I_' ds,A(s.) ... A(S/)) U(t{,O.

Using an operator (Ir)(t) = h: r(s)ds one can rewrite (5.10) in the form

00

U(t,~) = U(te,~) +L!AIA·~· IAI6U(te, e)·
'=1 1

For a scalar funetion 9 one has~ = (l9)'/I! = (.r.>(s)ds)' /IL
I

(5.10)

Lemma 5.2. Let Uj(t, e), j = 1, ... , m be solutions oE (5.9) which are smooth con­
tinuations into zone Zint(A1, N) oE the vector-functions Hext(t)t (Uj, Dtuj, ... , D~-lUj),
j = 1, ... , m. Then there exist positive constants C1J, such that for every k, I the
following estimates

hold.

First we prove the following

Lemma 5.3. There exist constants mj, j =1, ... , m such that for every k the followjng
estimates

(5.12)

hold for alJ eE ll~JI'

Proof. In view of (3.5) and (i) of Proposition 3.1 it is enough to consider functions

}j(t,O constructed in Section 4. To estimate the derivatives (;{f }j(t{, 0 one has to
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take into consideration that lj(te,~) = ej + Wj (te , ~) where ej = tr(o, .. . ,0, 1,0, ... ,0)
has 1 on j-th place, and each of Wj satisfies the estimate (4.12). Lemma is proved.

Proof of Lemma 5.2. Let us consider a matrix-valued function E(t,~) defined as
follows

00

E(t,e) := 1+ L1AlA.:. IAIA.
1=1 I

Thanks to Lemma 5.3 it is enough to estimate E(t, ~) anti ts derivatives wit h respeets to
~ only. As a consequence of (5.4) we have

(:~YA(t,O ~Ck<~>-kg(t,O foral! (t,OEZin,(M,N), (5.13)

where the notation g(t,~) = p(t,~) + p:N.il is used. Then it is clear that

for all (t,~) E Zint(M, N) . (5.14)

Further, for. the derivative teE(t, e) we have

11:~[(t,~)11 ~ t :%fIA- .. IAI~IA + ... +t :AIA ... 1A1%f,IA
v v

1-1 1-1

00 BA 00 ate
+ " lAlA···IAL4I- +" JAIA.:...IAIAla~A(te,~)L.J ' ... ae L.J . ~

1=1 1-1 1=1 1-1 '

00 I (lt( )1+1
< C <~>-1 ~ T! Cl , g(s,Ods

I
ate I 00 1(l t

( ) I+ g(I"O a~ C~T! Cl , g(s,Ods .

Then, due to (1.1),(1.2),(1.3) and to definition of g(t,s), one has

g(I"O I~iI~ C <~>-l for al! ~ E!RÄf·

Thus, according to (5.4) we get

11:~[(t,OII < C<~>-1~TI(C21\(S,~)dsY
< C <e>m-I far all (t, e) E Zint(M, N)
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with some positive constant m. All other derivatives can be considered in a similar way.
Lemma is proved.

Theorem 5.1. Assume that (0.7)-(0.10),(0.11)-(0.13) are satisfied. Then there exist con­
stants M and N such that smooth continuations in Zint(M, N) o[ linear independent
solutions Uj(t, ~), j = 1, ... ,m, constructed in Theorem 4.1 admit representations

(5.15)

with amplitude functions aj(t, ~),j = 1, ... , m, such that (0.6) bolds for a11 (t, e) E

Zint(M, N).

Proof. Indeed, any solution Uj(t,~) of (5.9) can be written in the form U(t,~) =
V(t,~) exp <p(t, ~), where V(t,~) = U(t,~) exp( -4>(t, ~)). Ifwe set forUj the phase function
4>(t,~) = 4>j(t,~) = J; Ai (8, ~)d8 then, according to (0.21) and due to Lemma 5.2 we obtain
for Vj(t,~) = Uj(t,~) exp( -4>j(t, ~)) in Zint(A1, N) an estimate

with positive constant mj,int. Derivatives of VAt,~) can be estimated in a similar way.
Theorem is proved.

The construction for Uj(t,~) is completely finished.

To finish the proof of Theorem 0.1 we note only that if A(t2 ) <e>= 2N In <~> then

Therefore the cutt-off functions in (0.26) do not bring any difficulties. Thus, Theorem 0.1
is proved.
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