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Abstract

Linear ordinary differential equation of order m with a parameter and with smooth coef-
ficients is considered. It is assumed that equation has turning point of infinite order. The
fundamental system of the solutions with JWKB-representations is constructed.
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2 Section 0

0. Introduction

We consider the linear ordinary differential equation
DPu + Z aja(t)E*Diu=0 (0.1)
jtlal€mj<m

with the parameter £ € R" and smooth coefficients a;, € C®(J). Here J = [0,T],T >
0,D; = —id/dt,a = (), 02,...,) is a multi-index, |a|=a+az+ ...+ a,. We call
the point to € J a turning point of the equation (0.1) if there is a £ # 0 such that the
roots Ai(t,€) (I = 1,...,m) of the characteristic equation

Y aaeX =0, (0.2)
j+laj=m, j<m

coincide at the point to. In the present paper we consider the equation (0.1) with the
single turning point o = 0 and such that

2;(0,6) =0 forall £€RrR” andall j=1,..,m. (0.3)
Further, the turning point ¢, = 0 is said to have the order K (infinite order), if
DIX;(0,6) =0 forall ¢e€R", j=1,....m, 1=0,.,K-1 (0.4)
(forall 1=0,1,..).

Our goal is the construction of linear independent solutions u;(¢,£),7 = 1,2,...,m, of
(0.1) which can be represented in the following way:

wi(t,6) = ™ as(t,6), j=1,...,m, (0.5)
where ®;(¢,€), = 1,...,m, are phase functions will be described later and where a;(t, £),
7 = 1,...,m, are the amplitude functions such that with some nonnegative numbers

m;,j = 1,...,m, for every k,a, k < m, they satisfy with a constant Ci, following

inequality
aN* o\
(5{) (3—5) a;(t,¢€)

for all t € J and ¢ € R™. Here <¢>= (1 + |¢[?)V/2.

We describe the class of equations (0.1) by means of a real-valued function A € C*°(J)
such that X(0) = M (0) = 0,X(¢) > 0 when t > 0. In the following A’ means d\/dt. For
A(t) we define A(t) = fot A(r)dr and assume that

ATAT™ € C°(J), (
AW)/A(R) < N()/AM2) < cor(t)/A(t) forall te J\O, (
&7 InA()| £ N@)/Mt) < dllnA@)|° forall teJ\O, (0.
DO < N (E/AOFTIN(E) forall k=1,2,..,teJ\0, (0.10

< Cho <E>™ITIOIHR (0.6)
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with non-negative constants ¢, co, ¢, cx, where ¢ > (m — 1)/m.
It is easy to see that (0.9) implies

A(t) L exp{—eot™} forall te J\O,

with some positive g and ¢;.

Furthermore, we assume that the coefficients a;, satisfy for every k, j, o, |a| # 0, an

inequality ) o "0 )
IDfa_,-‘a(tHSCk/\(t)m-? (T(t)_) (m) , (0.11)

for all ¢ € J\ 0 with some constant Cy. Moreover, we assume that some positive constant

]
III'I] (A((t,ﬁ) - )‘k(taﬁ)) I 2 5)‘(t)|£|) ! 5& k& for all {€ Rna te Ja (012)

[ImX(t,€)| = 6A()|E}, {=1,...,m, forall £€R" tEJ (0.13)

Equation with a turning point of finite order has been extensively studied by many au-
thors, see, for instance, the books [3], [7], [14], [15], [18], [20], and articles [10],[11],[12],[13].
Equations with a turning point of infinite order is studied in the case of real characteristic
roots A(t,€) only [22], [23]. Therefore in the present paper we deal with the equations
with non-real A;(¢,£) which have one turning point ¢, = 0 of infinite order.

The methods giving the uniform asymptotic developing for the equations with turning
points are based on the reduction of (0.1) in a small neighbourhood of turning point
either to well-known special differential equation or to ordinary differential equation with
polynomial coefficients [18], which have solutions with already determined asymptotic
behaviour. These methods are quite successful for the second order equations with a
turning point of finite order when one can apply to Malgrange’s preparation theorem
[6]. Thus, the applications of these methods are restricted to the case of finite order
turning points. Nevertheless we will give an example (Example 1) of an equation with
a turning point of infinite order which can be reduced by Langer transformation [14] to
Kummer's equation [2] for confluent hypergeometrical function. Firstly this example was
considered by Alexandrian [1] (with ¢ = 7 /2) for the sake of an investigation a propagation
of singularities of solutions of weakly hyperbolic equation and then by Hoshiro [5] (with
# = 0) and independently by Reissig and author [16] (for ¢ € [0,7/2)) in the investigation
of hypoellipticity property of partial differential operators of second order.

It should be noted that equations with one turning point play a special role in quan-
tum mechanics [8], [9], geometric optics and in hydrodynamical stability [20], and in the
theory of partial differential equations.
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Inequality (0.11) for a;, with j + |a| < m,|a| # 0, is called Levi condition in
the theory of partial differential operators. This condition has strong influence on well-
posedness of the problems for partial differential operators with multiple characteristics.

The following example hints at construction we are looking for.

Example 1. [16] Let us consider a second order equation

As(t)
As(t)

(d/dt)*u — EX5(t)u + &bt =0, (0.14)

where with b€ C, £ € RY

As(t) = explig —t7"), ¢ € [0,7/2], No(t) := (d/dt)A(t) = t~%exp(i¢ — 7).

At the point ¢t = 0 some of the coefficients of operator have a zero of infinite order.
Equation (0.14) has the following two independent solutions :

uy (2, €) = tee W (a, 1; —2A4(1)€),  ua(t, €) = te™ MW (1 — o, 1;2A4()€),  (0.15)

where a = (1 — b)/2 and ¥(a,v;2) is a solution of confluent hypergeometric equation
having an integral representation

1 (0+)
Yo7z = e (1= a) [ et (1 greiay (0.16)
177' ooe'w
—-m/2 < p+argz < w/2, argt = ¢ at the starting point, and I'(a) is Euler’s function [2].
In the case when @ = —n,y = 1, n is non-negative integer,
U(-n,1;2) = (-1)"n!L2(z), n=0,1,..., (0.17)

where L%(z) = 1!e‘D;‘(e“z") are Laguerre’s polynomials.
The function ¥(a,v; z) has for small z the following behaviour

¥(a,7;2) = —=—[Inz + (a) = 27] + ofjz In ), (0.18)

1
['(a)
where v is Euler’s constant and (z) is the digamma function (psi function of Gauss)
¥(z) :=T"(2)/T(z) while for large z there is the following asymptotic expansion:

U(a,v;2) ~ 27 |1+ z k(a k(o _!7 * Lk 275, (0.19)

when z — 00, =¥ <argz < ¥, Here (a)i :=ala+1)---(a+k~1).
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Thus formulas (0.15), (0.16), (0.17),(0.18),(0.19) give the complete asymptotic rep-
resentations of the solutions (0.15).

The outline of our construction is the following. The main difficulty in carrying
out classical construction is that inserting Anzatz (0.5) into (0.1) and using the classical
approach we get for the first terms of asymptotic developments of a; equations with
unbounded coefficients which, in general, are not of Fucshian equations. On the other
hand any solution u(t,£) of (0.1) generates a solution U(¢, €) := (Ui (t, &), ..., Un(t,E)) :=
Hu(t,§),..., D™ tu(t,£)) of the system
d U=AlHU
dt - ( 76)
where A(t,£) can be written explicitly by means of a;4(t), and conversely. Then, there
exists an "explicit” representation formula (so called matritzant [4])

Uit,&) = UO0,¢8) + dsy "d2"'
) = Uo.E) (Z [ s ["as
[ A9 A0 ) U0, (0.20)

Nevertheless, it 1s very difficult to get from the last representation uniform with respect
to t € J asymptotic behaviour of U(t,{) when £ — oo, even in the case when U(0,¢) is
independent of £. At the same time if we restrict ourselves to consideration a set

Zit(M,N) = {(t,6) € J x R™ | A(t) <€>< Nln <6> ,<€>> M}, (0.21)
where M and N are positive constants, from the formula (0.20), keeping in mind
143-m

A™(t ™
/ |aj.a(t, £)E°% (1+ <£> m_(l ) (In <§>)"‘“) dt < constn <£>
{tyE)EZEnQ(MvN) A (t)

for all £ € R*, <f{>> M > 0, without difficulties we can get polynomial asymptotical
behaviour of U(t,£) and corresponding JWKB representation for u(z,£). It remains to
consider the set

Zoal M,N) = {(t,6) € T xR" | A(t) <€>> Nln <> ,<t>> M) (0.22)

But this set is far away from the points (0,¢) € Z;.(M,N) whose projections on the
base coincide with the turning point ¢ = 0. That gives the chance to get a success
using "almost” classical approach with modified definitions of symbol classes, asymptotic
summation and integral equation. In this way we get global with respect both ¢ and ¢
asymptotic representation and behaviour.
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To formulate main result of present paper we consider zeros of complete symbol of
the operator (0.1) that is the continuous roots 7(t,£), { =1, ...,m, of the equation

™ + Z a,-,a(t)£°‘rj = 0. (023)

j+la|€m, j<m

These roots are smooth functions (Proposition 1.1) in the domain Z..((M,N) for M
and N large enough. Further, let x(z) be a C*-function on the real line satisfying
0< x(z) <1, x(z) =1 for |z} £1, and x(z) =0 for |z} > 2.

Theorem 0.1. Assume that (0.7)-(0.10),(0.11)-(0.13) are satisfied. Then there are lin-
ear independent solutions u;(t,£),7 = 1,...,m, having representations (0.5) with phase
functions

®;(t,8) = /Ot {x (-/]:,(ﬁ—zg) Ai(s,€) + (1 - X (ﬁz—zg)) Tj(&f)} ds, (0.24)

and with amplitude functions a;(t,€),7 = 1,...,m, satisfying (0.6).

According to the following theorem one can get a representations with a homoge-
neous with respect to { phase functions provided that coefficients a,,_1_ja| o satisfy more
restrictive conditions.

Theorem 0.2. Assume that (0.7)-(0.10),(0.11)-(0.13) are satisfied. Moreover, let the
coefficients @m—1-ja|ar || # 0, satisfy for every k, a, an inequality

|D¥ ()] < CiA()l! A (0.25)
t Am-1-]a,a > Uk A(t) , .
for all t € J\ 0 with some constant Cx. Then there are linear independent solutions
u;(t,€),7 = 1,...,m, having representations (0.5) with phase functions

¢5(ta£) = ‘[o /\J'(Sag)d‘g: J = 11' SRR (026)

and with amplitude functions a;(t,€),j = 1,...,m, satisfying (0.6).

We notice here that the condition (0.11) is sharp. In further paper we prove that if
(0.11) is violated for some a;q,7 + |a| < m,|a| # 0, then there do not exist fundamental
system linear independent solutions of the equation (0.1) with the representation (0.5)
and amplitude functions a; satisfying (0.6).

Then it should be noted that our main goal is a construction presented below. Fol-
lowing it one can get the quantities m;, as well as more precise estimates in (0.6) for

k=1,2,....
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1. On the zeros of the complete symbol

Firstly we consider the exterior zone Z...(M, N) defined for positive numbers M and N
in (0.22). It is evident that if M’ > M and N' > N then Z...(M',N') C Z...(M, N).

Further, let us denote for { € R}y, := {£ € R*| <€>> M >0}, M > e, by t¢ a root
of

A(t) <¢>= Nln <£> . (1.1)

Lemma 1.1. The function t¢ is a smooth function of £ defined on R}, and such that one
has

Ote  N(1 —In <£>)
9 <% A(te)

while for every multi-index a, |a| # 0, the following estimate holds:

a o
— ]
Kae) ‘
Proof. First formula is obvious, while to prove the last estimate an induction can
be applied. The lemma is proved.

& j=1,...,n, (1.2)

dte

< l-ial
S Co <£> 0 <&>

for all £ € R}, . (1.3)

Further a surface t = t; splits set [0,7] X R}, into two domains (zones):exterior zone
Zeet(M, N) and interior zone Z;n (M, N). In each domain the equation (0.1) is to be
examined separately by suitable technique. We start from Z..(M,N) where "almost”
semiclassical approach works.

Proposition 1.1. The assumptions (0.11)-(0.13) are equivalent to the following:

there exist positive constants M, N such that the zeros ni(t,€),1 = 1,...,m, are defined
in zone Z. (M, N) smooth functions, 71 € C®°(Z.:( M,N)), | = 1,...,m, which satisfy
for every k,l, a, an inequalities

k a k
Moreover with some positive constant §,
IIm (n(2,8) — (6, €) | 2 &ML, 1#7, (1.5)
Im~(t,§)] = &) (1.6)

for all (t,€) € Zene(M,N), L,j=1,...,m,.
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Proof. First of all we note that there are the positive constants ¢;, ¢; such that for
all sufficiently large M and N

aln <6< |nAt)| <ci'ln <€>  forall € € R}y, (L.7)

c2ln <6>< |InA(t)] <c;'ln <> forall t>0. (1.8)
Here <¢;> denotes the root of the equation (1.1) with respect to <¢>.

Let us proof an implication (1.4)&(1.5)&(1.6) = (0.11)&(0.12)&(0.13). If j + |a] =
m, t >t and £ € R}y, then, for every k, the inequality

pa]l = |(2) () T w0 0.0] el

11 <. <ty
< (MO (A)/AR))*

holds with some constant ¢, which does not depend on t and €. The inequality (0.11) for
the coeflicients a;4, with 7+ || =m —~{({=1,..,m —1), can be proved by induction.
Indeed, for j + |@| =m — 1 — ! it holds

Gialt) = =i¥1DF Y 406~ 4IDE a0,

al , .
igm—j lyl>m—j—t

Hence,

|Dfaja(t)] <

< l,Di‘Dg S mt,€) m (1,6) +lr DEDE > aj(t)¢
v i< Lime * M2m—j-t
k
< GA™ (1) (%) {<§>’““"“|°|
—af [l
by~al
+ Z <£> A }

[yI2m—j-t
For the completion of the proof of (0.9) it is enough to put <¢>=<¢> and to use the
induction assumption in view of (1.7),(1.8).

In order to prove (0.12),(0.13) we make change of variables A = A()|{|ux, 7 = A(t){€]v
and the equation (0.2) and the equation (0.23) for the zeros of the principal symbol become

it S { ) (A(t)lel)f-*"aj.a(t)ef*}m=o, (1.9)

0gi<m | |aj=m-j



On the zeros of complete symbol 9

0<j<m

eI { Y O ™ a;0(8)* + Bjss + ABjs } 7 =0, (1.10)

lal=m—j

respectively, where AB;,; = 0 and

Bi'H = j+1(ta‘f) = Z (’\(t)lﬂ)j-mai-a(t)ga’ 7=0,...,m—-1 (1'11)

lalgm—j-1

In accordance with (0.9), for (¢,£) € Zx(M, N) we have

() (2) s

and therefore we consider (1.9) as perturbed equation (1.10) with the perturbations AB; =
—B;(t,£), 7 =1,...,m, in coeflicients. Due to (1.5) the roots of (1.10) depend analytically
on the perturbation AB = (ABy,...,AB,) € C™ in some neighborhood of the origin.

< Cra <7 OQ)/ARIN - (N> 1), (1.12)

Clearly,
AN AN ol P
(5) () 59| < Cea <& OO, (1.13)
[ (a6, €) = 156, 2 6> 0, 145, (119
IImFYj(t’E)l 2 51’ j= l""’m’ (1'15)

for all (t,€) € Zy(M,N) and all j,I=1,...,m.

Furthermore, it is sufficient to show that, upon perturbation by some particular
ABj;41 = —Bj1(t,€) with AB, = ... = AB; = ABjy2 = ... = AB,, = 0, the roots
m(l =1,...,m) of the equation ,

P(t,& 1) — 4 By (t,€) = 0,

where P(t,&; 1) = (g —1(t,€)) - (g — ym (¢, §)), inherit properties (1.13)-(1.15), may be
with new constants M, N,§,,C . Indeed, by virtue of (1.14) we have

w(t, &) = n(t, )+ Y_ P, (-AB;1)", 1=1,..,m, (1.16)

where

- (w = n(t, ) (wPL(t, &, w) = jP(t, €, w))w™"?
D, 6) = omi j{ (P(t,€,w))n+ dw

lw=l=p

_ 1
T (n=1)

x [d‘f,,":l { (2T wp ) - 5Pl 6 H

P(t,€,w)

w=y (t,f)
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Therefore for 0 < 2p < §; we have the inequality
(8, €)] < cbi™™ (2™ /(pb7 ")) for all (t,€) € Zu(M, N), (1.17)

with a constant ¢ independent of ¢, and j. Therefore, the radius of convergence r;;; of
the series in (1.16) (JAB;4+1| < r;41) is independent of (¢,€) € Zx(M, N), j,1, provided
that N is large enough.

Furthermore, {1.16) and (1.17) yield
It &) — st €)1 > 8> 0, 143, (1.18)

(g) (5) w0

for all (¢,£) € Zx(M, N) may be with new constant N. Indeed, (1.18) is evident while
for the proof of (1.19) one can apply the formula of derivative of an implicit function. To
this end we denote for fixed {

zr(t76) = ﬂl(tuf) - 7r(t36)7 r= 1!"'7m7

and y = (¢,€) € J x R* C R**'. According to above mentioned formula one has

B = (Po(y; ml(¥)) = il (v) Binn(0)) '€ (v),

< Chro <> (A /A1), (1.19)

where

HORE Y CRNENT | EXO))

k=1 rEk

8!
- Z 1. 6.1 {aﬁlzl(y)} {3:"'%(31)}
814 A bm=b, 61 6y bmp L m:
)

é
- 2 T 0 )}
8y k84654126, 6186, 866,56 1 It

{07 m)} {07+ Bin(w)}}-
Hence (1.19) follows from (1.16),(1.17),(1.18) by induction on |§|. Furthermore,

Impu| > [lmy| = [Im || Bl
= |e’llmBjsa| = [Bjyal 3 1| Bjsal™".
n=2
It follows from (1.11) that if M and N are large enough then
, 2 InA()] \* Op. -2 ‘
Bl so(IE0E) . L llmarise, )

n=2
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for all (¢,¢) € Z,(M,N),1=0,..,m—1.
The implication (1.4)&(1.5)&(1.6) = (0.11)&(0.12)&(0.13) has been proved.

The proof of the implication (0.11)&(0.12)&(0.13) = (1.4)&(1.5)&(1.6) is almost
identical: the equation (1.10) is considered to be a perturbed equation (1.9). This com-
pletes the proof of the proposition.

Corollary 1.1. If coefficients apm—1-ja|.a, |a} # 0, satisfy inequalities (0.25) then

‘(%)k (3%)0 (75(t,€) = A;(t,€)) B 2)M}

A%(t) <€>
for all (t,£) € Zezt(M, N).

Al)

ap

S Ck,a <£>_Ia| {
(1.21)

Proof. It is consequence of the representations (1.16) and the estimates (1.20).

2. Classes of Symbols

For the constructions in the exterior zone Z..(M, N) where "almost semiclassical” ap-
proach will be carried out, we need some tools. These tools are special classes of symbols
as well as corresponding asymptotic calculus.

The classes of symbols a;(¢,¢) with parameter t will be presented below are basing
on the estimates (1.4).

Definition 2.1. Let m;,m3,m3,p be real numbers while M and N are positive numbers.

By S,{mi,ma,m3}un we denote the set of all functions a(t,&) € C®(Zext(M, N))
such that for any k,« there exists a constant Cy o such that

(3) (&) o

We also denote

ma+k
< Cra <E>™ 0l \(2)™ (%)

for all (t,€) € Zent(M, N). (2.1)

Hp{ml,mg,ma}M'N = n S,,{ml bt k,mg et k, ma + k}M'N .
k=0

In what follows we drop p and write shortly S{m,,mq,ms}pyn , H{mi,ms,ms}pn
when p = 1.
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Proposition 2.1. Suppose that ai(t,€) € S,{mi — k,ma—k,ma+ k}mun, k=0,1,...,.
Then there exists a symbol a(t,€) € S,{m,, ma, ma} M~ such that
a~apgt+a +ar+... mod H,{m1, ms, ma}mn, (2.2)
in the sense that
(a—ap—ay—...—ak-1) € S,{m; —k,ma—k,ms+k} forall &, (2.3)

and any symbols with the property (2.3) differ by the elements of H,{m,, mz, m3}mn.

Proof. Let x(z) be a C*-function is described before Theorem 0.1. We also define
the function

7e(t,§) = 1 — x(eA(t) <€>)

(2)' () e

for all (t,€) € Zext(M,N), 0 < e < 1. Asequence {ex}¥ ,12€e0>€1>...> > ...,
ex — 0, can be chosen in such a way that for for all (¢,£) € Z..:(M, N), we have

'(_g_t) (.6?2)"(%,.@,5)@,-(::,5))

for all k,o,k + |a| < 7,7 =0,1,.... Therefore, for the remainder of the series

and note that

< Cra <€~ A

' ' . /\(t) mat+k+ji—1
< 9-J my—j+l1-pla| me—y+l [ A/
<279 <> A?) (A(t))

==}

Z‘Yc,‘(taf)a’i(tsg) (2°4)
we have
2 k 2 a oo | s —plalr s i(i}_ ma+k4-r
(2) (%) L 34f6 a0 < Cra <> 0~ (33)

= -3 t my -pla|—r ma—r )\(t) mathtr
x Y (2A(F) <€)7 < G, <€>™ el A ()™ (A—(T)) :
j=r+1

Thus, 3772 1, %e; (8, €)a;(t,€) € Sy{m1 —rymg — r,ma +ripn . It follows that the se-
ries (2.8) defines the function a(t,£) € S,{mi,m3, ms}pn and that (2.2) holds. The
proposition is proved.

If A(t,€) is a matrix-function, then A(t,£) € S,{mi,m2,m3}sm n means that the
elements a;i(t,€) of A(t,€) belong to this class for all 7 and j.
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Lemma 2.1. Assume that a sequence of matrix-functions N (t,£) € S{—3,—7,7 MmN,
j=1,2,...,is given. Then there are the matrix-functions N(t,£), N*#(t,£) €
5{0,0,0}as~ such that

N~T+NYEND L modH,{my,ms,ms}un,

and

N*(t, N (t,8) =1
may be with a new M ,N.

Proof. The existence of the N(¢,£) is a consequence of the Proposition 2.1. In order
to prove the existence of N#(¢,£) we note that N(¢,£) — I € S{—1,—1,1}an implies

IIN(t,&) — Il| < const <1 for all ({,£) € Z..e(M;, N)

when M, is large enough. Therefore, if we choose for (¢,£) € Z...(M, N} the reciprocal
matrix N='(¢,€) as N#(t,£) then the last assertion of the lemma will be satisfied. The
lemma is proved.

3. Reduction to a ”First Order Diagonal” System in Exterior
Zone

In exterior zone Z..,(M, N) the equation (0.1) can be reduced to a "first order” system
as follows.
Let H .. (t,€) be a diagonal matrix-function

hm=1(t,€) 0 e 0
0 hm=2(t,€) -+ 0
0 0 e 1

where h(t,£) = A(t) <€>. Introducing the vector U = *(Uy, Uy, ...,Uy) =
Hezi(t, €)' (u, Dyu, ..., D7*"'u), the equation (0.1) can be transformed to the system

where
Lo = Dt - A(t,f) + i(atHert(tag))H:—r‘t(taf)'

We are restricted ourselves to exterior zone, hence with some positive M and N we have

A(t$£) € S{lalao}M.N- (32)
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Further, for the function

AE) = J[ (.6 —7i(t,))/h(t,6)

j<i<m
we have
Aeg S{0,0,0}M'N, (33)
0 < const < |A(t,€)] < const forall (¢,€) € Z.ot(M, N). (3.4)

For the system {r;(t,£)/h(t,£)}7-, we form the Vandermonde matrix M#(t,¢) =
V(n/h,m2/h,...,Tm/k). Let M(t,£) be its inverse matrix. According to (3.3),(3.4) we
have

M#(t,8), M(t,€) € S{0,0,0} ar,n- (3.5)

Then the vector V = M(t,£)U is a solution of the system

DV — M(4LE)AR M,V + iM(1,€)(8i Hear(t, ) Hou(t, ) M* (1, )V
— Mt E)(OM*(t,€))V =0. (3.6)

Lemma 3.1. The system (3.6) can be rewritten in the following form
DV +:1D(t,€)V + B(t,6)V =0, - (3.7)

where D(t,¢&) is a diagonal matrix-function with elements —it((t,€), —iry(t,€),. ..,
—iTm(ts f)) and where B(ta f) € 'S{Oa 0: ]}IW.N-

Proof. From the definition D(t, ) we get

B(t,f) = _i‘D(taé‘) - A’!(t,f)(A(t,f)
— (BiHen(t, ) HZL(L, ) M*(8,6) — iM(t, )0 M*(1,€).
The last assertion of the lemma follows immediately from definition of H..(t,£) and from

(3.5). The lemma is proved.

Proposition 3.1. There exist matrix-functions N'(t, £),F(t,€),R(t,€) such that the fol-
lowing operator-valued identity .

(Di + iD(t,€) + B(t,O)N(t,€) = N(t,€)(Ds +iD(t, )
+ F(t,6) - R(L,E)), (3.8)

holds and
(i) N(&,¢6) € §{0,0,0}r~, |det N(,€)| > const > 0 for all (t,€) € Zext(M,N) ;
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(i) F(¢,¢) is a diagonal matrix, F(t,£) € ${0,0,1}mn , R(t, &) € H{0,0,1}m.n.

Proof. We look for N (¢,£), F(t,&) having the following representations:

N(taf) ~ 1 +N(l)(ta£) +N(2)(tv£) +... mOdH{O’O)O}M.N
NO(t, &) e S{—v,~v,v}un, v=12,...,

F(t,6) ~ FO@E + FO(,€) +... modH{0,0,1},
f(y)(t,f)GS{—V,—V,U-i-l}M_N, v=1012....

Let us choose FO(t,¢) = diag[B(t,£)]. Here diag[B] is a diagonal part of the matrix
B . If we set BO)(t,¢) = B(t,€)

v4-1 v+l v
B+ — (Dt+2~D+B)(1+ZN’(;‘))_(]+ZN(#))(D¢+1"D+Z;’(#)), v=0,1,...,
u=1 u=l1 u=0

}'(v>(z,§) = dia.g[B(u)(t,g)], v=01,...,
N2, 6) = { BYH(E,)/((1,6) = 7l(t,€)), when j # K,

0, when 3=k, forall jk=1,...,m,

then (i),(i1) follows from Proposition 2.1. For
R = ~N#*{(D; +iD + B)N — N(D, +iD + F)}

the property (3.8) holds. The proposition is proved.

4. Construction of exact solutions 1n exterior zone

Now we are going to construct linear independent solutions Y;(¢,£), 7 = 1,...,m, of the
system

We are looking for a solutions having representations
Yi(t,6) = H94(1,8),  j=1...m, (4.2)
where .
EI')J-(t,lf)=/ (75(s,8) — if;(s,6)) ds, J=1...,m, (4.3)
2

and t;, 7 = 1,...,m, are the points of [t¢, T).
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If we denote diagonal matrix D(t,€) — i F(¢,€) by Q(t,£) with the elements ¢;(¢,¢)
then we can rewrite (4.1) in the following form

aY = Q(t, &)Y +iR(U, &)Y (1.4)

for the vector Y (t,€) = " (y1(t,€),y2(t, &),y ., ym(t,€)). Let t;, 7 = 1,...,m, be the
points of [t¢, T], then from (4.4) it follows

— [ qj(r.6)dr T N 3 )
(e I y,-(t,g)) = LB Ry (e, =1,.,m.
t
Hence

(1.6 = 11,0 TN 4 [0 (R Y (1)) b, G =1 (43)

_For the simplicity of notations we will construct solution ¥; of (4.2), which we denote
by Y = "(¥1,%2,-.-,%m) and which has representation

Y(t,¢) = ef:l l’1(""£)ﬂlr¢3_1 + ef:l q"("r'e)dTVV, (4.6)
where g7 = "(1,0,...,0). Thus we have to find vector-function W only. If we choose

m-(tlai) = 11 y_Z(tQ,g) = ﬁ(tsaf) == y_m(tm,f) = 0! (47)
then for W = "(wy,...,w,,) we get
t t
w;(t,¢) = f e @i (261 (=.6))dz (i’R(T,f)E)J. dr
t
t t
+./Jﬁﬁﬂmwmﬂmh@Ym0Lh,j=L“qm (4.8)

tj

The functions w;(t,€) =Re(45(t,€) — a1(t,€)) keep a constant sign for all (£,€) €
Zezt( M, N) if M large enough. Indeed,

|Re (;(t,6) —aa(t, )| = [Im(7(t,§) — i(4,0) + Im (£5(4,€) - f1(t,€)) |
> 81A(t) <€> —constA(t)/A(t) 2 6A(t) <&¢>

for all (¢,€) € Zere(M, N) provided that M is large enough and j # 1.

Thus one can rewrite (4.8) in the following way:

W=F+KW, (4.9)
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where F ="(f, fa,..., fm),

t t
56,6 = /ef,('?i("f)““("f))d’(iR(T,{)E}')J.dr, i=1,...,m,  (4.10)

)

(KW);(t,8) = fefr"‘"""""“"""‘(m(r,e)W(t,E)),.dr, j=1,...,m, (411)

In (4.9)-(4.11) we set t; = te when @;(t,£) <0, while set t; = T when ¢;(t,£) > 0.

Lemma 4.1. There exist positive constant M and N such that the equation (4.9) has a
solution W(t,€) € C®°(Zew(M, N)) which for every R, h and « satisfies inequality

k o k
(%) (-08—5) W(t, | < Crie (%) <€>7lol (In <€)~ (4.12)
for all (t,€) € Zeze(M, N)

Proof. From (4.11) we have

I(KW);(t,6)] <

/ R O, £)||eds €30z gy

< t.IIR(T,é)lIIIW(T,E)IIdT

Cn j Mr) (A(ry <) R IW(nOlldr|, G=1,...,m,

; AlT)

where |W (7, £)|| denotes the norm of the vector-function W at the point (7, £).
In view of (0.8) and (0.9) we obtain from the last inequality

[(KW);(t,6)| € Cr(ln <€)~

b j=17"’!m’

| e

may be with new R and Cg. For every fixed ¢ let consider the Banach space C({t¢, T]) of
all continuous vector-functions W (t, {) with the norm

W |[a1.ne = max Wit &)l

Then
KW [arne < dWilarne
where constant is independent of {, N and can be chosen arbitrary small by increasing

M, uniformly with respect to M € [My, 00]. By the principal of contraction mappings,
equation (4.9) has a solution W € C([t¢, T]) which satisfies an estimate

sup WO <C  sup  ||F(L,E (4.13)
(t.£)EZexe (M,N) (t.E)EZ 2 (M, N)
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where constant C is independent of M, N. Moreover, it is evident that W €
C*®(Zext(M, N)) and that in view of Lemma 1.1 induction in (4.9) can be applied to get
an estimate (4.12). Lemma is proved.

Thus, going back to equation (0.1) we get the following

Theorem 4.1. Assume that (0.7)-(0.10),(0.11)-(0.13) are satisfied. Then there exist con-
stants M and N such that in Z,;,(M, N) an equation (0.1) has linear independent solutions
u;(t,€),7 = 1,...,m, having representations

u;(t, €) = "(’Od’ a;(t,€), j=1,...,m, (4.14)

with amplitude functions a;(t,€),7 = 1,...,m, such that (0.6) holds for all (,§) €
Zert(M,N).

If in addition to (0.11) the condition (0.25) is satisfied then there are linear indepen-
dent solutions with representations

ef': Aj(s.8)ds

uj(t,ﬁ) = aj(t,f), ] = l, ceey, . (415)

Proof We have proved that Y;(¢,€), 7 = ,m, of (4.2) exists with corresponding
W; = "(wj1, wja, . . ., wjm) satisfying (4.12). 1 follows that for A;(t,€) of (4.2) for every
k,a,e > 0, an inequality

(&) (aa_s)a’*"(t’g)n e (35) <o (4.16)

holds for all (¢,¢) € Z.:(M, N). Further, there exists a constant K such that for every k
and «a the inequality

(2) (%) o (= [ 5100

holds for all (¢,£) € Zere(M, N). This proves a representation (4.17).
If (0.25) are satisfied then according to Corollary 1.1 one has

G ) o e -ste0

Hence this term can be included in the amplitude function, and we can replace 7; in (4.17)
on A; and get (4.18). Theorem is proved.

k
< Cra (%) <> Kl (4.17)

< Cro (%) <t>K-ll 0 (4.18)
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5. Construction in ”inner” zone

Let p(t,£) be a positive root of the following equation
P = 1= <> A (DAR) ™I <> ™ = 0. (5.1)

Lemma 5.1. For every positive € and every a, k the following inequalities:

(2) e

(@) () e

hold for all t € J and all £ € R*. Moreover,

< C, <>t m=lol (5.2)

IA

Cra <>l k> (5.3)

‘e Pt(t’f) n
p(t,€) € ${1,1,0}mw, A (p(t,£)+—p(t,£))dt <Kln<é>. (5.4)

Proof. First, we prove the inequality
102p(t,€6)| < Ca <€>711 p(t,€) for all (t,€) € J X Rjy. (5.5)

Indeed, if we denote A(t,£) = 14+ <€> A™(H)A()~™|In <¢> ™Yy = (8,£),6 = (4, ),
then we have

Bp=4— D, (Bo)---(Bp(y)8!/ (61} 8m!) + A 3 p' " [m. (5.6)

S14..46m=86,
5176, Sm#E

For § = (0,a) (5.6) gives (5) by induction on |af. It follows from (5.4) that for every
positive €
1002 p(t,6)| € Cae <€+l forall (t,€) € J x R}y (5.7)

The inequality (5.7) proves (5.2) and (5.3). The last assertion of the lemma follows from
the following inequality:

DI Dgp(t,€)| < Cia <€>'TIAHA@) ™ forall (4,€) € Zea( My, N).  (5.8)

The proof is completed.

Furthermore, by means of matrix-valued function

LY 0
0

m=—2 S
Hin(t,€) = P :(t,ﬁ) 0

0 0 sl
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for the vector U := Uy, Uay...;Un) = Hine(t, €)' (u, Doy, ..., D*'u), the equation (0.1)
leads to the system

d .
U= ALOU. (5.9)

Every solution U(t,€) of (5.9) can be represented by the following explicit formula

UL E) = U(t,€) + ds, ’ldz...
(t,¢) (te;€) (;L 8'/‘e s

- /lt—l dsl.A(‘gl) .. A(s;)) U(tfa 'f) . (510)

Using an operator (Ir)(t) = f:: r(8)ds one can rewrite (5.10) in the form

NE

U(L,E) = Ulte, €) + 3 TATA- - TATAU(te, ).

1 !

!

t
i vl = =1 !
For a scalar function g one has Iglg---Ig = (Ig)'/!! (f!‘ g(s)ds) J1.
I

Lemma 5.2. Let U;(t,€), j = 1,...,m be solutions of (5.9) which are smooth con-
tinuations into zone Zin (M, N) of the vector-functions H.z(t)* (u,-,DtuJ-, e ,DI"'lu.j),
7 = 1,...,m. Then there exist positive constants C;, such that for every k, | the
following estimates

(%) (%) wee

First we prove the following

< Cro <€>C1imlOHET for all  (1,€) € Zin(M, NY5.11)

hold.

Lemma 5.3. There exist constants mj, 3 = 1,...,m such that for every k the following

estimates .
‘(a%) Ui(te, 6)| < Cr <t>™F (5.12)

hold for all £ € R},

Proof. In view of (3.5) and (i) of Proposition 3.1 it is enough to consider functions

k
Y;(2,€) constructed in Section 4. To estimate the derivatives (a%) Y;(te, €) one has to
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take into consideration that Y;(t¢,&) = & + Wj(t¢, €) where g = (0,...,0,1,0,...,0)
has 1 on j-th place, and each of W; satisfies the estimate (4.12). Lemma is proved.

Proof of Lemma 5.2. Let us consider a matrix-valued function £(t,¢) defined as
follows

Et,€) =T+ LAIA---1AIA.
i=1 !
Thanks to Lemma 5.3 it is enough to estimate £(¢,¢) ant its derivatives with respects to
¢ only. As a consequence of (5.4) we have

(2) aco

where the notation g¢(t,£) = p(t,£) + 2 208 i5 ysed. Then it is clear that
p(t.8)

!
€@, O < Z T (CO/ (s,f)ds) for all (t,€) € Zint(M, N). (5.14)

=0

< Cr <t>7F g(t,6) forall (t,¢) € Zin(M,N), (5.13)

Further, for the derivative B%E(t,f) we have

12“31,4 JATATA Z TAIA-. IAI?ﬁIA

Ms

9
Ha_ig(t’E)N s " oe 3

._
I
-

N o

11 -1

TALA-- IAI.4I A(tf,)

—l

NE

Al &
!AIAI IAIAIaE Z::

|

v

_.
]
-

1

oo 1 I+1
< C<e7! Z% (letg(s,ﬁ)ds)
=1 "' t
te i
C’Z I (C,/ g(s,f)ds) .

6t
+ g(te, &) |5
Then, due to (1.1),(1.2),(1.3) and to definition of ¢(t, s), one has

g(te, &) s <C <> forall €eRjy.

E3
Thus, according to (5.4) we get

' oo ' !
< C<e>! Z T (CQ/tcg(s,é)ds)

< C<£>"‘" for all  (,€) € Zin(M, N)

[2ecd
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with some positive constant m. All other derivatives can be considered in a similar way.
Lemma is proved.

Theorem 5.1. Assume that (0.7)-(0.10),(0.11)-(0.13) are satisfied. Then there exist con-
stants M and N such that smooth continuations in Z;,,(M,N) of linear independent
solutions u;(t,€),7 = 1,...,m, constructed in Theorem 4.1 admit representations

uj(t’f) = c‘,; ,\j("ad.aj(t?f)’ .7 =1,...,m, (515)

with amplitude functions a;{t,£),7 = 1,...,m, such that (0.6) holds for all (t,¢) €
Zinl(Ma N)

Proof. Indeed, any solution U;(t,€) of (5.9) can be written in the form U(t,¢) =
V(t, &) exp ®(t,€), where V(1,£) = U(t, &) exp(—D(L,£)). If we set for U; the phase function
®(t,¢) = &;(¢,¢) = f; A;(s, €)ds then, according to (0.21) and due to Lemma 5.2 we obtain
for V;(t,&) = U;(2, &) exp(—;(t,€)) in Zine(M, N) an estimate

Vi(t, )] < 14;(2, )l exp(=;(t, €))] < C <€>™

with positive constant m;j;n.. Derivatives of V;(¢,£) can be estimated in a similar way.
Theorem is proved.
The construction for U;(t, ) is completely finished.

To finish the proof of Theorem 0.1 we note only that if A(t2) <¢>= 2N ln <¢> then
t
<&> / A(s)ds < Nln <€> .
L

Therefore the cutt-off functions in (0.26) do not bring any difficulties. Thus, Theorem 0.1
is proved.
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