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CONFORMAL EMBEDDING AND TWISTED THETA

FUNCTIONS AT LEVEL ONE.

SWARNAVA MUKHOPADHYAY AND HACEN ZELACI

Abstract. In this paper, we consider the conformal embedding of so(r)
into sl(r) and study relations between level one SO(r)-theta functions
and twisted SL(r)-theta functions coming from parahoric moduli spaces.
In particular, we give another proof of a theorem by Pauly-Ramanan
[PR01].

1. Introduction

Let V be a complex vector space of dimension r > 5 equipped with a non-
degenerate symmetric bilinear form q and consider the group SO(V ) of linear
transformations with trivial determinant preserving the quadratic form. We
consider the canonical map of SO(V )→ SL(V ) and the corresponding map
so(r)→ sl(r) on the level of Lie algebras. This embedding is known to be a
conformal embedding [BB87a, SW86] i.e. the following equality holds:

2 dim so(r)

r
=

dim sl(r)

1 + r
.

We refer the reader to Section 3 for a more precise definition and proper-
ties of conformal embeddings. Given a conformal embedding ϕ : p → g,
physcists suggests that the rational conformal field theory associated to p
and g are closely related. This has been explored in the works of several
authors [NT92, Abe08, Bel09, BP10, Muk16b, Muk16c, MW17]. The main
motivation of this paper is to understand the relations among the space of
conformal blocks (see Section 3) coming from the embedding so(r)→ sl(r).
We describe the details below.

Let Y be a smooth projective curve over C of genus g > 2. Consider the
moduli stack MY (SO(r)) of SO(r)−bundles over Y and the moduli stack
MY (SL(r)) of SL(r)−bundles over Y . The canonical inclusion f : SO(r) ⊂
SL(r) induces a natural map between the moduli stacks

f : MY (SO(r))→MY (SL(r)).

Let D be the determinant line bundle over these stacks. Then there is a
natural map induced by global sections. We have the following result:
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The second author was supported by the SFB/TR 45 ”Periods, Moduli Spaces and Arith-
metic of Algebraic Varieties” of the German Research Foundation (DFG).
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2 SWARNAVA MUKHOPADHYAY AND HACEN ZELACI

Theorem 1.1. The map f∗ : H0(MY (SL(r)),D) → H0(MY (SO(r)),D) is
an isomorphism.

In [Bea06], A. Beauville proves that H0(MY (SO(r)),D) is dual to the

space of H0(Jg−1
Y , rΘ), where Jg−1

Y is the variety parametrizing degree g −
1 line bundles on Y and Θ is the canonical theta divisor. The result of
[Bea06] combined with a result in [BNR89] can be used to prove Theorem
1.1. However our approach is different. We rephrase everything using the
language of conformal blocks associated to the Lie algebras so(r) and sl(r)
and prove a more general statement on nodal curves with marked points.
We refer the reader to the statements of Theorem 2.1 and Theorem 3.4
for generalizations of Theorem 1.1. As a consequence, we can compare the
Hitchin connections for the groups SO(r) and SL(r). We refer the reader to
Corollary 3.6 for a precise result.

1.1. Twisted non abelian theta functions for SL(r). Let as before Y
be a smooth projective curve of genus g. We denote by ωY its canonical
bundle. Let η ∈ J2(Y ) be a 2−torsion line bundle over Y , it defines an étale
double cover π : Xη → Y . Now, let σ be the Galois involution on Xη. A
vector bundle E on Xη is called anti-invariant if there exists an isomorphism

ψ : σ∗E
∼→ E∗.

Moreover, if σ∗ψ = tψ (resp. σ∗ψ = − tψ) the pair (E,ψ) is called
σ−symmetric (resp. σ−alternating). We refer to [Zel16, Section 3] for more
detail and properties of these bundles.
Consider the moduli stack SU

σ,+
Xη

(r) (resp. SU
σ,−
Xη

(r)) of σ−symmetric (resp.

σ−alternating) anti-invariant vector bundles over Xη with trivial determi-

nant. These stacks are connected and SU
σ,−
Xη

(2m + 1) = ∅ (see [Zel16]).

Moreover, these stacks are isomorphic to moduli stacks MY (G±) of para-
horic G±−torsors over Y , where G± are some parahoric non constant group
schemes over Y (see [Zel17b]). Parahoric torsors are a natural generaliza-
tion of parabolic bundles and theta functions for parahoric torsors are of
considerable interest. In this paper we consider the moduli stack SU

σ,+
Xη

(r).

Now consider the Norm map Nm : Pic(Xη)→ Pic(Y ) and the subvariety
Nm−1(ωY ). Since the cover Xη → Y is étale, Nm−1(ωY ) have two connected

components P evη and P odη , where the superscript corresponds to the parity

of dimensions of the global sections line bundles. Similarly let Nm−1(OY ) =
P 0
η t P ′η.
It was shown in [Zel17a] that the restriction of the determinant of coho-

mology line bundle on MXη(SL(r)) to SU
σ,±
Xη

(r) has a square root Pλ associ-

ated to each λ ∈ P evη t P odη , called Pfaffian of cohomology line bundle. For
a fixed theta characteristics κ such that π∗ηκ ∈ P evη , we denote the corre-
sponding line bundle by P.
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The pull-back via πη induces a morphism (see [Zel17c, Proposition B.0.4])

π∗η : MY (SO(r))→ SU
σ,+
Xη

(r).

If η = 0, then Xη = Y t Y and SU
σ,+
Xη

(r) = MY (SL(r)). Motivated by the

identifications in Theorem 1.1, we show the following:

Theorem 1.2. Let η 6= 0, the pull-back map π∗η induce

• an isomorphism H0(SUσ,+Xη (2m + 1),P)'H0(MY (SO(2m + 1)),D ⊗
Lη),

• and an injection H0(SUσ,+Xη (2m),P) ↪→ H0(MY (SO(2m)),D⊗ Lη)),

where Lη is the 2-torsion sheaf on MY (SO(r)) associated to η.

Observe that if η = 0, Theorem 1.2 is a generalization of Theorem 1.1.
However the strategy of the proof of Theorem 1.2 is different from the proof
of Theorem 1.1. Using the same strategy in [BNR89], H. Zelaci [Zel17a]

showed that the space of twisted theta functionsH0(SUσ,+Xη (r),P) is identified

with the dual space of abelian theta functions H0(P evη , rΞev)∨, where Ξev is
the canonical Pfaffian divisor in P evη (see Section 4). We generalize an idea
of Beauville ([Bea06]) to give an alternate proof of a conjecture in [Oxb99]
which was originally proved by C. Pauly and S. Ramanan [PR01]:

Theorem 1.3. Let η 6= 0 in J2(Y ), then there is a natural duality between

H0(MY (SO(2m+ 1)),D⊗ Lη) ' H0(P evη , (2m+ 1)Ξev)∨

H0(MY (SO(2m),D⊗ Lη)) ' H0(P evη (2m)Ξev)∨ ⊕H0(P odη , (2m)Ξodα )∨,

where P evη tP odη := Nm−1(ωY ) and Ξodα is a translate of Ξev by a two torsion
point α ∈ P ′η.

Once this is done, we apply the result in [Zel17a] and a commutative
diagram to Theorem 1.3 to give a proof of Theorem 1.2.

2. Comparing SO(r) and SL(r) theta functions at level one

Let G be a complex Lie group and Y be a smooth curve. We denote by
MY (G)-the moduli stack of principal G bundles on a curve Y . Consider
the map of complex Lie groups SO(r) ↪→ SL(r). This map lifts to a map
Spin(r)→ SL(r). By functoriality, we get a map between the corresponding
moduli stack of principal bundles on Y .

MY (Spin(r))

�� ''
MY (SO(r)) // MY (SL(r))

Since the moduli stack MY (SO(r)) has two connected components, it turns
out that MY (Spin(r)) maps only to the component of MY (SO(r)) containing
the trivial bundle. To take the other components of MY (SO(r)) into account,
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following [BLS98] we consider the twisted Spin bundles. More precisely,
consider the Special Clifford Group

SC(r) := Spin(r)×Z/2Z C∗,

where we have identified Z/2Z as a subgroup of the center of Spin(r). Now
the projection from SC(r) to C∗ is the Norm map and it is well known
that it’s kernel is Spin(r). We consider the corresponding map between the
moduli stacks:

Norm : MY (SC(r))→ Pic(Y )

We define the stack of twisted Spin(r) bundles M−Y (Spin(r)) to be the sub-
stack of MY (SC(r)) such that

M−Y (Spin(r)) := {P ∈MY (SC(r))|Norm(P ) = OY (p)},

where p is a fixed point on the curve X. Now let us define

(2.1) NY (r) := MY (Spin(r)) tM−Y (Spin(r)).

Then we have a natural map SC(r) → SL(r) which factors SO(r), we have
the following diagram of moduli stacks in which the vertical arrow is surjec-
tive:

NY (r)

π

��

f̃

''
MY (SO(r))

f // MY (SL(r))

As in the introduction, let D be the ample generator of the Picard group of
MY (SL(r)), we prove have the following Theorem:

Theorem 2.1. The pull back of f̃ gives an injection between the space of
theta functions:

f̃∗ : H0(MY (SL(r)),D) ↪→ H0(NY (r),D)

We postpone the proof of Theorem 2.1 to the Section 3, where we gen-
eralize the statements in the language of conformal blocks on nodal curves.
We now explain, how the statement of Theorem 1.1 follows from Theorem
2.1.

2.1. Proof of Theorem 1.1. We begin the following proposition whose
proof follows easily from [BLS98]:

Proposition 2.2. The map π∗ : H0(MY (SO(r)),D) → H0(NY (r),D) is
injective.

Proof. Let for any group G, denote by M reg
Y (G) the coarse moduli space of

stableG bundles P on a curve Y such that Aut(P ) is equal to the center ofG.
By [BLS98], the map π restricted to the regularly stable locus M reg

Y (SO(r))
is a étale Galois cover with Galois group J2(Y ). Now since the line bundle D
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on NY (r) is pulled back from MY (SO(r)), by taking invariants with respect
to J2(Y ), we get an injection

π∗ : H0(M reg
Y (SO(r)),D) ↪→ H0(π−1(M reg

Y (SO(r))),D)

Now since the codimension of the complement of the regularly stable locus
in the moduli space of semistable bundles is at least 2, the result follows by
Hartogs theorem. �

To prove Theorem 1.1, we need to show that f∗ is an isomorphism. The
map f̃∗ factors through f∗ and we have the following diagram

H0(NY (r),D)

H0(MY (SL(r)),D)

f̃∗
55

f∗ // H0(MY (SO(r)),D)

π∗

OO

Now by Theorem 2.1, we know that f̃∗ is injective. Now Proposition 2.2
tells us that π∗ is injective. This implies f∗ is injective. Now by the Verlinde
formula [AMW02, AMW01], we get

dimH0(MY (SL(r)),D) = dimH0(MY (SO(r)),D) = rgY ,

where gY is the genus of Y . This completes the proof of Theorem 1.1.

3. Generalization with conformal blocks

Let g be a simple complex Lie algebra and let h be a Cartan subalgebra.
Let ∆ be the set of root associated to (g, h). We choose a Cartan-Killing
form ( ) normalized such that (θ, θ) = 2 for the highest root θ ∈ ∆.

Associated to g, we consider the corresponding Kac-Moody Lie algebra

ĝ := g⊗ C((t))⊕ Cc,

with Lie bracket given by the formula.

[X ⊗ f, Y ⊗ g] := [X,Y ]⊗ fg + Rest=0 g
df

dt
(X,Y ).c

Let P+(g) denote the set of dominant integral weights of g. Consider the
set of level ` weights:

P`(g) := {λ ∈ P+(g)|(λ, θ) ≤ `}

For each λ ∈ P`(g), there is a unique, irreducible, integrable, highest weight
ĝ-module Hλ(g, `) on which c acts as scalar multiplication by `.
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3.1. Conformal Blocks. Consider a projective algebraic curve Y (not nec-
essarily smooth) with n-distinct marked points ~p = (p1, . . . , pn) with chosen
formal coordinates ~t = (t1, . . . , tn). We further assume that the curve Y has
at most nodal singularities and (X, ~p) satisfy the Deligne-Mumford stability
conditions.

Let g(Y, ~p) denote the Lie algebra of g valued functions on the punctured
curve Y \~p. By Laurent-expansion by local coordinates around the points
~p, we get can realize g(Y, ~p) as a Lie subalgebra of

⊕n
i=1 g ⊗ C((ti)) ⊕ Cc.

Now for an n-tuple of level ` weights ~λ = (λ1, . . . , λn), consider the tensor
product of highest weight representations

H~λ
:= Hλ1(g, `)⊗ · · · ⊗Hλn(g, `).

We recall the following definition from [TUY89].

Definition 3.1. We define the space of covacua V~λ(Y, g, `) to be the largest
quotient of H~λ

on which g(Y, ~p) acts trivially. We define the space of con-

formal blocks V
†
~λ
(Y, g, `) to be the vector space dual of V~λ(Y, g, `).

We recall some important properties of conformal blocks:

• As Y varies, the space of conformal blocks give a vector bundle
V~λ(g, `) on the Deligne-Mumford compactification Mg,n of the mod-
uli stack of genus g curves with n-marked points [TUY89]
• We can compute the dimension of the space of conformal blocks by

the Verlinde formula [AMW01, AMW02, TUY89, Fal94]
• The bundle V~λ(g, `) restricted to the interior Mg,n carries a flat pro-

jective connection [TUY89] known as the TUY/WZW/Hitchin con-
nection.

3.2. Conformal Embedding. Let p be a simple complex Lie algebra and
g be a simple algebra with an embedding ϕ : p → g. The Dynkin index dϕ
of the embedding ϕ is the ratio of the normalized Cartan-Killing forms. If
p is semisimple, then we define the Dynkin multi-index of the embedding to
be the collection of the Dynkin indices for each semisimple component.

Definition 3.2. An embedding ϕ : p→ g is called conformal if the following
identities holds:

dϕ dim p

dϕ + h∨(p)
=

dim g

1 + h∨(g)
,

where h∨(s) is the dual Coxeter of a Lie algebra s.

We refer the reader to [KW88] for more details. An salient feature of
conformal embeddings is the equality of Virasoro operators for p and g and
finiteness of branching of level one representations. Conformal subalgebras
of simple Lie algebras has been classified [BB87b, SW86]. Given a conformal

subalgebra p of g with Dynkin index d, let ~λ = (λ1, . . . , λn) (respectively
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~Λ = (Λ1, . . . ,Λn)) be an n-tuple of level d(respectively 1) weights of p (re-
spectively g) such that Hλi(p, d) ↪→ HΛi(g, 1). Taking tensor products, we
get a map

ϕ : H~λ
↪→ H~Λ.

Now let Y be a stable nodal curves with n-distinct marked points. Taking
invariants with respect to p(Y, ~p) on the left and g(Y, ~p) on the right, we get
a map of conformal blocks

ϕ : V~λ(Y, p, d)→ V~Λ(Y, g, 1).

The map ϕ can be defined as a map of locally free sheaves on Mg,n. We
refer the reader to [Muk16a].

The standard embedding of ϕ : so(r) → sl(r) is known to be conformal
and the Dynkin index of the embedding is dϕ = 2. We now recall the
branching rules for the above mentioned embedding.

3.2.1. Branching rules. The level one weights of the Lie algebra are the
following:

P1(sl(r)) = {ω0, ω1, . . . , ωr−1}
We now describe how the module Hωi(sl(r), 1). The following result is due
to [KP81, KW88]:

Proposition 3.3. The module Hωi(sl(r), 1) restricted to ŝo(r) as follows:

(1) If i = 0, then Hω0(sl(r), 1) ' H2ω0(so(r), 2)⊕H2ω1(so(r), 2).
(2) If 1 ≤ i ≤ br/2c − 2, then Hωi(sl(r), 1) ' Hωi(so(r), 2).
(3) If r = 2m+ 1, then

(i) Hωm−1(sl(2m+ 1), 1) ' Hωm−1(so(2m+ 1), 2),
(ii) Hωm(sl(2m+ 1), 1) ' Hω2ωm

(so(2m+ 1), 2).
(4) If r = 2m, then

(i) Hωm−1(sl(2m), 1) ' H(ωm−1+ωm)(so(2m), 2),
(ii) Hωm(sl(2m), 1) ' H2ωm−1(so(2m), 2)⊕Hω2ωm

(so(2m), 2).

3.3. Generalization of Theorem 2.1. Let P+(SO(r)) be the set of dom-
inant integral weights of the group SO(r). Then we define

P`(SO(r)) := {λ ∈ P+(SO(r))|(λ, θ) ≤ `}.
We have the following description of the P2(SO(r)):

• P2(SO(2m+ 1)) = {ω0, ω1, . . . , ωm−1, 2ω1, 2ωm}.
• P2(SO(2m)) = {ω0, ω1, . . . , ωm−2, ωm−1 + ωm, 2ω1, 2ωm−1, 2ωm}.

Let Y be a stable nodal curve with n distinct marked points and consider the

conformal embedding so(r)→ sl(r). Let ~λ = (λ1, . . . , λn) ∈ Pn2 (SO(r)) and

and similarly let ~Λ = (Λ1, . . . ,Λn) ∈ Pn1 (sl(r)) such that for each 1 ≤ i ≤ n,
Hλi(so(r), 2) ↪→ HΛi(sl(r), 1).

Theorem 3.4. With the above notation, we have the following statements
about surjectivity of conformal blocks arising from the branching rules of the
conformal embedding so(r)→ sl(r).
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(1) Assume r = 2m + 1 is odd and each λi ∈ {ω0, . . . , ωm−1, 2ωm} and
~Λ 6= (ω0, . . . , ω0), then the map of conformal blocks is surjective.

V~λ(Y, so(r), 2)� V~Λ(Y, sl(r), 1).

(2) Assume r = 2m + 1 and n = 1 and Λ1 = ω0, then the map of
conformal blocks is surjective

Vω0(Y, so(r), 2)⊕ V2ω1(Y, so(r), 2)� Vω0(Y, sl(r), 1).

(3) Assume r = 2m is even and assume that for each 1 ≤ i ≤ n, we
have λi ∈ {ω0, . . . , ωm−2, ωm−1 + ωm−2}. Additionally assume that

Λi 6= ωm for all 1 ≤ i ≤ n and ~Λ 6= (ω0, . . . , ω0), then the map of
conformal blocks is surjective

V~λ(Y, so(r), 2)� V~Λ(Y, sl(r), 1).

(4) Suppose n = 1, then the map of conformal blocks is surjective:
(i) Vω0(Y, so(r), 2)⊕ V2ω1(Y, so(r), 2)� Vω0(Y, sl(r), 1).
(ii) V2ωm(Y, so(r), 2)⊕ V2ωm−1(Y, so(r), 2)� Vωm(Y, sl(r), 1).

Proof. First we discuss the case r = 2m+ 1 and we assume that none of the
Λi’s are ω0. With the assumption, the branching rules in Proposition 3.3
tell us that HΛi(sl(r), 1) considered as a ŝo(r) module is irreducible. Hence
there is an isomorphism of ⊕ni=1so(r)⊗ C((ti))⊕ Cc-modules

n⊗
i

Hλi(so(2m+ 1), 2) '
n⊗
i=1

HΛi(sl(2m+ 1), 1),

where Λi ∈ {ω1, . . . , ωm}. Since so(2m+ 1)(Y, ~p) ↪→ sl(2m+ 1)(Y, ~p), taking
quotients, we get a surjective map

V~λ(Y, so(r), 2)� V~Λ(Y, sl(r), 1).

Thus we are done in this case.
Now we discuss how to consider the general case. First by propagation of

vacua [TUY89], we get isomorphisms

Ψ1 : V~λ(Y, so(2m+ 1), 2) ' V
ω0,~λ

(Y, so(2m+ 1), 2),

Ψ2 : V~Λ(Y, sl(2m+ 1), 1) ' Vω0,~Λ
(Y, sl(2m+ 1), 1).

Moreover the isomorphism Ψ1 and Ψ2 are functorial with respect to the
branching rule of representations for the embedding so(r) → sl(r). In par-
ticular there is a commutative diagram

V~λ(Y, so(2m+ 1), 2) //

Ψ1

��

V~Λ(Y, sl(2m+ 1), 1)

Ψ2

��
V
ω0,~λ

(Y, so(2m+ 1), 2) // Vω0,~Λ
(Y, sl(2m+ 1), 1).

where the vertical maps are isomorphism and the horizontal maps are ob-
tained by restriction as in the statement of the Theorem 3.4. Now if the top
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horizontal map is surjective it implies that the lower horizontal arrows are
also surjective. Thus we are done in this case.

Now we assume that r = 2m+ 1, n = 1 and Λ1 = ω0. By the branching
rule in Proposition 3.3, we get an isomorphism of ŝo(2m+ 1)-modules

Hω0(sl(2m+ 1), 1) ' Hω0(so(2m+ 1), 2)⊕H2ω1(so(2m+ 1), 2).

As before taking quotient, we get an surjective map

Vω0(Y, so(r), 2)⊕ V2ω1(Y, so(r), 2)� Vω0(Y, sl(r), 1).

The proof in the case r = 2m is similar with the observation that when n = 1

and ~Λ is (ω0) or (ωm), then by Proposition 3.3, there are isomorphisms of
ŝo(2m) module of the form:

Hω0(sl(2m), 1) ' Hω0(so(2m), 2)⊕H2ω1(so(2m), 2).(3.1)

Hωm(sl(2m), 1) ' H2ωm(so(2m), 2)⊕H2ωm−1(so(2m), 2).(3.2)

�

Remark 3.5. In all the above cases in Theorem 3.4 as the underlying curve
Y varies in Mg,n, the map of conformal blocks is projectively flat with respect
to the Hitchin/WZW connection for the Lie algebra so(r) on the source and
that of sl(r) on the target. This is a formal consequence of the fact that the
embedding so(r)→ sl(r) is conformal [Bel09, NT92].

Thus an immediate corollary of Theorem 3.4 similar in spirit to [AF10] is
the following:

Corollary 3.6. The projective monodromy representations of π1(Mg) under
the WZW/Hitchin connection associated the groups SO(r) and SL(r) on the
space V†ω0

(sl(r), 1) are isomorphic. Moreover the vector bundle V†ω0
(sl(r), 1)

restricted to Mg, splits as a non-trivial direct sum of vector bundles W1⊕W2

such that each Wi is preserved by the WZW connection for SO(r).

Remark 3.7. We do not know if the space of SO(r)-theta functions for a
semisimple, not simply connected group gives a vector bundle on Mg. Recent
work of Belkale-Fakhruddin [BF15] show that one can get a coherent sheaf
on Mg. A positive answer to the above question and Corollary 3.6 will imply
that the Verlinde bundle Vω0(sl(r), 1) is not stable on Mg.

3.4. Theorem 3.4 implies Theorem 2.1. Let first recall the following
result from [MW17].

Proposition 3.8. Let Y be a smooth curve of genus g, then the space of
section H0(NY (r),D) is canonically isomorphic to the direct sum of the

space of conformal blocks V†ω0
(Y, so(r), 2)⊕ V

†
2ω1

(Y, so(r), 2)

The proof of the following proposition is standard and follows directly
from uniformization theorems for moduli of G-bundles [BL94, KNR94, LS97,
Fal94] and Proposition 3.8
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Proposition 3.9. Let Y be a smooth projective curve of genus gY . Then
the following diagram is commutative.

ϕ∗ : V†ω0
(Y, sl(r), 1) //

��

V
†
2ω1

(Y, so(r), 2)⊕ V†ω0
(Y, so(r), 2)

��
f̃∗ : H0(MY (SL(r),D)) // H0(NY ,D),

where the vertical arrows are isomorphisms induced from the identification
of conformal blocks with non-abelian theta functions.

Since by Theorem 3.4, the horizontal map ϕ∗ is injective, Proposition 3.9
implies that the map f̃∗ is also injective. Thus Theorem 3.4 implies Theorem
2.1.

4. Abelianization for SO(r) theta functions

The spaces of SL(r)-theta functions at level one is connected to the space
classical theta functions associated to Jacobians [BNR89]. Similarly one can
try to extend the results of [BNR89] to other abelianize theta functions for
other classical groups. In [Oxb99], W. Oxbury formulated a conjecture relat-
ing SO(r) theta functions with theta functions associated to Prym varieties
which was proved by Pauly-Ramanan [PR01]. In this section, we give an
alternate proof of a Oxbury’s conjecture by applying an idea from [Bea06].

Let Y be a smooth curve and η be a non zero element in J2(Y ). Let
Xη → Y be the étale double cover associated to η and consider the norm
map Nm : Pic(Xη) → Pic(Y ). Recall that the cover Xη → Y is étale of
degree 2, the variety Nm(OY ) and Nm(ωY ) has two connected components.

Nm−1(OY ) := P 0
η t P

′
η and Nm−1(ωY ) := P evη t P odη .

Now like the J
gXη−1

Xη
, the variety P evη carries a reduced Riemann theta divisor

Ξevη whose set theoretic support consists of line bundles in P evη with a non
global section.

Let as before denote by SU
σ,+

Xη (r), the moduli stack of σ−symmetric anti-
invariant vector bundles on Xη, where σ : Xη → Xη is the involution asso-
ciated to the double cover πη : Xη → Y .
Let (E, q, ω) be an oriented orthogonal pair in MY (SO(r)). Then by [Zel17c,
Proposition B.0.4], q induces a σ−symmetric isomorphism on the pullback
bundle π∗ηE. Thus π∗η gives a well defined map

π∗η : MY (SO(r))→ SU
σ,+
Xη

(r).(4.1)

Note that the choice of an element of P evη gives an isomorphism of Nm−1(OY ) ∼=
Nm−1(ωY ) that identifies the Prym variety P 0

η with P evη .
Denote by Ξev the canonical Pfaffian divisor in P evη . Let D be the de-

terminant line bundle on MY (SO(r)), and consider Lη the torsion sheaf on
MY (SO(r)) associated to η (see e.g.[BLS98]). Moreover by [Zel17a], for any
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line bundle λ ∈ P evη t P odη , there is an associated Pfaffian line bundle Pλ

over SU
σ,+
X (r), whose square is the determinant of cohomology line bundle.

Proposition 4.1. Let κ be a theta characteristic over Y such that κY =
π∗ηκ is in P evη and P be the associated Pfaffian line bundle. Then we have
q∗ηP ' D⊗ Lη, where qη = π∗η as in Equation (4.1).

Proof. Let U (respectively Ū) be the universal family over SU
σ,+
Xη

(r) × Xη

(resp. MY (SO(r))× Y ). We have the following commutative diagram

MY (SO(r))×Xη
f //

πη

��

SU
σ,+

Xη (r)×Xη

πη

��
MY (SO(r))× Y

g // SUσ,+Xη (r)× Y,

where f and g are the maps given by π∗η ⊗ idXη and π∗η ⊗ idY respectively.
For a family F of vector bundles parametrized by a variety S with a non-
degenerate quadratic form with values in the canonical bundle, we denote
by Pf(F) the Pfaffian line bundle over S which is a square root of the de-
terminant bundle ([LS97]).
Then we have the following isomorphisms:

q∗ηP = q∗ηPf(πη∗(U⊗ pr
∗
2π
∗
ηκ)) (By definition)

= Pf(g∗πη∗(U⊗ pr
∗
2π
∗
ηκ)) (By functoriality)

= Pf(πη∗f
∗(U⊗ pr∗2π∗ηκ))

= Pf(Ū⊗ pr∗2κ⊕ Ū⊗ pr∗2(κ⊗ η))

= Pκ ⊗ Pκ⊗η,

where pr2 is the projection on the second factor and Pκ is the Pfaffian line
bundle over MY (SO(r)). Now by [MW17, Proposition 3.9], we have

Pκ ⊗ Pκ⊗η ' P2
κ ⊗ Lη ' D⊗ Lη.

This implies that q∗ηP ' D⊗ Lη. This completes the proof. �

Let U
σ,+
Xη

(r, ωXη) be the moduli stack of pairs (E,ψ) such that

ψ : σ∗E
∼−→ E∗ ⊗ ωXη and ψ symmetric .

This stack has two connected components ([Zel16]). The identity component
(i.e. the component that contains the bundle κ⊕r with its trivial isomor-
phism ψ, where κ is a σ−invariant even theta characteristic) of this space is

denoted U
σ,+
Xη ,0

(r, ωXη). Following [Zel17a], we get a natural reduced divisor

Ξ̃ on U
σ,+
Xη ,0

(r, ωXη) supported on the set

{E ∈ U
σ,+
Xη ,0

(s, ωXη) | dimH0(X,E) > 0}.
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Now taking the multiplication map m with respect to elements in Nm−1(ωY ),
we consider the following:

4.1. The case r = 2m+ 1.

P evη × SU
σ,+

Xη (2m+ 1)
m //

��

U
σ,+
Xη ,0

(2m+ 1, ωXη)

P evη ×MY (SO(2m+ 1)) // U
σ,+

Xη ,0
(2m+ 1, ωXη)

When r is odd, the pull back m∗Ξ̃ gives a divisor in P evη × SU
σ,+

Xη (2m + 1)

which by [Oxb99] restricts to a divisor in P evη ×MY (SO(2m+1)). Now since
the stack MY (SO(2m + 1)) is smooth and algebraic, the divisor associated

to the restriction of m∗Ξ̃ is a Cartier divisor [GS15] (this fails to hold if we
work with the moduli space MY (SO(2m+ 1))).

Thus we have a section of H0(P evη ×MY (SO(2m+ 1)), (2m+ 1)Ξev�D⊗
Lη). Now by the Künneth formula, we get the following map:

(4.2) ιη : H0(P evη , (2m+ 1)Ξev)∨ −→ H0(MY (SO(2m+ 1)),D⊗ Lη).

4.2. The case r = 2m.

P evη t P odη × SU
σ,+

Xη (2m)
m // Uσ,+Xη ,0(2m,ωXη)

P evη t P odη ×MY (SO(2m)) //

(id,qη)

OO

U
σ,+

Xη ,0
(2m,ωXη)

.

In this case, the pull back m∗Ξ̃ gives a divisor of P evη t P odη × SU
σ,+

Xη (r)

which restricts to a section [Oxb99] in P evη t P odη ×MY (SO(2m)). Thus we
get the following map ιη ⊕ ι′η:
(4.3)

(H0(P evη , (2m)Ξev)⊕H0(P evη , (2m)Ξodα ))∨ → H0(MY (SO(2m)),D⊗ Lη).

With the above notation, we have the following proposition:

Proposition 4.2. The map ιη is injective. If r is even, then the map ιη⊕ι′η
is also injective.

Proof. We will show that the dual of the above maps are surjective. We
first observe the following: Let s ∈ H0(M1 × M2,L1 � L2), where M1

and M2 are appropriate spaces and L1 and L2 are line bundles on them.
Then to check that the map H0(M1,L1)∨ → H0(M2,L2) induced by s is
surjective, it is enough to produce points x1, . . . , xm of M1 such that the
sections s(x1, ), . . . , s(xm, ) spans the space H0(M2,L2). Here the role M1

will be played by MY (SO(r)) and M2 will be played by Prym varieties.
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First consider the case for ιη and r is arbitrary. Choose elements α1, . . . , αr
in P 0

η [2] such that
⊗r

i=1 αi = OXη . Let αi = π∗ηλi and consider the orthogo-
nal bundle E = λ1⊕· · ·⊕λr on Y . The Pfaffian ΞE divisor on P evη associated
to π∗ηE is equal to Ξevα1

+ · · ·+ Ξevαr , where Ξevαi := T ∗αi(Ξ
ev). Now Lemma 4.3

below (due to Beauville [Bea06]) implies that sections of this form spans
H0(P evη , rΞ).

If r is even, the argument for ι′η is similar by considering β1, . . . , βr in
P ′η[2] such that β1 ⊗ · · · ⊗ βr = OXη and applying the same argument as
above. Moreover the Pfaffian sections constructed via β’s in P ′η[2] (resp. α’s

in P 0
η [2] ) are only supported on P odη (resp. P evη ). Hence ιη⊕ι′η are surjective

when r is even. �

For completeness, we recall the following lemma from [Bea06]:

Lemma 4.3. Let A be an abelian variety with an ample line bundle L. Then
the natural multiplication map is surjective⊕

α1,...,αr∈Â[2]

α1+···+αr=0

H0(A,L⊗ α1)⊗ · · · ⊗H0(A,L⊗ αr)→ H0(A,Lr),

where “A[2] denote the 2-torsion points in the Picard group of A.

As an application of Proposition 4.2 and Theorem 1.1, we get a direct
proof of a theorem of Pauly-Ramanan [PR01].

Theorem 4.4. Let NY (r) be as in Equation (2.1). Then there are natural
isomorphisms

ι :
⊕

η∈J2(Y )

H0(P evη , (2m+ 1)Ξev)∨ ' H0(NY ((2m+ 1)),D)

ι′ :
⊕

η∈J2(Y )

H0(P evη , (2m)Ξev)∨ ⊕H0(P odη , (2m)Ξodα )∨ ' H0(NY ((2m)),D),

where D is the determinant of cohomology line bundle and ι (resp. ι̃) is the
direct sum of maps ιη (resp. ιη ⊕ ι′η) as given in Equations (4.2) and (4.3).
In particular, one deduces that each ιη is an isomorphism.

Proof. We treat just the odd case. Then the argument in the even case is
similar. Now Proposition 4.2 tells us that for η 6= 0, the map

ιη : H0(P evη , (2m+ 1)Ξev)∨ → H0(MY (SO(2m+ 1)),D⊗ Lη)

is injective. Now suppose η = 0, then P ev0 is just Jg−1
Y and Ξev is just

the classical Θ divisor. Then by [Bea06], we get ι0 : H0(Jg−1, rΘ)∨ '
H0(MX(SO(r)),D). Combining these, we deduce that the map ι = ⊕η∈J2(Y )ιη
is injective. Now we will be done if we can show that the target and source
have the same dimension. This follows by applying the Verlinde formula for
Spin(2m+ 1) and the fact that

H0(NY ((r),D)) '
⊕

η∈J2(Y )

H0(MY (SO(r)),D⊗ Lη).
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�

Corollary 4.5. Let η 6= 0 in J2(Y ) and πη : Xη → Y be the corresponding
étale double cover. Then the pullback qη = π∗η induces an isomorphism
between the spaces of global sections:

H0(MY (SO(2m+ 1)),D⊗ Lη) ' H0(SUσ,+Xη (2m+ 1),P),

H0(MY (SO(2m)),D⊗ Lη)←↩ H0(SUσ,+Xη (2m),P).

Proof. First we consider the case SO(2m + 1). Recall that we have a com-
mutative diagram.

H0(SU
σ,+

Xη (2m+ 1),P)

q∗η
��

H0(P evη , (2m+ 1)Ξev)∨
ιη=ρ∗//

ν∗
44

H0(MY (SO(2m+ 1)),D⊗ Lη).

By Theorem 4.4, we know that the map ιη is an isomorphism. Similarly
by [Zel17a], the map ν∗ is an isomorphism. Now the commutativity of
the above diagram implies that q∗η is an isomorphism between the untwisted

theta functions H0(MY (SO(2m+1)),D⊗Lη) and the space of twisted theta

functions H0(SUσ,+Xη (2m+ 1),P).

For even rank, we have a similar commutative diagram and hence the
argument follows as in the odd rank case. The vertical map ν∗ is an isomor-
phism and the map ιη is injective.

H0(SU
σ,+

Xη (2m),P)
q∗η// H0(MY (SO(2m)),D⊗ Lη)

H0(P evη , (2m)Ξev)∨

ν∗

OO

' �

ιη=ρ∗
44

�
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2017AZUR4063. tel- 01679267), 2017.

Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: swarnavaster@gmail.com

Endenicher Allee 60, D-53115 Bonn.
E-mail address: zelaci@math.uni-bonn.de


	39_Mukhopadhyay_cover

