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Abstract
We construct an infinite-dimensional solution of the Yang-Baxter equation (YBE) of rank

1 which is represented as an integral operator with an elliptic hypergeometric kernel acting in
the space of functions of two complex variables. This R-operator intertwines the product of
two standard L-operators associated with the Sklyanin algebra, an elliptic deformation of s`(2)-
algebra. It is built from three basic operators S1, S2, and S3 generating the permutation group of
four parameters S4. Validity of the key Coxeter relations (including the star-triangle relation)
is based on the elliptic beta integral evaluation formula and the Bailey lemma associated with
an elliptic Fourier transformation. The operators Sj are determined uniquely with the help of
the elliptic modular double.
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1 Introduction

The Yang-Baxter equation (YBE)

R12(u− v) R13(u) R23(v) = R23(v) R13(u) R12(u− v) (1.1)

plays a key role in the theory of completely integrable quantum systems [1–7]. Its general
solution is described by the operators Rik(u) acting in the tensor product of three (in general
different) spaces V1 ⊗ V2 ⊗ V3. The indices i and k show that Rik(u) acts nontrivially in the
tensor product Vi ⊗ Vk and it is the unity operator in the remaining part of V1 ⊗ V2 ⊗ V3.
The operator Rik(u) depend on the complex spectral parameter u and is called the R-matrix
(or R-operator).

For spaces Vi of finite dimension there are three increasing levels of complexity of known
YBE solutions described by rational, trigonometric, and elliptic functions. Investigation of the
most complicated elliptic level was initiated by Baxter [8] for the case when all Vi-spaces are two-
dimensional. In a more general setting, when one of the spaces becomes infinite-dimensional, a
major role is played by the Sklyanin algebra [9,10]. Our main goal consists in the construction
of a solution of the Yang-Baxter equation when all spaces Vi are infinite-dimensional and Rik(u)
are described by integral operators. In this case the hierarchy of solutions of YBE is attached to
the plain hypergeometric, q-hypergeometric, and elliptic hypergeometric functions [11], in the
increasing order of complexity. An explicit realization of the R-matrix as an integral operator
in the simplest situation of rank 1 symmetry algebra s`(2) has been considered in detail in [12].
In the present work we discuss only rank 1 R-operators related to the most complicated elliptic
level.

Elliptic hypergeometric integrals were introduced in [13, 14]. They define the general form
of elliptic hypergeometric functions which cannot be approached by infinite series [15] be-
cause of the convergence problems. The discovery of such functions and various relations for
them formed a breakthrough in the theory of special functions. These functions generalize
all previously constructed functions of hypergeometric type and they still obey the properties
characteristic to classical special functions [16]. In particular, elliptic beta integrals [11,13] form
a new class of exactly computable integrals generalizing the Euler, Selberg and other known
beta integrals and their q-analogues. A kind of elliptic Fourier transform was introduced in [17]
as an integral generalization of the well known Bailey chain transformation [16]. An elliptic
extension of Faddeev’s modular double [18] was introduced in [19]. All these constructions will
play a major role in our consideration below.

We use the general strategy of building integral operator solutions of YBE whose initial
steps were discovered in [20]. Its formulation was completed at the rational level in [21, 22],
where an SL(N,C)-invariant solution of YBE related to An-root system has been constructed.
In [23] this method was used also at the elliptic level employing some formal infinite series. Here
we apply it for constructing solutions of YBE related to elliptic hypergeometric integrals. First
we define some useful formal operators S1 , S2, and S3 performing elementary permutations of
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parameters in the defining RLL-relation. One of these operators is an intertwining operator of
the Sklyanin algebra. Then we build these operators explicitly as integral operators with elliptic
hypergeometric kernels. Finally we prove the Coxeter relations for these operators, for which
the elliptic beta integral and the related integral Bailey lemma play a crucial role, and confirm
that they indeed generate the group S4. The cubic Coxeter relation represents the star-triangle
relation. The operators S1 , S2, and S3 are determined essentially uniquely, if one implements
the elliptic modular doubling principle. As discussed in the concluding section, our results have
applications to an interplay between integrable 2d spin systems and 4d supersymmetric gauge
field theories.

2 Sklyanin algebra

In the simplest case of equation (1.1) all Vi-spaces are two-dimensional, Vi = C2. For this case,
in solving the eight-vertex model Baxter has found the following R-matrix [1, 2, 8]

R12(u) =
3∑

a=0

wa(u)σa ⊗ σa ; wa(u) =
θa+1(u+ η)

θa+1(η)
, (2.1)

where σ0 = 1l and σα, α = 1, 2, 3, are the standard Pauli matrices. We use the shorthand nota-
tion θj(x) ≡ θj(x|τ) for the Jacobi theta-functions with modular parameter τ . The definitions
and useful formulae for θj-functions are listed in the Appendix. This R-matrix depends on the
spectral parameter u ∈ C and two additional free variables η ∈ C, θj(η) 6= 0, j = 1, . . . , 4, and
τ ∈ C, Im(τ) > 0. Another 4× 4 matrix solution of YBE has been found by Felderhof [24]. As
shown by Krichever [25], the Baxter and Felderhof R-matrices represent all solutions of YBE
for Vi = C2.

At the next level of complexity of relation (1.1) one of the spaces, say V3, is arbitrary, and
V1,V2 = C2. In this case the R-matrix R13(u) ≡ L13(u) (and R23(u) ≡ L23(u)) is known as the
quantum L-operator or the Lax matrix. It is a matrix with two rows and two columns acting
in V1

L13(u) = L(u) :=
3∑

a=0

wa(u)σa ⊗ Sa =

(
w0(u)S

0 + w3(u)S
3 w1(u)S

1 − iw2(u)S
2

w1(u)S
1 + iw2(u)S

2 w0(u)S
0 − w3(u)S

3

)
, (2.2)

where the matrix element entries Sa are some operators acting in V3. The same Sa-operators
enter L23(u) which acts as a 2× 2 matrix in V2. In this case the equation for L-operator is the
Yang-Baxter equation of the form

R12(u− v) L13(u) L23(v) = L23(v) L13(u) R12(u− v) , (2.3)

where R12(u) is Baxter’s R-matrix (2.1). This equation is equivalent to the following set of
relations for four operators S0,S1,S2,S3 forming the Sklyanin algebra [9, 10]:

Sα Sβ − Sβ Sα = i ·
(
S0 Sγ + Sγ S0

)
,

S0 Sα − Sα S0 = iJβγ ·
(
Sβ Sγ + Sγ Sβ

)
,

3



where the triplet (α, β, γ) is an arbitrary cyclic permutation of (1, 2, 3) and the structure con-
stants Jβγ are parameterized in terms of theta functions as

J12 =
θ2
1(η)θ

2
4(η)

θ2
2(η)θ

2
3(η)

; J23 =
θ2
1(η)θ

2
2(η)

θ2
3(η)θ

2
4(η)

; J31 = −θ
2
1(η)θ

2
3(η)

θ2
2(η)θ

2
4(η)

. (2.4)

One can write Jαβ =
Jβ−Jα

Jγ
, γ 6= α, β, where

J1 =
θ2(2η)θ2(0)

θ2
2(η)

; J2 =
θ3(2η)θ3(0)

θ2
3(η)

; J3 =
θ4(2η)θ4(0)

θ2
4(η)

.

There are two Casimir operators commuting with all generators: [K0,S
a] = [K2,S

a] = 0,

K0 =
3∑

a=0

Sa Sa ; K2 =
3∑

α=1

Jα Sα Sα .

We shall use the explicit realization of generators as difference operators found in [10]

[Sa Φ] (z) =
(i)δa,2θa+1(η)

θ1(2z)

[
θa+1 (2z − 2η`) · Φ(z + η)− θa+1 (−2z − 2η`) · Φ(z − η)

]
, (2.5)

where Φ(z) are some (supposedly meromorphic) functions of z ∈ C. In this realization the
Casimir operators reduce to the following scalar expressions

K0 = 4 θ2
1

(
(2`+ 1) η

)
; K2 = 4 θ1

(
2(`+ 1) η

)
θ1(2` η) .

The variable ` ∈ C is called the spin. It labels the Sklyanin algebra representations since it
fixes (together with η and τ) the Casimir operator values. Note that R-matrix (2.1) is invariant
under the change of variables u → −u, η → −η. However, for operators (2.5) the reflection
η → −η changes their sign, Sa → −Sa. Therefore, the L-operator changes the sign if one
negates simultaneously the spectral parameter u and η.

For Sa-operators (2.5) there exists a useful factorized representation for the L-operator

L(u1, u2) =
1

θ1(2z)

(
θ̄3 (z − u1) −θ̄3 (z + u1)
−θ̄4 (z − u1) θ̄4 (z + u1)

)(
eη∂z 0
0 e−η∂z

)(
θ̄4 (z + u2) θ̄3 (z + u2)
θ̄4 (z − u2) θ̄3 (z − u2)

)
,

where eη∂z is a shift operator, eη∂zf(z) = f(z + η). New parameters u1 = u
2

+ η(` + 1
2
) and

u2 = u
2
− η(` + 1

2
) are simple linear combinations of the spectral parameter u and the spin `.

Here we use notation θ̄a(x) ≡ θa(x| τ2 ) for theta-functions with the modular parameter τ
2
.

When 2`+ 1 is a positive integer there exists (2`+ 1)-dimensional space Θ+
4` of even theta-

functions of order 4` (having 4` zeros in the fundamental parallelogram of periods) which is
invariant under the action of generators Sa. For ` = 1/2 one can choose the basis of Θ+

2 -
functions as e1 = θ̄4(x) and e2 = θ̄3(x). Then the Sklyanin algebra generators reduce in this
basis to sigma-matrices Sa = θ1(2η|τ)σa and the L-operator becomes proportional to the Baxter
R-matrix (2.1).

The L-operator (2.2) is not unique. For instance, the operator σβ L, where σβ is any Pauli
matrix, is also a solution of equation (2.3). This follows from the fact that the matrix Xβ :=
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σβ ⊗ σβ obeys the properties X2
β = 1 and XβR12(u)Xβ = R12(u). This freedom leads also to

the existence of nontrivial automorphisms of the Sklyanin algebra [10].
The top level of complexity of the R-matrix corresponds to the situation when all spaces

Vi are infinite-dimensional. In this case one deals with the most general solutions of the Yang-
Baxter equation.

In the next section we explain step-by-step our strategy for building this solution, which is
essentially the same as in [23] where the important role is played by an intertwining operator.
For 2` ∈ Z≥0 such an intertwining operator was constructed first by Zabrodin [26] as a finite
sum of the powers of the finite-difference operator e−η∂z . Its straightforward extension to
arbitrary values of ` as an infinite series proposed in [27] has only a formal meaning due to
the convergency problem. Nevertheless, the needed Coxeter relations were verified in [23] by
checking the equality of coefficients in two such formal infinite series with the help of the
Frenkel-Turaev summation formula [15].

Here we put the construction on a firm mathematical ground by using a different general
ansatz for the intertwining operator which is more useful for practical applications. The key
ingredients needed for the completion of this program is the elliptic beta integral [11, 13],
the most general known exact integration formula generalizing the Euler beta integral, and
the elliptic Fourier transformation of [17] which is defined precisely with the help of needed
intertwining operator.

3 General construction

We solve YBE (1.1) when all spaces Vi are infinite-dimensional in two steps:

• on the first stage, we solve a defining RLL-relation using as elementary building blocks
some simple operators S1, S2, and S3. The key structural entries at this step are Coxeter
relations for Si validity of which is guaranteed by the elliptic beta integral evaluation
formula [13];

• on the second stage, we prove that the operator R12(u) found from the defining RLL-
relation obeys YBE (1.1).

Consider a realization of YBE different from the previous ones, namely, when the spaces V1

and V2 are arbitrary and the space V3 is two-dimensional. Then equation (1.1) is reduced to the
defining equation for an infinite-dimensional (unknown) R-matrix called RLL-relation [9, 28]:

R12(u− v) L1(u) L2(v) = L2(v) L1(u) R12(u− v) . (3.6)

Here we use compact notation: the index k in Lk indicates that the Sklyanin algebra generators
Sa

k entering this matrix are the operators acting in the space Vk, i.e. Sa
k : Vk → Vk. The

operators Sa
1 and Sb

2 act in different spaces and, evidently, commute,
[
Sa

1,S
b
2

]
= 0. Matrices Lk

in equation (3.6) are multiplied as usual 2× 2 matrices acting in the space V3 = C2.
Due to the non-uniqueness of representation of the L-operator, there are several possible

forms of equation (3.6) with different R-operators labeled by two indices a and b enumerating
possible L-operators

Rab
12(u− v)σa L1(u)σb L2(v) = σb L2(v)σa L1(u) Rab

12(u− v) .
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For a technical reason, which will be clear a posteriori, we fix a = b = 3 from the very beginning
and denote Rjk(u) := R33

jk(u). In this case it is possible to cancel one σ3 and our main defining
RLL-relation takes the form

R12(u− v) L1(u)σ3 L2(v) = L2(v)σ3 L1(u) R12(u− v) . (3.7)

We assume that V1 is the space of functions of a complex variable z1 and V2 is the space of
functions of a complex variable z2. Respectively, the space V1⊗V2, where R12 is acting, is the
space of functions Φ(z1, z2) of two independent variables z1 and z2.

It is convenient to extract from the R-matrix the permutation operator R12(u) := P12 R12(u),
where the permutation operator interchanges arguments, P12 Φ(z1, z2) = Φ(z2, z1). Then the
defining equation for the operator R12 has the following explicit form

R12(u− v) L1(u1, u2)σ3 L2(v1, v2) = L1(v1, v2)σ3 L2(u1, u2) R12(u− v) , (3.8)

where the operators z, ∂z and ` in the Sklyanin algebra generators (2.5) entering L1 are replaced
by z1, ∂z1 and `1, whereas in L2 they are replaced by z2, ∂z2 and `2. We use also the following
notation for combinations of the spectral parameters and spin variables

u1 =
u

2
+ η

(
`1 +

1

2

)
, u2 =

u

2
− η

(
`1 +

1

2

)
,

v1 =
v

2
+ η

(
`2 +

1

2

)
, v2 =

v

2
− η

(
`2 +

1

2

)
. (3.9)

For a subsequent use it is convenient to assume that these parameters do not depend on η and
τ (i.e., to assume that the spectral parameters u, v and the variables g1,2 := η(2`1,2 + 1) are
independent on η and τ).

Equation (3.8) admits a natural interpretation: the operator R12 interchanges the set of
parameters (u1, u2) from the first L-operator with the set of parameters (v1, v2) in the second
L-operator. It is useful to combine these four parameters in one set in the natural order
u ≡ (u1, u2, v1, v2). Then the operator

R12(u− v) ≡ R12(u) ≡ R12(u1, u2|v1, v2)

corresponds to a particular permutation s in the group of permutations of four parameters S4:

s→ R12(u) ; su ≡ s(u1, u2, v1, v2) = (v1, v2, u1, u2).

Any permutation from the group S4 can be composed from the elementary transpositions s1,
s2, and s3:

s1u = (u2, u1, v1, v2) , s2u = (u1, v1, u2, v2) , s3u = (u1, u2, v2, v1),

which interchange only two nearest neighboring elements in the set (u1, u2, v1, v2). For example,
the permutation s has the following decomposition s = s2s1s3s2. It is natural to search for the
operators Si(u1, u2, v1, v2) ≡ Si(u) representing these elementary transpositions in L-operators

(

S1︷ ︸︸ ︷
u1 , u2,

S3︷ ︸︸ ︷
v1 , v2) ; (u1 ,

S2︷ ︸︸ ︷
u2, v1, v2).
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Namely, we demand that Si obey the following defining relations

S1(u) L1(u1, u2) = L1(u2, u1) S1(u) ; S3(u) L2(v1, v2) = L2(v2, v1) S3(u), (3.10)

S2(u) L1(u1, u2)σ3 L2(v1, v2) = L1(u1, v1)σ3 L2(u2, v2) S2(u) . (3.11)

Since R12-matrix acts in the space V1 ⊗ V2, operators Si should be scalars with respect to
V3 = C2. Moreover, it is natural to demand that S1 commutes with L2 and S3 commutes with
L1:

S1(u)L2(v1, v2) = L2(v1, v2)S1(u), S3(u)L1(u1, u2) = L1(u1, u2)S3(u). (3.12)

Our first step consists in the direct construction of these operators (see the next section).
Having these operators we can build the R-matrix.

Theorem 1. Suppose that formal scalar operators Si satisfy relations (3.10)–(3.12). Then the
composite operator R12(u),

R12(u) = S2(s1s3s2u) S1(s3s2u) S3(s2u) S2(u), (3.13)

satisfies equation (3.8).

Proof. The proof reduces to a direct check, which is quite simple. Namely, using equation
(3.11) we have

R12(u) L1(u1, u2)σ3 L2(v1, v2) = S2(s1s3s2u) S1(s3s2u) S3(s2u) L1(u1, v1)σ3 L2(u2, v2)S2(u).

Using the commutativity of S3(s2u) with σ3 and L1(u1, v1) (3.12) and the second equation in
(3.10), we can rewrite this expression as

S2(s1s3s2u) S1(s3s2u) L1(u1, v1)σ3 L2(v2, u2)S3(s2u) S2(u).

Now we apply the first equation in (3.10) and commutativity of S1(s3s2u) with σ3 and L2(v2, u2)
(3.12) and obtain the expression

S2(s1s3s2u) L1(v1, u1)σ3 L2(v2, u2)S1(s3s2u) S3(s2u) S2(u).

Finally, applying equation (3.11) with (u1, u2, v1, v2) replaced by (v1, u1, v2, u2) we obtain the
right-hand side of equation (3.8).

Expression (3.13) for the R-matrix corresponds to a special decomposition of the permu-
tation s: s = s2s1s3s2. We will see that operators Si depend on their parameters in a special
way

S1(u) = S1(u1 − u2) ; S2(u) = S2(u2 − v1) ; S3(u) = S3(v1 − v2), (3.14)

so that the operator R12(u) depends on the difference of spectral parameters u− v as it should,

R12(u1, u2|v1, v2) = S2(u1 − v2) S1(u1 − v1) S3(u2 − v2) S2(u2 − v1) . (3.15)

We have thus the following correspondence between permutations si and our operators Si:

si −→ Si(u) ; sisj −→ Si(sju) Sj(u). (3.16)
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In order to prove that we have a representation of the permutation group S4 it remains to
prove the defining Coxeter relations for the generators

s2
i = 1l −→ Si(siu) Si(u) = 1l ; s1s3 = s3s1 −→ S1(s3u) S3(u) = S3(s1u) S1(u) ,(3.17)

s1s2s1 = s2s1s2 −→ S1(s2s1u) S2(s1u) S1(u) = S2(s1s2u) S1(s2u) S2(u) , (3.18)

s2s3s2 = s3s2s3 −→ S2(s3s2u) S3(s2u) S2(u) = S3(s2s3u) S2(s3u) S3(u) . (3.19)

One can try to work with the equivalent power form of these relations connected to reflection
groups

(sisj)
mij = 1, mii = 1, mij = 2, |i− j| > 1, mi,i±1 = 3,

but it is much less efficient. The explicit form of the operators Si will be determined in the
next section. The proof of relations (3.17)-(3.19) will be given in Sect. 5.

Consider now the space V1⊗V2⊗V3⊗C2, where V3 is a new infinite-dimensional space of
functions depending on z3 ∈ C. Introduce the third L-matrix L3(w1, w2), w1,2 = w

2
± η(`3 + 1

2
),

where w is a new spectral parameter and `3 is a new spin variable in the Sklyanin algebra
generators (2.5) with z, ∂z replaced by z3, ∂z3 .

It is natural to form the set u = (u1, u2, v1, v2, w1, w2) and consider the group of permutations
of six parameters S6. In addition to the previous case we have two more elementary permutation
generators s4u = (u1, u2, v1, w1, v2, w2) and s5u = (u1, u2, v1, v2, w2, w1). We define operators S4

and S5 such that the triple {S3, S4, S5} has the same properties as the triple {S1, S2, S3} after
the replacement of parameters (u1, u2, v1, v2) by (v1, v2, w1, w2). More precisely, we demand
that

S5(u) L3(w1, w2) = L3(w2, w1) S5(u) ,

S4(u) L2(v1, v2)σ3 L3(w1, w2) = L2(v1, w1)σ3 L3(v2, w2) S4(u) , (3.20)

and that S5 commutes with S1,2,3 and S4 commutes with S1,2.
Introduce the composite operator similar to R12(u),

R23(u) ≡ R23(v1, v2|w1, w2) = S4(s3s5s4u) S3(s5s4u) S5(s4u) S4(u) (3.21)

= S4(v1 − w2) S3(v1 − w1) S5(v2 − w2) S4(v2 − w1).

To define the R-matrix R13 we consider the action of permutation operators Pjk on Si(u).
Conjugating relations (3.10) by P12, one can see that P12S3P12 should be identified with S1

having the same argument. Namely,

P12S1(u1 − u2) = S3(u1 − u2)P12, P12S3(v1 − v2) = S1(v1 − v2)P12.

Conjugating similarly (3.11), one cannot directly deduce properties of S2. As we will see from
the explicit form of this operator derived later, P12S2(u) = S2(u)P12. Relations P12S4,5(u) =
S4,5(u)P12 are evident. Analogous considerations yield nontrivial commutation relations

P13S2(u2 − v1) = S4(u2 − v1)P13, P23S5(w1 − w2) = S3(w1 − w2)P23,

etc. However, the operator P12S4P12 = P23S2P23 cannot be expressed in terms of Si(u)-
operators. Now we define

R13(u) ≡ R13(u1, u2|w1, w2) = P12R23(u1, u2|w1, w2)P12

= P12S4(u1 − w2) S3(u1 − w1) S5(u2 − w2) S4(u2 − w1)P12

= P12S4(u1 − w2)P12 S1(u1 − w1) S5(u2 − w2) P12S4(u2 − w1)P12. (3.22)
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Analogously,

R13(u) = P23R12(u1, u2|w1, w2)P23 = P23S2(u1−w2)P23 S1(u1−w1) S5(u2−w2) P23S2(u2−w1)P23.

We thus see that the operator R13(u) cannot be factorized purely in terms of the operators Si.

Theorem 2. Suppose we have a set of well-defined operators Si(u), i = 1, . . . , 5, satisfying
intertwining relations (3.10)-(3.12), (3.20) and the B6-braid group generating relations

SjSk = SkSj, |j − k| > 1, SjSj+1Sj = Sj+1SjSj+1. (3.23)

Then the R-matrices

R12(u− v) = P12R12(u), R23(v − w) = P23R23(u), R13(u− w) = P13R13(u),

where operators Rij(u) are fixed in (3.13), (3.21), and (3.22), satisfy the Yang-Baxter equation

R12(u− v) R13(u− w) R23(v − w) = R23(v − w) R13(u− w) R12(u− v). (3.24)

Proof. Consider the following permutation of parameters in the product of three L-operators:

L1(u1, u2)σ3 L2(v1, v2)σ3 L3(w1, w2) → L1(w1, w2)σ3 L2(v1, v2)σ3 L3(u1, u2).

It can be realized in two different ways as shown on the figure below

L1(u1, u2)σ3L2(v1, v2)σ3L3(w1, w2)

6

R12(u1, u2|v1, v2)

L1(v1, v2)σ3L2(u1, u2)σ3L3(w1, w2) -
R23(u1, u2|w1, w2)

L1(v1, v2)σ3L2(w1, w2)σ3L3(u1, u2)

?

R12(v1, v2|w1, w2)

L1(w1, w2)σ3L2(v1, v2)σ3L3(u1, u2)

?

R23(v1, v2|w1, w2)

L1(u1, u2)σ3L2(w1, w2)σ3L3(v1, v2) -

R12(u1, u2|w1, w2)
L1(w1, w2)σ3L2(u1, u2)σ3L3(v1, v2)

6

R23(u1, u2|v1, v2)

The condition of commutativity of this diagram indicates that

R23(u1, u2|v1, v2) R12(u1, u2|w1, w2) R23(v1, v2|w1, w2)

= R12(v1, v2|w1, w2) R23(u1, u2|w1, w2) R12(u1, u2|v1, v2). (3.25)

Let us prove this equality using the braid group generating relations (3.23) for operators Sj.
We start from the identity

S2S3S1S2 · S4S3S5S4 · S2S1S3S2 = S2S3S4S1 · S3S2S3 · S1S5S4S3S2.
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The left-hand side is equal to the product of R-matrices in the left-hand side of (3.25) under
the taken convention SjSk := Sj(sku)Sk(u). The right-hand side is obtained by permuting S1S2

with neighboring S4, S5S4 with neighboring S2S1, and application of the cubic relation from
(3.23) to the emerging product S2S3S2. Now we replace S1 · S3 by S3S1, permute S1S5 with
neighboring S3, apply the cubic relation to the emerging product S1S2S1 and obtain the left
hand side of the relation

S2S3S4S3 · S2S1S2 · S5S3S4S3S2 = S4S2S3S2 · S4S1S5S4 · S2S3S2S4.

The right-hand side is obtained after applying the cubic relation to two products S3S4S3 and
permuting three operators S2 with neighboring S4’s and one S2 with neighboring S5S4. Now we
permute neighboring S4 and S1 and apply cubic relations to the products S2S3S2 (twice) and
S4S5S4. This yields the left-hand side of the relation

S4S3S2S3 · S1S5S4S5 · S3S2S3S4 = S4S3S5S4 · S2S1S3S2 · S4S3S5S4.

The right-hand side expression is obtained after pulling S5-operators to the left and right from
S4, permuting neighboring S3 and S1, applying the cubic relation to the emerging product
S3S4S3, and, finally, pulling S4-operators to the left and right from S3. And, evidently, it
coincides with the right-hand side expression of equality (3.25).

Let us multiply the left-hand side expression in (3.25) by the operator P12P13P23 and the
right-hand side expression by the equal operator P23P13P12. Pulling permutation operators Pjk

to appropriate R-matrices using relations

P13P23R23(u1, u2|v1, v2)P23P13 = P13S4(u1 − v2) S5(u1 − v1) S3(u2 − v2) S4(u2 − v1)P13

= S2(u1 − v2) S1(u1 − v1) S3(u2 − v2) S2(u2 − v1) = R12(u)

and

P13P12R12(v1, v2|w1, w2)P12P13 = P13S2(v1 − w2) S3(v1 − w1) S1(v2 − w2) S2(v2 − w1) P13

= S4(v1 − w2) S3(v1 − w1) S5(v2 − w2) S4(v2 − w1) = R23(u),

one comes to the desired equation (3.24).

From this consideration we conclude that the Yang-Baxter relation (3.25) is nothing else
than a word identity in the group algebra of the braid group B6. Equation (3.24) is more
complicated since it involves the external operators Pjk. Note that the described proof does
not require the condition S2

j = 1l reducing B6 to the permutation group S6. The operators
Sj which we construct below do satisfy relations S2

j = 1l after the analytical continuation in
parameters and, so, they generate the S6-group.

4 Elementary transpositions and intertwining operators

We shall use the factorized form of the L-operator which allows one to simplify considerably
all calculations

L(u1, u2) =
1

θ1(2z)
·M(z − u1; z + u1) ·

(
eη∂ 0
0 e−η∂

)
· N(z − u2; z + u2), (4.1)
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where

M(a; b) =

(
θ̄3 (a) −θ̄3 (b)
−θ̄4 (a) θ̄4 (b)

)
; N(a; b) =

(
θ̄4 (b) θ̄3 (b)
θ̄4 (a) θ̄3 (a)

)
. (4.2)

To prove this factorization of the L-operator one has to multiply explicitly all three matrices
involved in it and use the addition formula

θ1(x+ y)θ1(x− y) + θ4(x+ y)θ4(x− y) = θ̄4(x)θ̄3(y)

and its variations which are listed in the Appendix. The product of matrices N and M has the
form

N(a1; b1) ·M(a2; b2) = 2 ·
(
θ1 (b1 − a2) θ1 (b1 + a2) −θ1 (b1 − b2) θ1 (b1 + b2)
θ1 (a1 − a2) θ1 (a1 + a2) −θ1 (a1 − b2) θ1 (a1 + b2)

)
, (4.3)

in particular,

N(a; b) ·M(a; b) = −2 · θ1 (a− b) θ1 (b+ a)

(
1 0
0 1

)
. (4.4)

To avoid lengthy formulae we use compact notation N(a ∓ b) ≡ N(a − b; a + b), M(a ∓ b) ≡
M(a− b; a+ b) and θj(a, b) = θj(a)θj(b), θj(a∓ b) = θj (a− b) θj (a+ b) , so that

L(u1, u2) =
1

θ1(2z)
·M(z ∓ u1) ·

(
eη∂ 0
0 e−η∂

)
· N(z ∓ u2).

Consider first the defining relation for operator S2 (3.11),

S2 M(z1 ∓ u1)

(
eη∂1 0
0 e−η∂1

)
N(z1 ∓ u2)σ3 M(z2 ∓ v1)

(
eη∂2 0
0 e−η∂2

)
N(z2 ∓ v2) =

= M(z1 ∓ u1)

(
eη∂1 0
0 e−η∂1

)
N(z1 ∓ v1)σ3 M(z2 ∓ u2)

(
eη∂2 0
0 e−η∂2

)
N(z2 ∓ v2) S2.

We underlined the matrices which can be canceled under the commutativity condition [S2, z1] =
[S2, z2] = 0. This observation suggests that S2 is just a multiplication operator:

[S2Φ] (z1, z2) = S(z1, z2) · Φ(z1, z2) .

Consequently, the operator S2 commutes with the matrices M(z1 ∓ u1) and N(z2 ∓ v2), so that
they both cancel from the equation and we obtain a much simpler defining relation for the
function S(z1, z2):

S(z1, z2)

(
eη∂1 0
0 e−η∂1

)
· N(z1 ∓ u2)σ3 M(z2 ∓ v1)

(
eη∂2 0
0 e−η∂2

)
=

=

(
eη∂1 0
0 e−η∂1

)
· N(z1 ∓ v1)σ3 M(z2 ∓ u2)

(
eη∂2 0
0 e−η∂2

)
S(z1, z2),

or in the equivalent form(
S(z1 − η, z2) 0

0 S(z1 + η, z2)

)
N(z1 ∓ u2)σ3 M(z2 ∓ v1) =
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= N(z1 ∓ v1)σ3 M(z2 ∓ u2)

(
S(z1, z2 + η) 0

0 S(z1, z2 − η)

)
.

Using a theta functions identity given in the Appendix one can see that

N(a1; b1) · σ3 ·M(a2; b2) = 2 ·
(
θ4 (b1 ∓ a2) −θ4 (b1 ∓ b2)
θ4 (a1 ∓ a2) −θ4 (a1 ∓ b2)

)
. (4.5)

The derived matrix equation can be simplified further on, since a number of theta functions
depending on the combination of parameters u2 + v1 drops out from it. As a result, we come
to a system of four linear finite difference equations of the first order

θ4(z1 + z2 + u2 − v1) S(z1 − η, z2) = θ4(z1 + z2 + v1 − u2) S(z1, z2 + η) ,

θ4(z1 + z2 − u2 + v1) S(z1 + η, z2) = θ4(z1 + z2 − v1 + u2) S(z1, z2 − η) ,

θ4(z1 − z2 + u2 − v1) S(z1 − η, z2) = θ4(z1 − z2 + v1 − u2) S(z1, z2 − η) ,

θ4(z1 − z2 − u2 + v1) S(z1 + η, z2) = θ4(z1 − z2 − v1 + u2) S(z1, z2 + η) .

Their structure suggests to look for the solution in the factorized form

S(z1, z2) = Φ+(z1 + z2) · Φ−(z1 − z2).

Then, in each equality one of the Φ±-factors drops out and we obtain equations

θ4(z + u2 − v1) Φ±(z − η) = θ4(z − u2 + v1) Φ±(z + η), (4.6)

or, in the equivalent form,

Φ±(z + 2η) = e2πi(u2−v1) θ1(z + u2 − v1 + η + τ
2
)

θ1(z − u2 + v1 + η + τ
2
)
· Φ±(z).

In this section we suppose that Im(η) > 0. Then a particular solution of this equation is
described by a ratio of elliptic gamma functions Γ(z) = Γ(z|τ, 2η) (see formula (11.14) in the
Appendix),

Φ(z + 2η) = eπi(a−b) θ1(z + a)

θ1(z + b)
· Φ(z) ; Φ(z) =

Γ(z + a|τ, 2η)
Γ(z + b|τ, 2η)

, Im(η), Im(τ) > 0. (4.7)

The equation for Φ(z) does not assume restrictions on η. Its solution and corresponding inter-
twining operators valid for Im(η) < 0 use the function Γ(z|τ,−2η) and for Im(η) = 0 one needs
the modified elliptic gamma function [11, 14]. These solutions will be described in a special
section below.

Using (4.7) we can write the general solution S(z1, z2) in the form

S(z1, z2) =
Γ(z1 + z2 + u2 − v1 + η + τ

2
)

Γ(z1 + z2 − u2 + v1 + η + τ
2
)

Γ(z1 − z2 + u2 − v1 + η + τ
2
)

Γ(z1 − z2 − u2 + v1 + η + τ
2
)
ϕ2(z1, z2), (4.8)

where ϕ2 is an arbitrary function satisfying the periodicity conditions

ϕ2(z1 + 2η, z2) = ϕ2(z1, z2 + 2η) = ϕ2(z1 + η, z2 + η) = ϕ2(z1, z2).
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Using the reflection formula for the elliptic gamma function (11.18) and the notation

Γ (±x± y + a) ≡ Γ (−x− y + a) Γ (−x+ y + a) Γ (x− y + a) Γ (x+ y + a) ,

it is possible to rewrite formula (4.8) in a much more compact form

S(z1, z2) = Γ
(
±z1 ± z2 + u2 − v1 + η + τ

2
|τ, 2η

)
ϕ2(z1, z2).

The functional freedom ϕ2(z1, z2) strongly influencing the final results will be fixed in the
section dedicated to the elliptic modular double. We remark also that our choice of the L-
operator in the form σ3L is done for technical reasons in order to have permutational symmetry
z1 ↔ z2 in (4.8), i.e. P12S2(u) = S2(u)P12, absent for other choices.

Let us consider now defining equations (3.10) for operators S1 and S3. Permutation of
the parameters u1 = u

2
+ η (`1 + 1

2
) and u2 = u

2
− η (`1 + 1

2
) is equivalent to the change of

the spin `1 → −1 − `1 and similarly the permutation of parameters v1 = v
2

+ η (`2 + 1
2
) and

v2 = u
2
− η (`2 + 1

2
) is equivalent to the change `2 → −1 − `2. In the L-matrix (2.3) only

generators Sa depend on the spin, therefore defining equations (3.10) can be rewritten in terms
of the Sa-generators alone:

S1 · Sa(`1) = Sa(−1− `1) · S1 , S3 · Sa(`2) = Sa(−1− `2) · S3 , (4.9)

where we explicitly indicate the spin ` dependence of Sa-operators. The meaning of these
relations is the following: the operator S1 intertwines representations with the spins `1 and
−1 − `1 realized in the space of functions of the variable z1 and the operator S3 intertwines
representations with the spins `2 and −1− `2 realized in the space of functions of variable z2.
Note that in terms of the variable g = η(2` + 1) this corresponds to the simple sign change
g → −g.

Evidently the operators S1 and S3 are equivalent to each other differing only by the spaces
where they are acting. Let us construct the general intertwining operator W defined in two
equivalent ways: either as a solution of the matrix equation for the L-operator

W · L(u1, u2) = L(u2, u1) ·W ,

or, alternatively, as a solution of the system of equations involving generators of the Sklyanin
algebra

W · Sa(`) = Sa(−1− `) ·W . (4.10)

For 2` ∈ Z≥0 such an intertwining operator W was constructed in [26] as a finite sum of
the powers of the finite-difference operator e−η∂z (see below). A formal extension of this W
to infinite series and arbitrary values of ` proposed in [27] does not represent a well defined
operator.

In this paper we use a different approach inspired by the elliptic hypergeometric integrals
[13, 14]. Namely, we construct the intertwining operator W using a quite general ansatz for it
as an integral operator

[W Φ] (z) =

∫ β

α

∆(z, x) Φ(x) dx (4.11)
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for some integration interval [α, β] ∈ R.
We are going to solve thus the equation∫ β

α

∆(z, x)[Sa(`)Φ(x)]dx = Sa(−1− `)

∫ β

α

∆(z, x)Φ(x)dx,

where Sa-operators on the left-hand side act on the functions of variable x, whereas on the
right-hand side — on the functions of variable z. More explicitly, we have∫ β

α

∆(z, x)

θ1(2x)

(
θa(2x− 2η`)Φ(x+ η)− θa(−2x− 2η`)Φ(x− η)

)
dx

=

∫ β+η

α+η

θa(2x− 2η(`+ 1))

θ1(2x− 2η)
∆(z, x− η)Φ(x)dx−

∫ β−η

α−η

θa(−2x− 2η(`+ 1))

θ1(2x+ 2η)
∆(z, x+ η)Φ(x)dx

=

∫ β

α

(θa(2z + 2η(`+ 1))

θ1(2z)
∆(z + η, x)− θa(−2z + 2η(`+ 1))

θ1(2z)
∆(z − η, x)

)
Φ(x)dx,

where a = 1, 2, 3, 4. To get consistent equations for the kernel ∆(z, x) we impose the constraint

that the integrations
∫ β±η

α±η
dx give the same result as the integration

∫ β

α
dx. For Im(η) > 0 or

Im(η) < 0 this is so if the integrals over intervals [α, α+η] and [β, β+η] as well as over [α, α−η]
and [β, β − η] coincide and if the contour integrals over the parallelograms [α, β, β + η, α + η]
and [α, β, β − η, α − η] are equal to zero. The former constraint is satisfied if the integrands
are periodic with the period β − α and the latter condition is fulfilled if the integrands are
analytical in the respective parallelograms and have no simple poles there (or the sum of their
residues is equal to zero). The case Im(η) = 0 will be considered separately.

Supposing that these demands are satisfied, which will be analyzed a posteriori, we obtain
the equation ∫ β

α

( θa(2x− s)

θ1(2x− 2η)
∆(z, x− η)− θa(−2x− s)

θ1(2x+ 2η)
∆(z, x+ η)

− θa(2z + s)

θ1(2z)
∆(z + η, x) +

θa(−2z + s)

θ1(2z)
∆(z − η, x)

)
Φ(x)dx = 0, (4.12)

where s = 2η(` + 1). Since this integral should vanish for arbitrary admissible function Φ(x),
its integrand should vanish on its own. Therefore the following system of four finite-difference
equations should be true

θa(2x− s)

θ1(2x− 2η)
∆(z, x− η)− θa(−2x− s)

θ1(2x+ 2η)
∆(z, x+ η)

=
θa(2z + s)

θ1(2z)
∆(z + η, x)− θa(−2z + s)

θ1(2z)
∆(z − η, x). (4.13)

Let us multiply the equation with a = 3 by θ4(2z + s) and the equation with a = 4 by
θ3(2z + s) and subtract them from each other. Using theta-functions identity (11.7) from the
Appendix we obtain the equality

θ1(2z + 2x, 2z − 2x+ 2s|2τ)
θ1(2x− 2η|τ)

∆(z, x− η)− θ1(2z − 2x, 2z + 2x+ 2s|2τ)
θ1(2x+ 2η|τ)

∆(z, x+ η)

= −θ1(2s, 4z|2τ)
θ1(2z|τ)

∆(z − η, x). (4.14)
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Similarly, we multiply now the equation with a = 1 by θ2(2z + s) and the equation with
a = 2 by θ1(2z + s) and subtract them from each other. Applying theta-functions identity
(11.11) from the Appendix we obtain

θ4(2z + 2x|2τ)θ1(2z − 2x+ 2s|2τ)
θ1(2x− 2η|τ)

∆(z, x− η)− θ4(2z − 2x|2τ)θ1(2z + 2x+ 2s|2τ)
θ1(2x+ 2η|τ)

∆(z, x+ η)

= −θ4(2s|2τ)θ1(4z|2τ)
θ1(2z|τ)

∆(z − η, x). (4.15)

Exclude the term ∆(z − η, x) from the obtained equations. Namely, divide equation (4.14) by
θ1(2s|2τ), equation (4.15) by θ4(2s|2τ) and subtract them. This yields the equation(

θ1(2z + 2x|2τ)θ4(2s|2τ)− θ4(2z + 2x|2τ)θ1(2s|2τ)
)θ1(2z − 2x+ 2s|2τ)

θ1(2x− 2η|τ)
∆(z, x− η)

=
(
θ1(2z − 2x|2τ)θ4(2s|2τ)− θ4(2z − 2x|2τ)θ1(2s|2τ)

)θ1(2z + 2x+ 2s|2τ)
θ1(2x+ 2η|τ)

∆(z, x+ η).

Applying theta-function identities (11.12) and (11.13) from the Appendix, we come to the
following compact linear first order finite difference equation

∆(z, x+ η)

∆(z, x− η)
=
θ1(2x+ 2η, z + x− s, z − x+ s)

θ1(2x− 2η, z − x− s, z + x+ s)
. (4.16)

Exclude now from system (4.13) the terms ∆(z, x ± η). Repeating similar steps as before,
we exclude first ∆(z, x−η), then ∆(z, x+η), and come to analogous equations with θ1(2x±2η)
replaced by θ1(2z) and slightly changed arguments in other theta functions. The final result is

∆(z + η, x)

∆(z − η, x)
=
θ1(x− z + s, x+ z − s)

θ1(x+ z + s, x− z − s)
. (4.17)

Excluding the ∆(z, x−η)-term from equations (4.14) and (4.15) we obtain the third needed
equation

∆(z, x+ η)

∆(z − η, x)
=
θ1(2x+ 2η, z + x− s)

θ1(2x, z + x+ s)
. (4.18)

The same equation emerges (in a different way) if one excludes ∆(z + η, x)-term from the pair
of equations leading to relation (4.17).

After these considerations it is not difficult to find the general solution of equations (4.16),
(4.17), and (4.18) valid for Im(η) > 0:

∆(z, x) = e
πi
η

(x2−z2) Γ(±z ± x+ η − s|τ, 2η)
Γ(±2x|τ, 2η)

ϕ(z, x), (4.19)

where ϕ(z + 2η, x) = ϕ(z, x+ 2η) = ϕ(z + η, x+ η) = ϕ(z, x) is an arbitrary periodic function.
A way to fix this functional freedom by imposing an additional symmetry will be considered in
the section on elliptic modular double.

The key ingredient in expression (4.19) described by the ratio of elliptic gamma functions
is periodic in x with the period 1. Similarly, θa(2x)-functions entering the intertwining relation
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(4.12) have this period. Therefore we have to demand that the rest of the integrands in (4.12)
be periodic with the same period 1. This condition forces the length of the integration interval
to be equal to 1, β − α = 1. This periodicity allows us to fix the point α arbitrarily, and
we take α = 0 and β = 1. After the shifts x → x ± η the factor eπix2/η gets multiplied by
the function e±2πix+πiη which has period 1. Therefore we have to demand that the products
eπix2/ηϕ(z, x± η)Φ(x) are periodic functions of x with period 1.

Now we note that the ratio of elliptic gamma functions in ∆(z, x) is invariant under the
transformations z → z+1 and z → −z. If we require that similar properties are obeyed by the
function ϕ(z, x), then the functions Ψ(z) = eπiz2/η[WΦ](z) become periodic Ψ(z+1) = Ψ(z) and
even Ψ(−z) = Ψ(z). Therefore it is natural to demand that the original functions Φ(x) belong
to the same class of functions, i.e. that eπix2/ηΦ(x) are invariant under the transformations
x → x + 1 and x → −x. This assumes that ϕ(z, x + 1) = ϕ(z,−x) = ϕ(z, x), which resolves
all the periodicity restrictions and forces ϕ(z, x) to be an even elliptic function of z and x with
periods 2η and 1. This fixes the space of functions Φ(x) where our operator W can work as
an intertwining operator of the Sklyanin algebra generators. Note that its structure does not
contradict with the property that for 2` ∈ Z≥0 the Sklyanin algebra has finite-dimensional
representations in the space of even theta functions of order 4`, since eπix2/η is an even theta
function of order zero.

It remains to consider singularities of the integrand in (4.12). The reflection equation for
elliptic gamma function (11.18) shows that the product θ1(2x|τ)Γ(2x|τ, 2η)Γ(−2x|τ, 2η) has
not zeros, i.e. the poles at x = η or x = −η in the integrands of relation (4.12) are spurious.
The divisor structure of the elliptic gamma function shows that if

e2πi(±x±z+η−s+τj+2ηk) 6= 1, j, k = 0, 1, 2, . . . ,

for any choice of signs when x varies in the rectangle [−Im(η), 1− Im(η), 1+Im(η), Im(η)], then
no poles enter the needed domain. In the multiplicative notation X = e2πix, Z = e2πiz, p = e2πiτ ,
q = e4πiη, one has the constraint |XZ±1tpjqk| 6= 1, t = e2πi(η−s) = e−2πiη(2`+1) = e2πi(u2−u1), when
|q|1/2 ≤ |X| ≤ |q|−1/2. Evidently, for such values of X the annuli |Xqj|, j = 0, 1, . . . , cover the
whole disk of radius |q|−1/2. Therefore we escape poles, if

|Z±1t| < |q|1/2 or Im(u1 − u2 ± z) < Im(η). (4.20)

If z is a real number, i.e. |Z| = 1, then we come to the constraint |t| < |q|1/2 or Im(η(`+1)) < 0.
For real ` this means that ` < −1, since Im(η) > 0. The finite-dimensional realizations of the
R-matrix emerging for half-integer spins, 2` ∈ Z≥0, require thus a special treatment.

Demanding that our basic space functions Φ(x) and the periodic factors ϕ(z, x) have no
simple poles in the domain of interest, we satisfy completely the conditions guaranteeing va-
lidity of equations (4.13). We stress that the function obtained after action of our operator∫ 1

0
∆(z, x)Φ(x)dx satisfies the demands imposed on Φ(x). Indeed, since Im(x) = 0 the function

of interest is analytical when z varies in the rectangle [−Im(η), 1− Im(η), 1 + Im(η), Im(η)].
Presence of the exponential eπix2/η in the definition of base space functions is annoying and

we wish to pass to a more natural setting. In order to do that we conjugate all our operators
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by this exponential and define new realization of the Sklyanin algebra generators

Sa
mod = eπiz2/ηSae−πiz2/η = e−πiη (i)δa,2θa+1(η)

θ1(2z)

[
θa+1 (2z − g + η) · e−2πiz · eη∂z

− θa+1 (−2z − g + η) · e2πiz · e−η∂z

]
, (4.21)

where we denoted g = η(2`+ 1). Analogously, we define

Wmod = eπiz2/ηWe−πix2/η,

acting as

[WmodΨ](z) =

∫ 1

0

Γ(±z ± x+ η − s|τ, 2η)
Γ(±2x|τ, 2η)

ϕ(z, x) ·Ψ(x)dx.

Then the intertwining relation Wmod · Sa
mod(`) = Sa

mod(−1 − `) · Wmod is true provided our
operators act in the space of even periodic functions Ψ(x) = Ψ(−x) = Ψ(x + 1) which do not
have simple poles in the domain −Im(η) ≤ Im(x) ≤ Im(η). Let us summarize obtained results.

Theorem 3. Let Im(η) > 0 (or |q| < 1). Denote as V the space of functions of two complex
variables Ψ(z1, z2) which are even and periodic in each variable with the period 1 and which do
not have simple poles in the domains −Im(η) ≤ Im(z1), Im(z2) ≤ Im(η). Define three operators

[S2(u2 − v1)Ψ](z1, z2) = Γ
(
±z1 ± z2 + u2 − v1 + η + τ

2

)
ϕ2(z1, z2) ·Ψ(z1, z2), (4.22)

where Im(u2 − v1 + τ/2− η) > 0 (or |√pqe2πi(u2−v1)| < |q|),

[S1(u1 − u2)Ψ](z1, z2) =
κ

Γ(2u2 − 2u1)

∫ 1

0

Γ(±z1 ± x+ u2 − u1)

Γ(±2x)
ϕ1(z1, x) ·Ψ(x, z2)dx, (4.23)

where Im(u2 − u1 ± z1 − η) > 0 (or |e2πi(u2−u1±z1)| < |q|1/2),

κ =
(q; q)∞ (p; p)∞

2
, (t; q)∞ :=

∞∏
j=0

(1− tqj),

and

[S3(v1 − v2)Ψ](z1, z2) =
κ

Γ(2v2 − 2v1)

∫ 1

0

Γ(±z2 ± x+ v2 − v1)

Γ(±2x)
ϕ3(z2, x) ·Ψ(z1, x)dx, (4.24)

where Im(v2 − v1 ± z2 − η) > 0 (or |e2πi(v2−v1±z2)| < |q|1/2). Here ϕk(z, x) are arbitrary even
elliptic functions of z and x with periods 1 and 2η satisfying additional constraints

ϕk(z + η, x+ η) = ϕk(z, x), k = 1, 2, 3,

and not having simple poles in the domains −Im(η) ≤ Im(z), Im(x) ≤ Im(η).
Then the operators Sk(u) map the space V onto itself and satisfy the defining intertwining

relations (3.10), (3.11), and (3.12), provided in the corresponding L-operator (2.2) one uses the
Sklyanin algebra generators in the form (4.21).
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Here we do not use the notation Sk,mod for brevity assuming that there will be no confusion
in the following which particular form of the intertwining operators is used. The functions ϕk

may depend on the parameters u1, u2, v1, v2 in arbitrary way. If they would not depend on the
coordinates z and x, then we can drop ϕk completely, since they become irrelevant for solutions
of YBE (without consideration of the unitarity condition). Then the operators S1,3 do not
depend on the spectral parameter since they involve only the differences u1 − u2 or v1 − v2.
Similarly, S2 will depend only on the difference u2 − v1. The above choice of the normalization
constant κ, as well as of the elliptic gamma function prefactors in S1,3 are dictated by the elliptic
beta integral [13], as described explicitly in the next section for a special choice ϕk(z, x) = 1.

Denote y1,2 = e2πiz1,2 . Fourier series expansions for our basic functions Ψ(z1, z2) show that
our space is equivalent to the space of meromorphic functions of y1, y2 ∈ C∗ satisfying the
constraints f(y−1

1 , y2) = f(y1, y
−1
2 ) = f(y1, y2). Therefore we can pass in the definition of S1,3-

operators from real integrals over [0, 1] to contour integrals over the unit circle T of positive
orientation

[S1(u1 − u2)f ](y1, y2) = κ

∫
T

Γ(ty±1
1 y±1; p, q)

Γ(t2, y±2; p, q)
ϕ1(y1, y) · f(y, y2)

dy

2πiy
, (4.25)

where t = e2πi(u2−u1), |ty±1
1 | < |q|, ϕ1(qy1, y) = ϕ1(y1, qy) = ϕ1(q

1/2y1, q
1/2y) = ϕ1(y1, y),

and Γ(t; p, q) is the elliptic gamma function in multiplicative notation (11.19). Evidently,
sequential actions of the Sk-operators create multiple contour integral operators. Deforming the
integration contours one can relax the constraints on parameters and define resulting functions
by analytical continuation in parameters.

5 Coxeter relations and the elliptic beta integral

In this section we prove that the derived operators Si obey relations (3.17), (3.18), and (3.19)
generating the permutation group S4 for a special choice of the periodic factors

ϕk(z, x) = 1, k = 1, 2, 3.

Under these conditions operators (4.22)-(4.24) depend on the differences of parameters. There-
fore Coxeter relations for them can be represented in a simpler form:

Sk(a) Sk(−a) = 1l ; S1(a) S2(a+ b) S1(b) = S2(b) S1(a+ b) S2(a) , (5.1)

S1(a) S3(b) = S3(b) S1(a) ; S2(a) S3(a+ b) S2(b) = S3(b) S2(a+ b) S3(a). (5.2)

In the theory of quantum integrable systems the cubic relations are known as the star-triangle
relations [22]. There are two evident equalities. The operator S3(a) differs from the oper-
ator S1(a) only by the change of variable z1 → z2 and therefore these operators commute,
S1(a) S3(b) = S3(b) S1(a). If one would stick to the generating relations in the form (sisi±1)

3 = 1,
then the cubic relation in (5.1) is replaced by

S1(−b) S2(−a− b) S1(−a) S2(b) S1(a+ b) S2(a) = 1l

and a similar replacement holds for (5.2).
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The equality S2(a) S2(−a) = 1l is easily verified with the help of reflection formula for
elliptic gamma function (we set ϕ2 = 1), since the operator S2 reduces to the multiplication by
a given function. If we would have an arbitrary periodic function ϕ2(z1, z2; a) in the definition
of S2(a) (in fact, ϕ2 may depend on u2 and v1 separately, not only on their difference), then
this condition does not fix ϕ2, there are many nontrivial elliptic functions of z1, z2 obeying the
constraint ϕ2(z1, z2; a)ϕ2(z1, z2;−a) = 1. Only if ϕ2(z1, z2; a) does not depend on z1, z2, this
condition fixes S2 up to a constant multiplier ϕ(a) satisfying the constraint ϕ2(a)ϕ2(−a) = 1.

Let us show that the remaining nontrivial Coxeter relations follow from the elliptic beta
integral evaluation formula [13]. Denote

[S2(a) Ψ] (z1, z2) = Da(z1, z2) ·Ψ(z1, z2) ; Da(z1, z2) = Γ(±z1 ± z2 + a+ η + τ
2
) ,

and

[S1(b) Ψ] (z1, z2) =

∫ 1

0

dzWb(z1, z) Ψ(z, z2) ; Wb(z1, z) = κ
Γ(±z ± z1 − b)

Γ(−2b,±2z)
,

where Γ(a, b) = Γ(a|2η, τ)Γ(b|2η, τ). Similarly, S3(b) has the same form as S1(b), but it acts in
the space of functions of z2.

The first Coxeter relation

S1(a) S2(a+ b) S1(b) = S2(b) S1(a+ b) S2(a) (5.3)

is equivalent to the following equation for the kernels∫ 1

0

dzWa(z1, z) Da+b(z, z2) Wb(z, x) = Db(z1, z2) Wa+b(z1, x) Da(x, z2) . (5.4)

The second Coxeter relation

S3(a) S2(a+ b) S3(b) = S2(b) S3(a+ b) S2(a) (5.5)

is equivalent to a similar equation for the kernels∫ 1

0

dzWa(z2, z) Da+b(z1, z) Wb(z, x) = Db(z1, z2) Wa+b(z2, x) Da(z1, x) . (5.6)

This equation can be obtained from the first one after permutation z1 ↔ z2 provided the
function Da(z1, z2) is symmetric, Da(z1, z2) = Da(z2, z1), which is evident in our case. Therefore
we have to prove the first Coxeter relation only.

Let us compare the elliptic beta integral evaluation formula [13]

κ

∫ 1

0

∏6
k=1 Γ(gk ± z)

Γ(±2z)
dz =

∏
1≤j<k≤6

Γ(gj + gk) , (5.7)

where
g1 + · · ·+ g6 = 2η + τ (mod Z), Im(gk), Im(η), Im(τ) > 0, (5.8)
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with relation (5.6) which has the following explicit form

κ

∫ 1

0

dz
Γ(±z ± z1 − a)

Γ(−2a,±2z)
· Γ(±z ± z2 + a+ b+ η + τ

2
) · Γ(±x± z − b)

Γ(−2b,±2x)
=

= Γ(±z1 ± z2 + b+ η + τ
2
) · Γ(±x± z1 − a− b)

Γ(−2a− 2b,±2x)
· Γ(±x± z2 + a+ η + τ

2
) .

After evident simplifications we arrive at the elliptic beta integral (5.7) for the following choice
of parameters

g1 = z1 − a , g2 = −z1 − a , g3 = z2 + a+ b+ η + τ
2
,

g4 = −z2 + a+ b+ η + τ
2
, g5 = x− b , g6 = −x− b .

The constraints on values of z1, z2, x, a, and b used in the construction of intertwining operators
guarantee that |e2πig1,2,5,6| < |q|1/2 and |e2πig3,4| < |q|. Since

∏6
k=1 e

2πigk = pq, we conclude that
we should have |p| < |q|3. However, by analytical continuation one can see that identity (5.4) is
valid for a wider region of parameters Im(gk) > 0 which is symmetric in 2η and τ (or p and q).
Thus, the cubic Coxeter relations hold true as a consequence of the exact integration formula
(5.7).

The same result is obtained for the original Sklyanin algebra generators realization (2.5)
leading to the exponential factors eπi(z2−x2)/η in the definition of S1,3-operators. Namely, all
such exponentials cancel from the integral identity.

It is not clear whether our normalization ϕk = 1 (or, more generally, the demand that ϕk

do not depend on z1, z2) is crucial for the obtained result. Cubic Coxeter relation is valid for
all ϕk-functions satisfying the constraint

ϕ1(z1, z; a)ϕ2(z, z2; a+ b)ϕ1(z, x; b) = ϕ2(z1, z2; b)ϕ1(z1, x; a+ b)ϕ2(x, z2; a).

It is necessary to understand how strongly this relation restricts functions ϕk(z, x). Perhaps
there are nontrivial solutions, so that it is desirable to fix the functional freedom in somewhat
different way.

Let us take the limit b → −a in relation (5.3). It is evident that S2(0) = 1l, i.e. the
left-hand side expression reduces to the product S1(a) S1(−a) and the right-hand side – to
S2(−a)S1(0)S2(a). As it will be shown below in the section on finite-dimensional reductions,
one has S1(0) = 1l (this follows after careful resolution of the ambiguity arising from vanishing
multiplier in front of the integral and diverging value of the integral itself). Since S2(−a)S2(a) =
1l, we formally come to the remaining quadratic Coxeter relations

S1(a) S1(−a) = 1l ; S3(a) S3(−a) = 1l .

The problem is that for the moment we have defined operators S1,3(a) only in the restricted
domain of values of a and z1, namely, Im(a± z1) < −Im(η). Therefore we should give proper
definition to S1,3(−a)-operators for the inversion relations to be true.

Suppose that the integral operator S1(a) in the form (4.25) acts on a holomorphic function
of y ∈ C∗ so that all the singularities of the resulting function are determined by the kernel of
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S1(a). From the divisor structure of elliptic gamma functions one can see that the latter kernel
has poles at

in : y = ty±1
1 pjqk, out : y = t−1y±1

1 p−jq−k, (5.9)

where j, k ∈ Z≥0, with the first sequence converging to zero y = 0 and the second one going
to infinity. For |tx±1| < |q|1/2 the contour T separates these two sets of poles. Let us replace
now the integration contour T in (4.25) by an arbitrary contour C separating poles in from
out. By Cauchy theorem no singularities emerge after changing values of variables t and x
as soon as the kernel poles do not cross the integration contour. Evidently, this procedure
extends the definition of the operator S1 to arbitrary values of t and x guaranteeing existence
of the contour C. The latter condition is violated if the poles from in and out sets pinch the
integration contour, which can happen if

ty±1
1 pj1qk1 = (ty±1

1 )−1p−j2q−k2 or ty±1
1 pj1qk1 = (ty∓1

1 )−1p−j2q−k2 . (5.10)

The S1-operator kernel contains also the multiplier 1/Γ(t2; p, q) vanishing for t2 → p−jq−k and
diverging for t2 → pj+1qk+1 with j, k ∈ Z≥0. As a result, we come to the constraints

t2 6= p−jq−k, pj+1qk+1, j, k ∈ Z≥0, (5.11)

and y2
1 6= t2pjqk, t−2p−jq−k for arbitrary fixed t and j, k ∈ Z≥0. Thus we have defined the action

of operator [S1(a)Φ](z) for arbitrary generic values of z and a 6= ηj+τk/2 or a 6= 1/2+ηj+τk/2,
j, k ∈ Z, (j, k) 6= (1, 0), (0, 1).

For t2 = q−np−m with integer n,m ≥ 0 and generic values of q and p, which we always
assume, the second set of equalities in (5.10) is satisfied if j1 + j2 = m and k1 + k2 = n, i.e.
there are (n+ 1)× (m+ 1) pairs of poles pinching the contour C. As will be shown in Sect. 8
for these exceptional values of t, with the exclusion of the points t = ±1 (i.e., a = 0, 1/2), the
operator S1(a) has nontrivial zero modes. Analogously, the operator S1(−a) has zero modes
for t2 = qnpm, with integer n,m ≥ 0, (n,m) 6= (0, 0). As a result, the relation S1(a)S1(−a) = 1l
cannot be true for t2 = qnpm, n,m ∈ Z, (n,m) 6= 0.

The following rigorous inversion statement was established in [29].

Theorem 4. Let p, q, t ∈ C such that max{|p|, |q|} < |t|2 < 1. For fixed w ∈ T let Cw denote
a contour inside the annulus A = {z ∈ C; |t| − ε < |z| < |t|−1 + ε} for infinitesimally small but
positive ε, such that Cw has the points wt−1, (wt)−1 in its interior and excludes their reciprocals.
Let f(z) = f(z−1) be a function holomorphic on A. Then for |t| < |x| < |t|−1 there holds

(p; p)2
∞(q; q)2

∞
(4πi)2

∫
T

(∫
Cw

Γ(tw±1x±1, t−1w±1z±1; p, q)

Γ(t±2, z±2, w±2; p, q)
f(z)

dz

z

)
dw

w
= f(x). (5.12)

Rewriting relation (5.12) as

κ

∫
T

Γ(tw±1x±1; p, q)

Γ(t2, w±2; p, q)

dw

2πiw

(
κ

∫
Cw

Γ(t−1w±1z±1; p, q)

Γ(t−2, z±2; p, q)
f(z)

dz

2πiz

)
= f(x),

one evidently comes to the equality [S1(a)S1(−a)f ](x) = f(x) for analytically continued S1(a)-
operators. Here S1(a) is extended to the domain of parameters |tx±1| < 1 and S1(−a) is a
continuation of S1(a)-operator to the domain |tw±1| < 1/max{|p|1/2, |q|1/2}+ ε.
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In (5.12) it is assumed, of course, that the integrand poles at z = t−1w±1pjqk for j, k ∈ Z≥0

sit inside Cw and their reciprocals – outside of Cw. The lower bound max{|p|, |q|} < |t2| was
imposed in order to guarantee that only poles t−1w±1 and tw∓1 are crossed over when one
deforms the contour Cw to T. Under the weaker condition |q|, |p| < |t| a number of poles may
enter the annulus A, from both sides, but they still do not cross the unit circle. Therefore the
same arguments as in [29] apply and we obtain the needed inversion relation S1(a)S1(−a) = 1l
in a wider region of parameter a. In particular, for |x| = 1 and max{|p|, |q|} < |t| < |q|1/2 we
can satisfy even the original restrictions for S1(a)-operator parameters, |tx±1| < |q|1/2. Thus,
we have proved that the analytically continued operators S1,2,3 do satisfy Coxeter relations of
the permutation group S4.

If one substitutes into relation S1(a)S1(−a) = 1l the expression (4.23) without taking care of
existing restrictions and assumes that z1 and z2 are real, then the straightforward consideration
yields ∫ 1

0

Wa(z1, z) W−a(z, z2) dz =
1

2
[ δ(z1 − z2) + δ(z1 + z2) ] , (5.13)

where δ(z) is the Dirac delta-function. Using explicit expressions for Wa-functions, one obtains
the following formal integral identity

κ

∫ 1

0

Γ(±z1 ± z − a,±z2 ± z + a)

Γ(±2z)
dz =

Γ(±2a,±2z2)

2κ
[ δ(z1 − z2) + δ(z1 + z2) ] , (5.14)

which was partially considered in [19,30,31].
On the right-hand side of equality (5.14) one has the product

Γ(±2a) = Γ(t±2; p, q) =
1

(t2; p)∞(pt−2; p)∞(t−2; q)∞(qt2; q)∞
,

which diverges for t2 = pj or t2 = qj, j ∈ Z. Therefore, for generic values of z1, z2 one
would expect problems with the inversion relation at least for these values of the parameter
t. However, as mentioned above, the inversion relation remains true for t = ±1 and it breaks
down for t2 = pjqk, j, k ∈ Z, (j, k) 6= (0, 0). Therefore relation (5.14) cannot be true for these
values of the t-parameter. It is necessary to perform a careful investigation of the inversion
relation for wider regions of parameters than it was discussed above and understand properly
when formula (5.14) is valid.

A more detailed discussion of the intertwining operator properties is given in the following
sections.

6 Connection with the elliptic Fourier transform

The Bailey chains technique is a well known tool for generating infinite sequences of identities
for plain and q-hypergeometric series [16]. It is very useful for proving the Rogers-Ramanujan
identities needed for solving 2d statistical mechanics models [1]. An integral analogue of the
Bailey chains was discovered in [17] directly at the elliptic level using a new universal integral
transform for functions depending on one parameter t. As shown in [29] the inverse of this
transform is substantially equivalent to the reflection of the parameter t→ t−1 which resembles
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the Fourier transform. Let us describe the key ingredients of this elliptic Fourier transformation
technique.

For a given function α(z, t) analytic near the unit circle z ∈ T define the integral transfor-
mation

β(w, t) = M(t)wzα(z, t) :=
(p; p)∞(q; q)∞

4πi

∫
T

Γ(tw±1z±1; p, q)

Γ(t2, z±2; p, q)
α(z, t)

dz

z
, (6.1)

where |tw|, |t/w| < 1. In [17] the functions related in this way were said to form an integral
elliptic Bailey pair with respect to the parameter t (this particular renormalized form of the
definition was presented in [29]).

An integral analogue of the Bailey lemma provides a method to generate an infinite sequence
of Bailey pairs from a given germ pair. Namely, suppose that α(z, t) and β(w, t) form an integral
elliptic Bailey pair with respect to the parameter t. Then for |s|, |t| < 1, |√pqy±1| < |st| the
new functions

α′(w, st) = D(s; y, w)α(w, t), D(s; y, w) = Γ(
√
pqs−1y±1w±1; p, q), (6.2)

β′(w, st) = D(t−1; y, w)M(s)wxD(st; y, x)β(x, t), (6.3)

where w ∈ T, form an integral elliptic Bailey pair with respect to the parameter st.
The proof of this statement is easy. Indeed, the demand

β′(w, st) = M(st)wzα
′(z, st)

is equivalent to the equality

D(t−1; y, w)M(s)wxD(st; y, x)M(t)xzα(z, t) = M(st)wzD(s; y, z)α(z, t).

Since D(t−1; y, w)D(t; y, w) = 1 due to the reflection equation for the elliptic gamma function,
we can rewrite it as an operator identity

M(s)wxD(st; y, x)M(t)xz = D(t; y, w)M(st)wzD(s; y, z). (6.4)

Substitute explicit expressions for M and D-operators and change the order of integrations in
the left-hand side expression. Then one can check that relation (6.4) is equivalent to the elliptic
beta integral evaluation formula with correct restrictions on the parameters, which proves the
statement.

Relation (6.4) is nothing else that the operator form of the star-triangle relation [22]. Equal-
ity (6.4) was explicitly presented in [11] in the matrix form as relation (6.5) (which is connected
with some finite dimensional reduction of the intertwining operators).

Comparing the operator M(t) with the intertwining operator of the previous section in
multiplicative form (4.25), we see that

M(t)wyf(y) = [S1(u1 − u2)f ](w) (6.5)

for t = e2πi(u2−u1) and ϕ1 = 1. Also evidently

S2(a) = D(e−2πia; e2πiz1 , e2πiz2),
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provided in (6.2) one has +
√
pq in the elliptic gamma function arguments, since e2πi(η+τ/2) =

+
√
pq. Another square root sign choice in (6.2) yields the S2-operator corresponding to the

Sklyanin algebra generators differing from (2.5) by the addition of 1/2 to the arguments of
theta functions depending on the spin ` (see below).

The operators entering the integral Bailey lemma D and M define thus elementary transpo-
sition operators satisfying inversion relations S2(a)S2(−a) = 1l, S1(a)S1(−a) = 1l and the basic
relation (6.4) is equivalent to the Coxeter relation

S1(a)S2(a+ b)S1(b) = S2(b)S1(a+ b)S2(a). (6.6)

Take this operator identity (or (6.4)), use the additive notation for Sk-operators (4.22)–(4.24)
(with ϕk = 1) and act by it onto the Dirac delta-function (δ(x − z) + δ(x + z))/2. Then one
obtains the equality (5.4) which can be written as∫ 1

0

ρ(u)Dξ−a(x, u)Da+b(y, u)Dξ−b(w, u)du

= χ(a, b)Db(x, y)Dξ−a−b(x,w)Da(y, w), (6.7)

where
Da(x, u) = S2(a) = D(e−2πia; e2πix, e2πiu) = Γ(e2πi(a−ξ±x±u); p, q) (6.8)

and

e−4πiξ := pq, ρ(u) =
(p; p)∞(q; q)∞
2Γ(e±4πiu; p, q)

, χ(a, b) = Γ(e−4πia, e−4πib, e4πi(a+b−ξ); p, q).

Equality (6.7) represents a functional form of the star-triangle relation considered in [31], with
Da(x, u) being the Boltzmann weight for edges connecting spins x and u sitting in the neighbor-
ing vertices of a lattice, ρ(u) is related to the self-energy for spins, ξ is the crossing parameter.
In this picture the integration means a computation of the partition function for an elementary
star-shaped cell with contributions coming from all possible values of the continuous “spin”
sitting in the central vertex. So, we may conclude that the Bailey lemma established in [17] is
equivalent to the star-triangle relation for particular elliptic hypergeometric Boltzmann weights.

Defining S3(a) as an elliptic Fourier transformation operator for the variable z2 we obtain
another generator of the group S4. In this way, the algebraic relations for the Bailey lemma
ingredients appear to be equivalent to the Coxeter relations for permutation group generators.
This fact was not understood in the original paper [17], however the connection of the integral
Bailey transformation to the star-triangle relation was briefly remarked in [30].

7 Uniqueness of solutions and the elliptic modular dou-

ble

The concept of elliptic modular double introduced in [19] allows us to fix the functional freedom
in the definition of the S4-permutation group generators.

The general infinite-dimensional space solution of the Yang-Baxter e quation we obtain

R12(u) = P12S2(u1 − v2) S1(u1 − v1) S3(u2 − v2) S2(u2 − v1)
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is symmetric in the parameters p and q, since we assume that u1,2 and v1,2 are independent
variables (or, equivalently, u and g = η(2` + 1) should be considered as independent of η and
τ). Using the multiplicative notation and the modified forms of the Sklyanin algebra generators
and intertwining operators, this R-operator has the following explicit action on the functions
of two variables

[R12(u)f ](z1, z2) =
(p; p)2

∞(q; q)2
∞

(4πi)2
Γ(
√
pqz±1

1 z±1
2 e2πi(u1−v2); p, q) (7.1)

×
∫

T2

Γ(e2πi(v1−u1)z±1
2 x±1, e2πi(v2−u2)z±1

1 y±1,
√
pqe2πi(u2−v1)x±1y±1; p, q)

Γ(e4πi(v1−u1), e4πi(v2−u2), x±2, y±2; p, q)
f(x, y)

dx

x

dy

y
.

Because of the symmetry in p and q, we have not one but two RLL-intertwining relations.
The second one is obtained from (3.7) simply by permuting 2η and τ (or p and q):

R12(u− v) Ldoub
1 (u)σ3 Ldoub

2 (v) = Ldoub
2 (v)σ3 Ldoub

1 (u) R12(u− v) . (7.2)

Remind that after our similarity transformation the initial L-operator is given by the expression
(2.2) where wa(u) = θa+1(u+ η|τ)/θa+1(η|τ) and Sklyanin generators Sa have the form (4.21).
The operator Ldoub(u) is obtained from L(u) simply by permuting 2η and τ . This means that
Ldoub(u) also has the form (2.2), but now wa(u) = θa+1(u + τ/2|2η)/θa+1(τ/2|2η) and the
operators Sa

mod (4.21) should be replaced by

S̃a
mod = e−πi τ

2
(i)δa,2θa+1(τ/2|2η)

θ1(2z|2η)

[
θa+1

(
2z − g +

τ

2

∣∣2η) · e−2πiz · e
1
2
τ∂z

− θa+1

(
−2z − g +

τ

2

∣∣2η) · e2πiz · e−
1
2
τ∂z

]
, (7.3)

where g-parameter is the same arbitrary parameter as in (4.21).
Such a direct product of two Sklyanin algebras was introduced in [19] under the name an

elliptic modular double. It represents an elliptic analogue of Faddeev’s modular double [18]
described as a direct product of two q-analogues of sl(2)-algebra, Uq(sl(2)) ⊗ Uq̃(sl(2)), with
q = e4πiη and q̃ = e−πi/η.

The modified operators S1,3(a) are are invariant under permutation of p and q and, therefore,

they satisfy in addition to (4.9) the S̃a-operator intertwining relations as well:

S1 · S̃a(`1) = S̃a(−1− `1) · S1 , S3 · S̃a(`2) = S̃a(−1− `2) · S3 , (7.4)

This bonus symmetry in p and q in Sk(a) and R-operator originates from a particular choice of
the arbitrary elliptic functions ϕk(z1, z2) emerging in solutions of corresponding finite-difference
equations. We can invert the logic and demand from the very beginning existence of the elliptic
modular double (7.2). Then we can repeat the same considerations as before and get the same
solutions of the finite-difference equations, but now the phase factors are restricted by additional
periodicity requirements

ϕk(z1 + τ, z2) = ϕk(z1, z2 + τ) = ϕk(z1 + τ/2, z2 + τ/2) = ϕ(z1, z2). (7.5)

Then we use the well-known Jacobi theorem stating that any function with three incommen-
surate periods

ϕ(z + ω1) = ϕ(z + ω2) = ϕ(z + ω3) = ϕ(z),
3∑

k=1

nkωk 6= 0, nk ∈ Z,
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must be a constant, ϕ = const. Since our ϕk-functions were fixed already to be elliptic functions
with periods 1 and 2η we conclude that the constraints (7.5) with generic values of τ and η
enforce ϕk(z1, z2) = const. Thus ϕk may depend only on the parameters u1,2, v1,2, and we have
chosen the normalization ϕk = 1 consistent with the unitarity constraint.

Thus the elliptic modular double (i.e., two RLL-relations for a given R-operator) fixes the
intertwining operators Sk uniquely (up to the multiplication by a constant). Note that this

double algebra generators Sa and S̃a do not commute with each other, however they satisfy
some simple anticommutation relations [19]. As described also in [19], there exists a second
modular double obtained by employing a modular transformation of theta functions and the
modified elliptic gamma function [14], which will be considered below.

8 Reduction to a finite-dimensional case

An intertwining operator for the Sklyanin algebra generators with positive integer values of 2`+1
was constructed in [26] as a finite-difference operator of a finite order. Its formal extension to
infinite order was used in [23] for building solutions of YBE along the same lines as described
above using the realization of S1,3(a). In particular, the operator S1(a) had the following form
(see the beginning of Sect. 5.1 in [23]):

S1(a) = e2πiaηx+πiηa2 Γ(2ηx)

Γ(2η(x+ a))

∞∑
k=0

[2k − x− a]

[−x− a]

k−1∏
j=0

[j − x− a][j − a]

[j + 1− x][j + 1]
e(a−2k)∂x , (8.1)

where [x] = θ1(2ηx|τ). However, this operator is not well defined unless the infinite series
terminates. In particular, the formal action of this operator on a meromorphic function of x
yields in general a diverging series. Therefore we assume, as in [26], that a = 2`+1 is a positive
integer.

Let us denote
q = e4πiη, p = e2πiτ , w = e−2πiηx, t = e−2πiηa,

and assume that |q| < 1. Then, using the theta function θ(x; p) = (x; p)∞(px−1; p)∞, we can
write

S1(a)f(w) = q
ax
2

+a2

4
Γ(w−2; p, q)

Γ(t−2w−2; p, q)

×
∞∑

k=0

t−2k θ(t
2w2q2k; p)

θ(t2w2; p)

k−1∏
j=0

θ(t2w2qj, t2qj; p)

θ(w2qj+1, qj+1; p)
f(tqkw), (8.2)

where θ(t1, . . . , tk; p) = θ(t1; p) . . . θ(tk; p) and Γ(x; p, q) is the elliptic gamma function (11.19).
Because of the series termination, operator (8.2) is well defined for |q| < 1 and |q| > 1, and
even |q| = 1, provided q is not a root of unity.

Introduce now an integral transformation operator acting in the space of z → z−1 invariant
functions, f(z−1) = f(z),

[B(t)f ](w) =
κ

Γ(t2; p, q)

∫
C

dz

2πiz
g(z, w, t)

Γ(tw±1z±1; p, q)

Γ(z±2; p, q)
f(z),
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where g(z, w, t) is some fixed function to be determined from the comparison with operator
S1(a) (8.1) and κ was fixed earlier. The contour of integration C is chosen in such a way
that it separates geometric progressions of the integrand poles converging to zero z = 0 from
their z → 1/z reciprocals. In particular, if |tw|, |t/w| < 1 and the product g(z, w, t)f(z) is an
analytical function near the unit circle with positive orientation T, then one can choose C = T.

Now we take |twqk| > 1, k = 0, . . . , N , |twqN+1| < 1, |twp| < 1, |t/w| < 1, and the contour
of integration C as a deformation of T containing in its interior the poles at z = twqk, k =
0, . . . , N , lying outside T and excluding the poles at z = t−1w−1q−k, k = 0, . . . , N , which enter
T. Now we pull C to T and pick up the residues at z±1 = twqk, k = 0, . . . , N . This yields the
formula

[B(t)f ](w) =
κ

Γ(t2; p, q)

N∑
k=0

lim
z→twqk

(z − twqk)
Γ(tw±1z±1; p, q)

zΓ(z±2; p, q)

×
(
g(twqk, w, t) + g(t−1w−1q−k, w, t)

)
f(twqk)

+
κ

Γ(t2; p, q)

∫
T

dz

2πiz
g(z, w, t)

Γ(tw±1z±1; p, q)

Γ(z±2; p, q)
f(z).

Using the relation

lim
z→1

(1− z)Γ(z; p, q) =
1

(p; p)∞(q; q)∞
,

we find

lim
z→twqk

(
1− twqk

z

)
Γ(twz−1; p, q) =

1

(p; p)∞(q; q)∞

1

θ(q−k, . . . , q−1; p)
.

As a result, we obtain

[B(t)f ](w) =
Γ(w−2; p, q)

Γ(t−2w−2; p, q)

N∑
k=0

g(twqk, w, t) + g(t−1w−1q−k, w, t)

2

× t−4kw−2kq−k2 θ(t2w2q2k; p)

θ(t2w2; p)

k−1∏
j=0

θ(t2qj, t2w2qj; p)

θ(qj+1, w2qj+1; p)
f(twqk)

+
κ

Γ(t2; p, q)

∫
T

dz

2πiz
g(z, w, t)

Γ(tw±1z±1; p, q)

Γ(z±2; p, q)
f(z).

Now we take the limit t2 → q−2`−1, which means a → 2` + 1 ∈ Z>0. Since 1/Γ(t2; p, q) =
1/Γ(q−2`−1; p, q) = 0, and the integral

∫
T is finite, we see that the second term disappears with

the final result

[B(t)f ](w)
∣∣∣
t2=q−2`−1

=
Γ(w−2; p, q)

Γ(q2`+1w−2; p, q)

2`+1∑
k=0

g(wqk− 2`+1
2 , w, q−

2`+1
2 ) + g(w−1q−k+ 2`+1

2 , w, q−
2`+1

2 )

2

× q2k(2`+1)w−2kq−k2 θ(w2q2k−2`−1; p)

θ(q−2`−1w2; p)

k−1∏
j=0

θ(qj−2`−1, w2qj−2`−1; p)

θ(qj+1, w2qj+1; p)
f(wqk− 2`+1

2 ). (8.3)

This series terminates automatically at k = 2`+ 1 = N .
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We have derived this result under the following constraints for w-variable |twqN+1| < 1
and |t/w| < 1, or |q−`−1/2| < |w| < |q`−N−1/2|. However, the derived result is independent on
these restrictions since in the limit t2 → q−2`−1 there are 2` + 2 pairs of poles which pinch
the integration contour and one inevitably has to pass to the residues sum of the above form
independently on w-values.

Equating this expression with the terminating series operator S1(a), we come to the relation

1

2

(
g(z, w, t) + g(z−1, w, t)

)
t−4kw−2kq−k2

= q
ax
2

+a2

2 t−2k, z = twqk.

It has unique solution invariant under the transformation z → 1/z

g(z, w, t) = q
ax
2

+a2

2 exp

[
(log z)2 − (log tw)2

log q

]
,

as wanted. However, it is not an analytical function of z. But for validity of our consideration
we needed only that the product g(z, w, t)f(z) be analytical. Let us denote z = e2πiηu. Then
we can write

g(z = e2πiηu, w = e−2πiηx, t = e−2πiηa) = eπiη(u2−x2).

Thus we have to demand that φ(z) := eπiηu2
f(z) is a meromorphic function of z. Let us

demand additionally that φ(z−1) = φ(z). Then the operator Bmod(t) defined after the similarity
transformation

Bmod(t) = eπiηx2

B(t)e−πiηu2

maps the space of meromorphic A1-invariant functions φ(z) onto itself. Let us replace in Bmod(t)
the variables u → u/η, x → x/η, i.e. we pass to the parameterization z = e2πiu, w = e−2πix.
Then explicitly we have

[Bmod(t)ψ](w) =
(p; p)∞(q; q)∞

2Γ(t2; p, q)

∫ 1

0

Γ(te2πi(±x±u); p, q)

Γ(e±4πiu; p, q)
ψ(e2πiu)du.

Evidently, for t = e−2πi(u1−u2) this operator coincides with the intertwining operator S1(u1−u2)
(4.23) (for ϕ1 = 1) in such a way that

[S1(b)Ψ](x) = [Bmod(e
−2πib)ψ](e2πix),

where Ψ(x) = ψ(e2πix) (i.e., the difference is only in the additive or multiplicative notation).
We conclude that the discrete intertwining operator of [26] is a special limiting case of our
intertwining operator S1(b).

Consider the identity

S3(u1 − u2)R12(u1, u2|v1, v2) = R12(u2, u1|v1, v2)S1(u1 − u2),

which is easy to check using the R-matrix factorization. Multiplying it by the permutation
operator P12 and using relation P12S3 = S1P12, we obtain the identity

S1(u1 − u2)R12 = R′12S1(u1 − u2),
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where R12 = P12R12(u1, u2|v1, v2) and R′12 = P12R12(u2, u1|v1, v2). It shows that the kernel
space of S1-operator is mapped onto itself by our R-matrix R12, i.e. zero modes of S1 form an
invariant space for the action of operator (7.1).

In the same way, intertwining relations (4.9) and (7.4) show that the kernel space of S1-
operator forms an invariant space for the elliptic modular double, i.e. it is mapped onto itself
by the Sklyanin algebra generators Sa

mod (4.21) and S̃a
mod (7.3). The standard Sklyanin algebra

admits finite-dimensional representations in the space of theta functions of modulus τ and,
naturally, its modular partner has similar representations in the space of theta functions of
modulus 2η. Therefore, there should exist finite-dimensional representations of the Sklyanin
algebra in the space of products of theta functions of moduli τ and 2η. As shown in [19],
the elliptic modular double has a non-trivial automorphism permuting these theta-function
submodules.

In general, the latter factorization of Sklyanin-algebra modules is related to the fact that
sums of residues of poles of elliptic hypergeometric integrals factorizes to the product of two
elliptic hypergeometric series with permuted modular parameters p and q, which leads to the
concept of two-index biorthogonality relation [14]. Let us show that the corresponding residue
calculus demonstrates existence of nontrivial finite-dimensional kernel space for S1(a)-operator
for a = η(2`q +1)+τ(`p +1/2) and a = 1/2+η(2`q +1)+τ(`p +1/2), where 2`q, 2`p ∈ Z≥0 (i.e.,
the reduction considered above is only a special case of the much more general finite-dimensional
reduction).

For this, let us repeat our consideration with a different set of poles taken into account.
Namely, let us take the limit t2 → q−Np−M with N,M ∈ Z≥0. Now a number of poles leave
the unit circle and a number of them enter it. As indicated during the discussion of analytical
continuation of the S1-operator, there will be precisely (N + 1)(M + 1) pairs of poles pinching
the integration contour C in Bmod (we choose g(z, w, t) = 1). Let us pull the integration
contour through one half of the poles approaching it, say, through z = tpjqk, j = 0, . . . ,M, k =
0, . . . , N , and sum the corresponding residues. Denote also N = 2`q + 1 and M = 2`p + 1
with half integer `p, `q ≥ −1/2 in order to match notation with the spins of Sklyanin algebras
entering the elliptic modular double. Now, using relations

lim
z→twqkpj

(
1− twqkpj

z

)
Γ
(tw
z

; p, q
)

=
(−1)jk+j+kq(j+1)k(k+1)/2p(k+1)j(j+1)/2

(p; p)∞(q; q)∞θ(q, . . . , qk; p)θ(p, . . . , pj; q)
(8.4)

and
θ(pkz; p) = (−z)−kp−

k(k−1)
2 θ(z; p), k ∈ Z,

we find

[Bmod(t)f ](w) =
Γ(w−2; p, q)

Γ(t−2w−2; p, q)

2`q+1∑
k=0

θ((tw)2q2k; p)

θ((tw)2; p)

k−1∏
b=0

θ(t2qb, (tw)2qb; p)

θ(qb+1, w2qb+1; p)

×
2`p+1∑
j=0

θ((tw)2p2j; q)

θ((tw)2; q)

j−1∏
a=0

θ(t2pa, (tw)2pa; q)

θ(pa+1, w2pa+1; q)

f(tqkpjw)

t4(jk+j+k)w2(j+k)p2jk+j2q2jk+k2 , (8.5)

where we should substitute the actual value of t = ±q−`q−1/2p−`p−1/2.
Note that for `p = `q = −1/2, when t = ±1 (or a = 0, 1/2), this series contains only

one term. Thus, for t = 1 (or a = 0) the intertwining operator becomes the unity operator,
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Bmod(1) = 1l (or S1(0) = 1l). For t = −1 (or a = 1/2) the intertwining operator becomes the
parity operator,

Bmod(−1) = P, Pf(w) = f(−w).

In the additive notation, we can write S1(1/2) = e
1
2
∂x , which is the half-period shift for the

variable w = e−2πix. All our functions are analytical in w (after removal of the exponential
factors from S1,3-operators) and t = e−2πia. Therefore S1(a+1) = S1(a) and S1(−1/2) = S1(1/2),
so that

S2
1(1/2) := S1(−1/2)S1(1/2) = P 2 = e∂x ,

which is equivalent to the unity operator, since it is the operator of shifting by the period 1.
If we remove the constraint t = ±q−`q−1/2p−`p−1/2 in (8.5) (which is not legitimate in our

procedure since we would need to restore an integral part in Bmod) and set formally `q, `p →∞,
we would obtain the double infinite series operator which sharply differs from the univariate
infinite series operator used in [23]. This fact shows the principle difference of the rigorously
defined integral operator Bmod(t) of [17] from the formal infinite elliptic hypergeometric series
realization of the S1-operator of [23].

From (8.5) we see that for special quantized values of t the Bmod(t)-operator has an almost
factorized form, the only non-factorizable pieces being the multiplier (pqt2)−2jk and the action
on the function itself f(tqkpjw). Suppose now that we work in the space of functions of the
form

f(z) = θ+
4`q

(z; p)θ+
4`p

(z; q), (8.6)

where θ+
4`(z; q) is an arbitrary A1-symmetric theta-function of order 4` ≥ 0 with the modular

parameter q, i.e. a holomorphic function of z ∈ C∗ satisfying the properties

θ+
4`(z

−1; q) = θ+
4`(z; q), θ+

4`(qz; q) =
1

(qz2)2`
θ+
4`(z; q). (8.7)

As mentioned already, such a consideration is inspired by our starting intertwining relation
(4.9) and its partner (7.4) with S1 ∼ B(t), which show that the space of zero modes of the
B-operator forms an invariant space for two Sklyanin algebra generators. It is known that
the standard Sklyanin algebra generators leave invariant the space formed by theta functions
θ+
4`(z; q) [10]. But our operator Bmod(t) is symmetric in p and q. Therefore it is natural to

consider the above ansatz for f(z) to have an explicit realization of the automorphism for the
elliptic modular double permuting two Sklyanin algebras [19].

Substitute now expression (8.6) into formula (8.5), use second relation in (8.7), explicitly
substitute the value of t, and remove where possible extra powers of p or q from theta-function
arguments. Then for integer `p and `q we obtain

[Bmodf ](w) =
(−1)(2`q+1)(2`p+1)p`p(1−2`p`q+2`p−2`q)q`q(1−2`p`q+2`q−2`p)

w2(2`p+2`q+1)
∏2`q

b=0 θ(w
−2qb; p)

∏2`p

a=0 θ(w
−2pa; q)

×

(
2`q+1∑
k=0

qk θ(w
2q2k−2`q−1; p)

θ(w2q−2`q−1; p)

k−1∏
b=0

θ(qb−2`q−1, w2qb−2`q−1; p)

θ(qb+1, w2qb+1; p)
θ+
4`q

(p−
1
2 qk−`q− 1

2w; p)

)

×

(
2`p+1∑
j=0

pj θ(w
2p2j−2`p−1; q)

θ(w2p−2`p−1; q)

j−1∏
a=0

θ(pa−2`p−1, w2pa−2`p−1; q)

θ(pa+1, w2pa+1; q)
θ+
4`p

(q−
1
2pj−`p− 1

2w; q)

)
.(8.8)
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Similar expressions are found when one of the parameters `p or `q (or both) is a half-integer.
We see a complete factorization of the action of our operator to the proper subspaces θ+

4`q
(z; p)

and θ+
4`p

(z; q), so that each of its factors is independent on the other one. This means that
after finding zero modes for one of the factors other zero modes are obtained simply by the
interchange p↔ q and `p ↔ `q.

Note that it is not legitimate to choose `p = −1/2 (or `q = −1/2) in formula (8.8), since
the second relation in (8.7) is valid only for ` ≥ 0. For 2`p + 1 = 0 (or 2`q + 1 = 0), when
the second sum is absent, we obtain the previously considered operator (8.3). We have found
thus a space of zero modes of the elliptic Fourier transformation operator Bmod(t) of dimension
dzm = (2`p + 1)(2`q + 1) for `p, `q ≥ 0. For 2`p + 1 = 0 one has dzm = 2`q + 1 and, vice
versa, for 2`q + 1 = 0 one has dzm = 2`p + 1. For 2`p + 1 = 2`q + 1 = 0 (i.e., t = ±1) there
are no zero modes since Bmod(1) = 1 and Bmod(−1) = P , the parity operator. This space
forms a nontrivial finite-dimensional invariant subspace of the R-operator R12 which we plan
to investigate in detail in the future.

It would be interesting to characterize the full space of zero modes of the integral operator
Bmod(t). We conjecture that for holomorphic functions f(z), z ∈ C∗, satisfying the property
f(z−1) = f(z), and generic values of bases p and q such zero modes exist only for t2 = qNpM

with N,M ∈ Z, (N,M) 6= (0, 0). The A1-symmetric products of theta functions of moduli
p and q described above are conjectured to form the full finite-dimensional subspace of these
zero modes. Respectively, we conjecture that the latter space describes all finite-dimensional
modules for our R-operator R12 bases on holomorphic functions. In this respect it would be
interesting to understand how expression (7.1) is reduced to Baxter’s R-matrix (2.1), Sklyanin’s
L-operator [9], and how it is related to Felderhof’s solution of YBE [24].

Examples of the meromorphic zero modes for Bmod(t) with generic continuous values of the
parameter t are found from the elliptic beta integral evaluation (5.7). Indeed, let us rewrite
this formula in the form

[Bmod(t)f ](w) = g(w), f(z) =
4∏

j=1

Γ(tjz
±1; p, q),

g(w) =
4∏

j=1

Γ(tw±1tj; p, q)
∏

1≤j<k≤4

Γ(tjtk; p, q),

where t2
∏4

j=1 tj = pq and the integration contour C in Bmod(t) is chosen in an appropriate
way. Take now, for instance, t3t4 = pq and assume that parameters t1 and t2 do not depend
on w and t1t2p

jqk 6= 1, j, k ∈ Z≥0 (or t2 6= p−jq−k since we have the constraint t2t1t2 = 1).
Then Γ(t3t4; p, q) = 0 and no singularities emerge from other elliptic gamma functions in g(w).
Therefore one obtains g(w) = 0, i.e. f(z) = Γ(t1z

±1, t2z
±1; p, q) is a meromorphic zero mode of

the integral operatorBmod(t). If the values of t1 and t2 depend on w then instead of vanishing the
function g(w) may diverge, which is illustrated by the inversion relation Bmod(t)Bmod(t

−1) = 1l.
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9 Solutions for Im(η) < 0 and Im(η) = 0

Suppose now that Im(η) < 0. Then a particular solution of the starting equation for Φ(z) in
(4.7) has the form

Φ(z) =
Γ(z + b− 2η|τ,−2η)

Γ(z + a− 2η|τ,−2η)
.

Note the flip of gamma functions and a shift of z by 2η with respect to the Im(η) > 0 case.
Using this fact it is not difficult to find solutions of equations (4.6), (4.16), (4.17), and (4.18)
for Im(η) < 0. For instance, instead of (4.19) one finds

∆(z, x) = e−
πi
η

(x2−z2) Γ(±z ± x− η + s|τ,−2η)

Γ(±2x|τ,−2η)
ϕ(z, x),

where ϕ(z, x) has the same properties as before. Now Sk-operators should act on functions of

the form e
πi
η

x2

Ψ(x) where Ψ(x + 1) = Ψ(−x) = Ψ(x). Passing to the space of functions Ψ(x)
we come to the following result.

Theorem 5. Let Im(η) < 0 (or |q| > 1) and V be the space of even and periodic functions of
two complex variables Ψ(z1, z2) with the period 1 which do not have simple poles in the domains
Im(η) ≤ Im(z1), Im(z2) ≤ −Im(η). Define three operators

[S2(u2 − v1)Ψ](z1, z2) = Γ
(
±z1 ± z2 − u2 + v1 − η + τ

2
|τ,−2η

)
ϕ2(z1, z2) ·Ψ(z1, z2), (9.1)

where |
√
p/qe2πi(v1−u2)| < |q|−1,

[S1(u1−u2)Ψ](z1, z2) =
κ′

Γ(2u1 − 2u2|τ,−2η)

∫ 1

0

Γ(±z1 ± x+ u1 − u2|τ,−2η)

Γ(±2x|τ,−2η)
ϕ1(z1, x)·Ψ(x, z2)dx,

(9.2)
where |e2πi(u1−u2±z1)| < |q|−1/2 and κ′ = (p; p)∞(q−1; q−1)∞/2,

[S3(v1−v2)Ψ](z1, z2) =
κ′

Γ(2v1 − 2v2|τ,−2η)

∫ 1

0

Γ(±z2 ± x+ v1 − v2|τ,−2η)

Γ(±2x|τ,−2η)
ϕ3(z2, x)·Ψ(z1, x)dx,

(9.3)
where |e2πi(v1−v2±z2)| < |q|−1/2. Here ϕk(z, x)-functions have the same properties as in the case
Im(η) > 0.

Then the operators Sk(u) map the space V onto itself and satisfy the defining intertwining
relations (3.10), (3.11), and (3.12), provided in the corresponding L-operator (2.2) one uses the
Sklyanin algebra generators realization

Sa
mod = eπiη (i)δa,2θa+1(η)

θ1(2z)

[
θa+1 (2z − 2η`) · e2πiz · eη∂ − θj+1 (−2z − 2η`) · e−2πiz · e−η∂

]
.

They satisfy also the Coxeter relations (3.17), (3.18), and (3.19) as a consequence of the elliptic
beta integral evaluation formula with q replaced by q−1.
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For the choice ϕk = 1 the R-matrix has the following explicit form

[R12(u)f ](z1, z2) =
(p; p)2

∞(q−1; q−1)2
∞

(4πi)2
Γ(
√
p/qz±1

1 z±1
2 e2πi(v2−u1); p, q−1) (9.4)

×
∫

T2

Γ(e2πi(u1−v1)z±1
2 x±1, e2πi(u2−v2)z±1

1 y±1,
√
p/qe2πi(v1−u2)x±1y±1; p, q−1)

Γ(e4πi(u1−v1), e4πi(u2−v2), x±2, y±2; p, q−1)
f(x, y)

dx

x

dy

y
.

Evidently, this expression is symmetric in p and q−1, i.e. there exists the second RLL-intertwining
relation obtained from (3.7) simply by permuting −2η and τ (or p and q−1). The demand of
existence of this modular double forces the functions ϕk to be constants independent on z1

and z2. Note that the operator (9.4) is formally obtained from (7.1) simply by the changes
u− v → v − u and η → −η. However, in difference from the Baxter R-matrix (2.1), this is not
a symmetry transformation since both expressions are defined only for a particularly fixed sign
of Im(η).

Consideration of the regime Im(η) = 0, or |q| = 1, is substantially more complicated.
One has to use the modified elliptic gamma function [14]. Before passing to corresponding
considerations, we would like to consider the situation when |q| < 1 and the Sklyanin algebra
generators have the form

Sa =
(i)δa,2θa+1(η)

θ1(2z)

[
θa+1

(
2z − 2η`+

1

2

)
· eη∂z − θa+1

(
−2z − 2η`+

1

2

)
· e−η∂z

]
, (9.5)

which differs from (2.5) by the addition of 1/2 to arguments of theta functions depending on
the spin `. These operators represent a particular automorphism of the algebra [10] with the
Casimir operators changed to

K0 = 4 θ2
2

(
(2`+ 1) η

)
; K2 = 4 θ2

(
2(`+ 1) η

)
θ2(2` η) .

One can check that in this case the factorization (4.1) has the same form with the replace-
ments u1 → u1 − 1/4 and u2 → u2 + 1/4. Similar shifts v1 → v1 − 1/4 and v2 → v2 + 1/4 take
place in the second L-operator entering intertwining relation (3.11). Substituting these shifts
in the appropriate places of derivation of the S2-operator, this time we come to the following
equations

θ3(z1 + z2 + u2 − v1) S(z1 − η, z2) = θ3(z1 + z2 + v1 − u2) S(z1, z2 + η) ,

θ3(z1 + z2 − u2 + v1) S(z1 + η, z2) = θ3(z1 + z2 − v1 + u2) S(z1, z2 − η) ,

θ3(z1 − z2 + u2 − v1) S(z1 − η, z2) = θ3(z1 − z2 + v1 − u2) S(z1, z2 − η) ,

θ3(z1 − z2 − u2 + v1) S(z1 + η, z2) = θ3(z1 − z2 − v1 + u2) S(z1, z2 + η) (9.6)

with the general solution for S2-operator

S2(a) = Γ
(
±z1 ± z2 + a+ 1

2
+ η + τ

2
|τ, 2η

)
ϕ2(z1, z2), a = u2 − v1. (9.7)

For ϕ2 = 1, one still has S2(−a)S2(a) = 1l, as needed. Similar picture holds for |q| > 1 regime
as well.

As to the operators S1 and S3, they do not change their form at all. Indeed, the intertwining
relations (4.10) lead to equations (4.13) with the replacements s → s − 1/2 in the first row
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theta functions and s→ s+ 1/2 in the second row. As a result of the latter inhomogeneity, it
happens that equation (4.14) does not change apart of the overall sign for all terms, equation
(4.15) does not change at all. As a result, the final equations (4.16), (4.17), and (4.18) do
not change at all. Therefore, the shape of the S1-operator does not change. Validity of the
cubic Coxeter relation is guaranteed again by the elliptic beta integral with the replacement of
corresponding parameters g3 → g3 +1/2 and g4 → g4 +1/2, which does not spoil the balancing
condition (5.8) defined modulo Z. As a result the R-operator (7.1) is slightly changed — it
is necessary to replace in the kernel of this operator +

√
pq by −√pq. The modular double

exists as well with the partner Sklyanin algebra generators being obtained from (7.3) after the
replacement g → g − 1/2.

Now it is straightforward to build a solution of equations (9.6) which is well defined for
Im(η) = 0. First we set 2η = ω1/ω2, τ = ω3/ω2 and renormalize all other variables in Sklyanin’s
L-operator

z1 →
z1

ω2

, z2 →
z2

ω2

, u→ u

ω2

, v → v

ω2

.

Then equation (4.7) takes the form

Φ(z + ω1) = e
πia−b

ω2

θ1(
z+a
ω2

)

θ1(
z+b
ω2

)
· Φ(z) ,

which has a particular solution of the form

Φ(z) =
G(z + a;ω)

G(z + b;ω)
,

where G(z;ω) is the modified elliptic gamma function (11.20) well defined for |q| ≤ 1 and satis-
fying the same key equation as Γ(e2πiu/ω2 ; p, q) (11.23). Using these facts, we can immediately
write out the final general expression for S2-operator following from equations (9.6) and valid
for Im(τ) > 0, Im(η/τ) < 0 (which admits Im(η) = 0):

S2(a) = G(±z1 ± z2 + a+ 1
2

∑3
k=1 ωk ;ω)ϕ2(z1, z2), a = u2 − v1,

where ϕ2(z1 + ω1, z2) = ϕ2(z1, z2 + ω1) = ϕ2(z1 + ω1/2, z2 + ω1/2). Because of the inversion
formula for G(z;ω)-function, for ϕ2 = 1 one has S2(−a)S2(a) = 1l.

A solution of equations (4.16), (4.17), and (4.18) for the ∆-kernel valid for Im(η) = 0 has
the form

∆(z, x) = e
2πi

ω1ω2
(x2−z2) G(±x± z − u1 + u2;ω)

G(±2x;ω)
ϕ1(z, x), (9.8)

where ϕ1-function has the same periodicity properties as ϕ2.
Substitute now the second form of G(x;ω)-function (11.21) into these expressions. Then we

can write

S2(a) = e
− 4πia

ω1ω2ω3
(z2

1+z2
2) · Γ

(
− 1

ω3
(±z1 ± z2 + a+ 1

2

∑3
k=1 ωk)

∣∣− ω2

ω3
,−ω1

ω3

)
· ϕ′2(z1, z2),

where
ϕ′2(z1, z2) = e−

4πi
3

B3,3(a+ 1
2

∑3
k=1 ωk;ω) · ϕ2(z1, z2).

34



Analogously,

∆(z, x) = e
2πi

ω1ω2
(x2−z2)

e
4πi

ω1ω2ω3
[x2(b− 1

2

∑3
k=1 ωk)+z2(b+ 1

2

∑3
k=1 ωk)]

×
Γ
(
− 1

ω3
(±x± z − b)

∣∣− ω2

ω3
,−ω1

ω3

)
Γ
(
± 2x

ω3

∣∣− ω2

ω3
,−ω1

ω3

) · ϕ′1(z, x)

where b = u1 − u2 and

ϕ′1(z, x) = e
2πi
3

(B3,3(0;ω)−2B3,3(−b;ω)) · ϕ1(z, x).

After derivation of the ∆-kernel we have to fix the integration interval [α, β] and the space
of functions for which the S1-operator really satisfies the intertwining relations. First, as it was
done earlier, we pass to the modified Sklyanin algebra generators (4.21) with additional shift
by 1/2 in the arguments of `-dependent theta functions and conjugate similarly Sk-operators.

This does not change the operator S2, but removes the exponential e
2πi

ω1ω2
(x2−z2)

from ∆(z, x).
Then we note that the ratio of elliptic gamma functions in ∆ is a periodic function of z and x
with the period ω3. Therefore we set α = 0 and β = ω3 and demand that the modified operator

S1 acts on functions Φ(x) such that Ψ(x) := e
4πi

ω1ω2ω3
x2(b− 1

2

∑3
k=1 ωk)

Φ(x) is an even ω3-periodic
function of x, Ψ(−x) = Ψ(x + ω3) = Ψ(x). Finally, equations for ∆-kernel are true provided
∆(z, x) has no poles in the parallelogram x ∈ [−ω1, ω3 − ω1, ω3 + ω1, ω1] which, by complete
analogy with the previous cases, is guaranteed for |e2πi(b±z)/ω3| < |eπiω1/ω3|.

So, we have found operators S1, S2, and S3 (it differs from S1 only by the space where it
acts). Returning back to the original notation, i.e. renormalizing back x→ xω2, u→ uω2, etc,
we come to the following theorem.

Theorem 6. Let Im(τ) > 0 (i.e., |p| < 1) and Im(η/τ) < 0 (for Im(η) = 0, i.e. |q| = 1, this
assumes Re(η) > 0). Denote ϕ′k(z, x), k = 1, 2, 3, arbitrary even elliptic functions of z and x
with periods τ and 2η satisfying additional constraints

ϕ′k(z + η, x+ η) = ϕ′k(z, x), k = 1, 2, 3,

and not having simple poles in the domains Im(η/τ) ≤ Im(z/τ), Im(x/τ) ≤ −Im(η/τ).
Define the operators

S2(u2− v1) = e
2πi(v1−u2)

ητ
(z2

1+z2
2) ·Γ

(±z1 ± z2 + v1 − u2

τ
− 1

2
− η

τ
− 1

2τ
| − 1

τ
,−2η

τ

)
·ϕ′2(z1, z2), (9.9)

where |
√
p̃r̃e2πi(v1−u2)/τ | < |r̃| with p̃ = e−2πi/τ and r̃ = e−4πiη/τ , and

[S1(a)Φ](z1, z2) = κ̃

∫ τ

0

e
2πi
ητ

[x2(a− 1
2
−η− τ

2
)+z2

1(a+ 1
2
+η+ τ

2
)] Γ
(

1
τ
(±x± z1 + a)| − 1

τ
,−2η

τ

)
Γ
(

2a
τ
,±2x

τ
| − 1

τ
,−2η

τ

) · ϕ′1(z1, x)Φ(x, z2)
dx

τ
,

where a = u1 − u2, |e2πi(a±z1)/τ | < |r̃|1/2 and κ̃ = (p̃; q̃)∞ (r̃; r̃)∞/2,

[S3(b)Φ](z1, z2) = κ̃

∫ τ

0

e
2πi
ητ

[x2(b− 1
2
−η− τ

2
)+z2

2(b+ 1
2
+η+ τ

2
)] Γ
(

1
τ
(±x± z2 + b)| − 1

τ
,−2η

τ

)
Γ
(

2b
τ
,±2x

τ
| − 1

τ
,−2η

τ

) ·ϕ′3(z2, x)Φ(z1, x)
dx

τ
,

(9.10)
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where b = v1 − v2, |e2πi(b±z2)/τ | < |r̃|1/2.
Denote as Va,b the space of functions of two complex variables Φ(z1, z2) such that the products

e
2πi
ητ

z2
1(a− 1

2
−η− τ

2
)e

2πi
ητ

z2
2(b− 1

2
−η− τ

2
)Φ(z1, z2)

are even and periodic in z1 and z2 with the period τ and which do not have simple poles in
the domains Im(η/τ) ≤ Im(z1/τ), Im(z2/τ) ≤ −Im(η/τ). Then the operators S1, S2 and S3

map the space Va,b for a = u1 − u2 and b = v1 − v2 onto itself and they satisfy the defining
intertwining relations (3.10), (3.11) and (3.12) provided in the corresponding L-operator (2.2)
one uses the Sklyanin algebra generators of the form

Sa
mod = e−πiη (i)δa,2θa+1(η)

θ1(2z)

[
θa+1

(
2z − 2η`+ 1

2

)
· e−2πiz · eη∂z

− θa+1

(
−2z − 2η`+ 1

2

)
· e2πiz · e−η∂z

]
. (9.11)

It remains to confirm the Coxeter relations for the choice ϕ′k = 1. The relation S2(a)S2(−a) =
1l is evident. It is not difficult to check the cubic Coxeter relation (5.3) as it leads to a solution of
the star-triangle relation for Im(η) = 0 considered in [30]. We shall not present corresponding
details – although it is neater than before, all the exponential factors cancel and the identity
is reduced again to the computation of the elliptic beta integral in a particular parameteriza-
tion [13]. Also, it follows from the integral analogue of the Bailey lemma formulated in terms of
the G(z;ω)-function. In a similar way, equalities S1(a)S1(−a) = S3(a)S3(−a) = 1l are reduced
to the previously considered inversion relations in a different parameterization because of the
cancellation of exponential factors. In general, in the arbitrary product . . . SiSjSk . . . one never
violates the restrictions on space of functions Φ(z1, z2) needed for operators S1 and S3, i.e. all
the exponential factors can be pulled out to the far left and far right.

We could write out the explicit form of the R-operator using its factorized form, but it is
skipped since this is a straightforward procedure leading to a somewhat cumbersome expression.
After dropping the exponential factors from this expression one would come to the R-operator
which is obtained from (7.1) (with

√
pq replaced by −√pq) by a simple modular transformation

(ω2, ω3) → (−ω3, ω2).
As to the elliptic modular double, the R-operator written in terms of the G(u;ω)-functions

(i.e., the form obtained after scalings z → z/ω2, etc) is symmetric with respect to the per-
mutation ω1 ↔ ω2. In the original notation z, g := η(2` + 1), η, τ , the permutation of these
quasiperiods is equivalent to the changes η → 1/4η, τ → τ/2η, z → z/2η, g → g/2η (here g
is considered as an independent variable). Therefore the derived R-operator also has second
RLL-relation, where Ldoub is composed of a new Sklyanin algebra generators of the form

S̃a
mod = e−

πi
4η

(i)δa,2θa+1(
1
4η
| τ
2η

)

θ1(
z
η
| τ
2η

))

[
θa+1

(
2z − g + 1

2η

∣∣∣ τ
2η

)
· e−πiz/η · e

1
4η

∂z

− θa+1

(
−2z − g + 1

2η

∣∣∣ τ
2η

)
· eπiz/η · e−

1
4η

∂z

]
. (9.12)

This elliptic modular double has been introduced in [19] as well. Thus we have found solutions
of the Yang-Baxter equation (1.1) for all possible regions of the key complex parameter η.
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10 Conclusion

In this paper we have merged two constructions from the theory of quantum integrable sys-
tems and the theory of special functions. One construction is a specific approach to building
YBE solutions developed in [20–23]. It is based on the realization of the permutation group
generators by various operators acting in the functional spaces and it directly leads to the
factorized form of the R-matrices as products of elementary transposition operators. Another
construction is the elliptic beta integral evaluation [13] and its various consequences formulated
as an elliptic Fourier transformation and integral Bailey lemma [17]. This result formed a basis
for developing the theory of a principally new and very powerful class of special functions —
elliptic hypergeometric integrals [11, 14]. As a result of our considerations, both fields have
benefited and mutually enriched each other. The most complicated known R-matrix at the
elliptic level appeared to be defined by an integral operator with an elliptic hypergeometric
kernel and algebraic properties of the integral Bailey lemma ingredients got a natural interpre-
tation as Coxeter relations for the permutation group generators. Moreover, the key integral
operator defining the elliptic Fourier transformation appeared to be an intertwining operator
for the Sklyanin algebra. The general construction shows that YBE is a simple consequence of
a particular word identity in the group algebra for the braid group B6 or, in our case, of the
symmetric group S6, whose generators are realized as integral operators.

Our results can be applied to all known forms of YBE [7]. In particular, a generalization of
our construction to root systems is relatively straightforward due to the abundance of elliptic
beta integrals on root systems [11] and corresponding elliptic Fourier transformations [29].
In the rational case the most general known R-operator for An-root system was constructed
in [21, 22]. Star-triangle and star-star type relations for the root systems following from the
elliptic hypergeometric integral identities were considered in [30,32].

In [33], Faddeev and Volkov constructed a solution of YBE at the q-hypergeometric level
with the help of the pentagon relation for noncompact quantum dilogarithms. A generalization
of this model has been found in [30] and a question was posed — is it still related to the
pentagon relation and does there exist an elliptic analogue of the latter ? As shown in [23],
the method used in the present paper works at the compact q-hypergeometric level using q-
exponential functions. The noncompact situation can be treated as well after appropriate
replacement of q-exponentials by the noncompact quantum dilogarithms. However, it is easy
to degenerate our elliptic results to both compact and non-compact q-levels. From our analysis
of the elliptic hypergeometric constructions it is not clear which relation can be taken as a
direct elliptic analogue of the pentagon relation. Instead of a potential five-term relation,
the key role is played by the hexagon relation (6.4) emerging in the theory of elliptic Fourier
transformation [17] and defining the Coxeter relation for permutation operators (or the star-
triangle relation in integrable models of statistical mechanics).

We would like to stress that the spin variable ` in our analysis takes continuous values.
Therefore, strictly speaking, we deal not with the discrete Ising-type models, but with two-
dimensional quantum field theories. In this context the Yang-Baxter equation can be inter-
preted as a condition of factorizing the N -body S-matrix to the product of two-body scattering
matrices [7].

Let us discuss briefly an application of our results to four-dimensional (4d) supersymmetric
gauge field theories. The key discovery of [34] consists in the fact that superconformal indices of
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these theories are described by the elliptic hypergeometric integrals. For example, the elliptic
beta integral evaluation formula gets a remarkable interpretation as a direct indication on the
confinement phenomenon in the simplest 4d supersymmetric quantum chromodynamics.

A relation between 4d Nekrasov instanton partition function and conformal blocks in 2d
Liouville field theory was empirically discovered in [35]. In [36], superconformal indices of 4d
N = 2 supersymmetric field theories were tied to correlation functions of 2d topological field
theories. Our results are relevant to a different type of 4d/2d correspondence discovered in [30],
where 4d superconformal indices coincide with partition functions of integrable models of 2d
spin systems.

Seiberg duality is a special electric-magnetic duality of 4d supersymmetric non-abelian gauge
field theories. In the language of elliptic hypergeometric integrals there are two qualitatively
different situations. When the dual theory confines corresponding superconformal index is
identical to some elliptic beta integral on a root system or, from the statistical mechanics point
of view, to star-triangle relation for multicomponent spin systems. When the dual theory is
a nontrivial interacting field theory, one deals with symmetry transformations for integrals
equivalent to the star-star relations in statistical mechanics [30].

Since superconformal indices for simple gauge groups coincide with the statistical sums of
elementary cells for spin systems on the plane, the Seiberg duality transformations represent
the Kramers-Wannier type duality transformations for corresponding new 2d integrable models.
As indicated in [37] sequential integral transformations following from the Bailey lemma define
superconformal indices of particular quiver gauge theories. This procedure corresponds to
building full two-dimensional lattice partition functions as prescribed in the theory of quantum
integrable systems.
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11 Appendix

In this Appendix we collect some useful formulae. The standard infinite q-product is defined
as

(x; q)∞ =
+∞∏
k=0

(1− qk · x) ; q ∈ C , |q| < 1. (11.1)

The general theta-function with characteristics has the form

θa,b(z|τ) =
∑
n∈Z

eπi(n+a
2
)2τ · e2πi(n+a

2
)(z+ b

2
).

We use four standard theta-functions

θ1(z|τ) = −θ1,1(z|τ) = −
∑
n∈Z

eπi(n+ 1
2)

2
τ · e2πi(n+ 1

2)(z+ 1
2)
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= ip1/8e−πiz (p; p)∞ θ(e2πiz; p), (11.2)

where p = e2πiτ and
θ(t; p) = (t; p)∞(pt−1; p)∞, (11.3)

θ2(z|τ) = θ1,0(z|τ) =
∑
n∈Z

eπi(n+ 1
2)

2
τ · e2πi(n+ 1

2)z (11.4)

θ3(z|τ) = θ0,0(z|τ) =
∑
n∈Z

eπin2τ · e2πinz (11.5)

θ4(z|τ) = θ0,1(z|τ) =
∑
n∈Z

eπin2τ · e2πin(z+ 1
2). (11.6)

The following identities are used to factorize the L-operator and to derive defining equations
for the operators S1, S2, and S3:

2 θ1(x+ y) θ1(x− y) = θ̄4(x) θ̄3(y)− θ̄4(y) θ̄3(x), (11.7)

2 θ2(x+ y) θ2(x− y) = θ̄3(x) θ̄3(y)− θ̄4(y) θ̄4(x), (11.8)

2 θ3(x+ y) θ3(x− y) = θ̄3(x) θ̄3(y) + θ̄4(y) θ̄4(x), (11.9)

2 θ4(x+ y) θ4(x− y) = θ̄4(x) θ̄3(y) + θ̄4(y) θ̄3(x), (11.10)

2 θ4(x+ y) θ1(x− y) = θ̄1(x) θ̄2(y)− θ̄1(y) θ̄2(x), (11.11)

θ̄1(x− y) θ̄2(x+ y) = θ1(2x) θ4(2y)− θ1(2y) θ4(2x), (11.12)

where θ̄a(z) ≡ θa

(
z| τ

2

)
. We need also the duplication formula

θ1(2x|2τ) =
(−p; p)∞
(p; p)∞

θ1(x|τ)θ2(x|τ), p = e2πiτ . (11.13)

For Im(τ) > 0, Im(η) > 0 the elliptic gamma function is defined by the double infinite
product

Γ(z|τ, 2η) ≡
∞∏

n,m=0

1− e2πi(τ(n+1)+2η(m+1)−z)

1− e2πi(τn+2ηm+z)
. (11.14)

It is symmetric in its modular parameters Γ(z|τ, 2η) = Γ(z|2η, τ) and satisfies equations

Γ(z + 1|τ, 2η) = Γ(z|τ, 2η), (11.15)

Γ(z + τ |τ, 2η) = θ(e2πiz; e4πiη) · Γ(z|τ, 2η), (11.16)

Γ(z + 2η|τ, 2η) = θ(e2πiz; e2πiτ ) · Γ(z|τ, 2η), (11.17)

and the normalization condition Γ(η + τ/2|τ, 2η) = 1. One can evidently replace in these
equations

θ(e2πiz; e2πiτ ) = R(τ) · eπizθ1(z|τ), θ(e2πiz; e4πiη) = R(2η) · eπizθ1(z|2η),

where the constant R(τ) does not depend on z: R(τ) = −ie−
πiτ
4 ·
(
e2πiτ ; e2πiτ

)−1

∞ .
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Zeros of Γ(z|τ, 2η) are located at z = Z+ τZ>0 +2ηZ>0 and poles at z = Z+ τZ≤0 +2ηZ≤0.
The reflection equation for this function has the form

Γ(z|τ, 2η)Γ(−z + 2η + τ |τ, 2η) = 1. (11.18)

In the multiplicative notation one has

Γ(t; p, q) =
∞∏

j,k=0

1− t−1pj+1qk+1

1− tpjqk
, |p|, |q| < 1, (11.19)

so that Γ(t; p, q)Γ(pq/t; p, q) = 1 and

Γ(qt; p, q) = θ(t; p)Γ(t; p, q), Γ(pt; p, q) = θ(t; q)Γ(t; p, q).

For incommensurate ω1, ω2, ω3 ∈ C define three base variables,

q = e
2πi

ω1
ω2 , p = e

2πi
ω3
ω2 , r = e

2πi
ω3
ω1 ,

q̃ = e
−2πi

ω2
ω1 , p̃ = e

−2πi
ω2
ω3 , r̃ = e

−2πi
ω1
ω3 ,

where q̃, p̃, r̃ denote particular modular transformed bases. The condition that
∑3

k=1 nkωk 6=
0, nk ∈ Z, implies that none of p, q, and r is a root unity.

For |q|, |p| < 1 (which assumes |r| < 1) the modified elliptic gamma function is defined as

G(u;ω) = Γ(e2πiu/ω2 ; p, q)Γ(re−2πiu/ω1 ; q̃, r) =
Γ(e2πiu/ω2 ; p, q)

Γ(q̃e2πiu/ω1 ; q̃, r)
. (11.20)

This is a meromorphic function of u even for ω1/ω2 > 0, when |q| = 1, which is easily seen from
its another representation

G(u;ω) = e−
πi
3

B3,3(u;ω)Γ(e−2πiu/ω3 ; r̃, p̃), (11.21)

where B3,3 is a Bernoulli polynomial of the third order

B3,3(u;ω) =
1

ω1ω2ω3

(
u− 1

2

3∑
k=1

ωk

)(
(u− 1

2

3∑
k=1

ωk)
2 − 1

4

3∑
k=1

ω2
k

)
. (11.22)

Multiple Bernoulli polynomials are defined in the theory of Barnes multiple zeta-function from
the following expansion

xmexu∏m
k=1(e

ωkx − 1)
=

∞∑
n=0

Bm,n(u;ω1, . . . , ωm)
xn

n!
.

This function satisfies the equations

G(u+ ω1) = θ(e2πiu/ω2 ; p)G(u), (11.23)

G(u+ ω2) = θ(e2πiu/ω1 ; r)G(u), G(u+ ω3) = e−πiB2,2(u;ω)G(u).
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and the normalization condition G(
∑3

m=1 ωm/2) = 1. Here

B2,2(u;ω) =
u2

ω1ω2

− u

ω1

− u

ω2

+
ω1

6ω2

+
ω2

6ω1

+
1

2

is the second order Bernoulli polynomial appearing in the modular transformation law for the
theta function

θ
(
e
−2πi u

ω1 ; e
−2πi

ω2
ω1

)
= eπiB2,2(u;ω)θ

(
e
2πi u

ω2 ; e
2πi

ω1
ω2

)
. (11.24)

The reflection equation for G(u) has the form

G(a, b;ω) := G(a;ω)G(b;ω) = 1, a+ b =
3∑

k=1

ωk.
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