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Abstract. In this paper, we consider for any free presentation G = F/R of a group G
the coinvariance H0(G, R⊗n

ab
) of the n-th tensor power of the relation module Rab and show

that the homology group H2n(G, Z) may be identified with the inverse limit of the groups
H0(G, R⊗n

ab
), where the limit is taken over the category of these presentations of G. We also

consider the free Lie ring generated by the relation module Rab, in order to relate the inverse
limit of the groups γnR/[γnR, F ] to the n-torsion subgroup of H2n(G, Z).

0. Introduction

It is well-known that one may use a presentation of a group G as the quotient F/R, where F
is a free group, in order to calculate its (co-)homology. Besides Hopf’s formula for the second
homology group H2(G, Z) (cf. [2, Chapter II, Theorem 5.3]), another example supporting that
claim is the existence of the Gruenberg resolution [4]. Using Quillen’s description of the cyclic
homology of an algebra over a field of characteristic 0 as the inverse limit of a suitable functor
over the category of extensions of the algebra (cf. [7]), the homology groups Hn(G, Q) are
described in [3] as the inverse limit of certain functors over the category of group extensions
G = K/H (here, the group K is not necessarily free).

Working in the same direction, we obtain in this paper a description of the even homology
groups of G with coefficients in an arbitrary ZG-module M as the inverse limit of a functor
over the category P of all free presentations G = F/R. More precisely, we use the associated
relation module Rab = R/[R, R] and prove that there is an isomorphism

H2n(G, M) ' lim
←−

H0(G, M ⊗ R⊗n
ab ),

where the inverse limit is taken over P. Together with the free associative ring TRab on Rab

(which is built up by the tensor powers R⊗n
ab , n ≥ 0), we may also consider the free Lie ring

LRab on Rab. The Lie ring LRab is graded and its homogeneous component in degree n ≥ 1
consists of the abelian group γnR/γn+1R, where (γiR)i≥1 is the lower central series of R. Then,
the inclusion LRab ⊆ TRab induces a natural map

ln : γnR/[γnR, F ] −→ H0(G, R⊗n
ab )

for all n ≥ 1. The group γnR/[γnR, F ] is the kernel of the free central extension

1 −→ γnR/[γnR, F ] −→ F/[γnR, F ] −→ F/γnR −→ 1

and can be identified, in view of Hopf’s formula, with the homology group H2(F/γnR, Z).
It has been studied by many authors; a survey of the corresponding results may be found
in [10]. As an example, we note that the torsion subgroup of γnR/[γnR, F ], which is shown
in [loc.cit.] to be an n-torsion group if n ≥ 3, may be identified with the kernel of the so-
called Gupta representation of F/[γnR, F ] (cf. [9,11]). Confirming the existence of a close
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relationship between the groups γnR/[γnR, F ] and the torsion in the homology of G, we show
that the ln’s induce an additive map

`n : lim
←−

γnR/[γnR, F ] −→ lim
←−

H0(G, R⊗n
ab ) ' H2n(G, Z),

whose image is contained in the n-torsion subgroup H2n(G, Z)[n] of H2n(G, Z).
The contents of the paper are as follows: In Section 1, we explain how one can use dimension

shifting by the powers of the relation module Rab, which is associated with a presentation
G = F/R, in order to embed the homology groups H2n(G, ) into H0(G, ⊗ R⊗n

ab ) for all
n ≥ 1. In the following Section, we record some generalities about inverse limits and prove a
simple criterion for these limits to vanish. In Section 3, we define the presentation category
P of G and prove the existence of an isomorphism between H2n(G, ) and the inverse limit of
the H0(G, ⊗R⊗n

ab )’s. Finally, in the last Section, we consider the free Lie ring on the relation
module Rab and relate the inverse limit of the quotients γnR/[γnR, F ] to the n-torsion subgroup
of H2n(G, Z).

It is a pleasure for both authors to thank I.B.S. Passi for his helpful comments and sugges-
tions.

1. Relation modules and dimension shifting in homology

In this Section, we consider a group G and fix a presentation of it as the quotient of a free
group F = F (S) on a set S by a normal subgroup R. We shall denote by π the corresponding
surjective homomorphism from F to G. We note that the conjugation action of F on R
induces an action of F on the abelianization Rab = R/[R, R], which is obviously trivial when
restricted to R. Therefore, the latter action induces an action of G on Rab. The abelian group
Rab, endowed with the G-action defined above, is referred to as the relation module of the
given presentation.

The augmentation ideal f ⊆ ZF of F is well-known to be free as a ZF -module; in fact, it
is free on the set {s − 1 : s ∈ S}. In particular, the ZG-module ZG ⊗ZF f is free on the set
{1 ⊗ (s − 1) : s ∈ S}. Moreover, it follows from [2, Chapter II, Proposition 5.4] that there is
an exact sequence of ZG-modules

(1) 0 −→ Rab
µ

−→ ZG ⊗ZF f
σ

−→ ZG
ε

−→ Z −→ 0,

where µ maps r[R, R] onto 1⊗ (r− 1) for all r ∈ R, σ maps the basis element 1⊗ (s− 1) onto
π(s) − 1 for all s ∈ S and ε is the augmentation homomorphism. We note that R, being a
subgroup of the free group F , is itself free; therefore, the relation module Rab is Z-free. Since
this is also the case for the other three terms of the exact sequence (1), we conclude that the
latter is Z-split. We shall refer to the exact sequence (1) as the relation sequence associated
with the given presentation of G. The map µ therein was defined by Magnus in [6]; it will be
referred to as the Magnus embedding.

Lemma 1.1. Let M be a ZG-module. Then, there are natural isomorphisms Hi(G, M) '
Hi−2(G, M ⊗ Rab) for all i ≥ 2, where G acts on M ⊗ Rab diagonally.

Proof. Since the relation sequence (1) is Z-split, we may tensor it with M and obtain the
exact sequence of ZG-modules (with diagonal action)

(2) 0 −→ M ⊗ Rab −→ M ⊗(ZG ⊗ZF f)−→ M ⊗ ZG −→ M −→ 0.
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If N is a free ZG-module, then the ZG-module M ⊗ N (with diagonal action) is known to
be isomorphic with an induced module (cf. [2, Chapter III, Corollary 5.7]); in particular, the
homology of G with coefficients in M ⊗N vanishes in positive degrees. Since the ZG-modules
ZG⊗ZF f and ZG are free, we may use the exact sequence (2) and dimension shifting, in order
to obtain the existence of natural isomorphisms, as claimed. �

Corollary 1.2. Let M be a ZG-module. Then, there are natural isomorphisms H2n(G, M) '
H2(G, M ⊗ R⊗n−1

ab ) and H2n+1(G, M) ' H1(G, M ⊗ R⊗n
ab ) for all n ≥ 1.

Proof. The result follows by induction on n, using Lemma 1.1. �

Corollary 1.3. There are isomorphisms H2n(G, Z) ' H2(G, R⊗n−1

ab ) and H2n+1(G, Z) '
H1(G, R⊗n

ab ) for all n ≥ 1. �

Remark 1.4. The dimension shifting in the homology of a group G, which is associated
with the relation module Rab as above, may be alternatively described by using cap products;
see, for example, [12, §2.3]. More precisely, let χ ∈ H2(G, Rab) be the cohomology class that
classifies the group extension

1 −→ R/[R, R] −→ F/[R, R] −→ G −→ 1

as in [2, Chapter IV, Theorem 3.12]. Then, the dimension shifting isomorphisms above are
induced by the cap product maps with χ or with suitable powers of it.

We consider a ZG-module M and note that the Lyndon-Hochschild-Serre spectral sequence
associated with the extension

1 −→ R −→ F −→ G −→ 1

induces in low degrees the exact sequence

0 −→ H2(G, M) −→ H0(G, H1(R, M)) −→ H1(F, M) −→ H1(G, M) −→ 0.

Since M is trivial as a ZR-module, we have H1(R, M) = M ⊗ Rab and hence the latter exact
sequence reduces to

0 −→ H2(G, M) −→ H0(G, M ⊗ Rab) −→ H1(F, M) −→ H1(G, M) −→ 0.

We note that the above embedding of H2(G, M) into H0(G, M ⊗ Rab), which is provided by
the d2-differential of the spectral sequence, is known to coincide (up to a sign) with the cap
product map with the cohomology class χ ∈ H2(G, Rab) defined in Remark 1.4. In particular,
replacing M by M ⊗ R⊗n−1

ab , we conclude that there is an exact sequence

0 → H2(G, M ⊗R⊗n−1

ab )
χ∩
→ H0(G, M ⊗R⊗n

ab ) → H1(F, M ⊗R⊗n−1

ab ) → H1(G, M ⊗R⊗n−1

ab ) → 0

for all n ≥ 1.
Taking into account Corollary 1.2 and Remark 1.4, we may state the following result.

Proposition 1.5. Let M be a ZG-module and consider the cohomology class χ ∈ H 2(G, Rab)
defined in Remark 1.4. Then, there is an exact sequence

0 → H2n(G, M)
χn∩
→ H0(G, M ⊗ R⊗n

ab ) → H1(F, M ⊗ R⊗n−1

ab ) → H1(G, M ⊗ R⊗n−1

ab ) → 0
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for all n ≥ 1. In particular, there is an exact sequence

0 −→ H2n(G, Z)
χn∩
−→ H0(G, R⊗n

ab ) −→ H1(F, R⊗n−1

ab ) −→ H1(G, R⊗n−1

ab ) −→ 0

for all n ≥ 1. �

2. Some generalities on inverse limits

Let C be a small category, Ab the category of abelian groups and F : C −→ Ab a functor.
Then, the inverse limit lim

←−
F of F is the subgroup of the direct product

∏

c∈C F(c), consisting of

those families (xc)c which are compatible in the following sense: For any two objects c, c′ ∈ C
and any morphism a ∈ HomC(c, c′), we have F(a)(xc) = xc′ ∈ F(c′). We often denote the
abelian group lim

←−
F by lim

←−
F(c).

Let F, G be two functors from C to Ab. Then, a natural transformation η : F −→ G induces
an additive map

lim
←−

η : lim
←−

F −→ lim
←−

G,

by mapping any element (xc)c ∈ lim
←−

F onto (ηc(xc))c ∈ lim
←−

G. In this way, lim
←−

itself becomes

a functor from the functor category AbC to Ab. The proof of the following well-known result
is straightforward.

Lemma 2.1. The inverse limit functor lim
←−

: AbC −→ Ab is left exact. �

We recall that the coproduct of two objects a and b of C is an object a ? b, which is endowed
with two morphisms ιa : a −→ a?b and ιb : b −→ a?b having the following universal property:
For any object c of C and any pair of morphisms f : a −→ c and g : b −→ c, there is a unique
morphism h : a ? b −→ c, such that h ◦ ιa = f and h ◦ ιb = g. The morphism h is usually
denoted by (f, g).

As an example, we note that the coproduct of two abelian groups M and N in the category
Ab is the direct sum M ⊕ N , endowed with the obvious inclusion maps. For any abelian
group T and any pair of additive maps f : M −→ T and g : N −→ T , the additive map
(f, g) : M ⊕ N −→ T is given by (m, n) 7→ f(m) + g(n), (m, n) ∈ M ⊕ N .

The following elementary vanishing criterion will be used twice in the sequel.

Lemma 2.2. Let C be a small category and F : C −→ Ab a functor to the category of abelian
groups. We assume that:

(i) Any two objects a, b of C have a coproduct (a ? b, ιa, ιb) as above.
(ii) For any two objects a, b of C the morphisms ιa : a −→ a ? b and ιb : b −→ a ? b induce

a monomorphism
(F(ιa), F(ιb)) : F(a) ⊕ F(b) −→ F(a ? b)

of abelian groups.
Then, the inverse limit lim

←−
F is the zero group.

Proof. Let (xc)c ∈ lim
←−

F be a compatible family and fix an object a of C. We consider the

coproduct a ? a of two copies of a and the morphisms ι1 : a −→ a ? a and ι2 : a −→ a ? a.
Then, we have

F(ι1)(xa) = xa?a = F(ι2)(xa)
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and hence the element (xa,−xa) is contained in the kernel of the additive map

(F(ι1), F(ι2)) : F(a) ⊕ F(a) −→ F(a ? a).

In view of our assumption, this latter map is injective and hence xa = 0. Since this is the case
for any object a of C, we conclude that the compatible family (xc)c vanishes, as needed. �

3. An inverse limit formula for H2n(G, )

We fix a group G and define the category of presentations P = P(G) as follows: The
objects of P are pairs of the form (F, π), where F is a free group and π a surjective group
homomorphism from F onto G. Given two objects (F, π) and (F ′, π′) of P, a morphism from
(F, π) to (F ′, π′) is a group homomorphism ϕ : F −→ F ′ such that π′ ◦ ϕ = π. Since the
groups that are involved are free, we note that for any two objects (F, π) and (F ′, π′) of P

there is at least one morphism from (F, π) to (F ′, π′).
Given an object (F, π) of P, we may consider the group ring ZF , the augmentation ideal f,

the kernel R = ker π, the relation module Rab and the associated Magnus embedding

µ : Rab −→ ZG ⊗ZF f.

It is clear that all these depend naturally on the object (F, π) of P. Moreover, this is also
true for the cohomology class χ ∈ H2(G, Rab) defined in Remark 1.4. Therefore, invoking the
naturality of the low degrees exact sequence which is induced by the Lyndon-Hochschild-Serre
spectral sequence with respect to the group extension and the coefficient module, we conclude
that the dimension shifting isomorphisms as well as the exact sequence of Proposition 1.5 is
natural with respect to the morphisms of P. In view of the left exactness of the inverse limit
functor (cf. Lemma 2.1), we thus obtain an exact sequence

(3) 0 −→ H2n(G, M) −→ lim
←−

H0(G, M ⊗ R⊗n
ab ) −→ lim

←−
H1(F, M ⊗ R⊗n−1

ab )

for all n ≥ 1, where the inverse limits are taken over the category P.

Lemma 3.1. Let (F, π) and (F ′, π′) be two objects of the presentation category P of G.
(i) The coproduct (F, π) ? (F ′, π′) is provided by the object (F ′′, π′′) of P, where F ′′ is the

free product of F and F ′ and π′′ : F ′′ −→ G the homomorphism which extends both π and π ′.
(ii) Let ι : (F, π) −→ (F ′′, π′′) and ι′ : (F ′, π′) −→ (F ′′, π′′) be the structural morphisms of

the coproduct (F ′′, π′′). Then, the induced maps ι∗ : Rab −→ R′′ab and ι′∗ : R′ab −→ R′′ab between
the corresponding relation modules are both split monomorphisms of ZG-modules.

Proof. Assertion (i) is clear and, because of symmetry, we only have to prove assertion (ii)
for the structural morphism ι. We note that the additive map ι∗ : Rab −→ R′′ab i s obtained by
restricting ι and then passing to the quotients. We choose a morphism ϕ : (F ′, π′) −→ (F, π)
in P and consider the morphism λ = (idF , ϕ) : (F ′′, π′′) −→ (F, π), which extends both the
identity of (F, π) and ϕ. Then, λ restricts to a group homomorphism λ0 : R′′ −→ R, which is
a left inverse of the restriction ι0 : R −→ R′′ of ι and satisfies the equality

λ0(ι(x) r′′ι(x)−1) = xλ0(r
′′) x−1

for all x ∈ F and r′′ ∈ R′′. It follows that the additive map λ∗ : R′′ab −→ Rab which is induced
by λ0 to the quotients is a ZG-linear left inverse of ι∗. �

We can now state and prove our first main result.
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Theorem 3.2. Let M be a ZG-module. Then, there is an isomorphism of abelian groups

H2n(G, M)
∼

−→ lim
←−

H0(G, M ⊗ R⊗n
ab ),

where the inverse limit is taken over the category P of presentations of G for all n ≥ 1. In
particular, there is an isomorphism

H2n(G, Z)
∼

−→ lim
←−

H0(G, R⊗n
ab )

for all n ≥ 1.
Proof. In view of the exact sequence (3), it suffices to prove the vanishing of the inverse

limit of the functor from P to the category of abelian groups, which maps any object (F, π)
onto H1(F, M ⊗ R⊗n−1

ab ). In order to prove the vanishing of that inverse limit, we shall apply
the criterion established in Lemma 2.2. We have to verify that conditions (i) and (ii) therein
are satisfied. To that end, we fix two objects (F, π) and (F ′, π′) of P and denote by Rab and
R′ab the corresponding relation modules.

In view of Lemma 3.1(i), the objects (F, π) and (F ′, π′) have a coproduct in P, which is
provided by (F ′′, π′′), where F ′′ is the free product of F and F . Let R′′ab denote the relation
module that corresponds to the coproduct (F ′′, π′′). We have to prove that the map

H1(F, M ⊗ R⊗n−1

ab ) ⊕ H1(F
′, M ⊗ R

′⊗n−1

ab ) −→ H1(F
′′, M ⊗ R

′′⊗n−1

ab ),

which is induced by the inclusions of F and F ′ into F ′′, is injective. To that end, we note that
the corresponding Mayer-Vietoris exact sequence shows that the natural map

H1(F, M ⊗ R
′′⊗n−1

ab ) ⊕ H1(F
′, M ⊗ R

′′⊗n−1

ab ) −→ H1(F
′′, M ⊗ R

′′⊗n−1

ab )

is injective. Therefore, it only remains to prove that the natural maps

H1(F, M ⊗ R⊗n−1

ab ) −→ H1(F, M ⊗ R
′′⊗n−1

ab )

and
H1(F

′, M ⊗ R
′⊗n−1

ab ) −→ H1(F
′, M ⊗ R

′′⊗n−1

ab )

are injective. We may now complete the proof invoking Lemma 3.1(ii), which itself implies

that the natural map R⊗n−1

ab −→ R
′′⊗n−1

ab (resp. R
′⊗n−1

ab −→ R
′′⊗n−1

ab ) is a split monomorphism
of ZG-modules and hence of ZF -modules (resp. of ZF ′-modules). �

Remark 3.3 Using a different technique than that employed above, an analogous inverse
limit description of the even homology groups of G with coefficients in Q is established in [3].
More precisely, for any extension K of G with kernel H, one may consider the augmentation
ideal h ⊆ ZH of H and the subgroup B = ZH ∩ [ZK, ZK] ⊆ ZH, where [ZK, ZK] is the
subgroup of ZK generated by the set {xy − yx : x, y ∈ K}. Then, as shown in [loc.cit.], there
is an isomorphism

(4) H2n(G, Q)
∼

−→ lim
←−

hn
Q + BQ

hn+1

Q + BQ

for all n ≥ 1. Here, hQ = h ⊗ Q and BQ = B ⊗ Q, whereas the inverse limit is taken over
the category of all extensions G = K/H of G. We note that the latter category contains the
presentation category P of G as a full subcategory. Even though it is not clear whether the
existence of the isomorphism (4) is implied by Theorem 3.2, it seems that the two results are
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not unrelated. In order to describe such a relationship, we consider an object (F, π) of the
presentation category P of G and the kernel R = ker π. Let rQ and BQ be the subspaces of
the rational group ring QR that are constructed as above for the extension G = F/R of G.
We now consider, for all n ≥ 1, the map

δn : R⊗n
ab −→

rn
Q + BQ

rn+1

Q + BQ

,

which is given by mapping an elementary tensor r1[R, R]⊗· · ·⊗rn[R, R] onto the residue class
of the product (r1 − 1) · . . . · (rn − 1) ∈ rn

Q ⊆ rn
Q + BQ in the quotient for all r1, . . . , rn ∈ R. It

is easily seen that δn induces, by passage to the quotient, an additive map

δn : H0(G, R⊗n
ab ) −→

rn
Q + BQ

rn+1

Q + BQ

,

which depends naturally upon the object (F, π) of P. Hence, the groups that appear in the
inverse limit lim

←−
H0(G, R⊗n

ab ) of Theorem 3.2 map canonically into some of the groups that

appear in the inverse limit of the right hand side of the isomorphism (4) above. It would be
of some interest to know whether one can recover in this way the map

H2n(G, Z) −→ H2n(G, Q),

which is induced by the inclusion of Z into Q.

4. The inverse limit of the γnR/[γnR, F ]’s

Let H be a group. We recall that the lower central series (γnH)n≥1 of H is given by γ1H = H
and γn+1H = [γnH, H] for all n ≥ 1. Then, the graded Lie ring Gr H =

⊕∞
n=1

GrnH of H is
defined in degree n to be the (additively written) abelian group GrnH = γnH/γn+1H. The
Lie bracket on Gr H is defined by letting

(xγn+1H, yγm+1H) = [x, y]γn+m+1H,

where [x, y] = x−1y−1xy for all x ∈ γnH and y ∈ γmH (cf. [8, Chapter 2]).
On the other hand, if A is an abelian group then we may consider the free associative ring

on A, i.e. the tensor ring TA =
⊕∞

n=0
A⊗n. We recall that the multiplication in TA is defined

by concatenation of tensors. The associated Lie ring LTA is equal to TA as an abelian group,
whereas its Lie bracket is defined by letting (x, y) = xy − yx for all x, y ∈ TA. The free Lie
ring on A is the Lie subring LA of LTA generated by A. In fact, LA is a graded subring
of LTA, whose homogeneous component LnA ⊆ A⊗n of degree n is generated as an abelian
group by the left normed n-fold commutators (x1, . . . , xn), x1, . . . , xn ∈ A.

We now consider a group H and its abelianization Hab = H/[H, H]. Then, in view of the
universal property of the free Lie ring LHab, the identity map of Hab = L1Hab into Hab = Gr1H
extends to a graded Lie ring homomorphism

κ : LHab −→ Gr H.

It is clear that κ depends naturally on H. In particular, for all n ≥ 1 there is an additive map

(5) κn : LnHab −→ γnH/γn+1H,
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which is natural in H. We note that if the group H is free then the map κ (and hence all of
the κn’s) is bijective; cf. [8, Chapter 4, Theorem 6.1].

We shall now specialize the discussion above by letting (F, π) be an object of the presentation
category P of the group G and considering the kernel R = ker π. Then, the terms of the
lower central series of R are normal subgroups of F ; in particular, F acts on each quotient
GrnR = γnR/γn+1R by letting x · yγn+1R = xyx−1γn+1R for all x ∈ F and y ∈ γnR. The
latter action being trivial on R, it induces an action of G on the GrnR’s. Endowed with that
action, the abelian group GrnR is referred to as the n-th higher relation module associated
with the given presentation. (For n = 1, we recover the relation module Gr1R = Rab.) It is
clear that the induced action of G on Gr R is compatible with the Lie bracket. On the other
hand, the diagonal action of G on the tensor powers R⊗n

ab induces a G-action on TRab, which is
compatible with multiplication. In particular, G acts on the associated Lie ring LTRab by Lie
ring automorphisms. It is easily seen that the action of any group element on LTRab restricts
to a Lie ring automorphism of the free Lie ring LRab. In particular, LRab is a ZG-submodule
of LTRab and the homogeneous component LnRab is a ZG-submodule of R⊗n

ab for all n ≥ 1.
In view of the naturality of the additive map (5) with respect to group homomorphisms,

we conclude that the additive map

κn : LnRab −→ γnR/γn+1R

is ZG-linear for all n ≥ 1. Moreover, since the group R is free (being a subgroup of the free
group F ), the latter map is an isomorphism. For all n ≥ 1 we consider the ZG-linear map

λn : γnR/γn+1R −→ R⊗n
ab ,

which is defined as the composition

γnR/γn+1R
κ−1

n−→ LnRab ↪→ R⊗n
ab .

Since the coinvariance H0(G, γnR/γn+1R) is identified with γnR/[γnR, F ], the ZG-linear maps
λn defined above induce additive maps

ln : γnR/[γnR, F ] −→ H0(G, R⊗n
ab )

for all n ≥ 1. As shown in [11, Proposition 2], the abelian groups JG
n (Rab, Z) = ker ln are n-

torsion groups. It is clear that ln depends naturally upon the object (F, π) of the presentation
category P of G. Therefore, taking inverse limits over P, we may consider the additive map

`n = lim
←−

ln : lim
←−

γnR/[γnR, F ] −→ lim
←−

H0(G, R⊗n
ab ).

We can now state our second main result.

Theorem 4.1. Under the isomorphism between the homology group H2n(G, Z) and the inverse
limit lim

←−
H0(G, R⊗n

ab ), which is established in Theorem 3.2, the image of the additive map `n

defined above is contained in the n-torsion subgroup H2n(G, Z)[n] of H2n(G, Z).

The proof of the Theorem will occupy the remaining of the Section. Let (F, π) be an object
of the presentation category P and consider the associated Magnus embedding

µ : Rab −→ ZG ⊗ZF f
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and the n-th tensor power map

µ⊗n : R⊗n
ab −→(ZG ⊗ZF f)⊗n,

which is also ZG-linear. As shown in [11, Lemma 8], the kernel of the induced additive map

µ⊗n : H0(G, R⊗n
ab ) −→ H0

(

G,(ZG ⊗ZF f)⊗n
)

is identified with the homology group H2n(G, Z). The composition

γnR/γn+1R
λn−→ R⊗n

ab

µ⊗n

−→ (ZG ⊗ZF f)⊗n

is a ZG-module map, which induces, by applying the functor H0(G, ), an additive map

γnR/[γnR, F ]
ln−→ H0(G, R⊗n

ab )
µ⊗n

−→ H0

(

G, (ZG ⊗ZF f)⊗n
)

.

We shall denote the latter map by ϕn. As shown in [11, Proposition 1], the kernel of ϕn can
be identified with the kernel of a certain matrix representation of the group F/[γnR, F ], which
was defined by C.K. Gupta and N.D. Gupta in [5]. Since the kernel of µ⊗n is identified with
the homology group H2n(G, Z), as we have already noted above, there is an exact sequence

0 −→ JG
n (Rab, Z) −→ ker ϕn −→ H2n(G, Z)

for all n ≥ 1. In fact, as shown in [9], the homology group H2n(G, Z) in the exact sequence
above may be replaced by its n-torsion subgroup H2n(G, Z)[n]. Since the n-torsion subgroup
H2n(G, Z)[n] of H2n(G, Z) = ker µ⊗n is contained in the n-torsion subgroup H0(G, R⊗n

ab )[n] of
H0(G, R⊗n

ab ), we conclude that there is an exact sequence

0 −→ JG
n (Rab, Z) −→ ker ϕn

ln|
−→ H0(G, R⊗n

ab )[n],

where ln| denotes the restriction of ln to the subgroup ker ϕn ⊆ γnR/[γnR, F ]. We shall now
consider the commutative diagram with exact rows

0 −→ JG
n (Rab, Z) −→ ker ϕn

ln|
−→ H0(G, R⊗n

ab )[n]
‖ ↓ ↓

0 −→ JG
n (Rab, Z) −→ γnR/[γnR, F ]

ln−→ H0(G, R⊗n
ab )

where both unlabelled vertical arrows are the corresponding inclusion maps. Since all maps
involved are natural with respect to the given object (F, π) of the presentation category P of
G, we may invoke Lemma 2.1 in order to obtain a commutative diagram with exact rows

0 −→ lim
←−

JG
n (Rab, Z) −→ lim

←−
ker ϕn

`n|
−→ lim

←−
H0(G, R⊗n

ab )[n]

‖ ↓ ↓

0 −→ lim
←−

JG
n (Rab, Z) −→ lim

←−
γnR/[γnR, F ]

`n−→ lim
←−

H0(G, R⊗n
ab )

Since the inverse limit lim
←−

H0(G, R⊗n
ab )[n] of the n-torsion subgroups is identified with the

n-torsion subgroup of the inverse limit lim
←−

H0(G, R⊗n
ab ), the assertion in the statement of

Theorem 4.1 follows from the next result.

Lemma 4.2. The additive map lim
←−

kerϕn −→ lim
←−

γnR/[γnR, F ], which is induced by the

inclusions kerϕn ↪→ γnR/[γnR, F ], is an isomorphism for all n ≥ 1.
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Proof. In view of Lemma 2.1, the exact sequence

0 −→ ker ϕn −→ γnR/[γnR, F ]
ϕn

−→ H0

(

G, (ZG ⊗ZF f)⊗n
)

,

which is associated with an object (F, π) of P as above, induces an exact sequence

0 −→ lim
←−

ker ϕn −→ lim
←−

γnR/[γnR, F ]
φn

−→ lim
←−

H0

(

G, (ZG ⊗ZF f)⊗n
)

,

where φn = lim
←−

ϕn. Therefore, the result will follow if we show the vanishing of the inverse

limit lim
←−

H0(G, (ZG ⊗ZF f)⊗n). To that end, we shall apply the criterion established in Lemma

2.2. We have to verify that conditions (i) and (ii) therein are satisfied. In view of Lemma 3.1,
any two objects (F, π) and (F ′, π′) of P have a coproduct, which is provided by (F ′′, π′′), where
F ′′ is the free product of F and F ′. Therefore, if F (resp. F ′) is free on the set S (resp. S ′),
then F ′′ is free on the disjoint union S ′′ of S and S ′. It follows that the ZG-modules ZG⊗ZF f,
ZG ⊗ZF ′ f′ and ZG ⊗ZF ′′ f′′ are free on the sets {1 ⊗ (s − 1) : s ∈ S}, {1 ⊗ (s′ − 1) : s′ ∈ S ′}
and {1 ⊗ (s′′ − 1) : s′′ ∈ S ′′} respectively. Hence, the inclusions of F and F ′ into F ′′ induce
an isomorphism of ZG-modules

(ZG ⊗ZF f) ⊕ (ZG ⊗ZF ′ f′)
∼

−→ ZG ⊗ZF ′′ f′′.

Therefore, considering n-th tensor powers, we conclude that the natural map

(ZG ⊗ZF f)⊗n ⊕ (ZG ⊗ZF ′ f′)⊗n −→ (ZG ⊗ZF ′′ f′′)⊗n

is a split monomorphism of ZG-modules. Therefore, applying the functor H0(G, ), we con-
clude that the natural map

H0

(

G, (ZG ⊗ZF f)⊗n
)

⊕ H0

(

G, (ZG ⊗ZF ′ f′)⊗n
)

−→ H0

(

G, (ZG ⊗ZF ′′ f′′)⊗n
)

is a (split) monomorphism of abelian groups, as needed. �

Remarks 4.3 (i) Let (F, π) be an object of the presentation category P of G. Then, as
shown in [9, Theorem 2], the kernel ker ϕn of the additive map ϕn constructed above coincides
with the torsion subgroup of γnR/[γnR, F ]. Therefore, it follows from [10] that ker ϕn is an
n-torsion group if n ≥ 3 and a 4-torsion group if n = 2. Since this is also the case for the
inverse limit of these groups, we may invoke Lemma 4.2 in order to conclude that the inverse
limit lim

←−
γnR/[γnR, F ] is an n-torsion group if n ≥ 3 and a 4-torsion group if n = 2. The

latter assertion provides another proof of Theorem 4.1, in the case where n ≥ 3.
(ii) It follows from the proof of Theorem 4.1 given above that for all n ≥ 1 there is a short

exact sequence of abelian groups

0 −→ lim
←−

JG
n (Rab, Z) −→ lim

←−
γnR/[γnR, F ] −→ H2n(G, Z)[n],

where the inverse limits are taken over the presentation category P of G. In order to obtain
an embedding of the inverse limit lim

←−
γnR/[γnR, F ] into the n-torsion subgroup H2n(G, Z)[n]

of the homology group H2n(G, Z), at least in the case where n ≥ 3, one may ask whether the
abelian group lim

←−
JG

n (Rab, Z) is zero. Following Thomson, who studied the vanishing of the

group JG
n (Rab, Z) in [11], we consider the following special cases:

(ii1) Assume that G is a finite group of order relatively prime to n. Then, the homology
group H2n(G, Z) has no non-trivial n-torsion elements and the group JG

n (Rab, Z) vanishes for
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any presentation G = F/R (cf. [11, Theorem 2(ii)]). Therefore, taking into account the exact
sequence above, it follows that lim

←−
γnR/[γnR, F ] = 0.

(ii2) Assume that the cohomological dimension of G is ≤ 2. Then, the group JG
n (Rab, Z)

vanishes for any presentation G = F/R (cf. [11, Theorem 2(iii)]), whereas the homology group
H2n(G, Z) vanishes for all n ≥ 2. Therefore, taking into account the exact sequence above, it
follows that lim

←−
γnR/[γnR, F ] = 0 for all n ≥ 2.
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