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Abstract

This paper presents an analysis of the set of connections on the U(1) quantum Hopf bundle on the
standard quantum sphere Sg, whose total space algebra SU4(2) is equipped with the 3d left covariant
differential calculus by Woronowicz. The introduction of a Hodge duality on both Q(SU,(2)) and on

Q(Sg) allows for the study of Laplacians and of gauged Laplacians.
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1 Introduction

This paper is focussed on the analysis of a class of Hall Hamiltonians in the noncommutative set up. It
is intended as a survey of the general formulation of quantum principal bundles, and as a description of
a specific procedure to formalise, on both the total space and the base space of a quantum Hopf bundle,
a set of Laplacian operators and to couple them with gauge connections. It also presents a detailed
formulation of the classical Hopf bundle. The emphasis in the standard approach from differential
geometry is given to the algebraic aspects which can be extended to the noncommutative setting.

Classical Hall Hamiltonians are gauged Laplace operators acting on the space of sections of the
vector bundles associated to the principal bundles 7 : G — G/K over homogeneous spaces (with G
semisimple and K compact) and can be constructed in terms of the Casimir operators of G and K.
With (p, V) a representation of K, one has the identification of sections of the associated vector bundle
E = G x5 V with equivariant maps from G to V, I'(G/K, E) ~ C>(G,V) k) C C*(G)®V. Given a
connection on G one has a covariant derivative V on I'(G/K, E), so that the gauged Laplacian operator is
AE = (VV*+V*V) = xVxV, where the dual V* is defined from the metric induced on the homogeneous
space basis G/K by the Cartan-Killing metric on G, or equivalently the Hodge duality comes from the
induced metric on G/K. If the connection is the canonical one, given by the orthogonal splitting of the
Lie algebra g of GG in terms of the Lie algebra £ of the gauge group and of its orthogonal complement,
then the gauged Laplacian operator can be cast in terms of the quadratic Casimirs of g and &:

E G
AP = (A°@1-1® CE)|C°C(G7VMK) = (Ca®1 =18 Ct)lcm v, (1.1)

The above formula [3] simplifies the diagonalisation of the gauged Laplacian, and has important appli-
cations in the study of the heat kernel expansion and index theorems on principal bundles.

The natural further step is to develop models of Hall effect on noncommutative spaces whose symme-
tries could be formalise in terms of quantum groups. In [16] the first model of ’excitations moving on a
quantum 2-sphere’ in the field of a magnetic monopole has been studied. It is described a quantum prin-
cipal U(1)-bundle over a quantum sphere Sg having as a total space the manifold of the quantum group
SU,(2) [4]. The natural associated line bundles are classified by the winding number n € Z: equipped
SU,(2) with the three dimensional left covariant calculus from Woronowicz [29], the gauge monopole
connection is studied and a gauged Laplacian acting on sections of the associated bundle is completely
diagonalised. That paper presents a first generalisation of the relation (1.1). Its most interesting aspect
is that the corresponding energies are not invariant under the exchange monopole/antimonopole, namely
the spectrum of the gauged Laplacian is not invariant under the inversion of the direction of the magnetic
field, a manifestation of the phenomenon usually referred to as ’quantisation removes degeneracy’. An
analysis of the relation (1.1) is presented in [5], where Laplacians on a quantum projective plane are
gauged via the monopole connection.

The analysis in [16] embodies two specific starting points. The first one is that the quantum Casimir
C,, for the universal envelopping algebra U, (su(2)) dual to SU,(2) - thus playing the quantum role of the
classical envelopping algebra dual to the classical Lie group - is a quadratic operator in the generators
of U,(su(2)) acting on SU,(2), but can not be cast in the form of a whatever rank polynomial in the
left invariant generators of the left invariant three dimensional differential calculus by Woronowicz, so to
say in the basis of natural left invariant derivations associated to this differential calculus. The second
starting point is the studies performed in [18]. In that paper a x-Hodge operator on the exterior algebra
on the Podles sphere Sg - coming from the differential two dimensional calculus induced on Sg by the
three dimensional calculus on SU,(2) - has been introduced, so to make it possible the definition of
Laplacian operator on Sz.

This paper evolves the analysis started in [16], and describes another generalisation of the relation
(1.1) to the setting of the quantum Hopf bundle, when the total space algebra of this bundle has been
equipped with the 3D left covariant calculus from Woronowicz. A family of x-Hodge structures is
introduced on both the exterior algebra Q(SU,(2)) and the exterior algebra Q(S2), depending on a set
of real parameters: the corresponding Laplacians Ogy, 2y = xd xd : A(SU4(2)) = A(SU4(2)), and
Oz = *dxd : A(S2) — A(S2) are defined. The analysis of the connections on the principal bundle
allows for a gauging of the Laplacian Dsg on each associated line bundle. When Dsg is gauged into Op,
via the monopole connection, one finds:

¢"Op, = (Osu, (2) +7X:X>), (1.2)



where the integer n € Z specifies the value of the monopole charge. This is the relation generalising
the first equality in (1.1): the role of the quadratic Casimir of the gauge group algebra is played by
X, X,.>, with X, the vertical derivation of the fibration, and v € Ry appears in this formulation as a
parametrisation for a set of x-Hodge structures having the same compatibility, that is giving Laplacians
satisfying the same relation (1.2).

This paper begins with an exposition of the classical formalisation of the Hopf bundle. Section
2 presents a global — i.e. charts independent — description of the differential calculi on both the Lie
group manifold SU(2) ~ S3 and on the homogeneous space S? = $3/U(1), and introduces on the
exterior algebras (S®) and Q(S?) the Hodge duality structures coming from a Cartan-Killing type
metric on the Lie algebra su(2), in order to define Laplacian operators. The principal bunde structure is
described in terms of a well known principal bundle atlas. The aim of the section is to explicitly compute
for such a specific Hopf bundle, following the classical approach from differential geometry, the main
structures which will be generalised to the quantum setting. A more general and complete analysis of a
noncommutative geometry approach to the differential geometry of principal and quantum bundles is in
[2].

Section 3 describes a quantum formulation of the principal bundle having A(SU,(2)) as total space
algebra, A(Sg) as base manifold algebra and A(U(1)) as gauge group algebra. The differential calculus
on SU,(2) is the 3d left-covariant by Woronowicz [28] [29], the principal bundle structure is introduced
following [4].

Section 4 presents a x-Hodge duality on Q(SU,(2)), allowing for the definition of a Laplacian operator.
The Hodge duality is introduced following [14]; section 5 describes an evolution of this approach, giving
a x-Hodge duality structure on Q(Sg), and analysing its compatibility with the one on Q(SU,(2)).

Section 6 provides a complete explicit description of the set of connections on this specific realisation
of the quantum Hopf bundle, and of the main properties of the covariant derivative operators on each
associated line bundle. The emphasis is on the domain of the covariant derivative operators — the set of
horizontal coequivariant element of the bundle — which appears here as the quantum conuterpart of the
classical also called tensorial forms. Section 7 studies the coupling of the Laplacian operator on Q(Sg)
to the gauge connections.

Section 8 closes the paper, applying to the commutative algebras {A(SU(2)),.A(5?), A(U(1))} the
formalism developed in the quantum setting, in order to recover the structure of the classical Hopf bundle
from an algebraic perspective.

2 The classical Hopf bundle

With 7 : P — M a smooth surjective map from a manifold P to a manifold M, (P, M, ) is a fibre
bundle with typical fibre F over M if there is a fibre bundle atlas with charts (U;, \;), where U; is an
open covering of M and the diffeomorphisms \; : 7=1(U;) — U; x F are such that 7 : 7= 3(U;) — U;
is the composition of A; with the projection onto the first factor in U; x F. The manifold P is called
the total space of the bundle, the manifold M is the base of the bundle. From the definition it follows
that 7—1(m) is diffeomorphic to F — the fibre of the bundle — for any m € M. For any f € F it is
A; © /\j_l(m,f) = (m, \ij(m, f)) where A\;; : (U; NU;) x F +— F is smooth and \;;(m, ) belongs to the
group Diff(F) of diffeomorphisms of the fibre F for each m € U; NU;. The mappings A;; are called the
transition functions of the bundle, and satisfy the cocycle condition A;;(m, ) o Ajr(m, ) = Aig(m, ) for
m e U; N Uj N Uy, with )\ii(m, ) =idg for m € U;.

A fibre bundle (P, M, 7) is called a vector bundle if its typical fibre F is a vector space and if the
trivialisation diffeomorphisms A; may be chosen so to give transition functions \;; which are invertible
linear maps, elements in GL(F) for any m € M. A principal bundle (P, K, [M], 7) with structure group
K is a fibre bundle (P, M, ) with typical fibre K and such that the transition functions \;;(m, ) €
Aut(K) formalise the left translation of the group K on itself. On the total space of a principal bundle
there is also a right action of the Lie group K — that is vy (15 (p)) = rer(p) for any p € P and k, k' € K
— such that m(rx(p)) = w(p), and such that the action is free and transitive. The base M of the bundle
can be identified with the quotient P /K with respect to such a right action.

Given G a Lie group and K C G a closed Lie subgroup of it, the group manifold G is the total
space manifold of a principal bundle (G, K, G/K, ) with base space G/K - the space of left cosets - and
typical fiber given by the structure or gauge group K, so that the bundle projection 7 : G — G/K is the



canonical projection [20]. The right principal action of the gauge group K on G is given as ri(g) = gk
for any k € K and g € G. This action trivially satisfies the requirements of being free and transitive. If £
is the Lie algebra of the group K, the fundamental vector field X, € X(G) associated to 7 € ¢ is defined
as the infinitesimal generator of the right principal action rexps-(g) = gexp st of the one parameter
subgroup exp s7 C K: the mapping 7 € ¢ — {X,} € X(G) is a Lie algebra isomorphism between ¢ and
the set of fundamental vector fields {X,}. A differential form ¢ € Q(G) is called horizontal if ix ¢ =0
for any fundamental vector field X.

If p: K +— GL(W) is a finite dimensional representation of K on the vector space W, the associated
vector bundle to G is the vector bundle whose total space is £ = G X k) W, having typical fiber W. It is
defined as the quotient of the product G x W by the equivalence relation (ry(g) = gk;w) ~ (g; p(k)-w) for
any choice of g € G, k € Kand w € W: (£,G/K,7¢) is a fibre bundle with a projection ¢ : £ — G/K
which is consistently defined on the quotient as m¢[g, w], (k) = 7(g) from the principal bundle projection
.

With 1} : Q(G) — Q(G) the action of K on the exterior algebra (@) induced as a pull-back of the
right action ry of K on G, the p(K)-equivariant r-forms of the principal bundle are W-valued forms on
G defined as:

(G, W) iy = {6 € Q(GW) = 7 (G) @ W i 13(0) = p~ (R)6). (2.1)

A section of the associated bundle £ is an element in I'(G/K, £), namely a map o : G/K — & such that
me(o(m)) = m for any m € G/K. This definition is extended to I'")(G/K, £), the set of r-forms on the
basis G/K of the principal bundle with values in £. There is a canonical isomorphism

PG/, €) = Qo (G, W) (1) (2.2)

from the space of £-valued differential forms on G/K onto the space of horizontal p(K)-equivariant W-
valued differential forms on the principal bundle (G, K, 7). For r = 0 - with I'(G/K, £) ~ T'O(G/K, &) ~
the isomorphism gives the well known equivalence between equivariant functions of a principal bundle and
sections of its associated bundle. In particular, for W = R, C with trivial representation the isomorphism
is

QUG/K) =~ Qo (@) pa)=x = {¢ € UG) : ix, & =0; 1 = ¢}, (2.3)

giving a description of the exterior algebra on the basis of the principal bundle.

A connection on a principal bundle can be given via a connection 1-form. A connection 1-form on G
is an element w € Q(G, ¥), taking values in £ and satisfying the two local conditions:

w(X;) =T,

1 (w) = Adg-1 w,

where the adjoint action of K is given by (Ad—1 w)(X) = k~tw(X)k for any vector field X € X(G). At
each point g € G there is on the tangent space TyG a natural notion of vertical subspace, whose basis
is given by the vectors X, which are tangent to the fiber group K, while the connection 1-form selects
the horizontal subspace Hg(,w)(G) given by the kernel of w. Identifiying the element w(X) € ¢ with the
vertical vector field it generates, the expression X () = X — w(X) denotes the horizontal projection of
the vector field X € X(G).

Given any p(K)-equivariant form ¢ € Q" (G, W), k), the covariant derivative is defined as the map:

D (G W) ) = UG W) i)y DA(Xy.o, Xopr) = dop(X X)) (24)

where d is the exterior derivative on G. On a p(K)-equivariant horizontal form ¢ € Quor(G, W), k) the
action of the covariant derivative can be written in terms of the connection 1-form as:

D¢ =dp+wA . (2.5)



2.1 A differential calculus on the classical SU(2) Lie group

For G ~ SU(2) and K =~ U(1) one recovers the Hopf fibration 7 : S3 — S?, with S? the space of the
orbits SU(2)/U(1). The aim of this section is to describe the differential calculus on the total space of
this bundle, in terms of natural basis of global vector fields. Recall that a Lie group G naturally acts on
itself both from the right and from the left. The left action is the smooth map 1: G x G — G defined
via the left multiplication 1(¢’, g) = ¢'g = 14/(9): since lg/gv(g) = 1g/(1g7(g)), the left action is a group
homomorphism 1, : G — Aut(G). The right action is the smooth map r : G x G — G defined via the right
multiplication r(g, ¢') = g¢' = ry(g); it is then immediate to see that ry g (g) = gg'g" =147 (rg/(g)): the
right action is a group anti-homomorphism r, : G — Aut(G). For any T € g, the Lie algebra of G, it is
possible to define a vector field Ry € X(G). It acts as a derivation on a smooth complex valued function
defined on G, and can be written in terms of the pull-back I} : C*°(G) — C*(G) induced by l,. On
¢ € C®(Q):

Rr(9) = = (e (@), = 1= epsT - g)l,o. (2.6

Altough defined via the left action 1, the vector field R is called the right invariant vector field associated
to T' € g; this set of fields owes its name to the fact that, given ryy : X(G) — X(G) the push-forward
induced by the right action ry, they satisfy a property of right invariance:

l“g*(RT) = RT.
(From the definition of the pull-back map I} : C*°(G) + C*°(G) one has:
1;/9// (¢) = ¢ o lg/g” = ¢ o lg/ o lg// = 1;;// (1;/ (d)))

for any ¢ € C>°(G). This relation enables to prove that the map 1: T € g — Ry € X(G) is a Lie algebra
anti-homomorphism:
[Rr, Rr'] = R 1.

The analogous definitions starting from the right action naturally hold. For any T' € g, the vector
field Ly € X(G) is defined as a derivation on C*°(G), namely as the infinitesimal generator of the the
pull-back rj induced by the right action r,:

d

Lr(8) = 3 (paa ()], = = 0lg-expsT)], g (27)

on any ¢ € C*°(G). Left invariant vector fields satisfy a property of left invariance:
I5(Lt) = Lt;
themap i : T € g— Ly € X(G) is a Lie algebra homomorphism:
(L1, L] = Liz,17)-

The set {Lp} of left invariant vector fields as well the set {Ry} of right invariant vector fields are two
global natural basis of the left free C°°(G)-module X(G).

The total space of the classical Hopf bundle is the manifold S2, which represents the elements of the
Lie group SU (2). A point g € S can be then formalised via a 2 x 2 matrix with complex entries and
unit determinant:

u -0 _ _
g—(v i > Coau 4w =1 (2.8)

the components of the left invariant vector fields ¥(T") = Ly are given, following (2.7) in the defining
matrix representation by:

sle ) o= (4 ) @ 29)

Since exp sT is unitary, T should be antihermitian, and the choice of a basis in terms of the Pauli

matrices: ) 1 .
0 1 0 -1 i 1 0
Tx_z(z‘ o)’ Ty‘2<1 0 ) TZ_Q(O —1>’ (2.10)



gives the explicit form of the left invariant vector fields:

AT B
=2 "ou o0 o0 Vou
L _ 1 62—‘2—112—#1)—
Y 2\ ou v ov ou
L _ L ungvgf@gfﬂﬁ
=2\ ou v ov ou
. 0 0
L_=L,—1ilL, =1 (”au_“av>
. (-0 0
Ly=L,+il, =i (uav - vau) , (2.11)
satisfying the commutation relations:
[Lo;L-]=iL_,
[Lz; L] = —iLly,
[L_;Ly]=2iL,. (2.12)

The components of the right invariant vector fields Ry = I(T) are then given in the defining matrix
representation (2.6) as:

d%(expsT). ( v ) o= (T) - ( v > (2.13)

acquiring the form:

R _ ! vg—kug—ﬂg—@g
2\ ou v ov ou
Ro—_L(,9_,9 39 ;9
v =2 \"ou a0 "o " Vo
AR )
=72 \"ou  "ov "0 "o
S 0 _0
R_=R,—iR, =1 (vau—ua@)
) f 0 _0
R, =R, +iRy =1 <uav — v8u> . (2.14)
The commutation relations they satisfy are:
[Rza R—] = 77:R—7
[R.;R_] = iR,
[R_;Ry] = —2iR,. (2.15)
The quadratic Casimir of the Lie algebra su(2) is written as
1 1

The set X(S3) is a free left C°°(S3)- module. Right vector fields can be expressed in the basis of the left
vector fields as R, = JupLp. The matrix J is given by:

R_ w2 2uv —v? L_
R, = | —uv wu—-v0 —wv L, (2.17)
Ry —? 2uv u? Ly



and its inverse matrix is:

L_ u? —2uy  —v? R_
L, = v Ul — v v R, (2.18)
L. v —2uv  w? Ry

A similar analysis can be performed in the study of the cotangent space X¥*(G) of a Lie group. This
is a C°°(93)-bimodule, with two basis of globally defined 1-forms, namely the left invariant {&,} dual to
the set of left invariant vector fields {L,}, and the right invariant {7,} dual to the set of right invariant
vector fields {Ry}. They satisfy the invariance property:

15 (@q) = Wa,
T () = 1b : (2.19)
one then immediately computes:
Ri = Jiij — ﬁstp = (IJp (220)

The left invariant 1-forms are:

W, = —2i (adu + vdv)

w_ = —i(vdu — udv)

O+ = —i (udv — vdu) (2.21)
with @, = (w_ + @) and @, = (04 — @_). The complex structure on Q*(S?), compatible with the

complex structure on C*°(S?), is given by @} = &y, ©) = &y, @} = @.. while the right-invariant 1-forms
are:

7. = 2i (udu + vdv)
- =i (udv — vdu)
N+ = —i (adv — vda) . (2.22)

Given a complex valued smooth function ¢ € C>°(S?), the differential calculus is formalised through the
exterior derivative as a map d : C*°(S?) — Q!(S3) defined via:

do(X) = X(¢) (2.23)
in terms of the Lie derivative X (¢) of ¢ along the vector field X. This map acquires the form:
d¢ = La(¢)@a = Ry (0)7b (2.24)

where now L, (¢) represents the Lie derivative of ¢ along the vector field L,, while Ry(¢) represents the
Lie derivative of ¢ along the vector field Rj.

JFrom the C°°(S3)-bimodule Q!(S3) define the tensor product of forms as the C°°(S3)-bimodule
{Q1(S%)}9F = Q1(S®) @ (53) - - - ®coe(53) Q1 (S?) (k times). An alternation mapping A : {Q!(S?)}®F —
{Q1(S3)}®* is introduced as the C°°(S?%)-linear map

1 .
U@ ) =1 D (signo) O,1) @ .. @ Oy, (2.25)
‘o€ Sk

where 6; € Q!(S?) and the sum is over all the permutation o € Sj in the permutation group of k
elements, with (signo) the parity of the permutation o. The set

0F(83) = Range A({Q(S%)}®%) (2.26)

is the set of k-exterior forms, or k-forms, so that 2 acts on QF(S?) as the identity, with 202 = 2. Given
a € {QY(S?)}®F and B € {Q1(S?)}®!, define the wedge product as

(k+1)!

Ala ® ). (2.27)



With « the k-form given by v = 01 A ... Ay and G the [-form given by 8 = 011 A ... A Oy, the wedge
product reduces to a A § = > (signo)0y(1) A+ .. A gy A Ogig1) A - A bgoyry: the sum is over the
shuffles o(k, 1), the shuffles o(k,1) are the permutations o of {1,...,k + [} such that (1) < ... < (k)
and o(k+1) < ...o(k+1). The wedge product is bilinear, and satisfies the identity a A 8 = (=1)¥ g A«
for any k-form « and [-form (3. The complex structure is extended by requiring

(@Ap)" = (=)F5" o™

The exterior algebra coming from the differential calculus (2.24) is defined as the grade associative algebra
Q(SB) = (@ka(SS); /\).

The exterior derivative is extended to d : QF(S%) — QFF1(S3%) as the unique C-linear mapping
satisfying the conditions:

1. d is a graded A-derivation, that is d(a A B) = (da) A B+ (—=1)*a A d3 for any k-form «;

2. d2=dod=0;

3. on ¢ € QO(S3) =~ C(93), it is given by d¢ as in (2.24).

It is then easy to see that Q2(S?) is three dimensional, with a basis given by {&_ A&y, @4 AGD,, @, AD_}:
extending in a natural way via the pull back the left and right actions of the group SU(2) on Q2(5?), it
is also clear that such basis elements are left invariant. From (2.21) one has:

do_ =iw_ Nw,,
d(:)+ = —Z(:}+ A (:JZ,
da, = 2i0_ Aoy (2.28)

The bimodule 23(5?) is one dimensional, with again a left invariant basis 3-form given by {&_ A& AD, }.
A right invariant basis of the exterior algebra Q(S?) is analogously given in terms of the 1-forms 7,.

2.2 A Laplacian operator on the group manifold SU(2)

Being SU(2) a semisimple Lie group, the group manifold S3 can be equipped with the Cartan-Killing
metric originated from the Cartan decomposition of the Lie algebra su(2). Consider now as a riemannian
metric structure on S the symmetric tensor

g=0(D7 QW+ Oy Q@y) + 0, Wy, (2.29)

with @ € RT. For a = 1 such a metric tensor coincides with the the Cartan-Killing metric. The
volume associated to the g-orthonormal basis and to the choice of the orientation (z,y,z) is given by
0 = o, Ny A@;, so that 0% = 0. Such a volume 6 is a Haar volume, namely it is invariant with respect
to both the left I} and the right actions rj of the Lie group SU(2) on itself, since an explicit calculation
gives L,(0) = R,(f) = 0. The Hodge duality % : Q¥(53) — Q37%(S3) which corresponds to this volume
is the C°°(93)-linear map given on the left invariant basis of the exterior algebra Q(S3) by (1) = 6,
*(f) =1, and:

*(W5) = @0y N @2, *(QDy A @) = @y,
*(‘Dy) = J)Z A J)Ia *(‘Z)z A ‘Dr) = (-:)y, (230)
*(@.) = @y A @y, * (@ N@y) = a1 @,.

This Hodge structure satisfies two identities. The first is
K(€) = (- Pe=¢ (2.31)

on any ¢ € QF(S?), while the second — satisfied by any Hodge duality defined on a riemannian manifold
—1is
EN(E) =& N (%), (2.32)
for any £,¢ € QF(S%). This allows to define a symmetric bilinear map (-, Vs OF(S3) x QF(S3)
C>(83) (k=0,...,3) as:
(3 f/>SU(2) 0= &N (%E). (2.33)



The metric in (2.29) is a symmetric tensor g € {Q'(5%)}®? ~ X*(5%) @ce (g2 X*(5?), diagonal in the
global {@,,®,, .} basis. Its inverse is set as the symmetric tensor g~ € X(S®) ® X(S%) in terms of the
dual global basis {L,} of left invariant vector fields as g™' = a (L, ® L, + L, ® L) + L, ® L,. Given

two k-forms € = &;, ;@i A A@; and & =& @i AL AQ;, (sums are over iy < ... < ig, where

the ordering is intended with respect to the orientation), it is possible to prove that the bilinear map is
a symmetric tensor (-,-)gs € {X *(5%)}®k, whose components are given in terms of the components of

the tensor g~ 1:

<€7£/>S3 _ fily--<7ik£_;1,...,jk Zﬂ_ag—lila(jl) » .g—lika(jk) (2_34)

with ¢~'% the components of the tensor g~! in the basis dual to @;. Summation is over permutations o

of k elements, with parity 7,. An explicit evaluation gives:

- L - 5 . 5 1

Wy N @z, By NW2)gs = (02 AWy, W2 N W) gs = P

- . - 1

(W A\ Gy, Wz N Dy) gz = peL

<679>S3 =1 (2.35)

In the basis {&,} with a = +, z, the metric tensor is ¢ = 20(0- @ O + Wy ®W_) + @, ® ©, and the
volume form is § = 2iaw_ A &+ A @,. The Hodge duality in (2.30) is x(6) = 1, %(1) = 6, and:

*(W4) = iy Az, *Oy Nw,) = —iwy,
() = —id_ A, (Do A@,) = id_, (2.36)
*(W,) = 2iaw_ Ny, *W_ AN@y) = (—1/2a) ©s.

In such a basis one also has g7 = (1/2a)(L- ® Ly + Ly ® L_) + L, ® L., and the non zero terms of
the bilinear (2.35) are:

LD+ Nz, w— /\‘Dz>53 = <(-‘~)— /\@27@4- /\a)z>53 - %7
- 1
(O AL, O NDy)gs it
(0,6)gs = 1. (2.37)

Remark 2.1. [t is well known how a volume form can be used to introduce an integral on a manifold
[1]. The Haar volume defines an integral [, : C>°(S*) — C or equivalently [, : Q*(S®) — C since
Q3(89%) ~ C=(S?), with [,¢ = [,60 for any ¢ € C>(5%). Normalising the volume of the group
manifold, fe 1= fgg =1, from (2.32) it is possible to define a scalar product on the exterior algebra
Q(S?), given by:

s = [ente)= [@ers0, (2.33)
Starting from the Hodge duality a second bilinear map (-, -)gs : QF(S%) x QF(S$3) = C>°(S93), setting

(€, €)g0 0 =€ A (x¢) (2.39)



for any &,¢ € QF(S3). Tt is easy to see that such a definition is consistent, and that on the basis of left
invariant k-forms it is given by:

. A~ . 1
<w*7w*>53 - <w+,w+>53 - %a
(@2, 02) 55 = 15
- ~ .. o~ 1
(O NQz, Dy ND2)gs = (O ND2,O_ NDz)gs = 20’
- o~ 1
(@ AN@y, 0 AN@y)gs Tt
(0,0)gs = 1. (2.40)

Remark 2.2. Following the same path, from the bilinear (2.39) an inner product ()3 : QF(S%) x
QF(S3) — C can be defined by

(€:6)3 = /0 £ A (:E). (2.41)

Using again (2.32), it is possible to see that such a bilinear is hermitian, (§';€)5: = ((£;€')5:)*. Its
terms are clearly given by (2.40) on that left invariant basis.

The differential calculus on the group manifold S? as well as the x-Hodge duality on the exterior
algebra Q(S?) give a Laplacian operator defined as [gs¢p = xd x d¢ on any ¢ € C°(S3). It can be
written as a differential operator using the left invariant vector fields:

Ogs¢p = [i(L_L+ +L,L)+L.L.)¢ (2.42)

The Laplacian operator is the Casimir of the Lie algebra su(2) only if o = 1, that is only if the metric
from where it is originated is the Cartan-Killing metric.

2.3 The principal bundle structure and the monopole connection

Consider now the one parameter subgroup of SU(2) given by vz, (s) = exp sT, where T, is the generator
in (2.10). In this specific matrix representation it is

is (1 0 eis/2 0
yr. (8) = exp {2 ( 0 -1 )] = ( 0 e—is/2 ) , (2.43)

thus proving that vz, (s) ~ U(1) as a subgroup in SU(2). The space of left cosets SU(2)/U(1) is the set of
the orbits of the right principal action Fexp 57, (9) = g exp sT, which is free, and smooth; its infinitesimal
generator coincides with the vector field L, (2.9). This is the vertical field of the bundle.

In the classical approach a trivialisation (an atlas of local charts) of the base manifold is introduced.
Parametrising S by the Euler angles:

u = cos /2 (PTV)/2

v =sinf/2e " P¥)/2,
one has, as representative of the canonical projection 7 : SU(2) — S? ~ SU(2)/U(1):

b, = uu* —vv* = cosb,
by = uv™ 4+ vu™ = sinf cos p,

by = —i(vu* —uv*) = —sinfcos ¢ (2.44)

with b2 + b2 + b.v2; = 1. A choice for an open covering of the sphere S? is given by:

Sty ={8":b:#1} = 7 H(S{h) =Sty = {S° v £ 0},
5(25) ={S%:b, # -1} - fl(sﬁs)) = sf’s) = {53 :u #0}, (2.45)
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so that S?j) o~ S(zj) x U(1) via the diffeomorphisms:

v

= (1.0) € St = Awlo) = (r(0)s (5

)n) € 52y, x U(1),

9= (u,v) € Sk — As(g) = (n(g): (;) )€ Sty x U()

with n € Z. The set of transition functions associated with this trivialisation is given by )\;,g =
Asy = As 0 Ay ¢ (Stxy N SEs)) NU(L) = U(1). Choose b ~ (8,¢) € SZy) N Sfg). The element
(b, e') € (S(QN) N S(QS)) x U(1) is mapped into

b, —iby 1z,
b ey T2F iy ¢ g3

IRV 2

= As oA (™) = (b, e,

)\El(b, e') = (u

This means that Agn(b) - €!* = e™?e'@. the transition functions formalise a left action of the gauge
group on itself, and trivially satisfy the cocycle conditions. The image of any parallel on S? under Agy,
seen as a map from a subset of the sphere S? to the gauge group, winds n times around the U(1) circle.
The classical Hopf bundle is then characterised by the number n € Z, which is the cohomology class of
its cocycle of transition functions. For any integer n there is a representation of the gauge group,

Py UL = C,  py(e'®) =™ (2.46)

so that for any n € Z there is a line bundle &,, = SU(2) x,,,,, C associated to the principal Hopf bundle.
Since the representations of the gauge group given in (2.46) are defined on C, the set QT(S37(C)p(n) of
peny(U(1))-equivariant r-forms on the Hopf bundle can be easily formalised in terms of the action of the
vertical field of the bundle, giving the infinitesimal version of the definition in (2.1) (with r =0,...,3)

(8%, Oy, = V(5 = {6 € V(5%): 10) = o ()6 L() = 20}, (2.47)

The sets Q7(5%),,,, are C>(5?)-bimodule. The horizontal p(,)(U(1))-equivariant r-forms are given as:

P(n) - i, (¢) = 0} (2.48)

P(n)
&) = {6 € 0(s?)
for r > 0: one obviously has 2%3) = (), while
£ = QUS)p,,, ={o € C(S%) 1 1i(0) = ¢ < La(9) = —(in/2)¢}. (2:49)
With T(") (52, &,) the set of &,-valued r-forms defined on S2, the isomorphisms in (2.2) can be written
as isomorphisms of C°°(S?)-bimodule
r(s? e,) ~ g, (2.50)
They formalise the equivalence between r-form valued sections on each line bundle &, and p(,)(U(1))-
equivariant horizontal r-forms of the principal Hopf bundle. This equivalence can be described — as in

[21] — using the local trivialisation (2.45). A global, algebraic description of them, naturally conceived for
the generalisation to the non commutative setting, is in [15], and it is based on the Serre-Swan theorem®.

Given n € Z, consider an element ‘\i/(”)> € C">°(S3)|”H'1 whose components are given by:

n>0: ‘\i/(")> = ( " )u“u”‘“ e g0
Iz K
n<0: ‘\i/(")>u = ( |Z| >v”|_“u“ e £ (2.51)

IThe theorem of Serre and Swan [26] constructs a complete equivalence between the category of (smooth) vector bundles
over a (smooth) compact manifold M and bundle maps, and the category of finite projective modules over the commutative
algebra C(M) of (smooth) functions over M and module morphisms. The space I'(M, £) of (smooth) sections of a vector
bundle 7g : € — M over a compact manifold M is a finite projective module over the commutative algebra C'(M) and
every finite projective C'(M)-module can be realised as a module of sections of a vector bundle over M.
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with g =0,...|n|. Recalling the binomial expansion it is easy to compute that:

n
n=>0: <\I’(n),‘i’(n)> = Z ( " ) u" "Rtk T = (au + vv)" =1,
pn=0 H
In|
n<0: <‘i’("), ‘i/(")> = Z ( |Z| ) a gyl Ty = (G 4 To)" = 1. (2.52)
pn=0

The ket-bra element p(™ = ‘\i/(”)> <\i'(") € MI"H1(C*(5?)) is then a projector in the free finitely
generated module C*°(S2)I*1+1  as it satisfies the identities (p)T = p(), (p)2 = p(™). The matrix

elements of the projectors are given by ]3,%) = ‘\II(")> <\il(”)
n

: each projector p(™ has rank 1, because

v

its trace is the constant unit function given by

In|

trpt) = ;} ‘@<n>>u <q,(n>

=1 (2.53)

I

Consider the set of p(,)(U(1))-equivariant map £ as a left module over C>(S?) C C>=(S?): any
equivariant map ¢ € £ can be written in terms of an element (f| € C%(S2)"+1 as bf = <f, \i/(”)> =

Zanlo (fl, ’\i/(”)>#. Given the set T'(©)(S2,&,,) of sections of each associated line bundle &,, the equiva-

lence with the set £/ of p(n)y (U (1))-equivariant maps of the Hopf bundle is formalised via an isomorphism

between C'°°(S5?)-left modules, represented by:
rs2 &,) - £O
ol = (1B = (00

ol =or (B e gy = (o, 8) (2.54)

for any (f| € C>(S?)I"I+1. Since from this definition it is (o|p™) = (0|, this isomorphism enables to
recover (os| € T(0(S2.€,) ~ C(8?)nI+1p(n),
An explicit computation from (2.11) and (2.21) gives:

L.(04) = ioy — oy € £9;
Lo )=—io- —  w_egh (2.55)
so that for any n € Z the set of p(,)(U(1))-equivariant horizontal 1-forms of the Hopf bundle is

gD ={p=¢o_ +¢"0;: ¢ € £, and¢” € £, }. (2.56)

For n = 0 one also recovers from (2.3) the equivalence £ ~ Q1(52), so to have the C°(52)-bimodule
identification £§ ~ Q(5?) ®ceo(s2) 2 For r =1 the isomorphism in (2.50) can be written as:

(8%, €,) ~ QN (SHMF 5 o gl > 01(S?) @ (s2) £,
(o] = ¢ <\iz<n> o ¢= <a, @<n>> . (2.57)

Given any ¢ € £57, set (o|=¢ <\i/(")‘ € QY(S?)IM*1 50 to have (| = (o] p(™. To formalise the inverse
mapping, consider (0| € Q!(S?)M*T1p(™) with components (o], € Q1(S?) in the bra-vector notation,
satisfying (o], ﬁﬁf,) = (o|,. Define ¢ = <0, \il(”)>: it is then straightforward to recover that ¢ € 2 and
that (o], = ¢ <\iz<">

©w
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The same path can be followed to analyse the higher order forms. One has L,(&_ A @4) = 0, so the
C°°(5?)-bimodule of horizontal p(,,)(U(1))-equivariant 2-forms of the Hopf bundle is given by

L ={p=¢"0_Nay: ¢ € £} = Q0 (S?) ®coe(s2) L) (2.58)
for any n € Z. It is clear that for r = 2 the isomorphism in (2.50) can be written as:
T®(8%,8,) = (S g o 2D~ 07(5%) ®ce(s2) £,
(o] = ¢ <\if<"> o ¢= <o—, \iz<">> . (2.59)

The most natural choice of a connection, compatible with the local trivialisation, is given via the
definition, as a C-valued connection 1-form, of
m N N
W= o0, = n(u*du + v*dv), (2.60)

globally — i.e. trivialisation independent — selecting the horizontal part of the tangent space as the left
C*(S3)-module H®)(S3) C %(S%) = {L+} since w(L+) = 0. On the basis of left invariant vector fields

the horizontal projection acts as L(f) = Ly, ng) =0.

2.4 A Laplacian operator on the base manifold S?

The canonical isomorphism expressed in (2.3) allows to formalise the exterior algebra Q(S?) on the
basis of the Hopf bundle as the set of horizontal forms in ©(S?) which are also invariant for the right
principal action of the gauge group U(1). Recalling the definition of the C'°°(52)-bimodules of p(,) (U (1))-
equivariant forms given in (2.56) and (2.58), it is possible to identify

0°(8%) = c=(5%) ~ £”;
Q) = £l = {p =0+ "0y : ¢/ € £9, 0" € 2P
02(8?) ~ el = {fo_ray: fe e =c™(s%)}, (2.61)
where all such identifications are C°°(S?)-bimodule isomorphisms.
On the basis manifold S? ~ SU(2)/U(1) = n(SU(2)), whose trivialisation is given in (2.45), consider
the metric
and its associated volume 6 = a @, A Wy = 2iaw_ AN @y = ir, 0 in terms of the volume on the group

manifold S®. The corresponding Hodge duality is the C°°(S?)-linear map  : Q¥(S2) — Q27%(S2) given
by:

*(0) =1, *(1) =0,
{"3y) = i, H{§o) = —id/o_, (2.63)
with ¢’ € :3(_0; and ¢ € Eéo). The Laplacian operator on S? can be now evaluated:
1
Ogaf = #dxdf = o—(LsLo + L_L2)f. (2.64)

It corresponds to the action of the Laplacian [Jgs (2.42) on the subalgebra algebra C>°(S%) C C°(S3).

Remark 2.3. Given the Hodge duality (2.63), the expression (2.33) defines a bilinear symmetric tensor
(-, ) g2 : AF(S?) x QF(S2) > C>°(S?) (with k = 0,1,2):

(€ €52 0 =EN (), (2.65)
for any €,& € QF(S?). Its non zero terms are given by:
(Ll)g =1
(-, ¢"04)ge = (904, 0 ) go = ¢'¢" /205
(0,6), =1: (2.66)
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such a tensor coincides with the restriction to the exterior algebra Q(S?) of the analogue tensor (-, Vgs-
From (2.37), an explicit computation shows this equality:

(0,004 ) g = ¢'¢" 20 = ("4, d' D).,
Qi@ NDy,2iad_ ADy)g =1=(0,0), (2.67)

for any ¢’ € E(_O%, 9" € Eéo). The expression

(€,€) 520 =" N (x€), (2.68)

with again &,& € QF(S?), defines a bilinear map on Q(S?), which is the analogue of the bilinear map
(-,-)gs (2.39) on the exterior algebra Q(S®). Also the restriction of (-,-)5s to Q(S?) coincides with (-, ) g2.
From (2.40):

<1ﬂ 1>§2 = 1;
~ 1 Ix 1/ / ~. !~ ~
(PO, p'o_)g = %w ¢ = (PO W0 )gs,
~. "~ ~ 1 Ix 1/ /1~ "~ ~
("0, "0y ) g = gqﬁ ¢ = (90, V"4 ) gs;
(,

for any ¢’ 4" € S(_O% and ¢", " € 250)'

¢

Voo = 1= (2ia@_ Ady,2iad_ Ady) 5 (2.69)

Remark 2.4. Introducing from the volume form 0 an integral fé : 0°(S?%) — C or equivalently fé :
0%(S?) — C with the normalisation fé 0= fé 1 =1, the bilinear maps in (2.65) and (2.68) give on the
exterior algebra QU(S?) a symmetric scalar product and a hermitian inner product, setting:

(€€ s = /9 €A (), (2.70)
&€z = /9 £ A (x6). (2.71)

¢From (2.67) it is clear that the scalar product (2.70) coincides with the restriction to Q(S?) of the scalar
product (2.38) (+;+)gs on Q(S3), while the inner product (2.71) coincide with the restriction to (S?) of
the inner product (-;-)3s on Q(S®) from (2.40).

3 The quantum principal Hopf bundle

The aim of this section is to describe the quantum formulation of the Hopf bundle. It starts with a
description of the algebraic approach [29] to the theory of differential calculi on Hopf algebras, and then
presents an algebraic formalisation for the geometric structures of a principal bundle.

3.1 An algebraic approach to the theory of differential calculi on Hopf alge-
bras

The first order differential forms on the smooth group manifold SU(2) ~ S have been presented as
elements in the space X*(S%), or more properly as sections of the cotangent bundle T*(S®). The set
Q1(S3) ~ X*(S?) of one forms is a bimodule over C°°(S93), with the exterior derivative d satisfying
the basic Leibniz rule d(ff’) = (df)f’ + fdf’ for any f, f' € C>(S3). Moreover, being S* a compact
manifold, any differential form 6 € Q*(S®) is necessarily of the form 6 = fydf, (with k € N).

In an algebraic setting, these properties are a definition. Given a C-algebra with a unit A and Q a
bimodule over A with a linear map d : A — Q, (,d) is defined a first order differential calculus over A
if d(ff) = (df)f' + fdf for any f, f' € A and if any element 6 € 2 can be written as 0 = >, frdf;
with f, fllc e A

For a C-algebra with unit A, any first order differential calculus (2!(A),d) on A can be obtained
from the universal calculus (2'(A)yn,d). The space of universal 1-forms is the submodule of A ® A
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given by Q'(A)yn = ker(m : A® A — A), with m(a ® b) = ab the multiplication map. The universal
differential § : A — QY (A)yp is da = 1®a—a® 1. If N is any sub-bimodule of Q!(A),,, with projection
an QA un — QHA) = QY A)wn /N, then (QL(A),d), with d := mar 06, is a first order differential
calculus over A and any such a calculus can be obtained in this way. The projection mps : Q' (A)up —
Q' (A) is T (Y, a®@br) = >, adb; with associated subbimodule N = ker 7.

The concept of action of a group on a manifold is algebraically dualised via the notion of coaction
of a Hopf algebra H on an algebra A: if the algebra A is covariant for the coaction of a quantum
group H = (H,A,¢,5), one has a notion of covariant calculi on A as well, thus translating the idea of
invariance of the differential calculus on a manifold for the action of a group. Then, let A be a (right,
say) H-comodule algebra, with a right coaction Ar : A — A ® H which is also an algebra map. In
order to state the covariance of the calculus (2!(A),d) one needs to extend the coaction of H. A map

Ag) tQ1(A) — QY (A) @ H is defined by the requirement

AP (df) = (d@id)AR(f)

and bimodule structure governed by

AR (Faf) = Ar(HAR (@AF),
AR (A)f) = AR (AN Ar(S):
The calculus is said to be right covariant it happens that
(dea)Al) =AY gid)al
and
(idoe)AY = 1.

A calculus is right covariant if and only if for the corresponding bimodule N it is verified that Ag) WN) C

N ® H, where Ag) is defined on NV by formulae as above with the universal derivation § replacing the
derivation d:

AR (61) = (6 @id)AR()). (3.1)
Differential calculi on a quantum group H = (H,A,¢,S) were studied in [29]. The coproduct
A: H — H®H is viewed as both a right and a left coaction of H on itself:
AL (dh) = (d @ 1)A(R),
AV (dn) = 1 d)A(R). (3.2)

Right and left covariant calculi on H will be defined as before. Right covariance of the calculus implies
that Q' (H) has a module basis {n,} of right invariant 1-forms, that is 1-forms for which

AD () =n. @ 1,

and left covariance of a calculus similarly implies that Q'(H) has a module basis {w,} of left invariant

1-forms, that is 1-forms for which A(Ll)(wa) = 1 ® wy. In addition one has the notion of a bicovariant
calculus, namely a both left and right covariant calculus, satisfying the compatibility condition:

(ideal)o Al = (Al @id)o AD.
Given the bijection
r HOH—HH, r(h@h') = (h®1)AR), (3.3)

one proves that r(Q'(H)un) = H @ kere. Then, if Q C kere is a right ideal of kere, the inverse
image Ng = r~1(H ® Q) is a sub-bimodule contained in Q!(H),,. The differential calculus defined by
such a bimodule, Q'(H) = Q' (H)un/Ng, is left-covariant, and any left-covariant differential calculus
can be obtained in this way. Bicovariant calculi are in one to one correspondence with right ideals
Q C kere which are in addition stable under the right adjoint coaction Ad of H onto itself, that is
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Ad(Q) € Q ® H. Explicitly, one has Ad = (id®@m) (1 ®id) (S ® A) A, with 7 the flip operator, or
Ad(h) = h( ® (S(h(l))h(g)) using the Sweedler notation Ah =: h(1) ® h(2) with summation understood,
and higher numbers for iterated coproducts.

The ideal Q also determines the tangent space of the calculus. This is a collection {X,} of elements
in U(H) — the Hopf algebra dual to H — which allows one to write the exterior derivative as

dh = Za (Xovh) wa, (3.4)

for h € H and elements X, acting on the left on A. This duality is expressed by the existence of a bilinear
map (, ) :U(H) x H — C such that:

<A(X),h1 ® h2> = <X,h1h2> ,
<X1X27h> = <X1 ® X27A(h)> )
(X, 1) =e(X),  (Lh) =¢(h) (3.5)

for any X, € U(H) and hy, € H. The pairing is also required to be compatible with *-structures:

(X7 h) = (X, (S(h))*),
<X7 h> = <(S(X))*7h> (36)

Such a dual pairing has the property that (S(X),h) = (X,S(h)). A dual pairing can then be defined
on the generators, and extended to the whole algebra following the relations (3.5). The tangent space
results determined by the ideal Q as

Xo = {X ekerauq(ﬂ) : <X7Q> =0,VQe Q}’

where g1y is the counit of U(H). Via the dual pairing it is possible to regard U(H) as a subspace of
the linear dual of H, and there are canonical left and right U(H)-module algebra structure on H given
by [28]:

Xvoh:= h(l) <X, h(2)>,
haX = (X,ha))he (3.7)

This is the left action used in the definition (3.4). Left and right actions are mutually commuting:
(Xph)<aX' =X (haX'), VX, X' e U(H),h € H;
and the x-structures are compatible with both actions:

Xoh® = ((S(X))"h)",
h*aX = (ha(S(X))*)",  ¥YX €U(H), hel.

The derivation nature of elements in Xg is expressed by their coproduct,
AXa) =10 Xa+ Y Xp @ foa,

with the elements fq, € U, (H) having specific properties [29]:
A(fab) = fac ® fcb7 E(fazb) = (Sab- (38)
These elements also control the commutation relation between the basis 1-forms and elements of H:
wah = (far® h)ws,
_ -1
hw, = wab ((S™'(fa))>h)  for heH.

For a left covariant differential calculus, the elements X, € X'g play the role of left invariant vector fields,
while their dual forms w, play the role of the left invariant one forms. For a bicovariant differential

16



calculus it is possible to define a basis of the bimodule of 1-forms which are right invariant. The right
coaction of H on Q(H) defines a matrix:

AR (wa) = wp ® Jba (3.9)

where J,;, € H. This matrix is invertible, since S(Jup)Joe = Oac and JupS(Jpe) = dqc; it satisfies the
properties A(Jgp) = Jae @ Jeb, €(Jab) = dap and can be used to define a set of 1-forms:

Tla = wbS(Jba) naJab = Wp (310)

which are proved to be right invariant:

AR (1) = na ® 1 (3.11)
On the basis of right invariant 1-forms, the exterior derivative operator acquires the form:

dh =n,(h<Yy,) (3.12)

where Y, € Xg, and Y, = —S~!(X,) are the equivalent of the right invariant vector fields. Equation
(2.24) is then represented, in an algebraic approach to the theory of differential calculi, by (3.4) and
(3.12). The derivation nature of Y, as well as the commutation relation between the basis of right
invariant 1-forms and elements of H are ruled by the same elements fq, € U(H):

AYo)=10Ya+ ) Y ® foa

Nah = (h < fab)np,
hna = nb(h 4 (S_l(fab))'

3.2 Quantum principal bundles

An algebraic formalisation of the geometric structures of a principal bundle has been introduced in [4] and
refined in [9]. A slightly different formulation of such a structure is in [6], [7]; an interesting comparison
between the two approaches is in [8].

As a total space one considers an algebra P (with multiplication m : P ® P — P) and as structure
group a Hopf algebra H. Thus P is a right H-comodule algebra with coaction Ar : P +— P ®@ H. The
subalgebra of the right coinvariant elements, B = P" = {p € P : Agp = p® 1}, is the base space of
the bundle. At the ‘topological level’ the principality of the bundle is the requirement of exactness of
the sequence:

0— P(QB)un) P — L(Plun > PRkerey — 0 (3.13)

with QY(P)yn and Q(B)y, the universal calculi and the map x defined by
X:P®P — PRH, X = (m®id) (id ®AR), (3.14)

or x(p'®p) = p’Agr(p). The exactness of this sequence is equivalent to the requirement that the analogous
‘canonical map’ PP — PQH (defined as the formula above) is an isomorphism. This is the definition
that the inclusion B < P be a Hopf-Galois extension [25].

Remark 3.1. The surjectivity of the map x appears as the dual translation of the classical condition that
the action of the structure group on the total space of the principal bundle is free. In the classical setting
described in section 2, given the principal bundle (P,K,[M)],7), the condition that the right principal
action ry, is free can be formalised as the injectivity of the map:

PXGHPXMP, (p,k)'_}(park(p))7

whose dualisation is the condition of the surjectivity of the map x.
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With differential calculi on both the total algebra P and the structure Hopf algebra H one needs
compatibility conditions that eventually lead to an exact sequence like in (3.13) with the calculi at hand
replacing the universal ones. Then, let (91(73)7 d) be a H-covariant differential calculus on P given via
the subbimodule Np € (2'(P)un), and (2*(H),d) a bicovariant differential calculus on H given via the
Ad-invariant right ideal Qy € kerey. In order to extend the coaction Agr of H on P to a coaction of H
on Q(P), one requires Ar(Np) C Np @ H. The coaction Ar of H on Np C P ® P is understood as a
usual coaction of a Hopf algebra on a tensor product of its comodule algebras, i.e.

The condition Ag(Np) C Np ® H is equivalent to the condition (3.1).
The compatibility of the calculi are then the requirements that x(Np) C P ® Q; and that the map
~ap: QY P) — P @ (kerey/Qy), defined by the diagram

O P)un = QY(P)
I x L~np (3.15)

id @m
Pokerey 5% P (kerewn/On)

(with mar and 7g,, the natural projections) is surjective and has kernel
ker ~p, = PQYB)P =: QL .(P). (3.16)

Here Q!(B) = BdB is the space of nonuniversal 1-forms on B associated to the bimodule N := Np N
QY (B)un. These conditions ensure the exactness of the sequence:

0 — PQUB)P — U (P) 28 P& (kerey/Qxn) — 0. (3.17)

The condition x(Np) C P ® Qyp is needed to have a well defined map ~,s,: with all conditions for
a quantum principal bundle (P, B, H; Np, Q) satisfied, this inclusion implies the equality x(Np) =
P ® Q. Moreover, if (P,B,H) is a quantum principal bundle with the universal calculi, the equality
XNp) = P ® Qy ensures that (P, B, H; Np, Q) is a quantum principal bundle with the corresponding
nonuniversal calculi.

Elements in the quantum tangent space Xg,, (H) giving the calculus on the structure quantum group
H act on kerey/Qp via the pairing (-,-) between Uy(H) and H. Then, with each £ € Xo,,(H) one
defines a map

£:QYP) =P, €= (id®¢) o (~ap) (3.18)

and declare a 1-form w € Q'(P) to be horizontal iff & (w) = 0, for all elements ¢ € Xg, (H). The

collection of horizontal 1-forms is easily seen to coincide with Qf  (P) in (3.16).

3.3 A quantum Hopf bundle
A quantum Hopf bundle is a U(1)-bundle over the standard Podles sphere 5’3 [22] and whose total space

is the manifold of the quantum group SU,(2): this bunde is an example of a quantum homogeneous
space [4].
3.3.1 The algebras

The coordinate algebra A(SU,(2)) of the quantum group SU,(2) is the *-algebra generated by a and ¢,
with relations

ac = qca ac’ =qc*a cc’ = c'c,
a*a+c*c=aa* + ¢*cc* = 1. (3.19)

The deformation parameter ¢ € R is taken in the interval 0 < ¢ < 1, since for ¢ > 1 one gets isomorphic
algebras; at ¢ = 1 one recovers the commutative coordinate algebra on the group manifold SU(2). The
Hopf algebra structure for A(SU,(2)) is given by the coproduct:

sle el
C a Cc a Cc a
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antipode:

and counit:

The quantum universal envelopping algebra U, (su(2)) is the Hopf %-algebra generated as an algebra
by four elements K, K !, E, F with KK ! =1 and subject to relations:
K*E = ¢*EK*,
K*F =¢TFK™*,
K? - K2
(B, F] = ————. (3.20)
q—4q
The *-structure is
K*=K, E*=F, F*=FE

)

and the Hopf algebra structure is provided by coproduct:
AK*) = K* @ K*,
A(Ey=E®@K+K '®F,
A(F)=F®K+ K '@ F;

antipode:
S(K)=K™*,
S(F)=—qFE,
S(F)=—q'F;

and a counit:

e(K) =1, e(E)=¢(F)=0.

From the relations (3.20), the quadratic quantum Casimir element:

gK? — 2+ ¢ K2

(g—q7')?
generates the centre of U, (su(2)). The irreducible finite dimensional *-representations o; of Uy (su(2))
(see e.g. [17]) are labelled by nonnegative half-integers J € %N (the spin); they are given by?

C, = +FE -1 (3.21)

oy(K) |J,m)=q" |J,m),
oy (B) [J,m) =/[J —m][J +m +1] |J,m+1), (3.23)
oy (F) |J,m) = /[J —m+1][J +m] |J,m—1),

where the vectors |J,m), for m = J,J —1,...,—J + 1,—J, form an orthonormal basis for the (2J +
1)-dimensional, irreducible U, (su(2))-module V;, and the brackets denote the g-number as in (3.22).
Moreover, o is a *-representation of U, (su(2)), with respect to the hermitian scalar product on V for
which the vectors |J,m) are orthonormal. In each representation Vy, the Casimir (3.21) is a multiple of
the identity with constant given by:

Ci =7+ 321 (3.24)
2The ‘g-number’ is defined as:
o] = [alg = T, (3.22)
q—q

for ¢ # 1 and any = € R.
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The Hopf algebras U, (su(2)) and A(SU,(2)) are dually paired. The bilinear mapping (-, -) : Uy (su(2))x
A(SU4(2)) — C compatible with the *-structures, is set on the generators by:
(K,a)=q "% (K™'a)=q"
<K, a*> _ (]1/2, (K_l,a*> _ q—1/2’
<E,C>:1, <F,C*>:*q71,

with all other couples of generators pairing to 0. The canonical left and right actions of U, (su(2)) on
A(SU4(2)) can be recovered by:

K*fva®*=qT2a® Fra®*=0 Eva® = —qB9/2[s]a>"1c*
KEpag*s = qi%a*s Fpa*s = q(lfs)/2[s}ca*sfl Eba* =0 (3 25)
K*pet =qFses Fre*=0 Evc® = ¢ =9/2[s]cs " a* '
Ktpers = qi%c*s Fbc*s = _q—(1+s)/2[8]ac*s—1 Ebc*s =0;
and:
a*aK* =qT5a°  a®aF =q6~Y/2[s)ca*? a*<aE=0
S Kt = qi%a*s a9 F =0 aS a9 E = 7q(3fs)/2[5}c*a*sfl (3 26)
S aKt =qFices c*<9F =0 ¢ AF = ¢ V/2[s]esLa '
ARt =qTic ¢ qF = —q )/ 2[sla*e* 7l ¢ qFE =0.
Denote A(U(1)) := C[z,2*] /< zz* — 1 >; the map:
) a —qc* | |z 0
T A(SU4(2) — A(U(L)), [ . o ] = { 0 o } (3.27)

is a surjective Hopf *-algebra homomorphism, so that .4(U(1)) becomes a quantum subgroup of SU,(2)
with a right coaction,

Ap = (id@r) o A : A(SU,(2)) — A(SU,(2)) ® A(U)). (3.28)

The coinvariant elements for this coaction, elements b € A(SU,4(2)) for which Ag(b) = b ® 1, form a
subalgebra of A(SU,(2)) which is the coordinate algebra A(SZ) of the standard Podles sphere S2. From:

Apg(a) =a®z,

Agp(a*)=a" ® 2",

Ag(c) =c® z,

Ap(c)=c"®2z" (3.29)

as a set of generators for A(S2) one can choose:

* * q 2 %
B_:=-— B, = By = — 3.30
ac*, L = gqca”, 0= T g q°cc”, (3.30)
satisfying the relations:
2_ 4
qa —q 2
B_By=[—-B_ ByB_
0 [1+q2 +q"BoB_],
¢ —1 2
B.By=[-—8B ~“ByB
+Bo [q2+1 ++q " BoBy],

BiB-=qlq *Bo—(1+¢*) "] [¢Bo+ (1 +4%) "],
B-Bi=q[Bo+(1+¢")"] [Bo—(1+4¢7)7"],

and *-structure:
(Bo)* = By, (B4)" = —qB-.
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The sphere S2 is a quantum homogeneous space of SUg(2) and the coproduct of A(SU,(2)) restricts to
a left coaction of A(SUg4(2)) on A(S2) which, on generators reads:

A(B_)=a*®B- —(1+q %)B_®By+c?® By,
A(By) =qac® B_ + (1 +q %) By ® By — c*a* ® By,
ABy)=¢*®B_+(1+¢ ?)B; ® By +a** ® B..

3.3.2 The associated line bundles

The left action of the group-like element K on A(SU,(2)) allows [19] to give a vector basis decomposition
A(SU4(2)) = ®pezly, where

L9 = {z € ASU,(2)) : Kbz =q"/*z}. (3.31)

In particular .A(Sg) = E(()O). One also has LSP)* - ﬁ(_o) and £$?)£§3) c £9  Each E%O) is a bimodule

n n+m:*

over A(Sﬁ); relations (3.29) show that they can be equivalently characterised by the coaction Ag of the
quantum subgroup A(U(1)) on A(SU,(2)):

LY = {z e ASU,?2)) : Ag(z)=z®2"}. (3.32)

This equation appears as the natural quantum analogue of the classical relation (2.49), introducing

LY c A(SU,(2)) as A(S?)-bimodule of co-equivariant elements with respect to the coaction (3.28) of
the gauge group algebra. The relation (3.31) can then be read as an infinitesimal version of that in (3.32).

The classical S%O) are recovered as rank 1 projective left C°°(S?)-modules: the analogue property in the

quantum setting was shown in [23]. Each £ s isomorphic to a projective left A(Sg)—module of rank 1.
These projective left A(S?)-modules give modules of equivariant maps or of sections of line bundles over
the quantum sphere Sg with winding numbers (monopole charge) —n. The corresponding projections
[10, 12] can be explicitly written. Given n € Z, consider an element ’\I/(")> € A(SU,(2))"+1 whose
components are:

n>0: "I’(”)>H = /By ca e £O)

u—1/1— q—2(n—j)
where : Bno=1; Bnp = qz” HFO <1¢12(]+1) , p=1...n (3.33)
n<0: ’\If(")># = Jan, drl=hgr ¢ £O)
In|—p—1 /1 — q2(\n|—j)
where : Qp.0 = 1, amu = szo (1_q2(]+1) 5 Hn = 1, ceey |n| (334)

Using the commutation relations (3.19) and the explicit form of the coefficients in (3.33) and (3.34), it
is possible to compute that:

>0: (n) (”)> L N R RN—p (k2 s \n
n>0: <\Il , U Zuzoﬂn’#a c'cta (aa™ + g cc™) 1,
n n In| s k|n|— n|— * * \|n
n<0: <\IJ( ), ol )>:Z#:0an7ua”c‘ Imrelnl=rgt = (a*a + o) =1 (3.35)
so that a projector p(™ € M, 41(A(S2)) can be defined as:

p(™ — ‘\I;(")> <\1,<n> (3.36)

which is by construction an idempotent - (p(™)2? = p(® - and selfadjoint operator - (p(™)f = p(™ - whose
entries are:

n>0: pgz) = //Bn,uﬂn,y PR TV Y ¢ A(Sg)v
n<0: ﬁfﬁ) = /On,puQn,y c|n\—uaua*uc*\n|—u S .A(SLZ]) (3.37)
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Remark 3.2. The coefficients o, and By, above are g-binomial coefficients. The algebraic identities
they satisfy (3.35) are related since it is possible to prove that (note that o, ,, is defined following (3.34)
only for negative integers n):

q_QlH—QH(n_H)ﬁn,M =Q_n,—n—u; p=0,...,n. (3'38)

which is obtained by a straightforward computation.

The projections (3.36) play a central role in the description of the quantum Hopf bundle. As a
first application one can prove that the algebra inclusion A(S?) — A(SU4(2)) satisfies the topological
requirements for a quantum principal bundle, when both the algebras are equipped with the universal
calculus.

Proposition 3.3. The datum (A(SU,(2)), A(S2), A(U(1))) is a quantum principal bundle.

Proof. The proof consists of showing the exactness of the sequence
0 — A(SU4(2)) (2'(S2)un) A(SU4(2)) — Q1(SUg(2))un — A(SU4(2)) @ kerey1y — 0

or equivalently that the map x : Q! (SUq(2))un — A(SU4(2))@ker ey (1) defined as in (3.14) — and with the

A(U(1))-coaction on A(SU,(2)) given in (3.28) — is surjective. Given an element x € £ ¢ A(SU,4(2)),
from (3.32) the map x acts as:

xr)=x1l®z—-2@1l)=cx (7" —-1). (3.39)

A generic element in A(SUy(2)) ® kereyyy is of the form x ® (2" — 1) with n € Z and z € A(SU,4(2)).
To show surjectivity of x the strategy is to show that 1 ® (2™ — 1) is in its image since left A(SU4(2))-
linearity of x will give the general result: if v € Q'(SU;(2))y, is such that x(7) = 1 ® (2™ — 1), then
x(xy) = 2(1®(2"—-1)) = 2 ® (2" —1). Fixed now n € Z, define an element v in A(SU,(2)) as

v = (U §¥ (=) following (3.33) and (3.34). Since |\II(7")> € E(_()%, one computes that:

x(7) =1 (=" -1),
thus completing the proof. O

Next, it is possible to identify the spaces of equivariant maps ,657,0) — or equivalently of coequivariant
elements £\ — with the left A(S2)-modules of sections g0 — (A(Sg))'”‘*lp("). For this write any

element in the free module (.A(Sg))'”“r1 as (f| = (fo, f1,- .-, fin) with f, € A(S2). This allows one to
write equivariant maps as

Qf = <f,\Il(")> = E " Ofw/ﬂ,w ctta*™mH for n >0,
l],:

— E ln‘of’“/an,u clnl=rgn for n<0.
=

Writing equivariant maps in the above form, it is straightforward to establish the proposition, which
generalises to the quantum formalism the equivalence (2.54):

Proposition 3.4. Given n € Z, let £ = (A(Sﬁ))‘""“lp(”). There is a left A(S2)-modules isomor-
phism:

L0 = €0 oy — (og] = oy (8] = (10,

n

with inverse

O S L0, (o] = (flp) = oy = (£.0).
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3.3.3 A Peter-Weyl decomposition of A(SU,(2))

The aim of this section is to describe the known decomposition of the modules E%O) into representation
spaces under the action of U, (su(2)). From (3.31) one has a vector space decomposition A(SU,(2)) =

®n€Z£7(’LO), Wlth
EoL® c £,  FoL® ccl?, (3.40)
On the other hand, commutativity of the left and right actions of U, (su(2)) yields that

LOqh c £ Vh € Uy(su(2)).

n
It has already been shown in [23] that there is also a decomposition,

£O = ) v, (3.41)

_lnl In|  Inl
J=t5 L 2,

with VJ(") the spin J-representation space (for the right action) of U, (su(2)). Altogether it formalises a
Peter-Weyl decomposition for A(SU4(2)) (already given in [28]).

More explicitly, the highest weight vector for each V™ in (3.41) is ¢/="/2q*/+n/2;
p Ys g g J
KD(CJ_n/2a*J+n/2) _ qn/Q(CJ—n/Qa*J-f-n/Q)’
(CJ_n/Qa*J+n/2)4K — qJ(CJ—n/2a>'=J—0—n/2)7 (CJ_n/Qa*J—HL/Z)QF:O. (342)
Analogously, the lowest weight vector for each VJ(") in (3.41) is a’l 2T/,
KD(GJ—n/QC*J+n/2) _ qn/2(aJ—n/Qc*J+n/2)7
(ann/2c*J+n/2)<]K _ qu(ann/2C*J+n/2)’ (ann/2C*J+n/2)qE —0.
The elements of the vector spaces VJ(n) can be obtained by acting on the highest weight vectors with the
lowering operator <E, since clearly (¢/="/2a*/+"/2) 4F € £ or explicitly,

K> [(CJ—n/Qa*J+n/2) <1E} — 2 [(CJ—n/Za*J+n/2) <1E} .

To be definite, consider n > 0. The first admissible J is J = n/2; the highest weight element is a*" and
the vector space V") is spanned by {a*"<E'} with I = 0,...,n+ 1: V(72) = span{a*™, c*a* "L, ... "}

n/2 n
Keeping n fixed, the other admissible values of J are J = s +n/2 with s € N. The vector spaces VS(EZL /2
are spanned by {c*a***"<aFE'} with [ = 0,...,2s+n+ 1. Analogous considerations are valid when n < 0.
In this cases, the admissible values of J are J = s+ |n|/2 = s — n/2, the highest weight vector in
Vs(le /2 is the element ¢*~"a*°, and a basis is given by the action of the lowering operator <F, that is
Vs(lem = span{(c* "a**)<E', | =0,...,2s —n+1}.

JFrom (3.40) one has that the left action F> maps E%O) to ESIOEQ. If p > 0, the element a*P is the

(p)

highest weight vector in V7 and one has that Fa*? oc ca™~!. The element ca*~! is the highest weight

p/2
vector in Vp(;’;m since one finds that (ca*?~')<F = 0 and (ca*?~!)<aK = ¢?/?(ca*~1). In the same vein,
the elements F'pa*P o cta*P~t are the highest weight elements in Vp%_%) C ,CZ(DO_)%, t=20,...,p. Once
(p—2t)

again, a complete basis of each subspace Vp /2
<E.

With these considerations, the algebra A(SU,(2)) can be partitioned into finite dimensional blocks
which are the analogues of the Wigner D-functions [27] for the group SU(2). To illustrate the meaning

is obtained by the right action of the lowering operator

of this partition, start with the element a*, the highest weight vector of the space Vl(/lz) Representing
the left action of F> with a horizontal arrow and the right action of <E with a vertical one, yields the
box

a — c
! L
—qct — a



where the first column is a basis of the subspace V) while the second column is a basis of the subspace

1/27
o . Starting from a** — the highest weight vector o — one gets:
v, s f 2 the high h v
a*? — ¢ '?2ecar — 2] ¢?
1 ! 1
—¢*? 2] c*a* — [2](aa* —cc*) — [2]2 q?ca
l ! !
PR - —¢22fac - [2]a?
The three columns of this box are bases for the subspaces Vl(z), 1(0),V1(_2), respectively. The recursive

structure is clear. For a positive integer p, one has a box W, made up of (p+1) x (p+ 1) elements.
Without explicitly computing the coefficients, one gets:

a*P — ca*®l! .. = et 5 L cP
l | ! !
cfa*P~l e — ... — ach!
l l ! !
N — e — e — e — e — e
l l ! l
a5 — — .. — — ... — a®cP*

! ! !

— - ... — - ... =
l l ! l
c*P — ac?”l! = .. = altePtt 5L S a?

The space W, is the direct sum of representation spaces for the right action of U, (su(2)),
(p—2¢)
Wy = @gzov;;;)z )
and on each W, the quantum Casimir C; acts is the same manner from both the right and the left,

with eigenvalue (3.24), that is Cypw, = wp<Cy = ([p+ 3]*> — ) wy, for all w, € W,,. The Peter-Weyl
decomposition for the algebra A(SU,(2)) is given as

A(SU,(2)) = BpenWy = Bpen (©F_oV, 55 ™).
A compatible basis with this decomposition is then given by elements
Wyt i= F'pa™P<aE” € W, (3.43)

for t,r = 0,1...,p. In order to get elements in the Podles sphere subalgebra A(Si) ~ E(()O) out of a
highest weight vector a*? we need p = 2l to be even and left action of F': F'sa*?! x cla*t € A(Sg).
Then, the right action of E yields a spherical harmonic decomposition,

A(S2) = Bien;?, (3.44)

with a basis of Vl(o) given by the vectors Flva*?<E", for r =0,1,...,2l.

3.4 A quantum Hopf bundle with non-universal differential calculi

Once described how the inclusion A(S2) — A(SU4(2)) formalises the structure of a topological quantum
principal bundle, the aim of this section is to describe non-universal differential calculi on the algebras
A(SU4(2)), A(S2), A(U(1)), and to show that these are compatible.
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3.4.1 The left-covariant 3D calculus on SU,(2)

The first differential calculus on the quantum group SU,(2) is the left-covariant one developed in [28].
It is three dimensional with corresponding ideal Qsy,2) C keregy,(2) generated by the 6 elements
{a* + ¢?a — (1 + ¢?);c?;c*c;c*?; (a — 1)¢; (a — 1)c¢*}. The quantum tangent space Xgu, (2) 1s the vector
space over the complex, whose basis can be taken to be
X_ =q¢ '?FK,
X, =q'’EK,
1—K*

their coproducts result:

AX, =19 X, + X, ® K4,
AX: =1® X1 + X+ @ K2 (3.46)

The differential d : A(SU,(2)) — Q'(SU,(2)) is
de=(Xypr)ws + (Xopa)w_ + (X, >2)w,, (3.47)
for all z € A(SU,(2)). This equation gives a basis for the dual space of 1-forms Q'(A(SU,(2))),

w, = a*da + c¢*dc,
w_ = c*da* — ga*dc”,
wy = ade — qeda, (3.48)

of left-covariant forms, that is A(Ll)(ws) =1® ws, with A(Ll) the (left) coaction of A(SU,(2)) onto itself
extended to forms (3.2). The above relations (3.48) can be inverted to

da = —qc*wy + aw,, da* = —¢*a*w, + cw_
de = a*wy + cw,, de* = —¢*c*w, — ¢ taw_,
from which one also gets that w* = —w; and w} = —w,. The bimodule structure is:
w.a = q 2aw,, w.a* = ¢*a*w., wia = q tawy, wta” = qa*w4
w.e=q 2cw,, w.c* = ¢cfw., wie=q tewy, wic' = qgc*w4, (3.49)

Higher dimensional forms can be defined in a natural way by requiring compatibility for commuta-
tion relations and that d*> = 0. Consider the tensor product {(SU4(2))}®* = Q'(SU,(2)) ®.a(su, (2))
Q1(SU,(2)). A consistent alternation mapping on {Q(SU,(2))}®2, generalising the alternation mapping
in the classical formalism given in (2.25), can be introduced only if the quantum differential calculus is
bicovariant. The strategy to formalise a wedge product comes from Lemma 15 in chapter 14 in [13],
where it is proved that So(z) = >_, , (XX, 7) we ® wy, for any x € A(SUy(2)) generates a two-sided
ideal in {Q(SU,(2))}®2. The bimodule of exterior differential 2-forms results to be the quotient

Q%(SU4(2)) = {Q1(SU,(2))}#?/ A(SU,(2)){Se}, (3.50)
since A(SU,(2))SaA(SU,(2)) ~ A(SU,(2))Sg. The wedge product A : Q1(SU,(2)) x Q1(SU4(2)) —

Q%(SU4(2)) embodies the commutation relations among 1-forms: from the six generators in Qgu, (2) the
elements generating Sg can be written as

Wy Awy =w_ANw_ =w; Aw, =0

WoAwy +q¢ 2wy Aw_ =0

W, Aw_ + ¢rw_ Aw, =0,

w, Awy +q twp Aw, = 0. (3.51)
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Such commutation rules also show that the bimodule Q2?(SU,(2)) is 3 dimensional, the three basis 2-forms
being exact, since one has:

dw, = —w_ Awy,
dwy = (1 + ¢*)w. Awy,
dw_ = -1+ ¢ Hw, Aw_; (3.52)

moreover, the commutation relations clarify that this left covariant calculus has a unique top form

w_ Awg Aw,. The left covariance of the differential calculus allows to extend to higher order forms in

a natural way the left coaction A(Ll) of A(SU,4(2)) on Q*(SU4(2)). An element n € {Q'(SU,(2))}®F =
Q'(SU4(2))®asU,2))- - -@asu, @) (SUq(2)) (k times) can always be written as n = 2a, ... a, Wa, @ - .. ® Wa,
in terms of the left invariant forms w; in (3.48). Define

k
A(L )(77) = xal...ak(l) & xal...ak(Q)wal ®...8 Way, y

from the Sweedler notation for the coproduct A(xg,. 4,). One proves that this definition is consistent
on the exterior algebra Q*(SU,(2)), as

A(LZ)(SQ) C1®Sg,

and that i -
AP @) = 1@ )AF V()

for any n € QF(SU,(2)) with k = 1,2,3. The relations (3.52) show then that Q?(SU,(2)) has a basis of
exact left invariant forms, given by dwj; it is also clear that w_ A wy A w, is left-invariant 3-form.

3.4.2 The calculus on the structure group

The strategy adopted in [4] consists in defining the calculus on U(1) via the Hopf projection 7 in (3.27).
Out of the Qgy, (2) which determines the left covariant calculus on SU,(2), one defines a right ideal
Qu) = T(Qsu, (2)) C ker ey(1) for the calculus on U(1).

This specific Qu(yy results generated by the element & = (27! — 1) + ¢*(z — 1), and the differential
calculus is then characterised by the quotient kerey(1)/Qu). Any term in kerey(;) can be written as
p=ulz—1)=> "y u; 27 (z — 1), with u = Yjez u;z? € A(U(1)) and u; € C, so that the elements
©(j) = 27 (2 — 1) define a basis of ker eu(1) with respect to its complex vector space structure. The basis
elements ¢(j) can be written in terms of the element £, via the two identities:

i>0,  p()=2(z-1)=¢ (Z q‘zmzj‘m“) +q (2 - 1),

m=1
4 g1-1 . ‘
J<0, o) =zlz-1) == > ¢t 4Pl (z 1), (3.53)
m=0

which can be proved by induction on j. Define a map A : kerey() +— kerey(p) setting on the basis
elements A\(¢(j)) = ¢~% (2 — 1), and linearly extending it to:

Nu(z—1) =Y wuz(z-1) =Y ug F(z-1). (3.54)

JEL JEZ

It is clear that A formalises the choice of a representative element out of the equivalence class [u(z —1)] €
kerey(1y/Qu(1), since it is possible to see that ker A = Qu(y). To prove this assertion, one first directly
computes that A(¢) = 0, then since \ is linear one recovers that A(ué) = A(u(g?(z — 1) + (271 — 1)) =
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A(u(z — 1)) + Mu(z~! = 1)), so to have:

Mué) = ¢ Mu(z — 1)) + A Z ujzd (271 — 1)

JEL
= ¢*NMu(z — 1)) Zu A7 | = Zu ¢ (z—1) —Zujq_Q(j_l)(z—l):O,
JEZ JEL JEL

(3.55)

thus proving that Qu;) C ker A. To prove the inverse inclusion, consider an element @ = u(z — 1) €
ker ey(1), and write it as:

u(z — 1) Zujzjz—l Zujzj(z—l)—i—Zu,jz_j(z—l)

JEZ JjEN jeEN
27 y 2j
=2 uwaE+a ¥ =1) + Y usi(B(-)E +¢¥ (- 1)
JeN jEN
(3.56)
where a(j) = fn:l q 2m2I=mH and B(—j) = lel L g2m 1+ m=lil are the terms proportional to ¢ in

(3.53) for positive and negative values of j € Z. The previous sum can be rewritten as:

u(z — 1) Zuj —|—Zu,j6( +Zuq2z—1

JEN JEN JEL
;From the definition (3.54), it is A(@) = 0 < 3, 5 ujq~*/ = 0, so the last lines proves that ker A C Qu1).
Lemma 3.5. Given the ideal Qu(1y C kerey(yy generated by the element £ = (z7t=1)+q¢*(z—1), it is
ker eU(l)/QU(l) ~ C.
Proof. Define a map A : ker cu() — C setting, on the basis elements ¢(j) € kerey(y), X(go(])) =q %
and extending it to kerey(y) by linearity. The properties of the map A defined in (3.54) clarify that

ker A = Qu(1), o to give a well defined map A : ker cuy/Quqy — C. It is immediate to see that \ is
an isomorphism of vector spaces, thus formalising the equivalence: with w € C, the map Xﬁl(w) =we
[w(z —1)] C kerey(y) represents the inverse of the map A. O

This result shows that the differential calculus generated by the specific Qp (1) is 1D, while a direct
computation shows that it is bicovariant. As a basis element for its quantum tangent space one can
consider

X=X, = (3.57)
with dual 1-form given by w,. Explicitly, one has w, = z*dz with

dz = zw,,

dz* = —¢*2%w,;
and noncommutative A(U(1))-bimodule relations

2dz = ¢*(d2)z;
Wz = q_2zwz7

w.2" =2 w,.
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3.4.3 The standard 2D calculus on S£21

The restriction of the above 3D calculus to the sphere Sg yields the unique left covariant 2-dimensional
calculus on the latter [18]. An evolution of this approach has led [24] to a description of the unique 2D
calculus of Sg in term of a Dirac operator. The ‘cotangent bundle’ Ql(Sg) is shown to be isomorphic to

the direct sum E(_O% & ,Céo), that is the line bundles with winding number +2. Since the element K acts
as the identity on .A(S?), the differential (3.47) becomes, when restricted to the latter,

df = (X-v flo- + (X4 flws
= (Fo f) (¢ Pw) + (B> ) (¢ wy),  for f e A(S)).

These leads to break the exterior derivative into a holomorphic and an anti-holomorphic part, d = 9+ 9,
with:

Of = (Xov flo— = (F> f) (¢ ?wo),
of = (Xy v fluy = (Ev f) (¢Pwy), for f e A(S]).
An explicit computation on the generators (3.30) of 83 yields:

OB_=q 'a?w_, 0By=qcaw_, 0B, =qcw_,
OBy =q¢*a*?*w,, O0By=—¢’c*a*wy, O0B_ =q¢*c?w,.

The above shows that: Q'(S2) = Q! (S2) @ Q! (S2) where Q! (S?) ~ [,(,O% ~ O(A(S2)) is the A(S2)-
bimodule generated by:

{0B_,0By,0B} = {a* ca,*} w_ = ¢*w_{d? ca,c*}
and Q4 (S2) ~ Efz) ~ 9(A(S2)) is the one generated by:
{0B,,0By,0B_} = {a*?* c*a*,c**}wy = ¢ 2w, {a™?, c*a*, c*?}.

That these two modules of forms are not free is also expressed by the existence of relations among the
differential: B B B
0By = ¢ 'B_0B, — ¢*B,0B_, 0By = ¢B,0B_ — ¢ *B_0DB,.

Writing any 1-form as o = ¢'w_ + ¢"w, € L'(_Ug)w, & Ef%w+, the product of 1-forms is

(¢ + ¢"wi) A (oo +9"wy) = (672" — "y Aw_, (3.58)
while the exterior derivative acts as:
d(Pw_ +¢"wi) = (d') Aw_ + ¢'dw_ + (d¢”) Awy + ¢ dwy
= (Xyp¢ wy Aw_ + {(Xpd w, Aw_ + ¢'dw_}
+ (X_pd N w- Awy + {(Xe2¢")w. Awy + ¢"dwy }
— {(X_59") — (X150 - Ay (3.59)

since the terms in curly brackets vanish: {(X,>¢")w, Aw_ + ¢'dw_} = {(X ;00" )w, Awy + ¢"dwi} =0
from (3.52) and (3.31). It is then cleat that the calculus on the quantum sphere is 2D, and that
Q%(S2) = A(S2)w— ANwy = w_ Awy A(S2), as both we commute with elements of A(S?) and so does
w_ ANwq.

Remark 3.6. From (3.52) it is natural to ask that dw_ = dwy = 0 when restricted to Sg. Then, the
exterior derivative of any 1-form a = ¢'w_ + ¢"w, € E(B%w, & E(f%uur is given by:
da=d(¢w_ +¢"wy)=0¢ Aw_ +0¢" Nwy
= (X0 — ¢ 2X ¢ Nwp Aw_ = q V(B¢ —q ' Fo" ) wp Aw_, (3.60)

since K> acts as qT on Eg. Notice that in the above equality, both E>¢’ and F>¢" belong to A(S2), as
it should be.
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The above results can be summarised in the following proposition, which is the natural generalisation
of the description in (2.61) of the classical exterior algebra on the sphere manifold S2.

Proposition 3.7. The 2D differential calculus on the sphere Sg s gien by:
Q(S2) = AS2) @ (L% & L0 ) ® AS2wr A,
with multiplication rule

(fo; 88" f2) (90: %", ¥"; 92) = (fogo; forl' + &' go, fot!” + 8" go; fog + fago +a 20" v — ¢'y"),
and exterior derivative d = d + 9:

fe (@ 2Fef g 2B ), for f € A(S),
(¢/,8") = ¢ V2(Esg — g Fog”), for (¢,¢") € LY e L),

3.4.4 The compatibility conditions between the calculi

Given the 3D left-covariant differential calculus on SU4(2) described in section 3.4.1, as well the 1D
bicovariant differential calculus on the gauge group algebra U(1) in section 3.4.2, the ‘principal bundle
compatibility’ of these calculi is established by showing that the sequence (3.17) is exact. For the case
at hand, this sequence becomes

0 — A(SU4(2)) (2'(S2)) A(SU4(2)) —

~Nsug(2)
—

— Q1(SU,4(2)) A(SUy(2)) @ kereuqy/Quay — 0,

where Q1) is the ideal given in section 3.4.2 that defines the calculus on A(U(1)) and the map ~Nsug2)
is defined as in the diagram (3.15) which now acquires the form:

QL(SU, (2 PEee g1gu, (2

( q( ))un - ( q( )

L x ‘LNNSUQ(Z)
id®7rQU(1)

A(SU,(2)) ® ker ey (1) — A(SU4(2)) ® (kerey(r)/Quq)) -

Having a quantum homogeneous bundle, that is a quantum bundle whose total space is a Hopf algebra
and whose fiber is a Hopf subalgebra of it, with the differential calculus on the fiber obtained from the
corresponding projection, for the above sequence to be exact it is enough [9] to check two conditions.
The first one is

(id®@m) o Ad(Qsu,(2)) C Dsu,2) ® AU(1))

with 7 : A(SU4(2)) — A(U(1)) the projection in (3.27). This is easily established by a direct calculation
and using the explicit form of the elements in Qgy, (2). The second condition amounts to the statement
that the kernel of the projection m can be written as a right A(SU,4(2))-module of the kernel of 7 itself
restricted to the base algebra A(S2). Then, one needs to show that kerm C (ker 7[s2)A(SUqg(2)), the
opposite implication being obvious. With 7 defined in (3.27), one has that

kerm = {cf, ¢*g, with f, g€ A(SU,(2))}.

Then cf = c(a*a+c*c)f = ca*(af) + c*c(cf), with both ca”™ and c*c in kerm|sz. The same holds for
elements of the form ¢*g, and the inclusion follows.

The analysis of the map ~nqy o) Q1(SU4(2)) — A(SU4(2)) ® kereyr)/Quqy shows that wy €
Q'(A(SU4(2))) are indeed the generators of the horizontal forms of the principal bundle, being in the
ker ~ iy, 2y - From (3.39) one recovers:

x(da)=a® (z—1), x(da*)=a"®@(z*-1)
x(dc)=c® (z—1), x(0c")=c"®(z*-1).
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Given the two generators wy and the specific Qgu, (2) which determines the 3D calculus, corresponding
universal 1-forms can be taken to be:

wy = ade — geda — (adc — qcda) € [WNSUq(2)]_1(w+),

w_ =c"da” — ga*dc” — (c"6a™ —qa*éc™) € [ﬂNSUq(z)]fl(w_).
The action of the canonical map then gives:

x(adc — qcda) = (ac — qca) ® (z — 1) =0,
x(c*0a® — ga*dc*) = (c*a* —qa*c") ® (z* — 1) =0,

which means that
~Nsug(2) (w) =0 (3.61)

For the third generator w,, one shows in a similar fashion that
~Nsug(2) (w:)=1® (WQU(I)(Z - 1)). (3.62)

From these it is possible to conclude that the elements w. generate the .A(SU,(2))-bimodule of horizontal
forms, while from (3.57) one has that the vector X = X, = (1 —¢~2)71(1 — K*) is the dual generator to
the calculus on the structure Hopf algebra A(U(1)). For the corresponding ‘vector field” X on A(SU,(2))
as in (3.18), one has that X(wi) = (X, ~Nsug@ (Wt)) = 0, while X(w.) = (X, ~Nsuge W2)) = 1.

These results identify X as a vertical vector field.

4 A x-Hodge duality on 2(SU,(2)) and a Laplacian on SU,(2)

In classical differential geometry a metric structure g on a N-dimensional manifold M enables to define
a Hodge duality * : QF(M) — QN¥=%(M) on the exterior algebra Q(M). The strategy is to consider
the volume form 6 € Q¥ (M) associated to a g-orthonormal basis; this corresponds to the choice of an
orientation. Via the Hodge duality it becomes possible to introduce in Q(M) both a symmetric bilinear
product and a sesquilinear inner product.

Section 2.2 describes the Hodge duality (2.30) on the group manifold SU(2) ~ S3, with the exterior
algebra Q(S%) introduced in section 2.1 and the riemannian metric (2.29) coming from the Cartan
decomposition of the Lie algebra su(z2). The compatibility between the wedge product in Q(S®) and
the Hodge structure expressed in (2.32) allows for the definition in (2.33) of a symmetric tensor, and
in (2.38) of a scalar product in ©(S5?), while the relation (2.41) introduces on ©(S®) an inner product,
which is anti-linear in the second entry. Such a pair of bilinears result completely characterised in (2.37)
and (77).

The algebraic formulation of geometry of quantum groups, that has been described, presents no
metric tensor. The strategy to introduce a Hodge duality on the exterior algebra Q(H) coming from
a N-dimensional differential calculus on a Hopf algebra H is then reversed with respect to the strategy
used in the classical setting. The path consists in defining a suitable bilinear product on Q(H) and
considering a volume N-form, from which to induce a x-Hodge structure, using an equation like the one
in (2.39) as a definition: note in fact that the classical symmetry property (2.32) loses its meaning in a
non commutative setting.

The following description of the quantum formulation of a Hodge duality originates from [14]. Assume
that H is a x-Hopf algebra equipped with a left covariant calculus (2!(H),d), with N the dimension of
the calculus and dim QY (H) = 1. Suppose also that H admits a Haar state h : H ~ C, that is a unital
linear functional on H for which (id ® h)Ax = (h ® id)Ax = h(x)1 for any © € H, where 1 is used to
emphasise the unit of the algebra. Suppose further that h is positive, that is h(z*x) > 0 for all © € H; it
is known that the Haar state is unique and automatically faithful: if h(z*z) = 0, then necessarily = 0.

One can endow H with an inner product derived from h, setting:

(x';2)y = h(z*z") (4.1)
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for any x, 2’ € H. The whole exterior algebra can be endowed with an inner product, defined on a left
invariant basis and then extended via the requirement of left invariance,

(@' zw)y = h(z" ) (W, W)y (4.2)

for any xz,z’ € H and left invariant forms w,w’ in Q(H). An inner product is said graded if the spaces
QF(H) are pairwise orthogonal.

Out of QY (H) choose a left invariant hermitian basis element § = 6*, which will be called the volume
form of the calculus. A linear functional [, : Q(H) — C — called the integral on Q(H) associated to the
volume form § € QN (H) — is defined by setting [, =0 if 7 is a k-form with & < N, and [, n = h(z) if
n = x 6 with € H. The differential calculus will be said non-degenerate if, whenever € QF(H) and
' An =0 for any ' € QN%(H), then necessarily n = 0. This property reflects itself in the property
of left-faithfulness of the functional fez starting from a non degenerate calculus, it is possible to prove
that, if 77 is an element in Q¥(H) for which [, 7/ An =0 for all ’ € QN ~F(H), then it is n = 0.

Proposition 4.1. Given the exterior algebra Q(H) coming from a left covariant, non degenerate calculus
(QY(H),d), there exists a unique left H-linear bijective operator L : QF(H) — QVN=F(H) fork =0,...,N,
such that

/ 0" ALG) = (s ) (4.3)

0
on any n,n’ € QF(H).

The proof of this result is in [14], where the operator L is called a Hodge operator. Such an operator
does not yet define a x-Hodge structure on Q(H), since its square does not satisy the natural requirement
(2.31). Tt is then used to define a new graded left invariant inner product setting on a basis of left invariant
forms w € Q(H):

(w; )y = (W), on QF(H), k < N/2;
(W) = (L7 w); L7 (W), onQF(H), k > N/2. (4.4)

If N is odd, these relations completely define a new left invariant graded inner product on the exterior
algebra (H); notice also that assuming the relation (4.1) means that (1;1) = 1, from which one has
L(1) =0, so to obtain in (4.4) that (0;0)51 =(1;1)y=1.

In analogy with (4.3) define a new Hodge operator L : QF(H) — Q¥ ~=*(H) via the inner product
given in (4.4) as

[ nz) = s (15)
0

Due to the left-faithfulness of the integral, it is clear that L? is a well defined bijection, which satisfies
the identity L = Lf when restricted to QF(H) with & < N/2. Such an operator Lf is also proved to
satisfy (L%)2 = (—1)*™V=F): this is the reason why one can define a x-Hodge structure on Q(H) as:

*: QF(H) — QN 7k (H) * (n) = L¥(n). (4.6)

The relation (4.5) appears as the quantum version of the classical relation (2.41), which is now used as
a definition for the Hodge duality.

If the dimension of the calculus is given by an even N = 2m, a more specific procedure is needed,
The same procedure as before gives a x-Hodge operator on QF(H) for k # m via the inner product (4.4).
Using the volume form 6 € QY (H) set now a sesquilinear form

(' ,m) = /977* AT (4.7)

which is non-degenerate by the faithfulness of the integral [,. The H-bimodule Q™(H) has a basis of

2 . . - .
( nT ) left invariants elements w,. The restriction of (4.7) to the elements w, defines a sesquilinear

form on a C2™)!/(m)* yector space, which is hermitian if (—1)™ = 1, and anti-hermitian if (—1)™" = —1:
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so it can be 'diagonalised’. There exists a basis w; € Q™(H) with j =1,..., ( 7:: ) such that one has
(Dq,Wp) = E0gp if it is hermitian, and (@,,wp) = £idep if it is anti-hermitian. It is then possible to use
such a basis to define a left H-linear operator £ : Q™ (H) — Q™ (H) setting on the basis

2

L(@a) = (=1)™ (@a, @a) @a- (4.8)

(no sum on a). The operator £ is a bijection, and satisfies £2 = (71)’”27 so a x-Hodge structure on
O™ (H) can be defined as:

*(n) = £(n), (4.9)
on any n € Q™(H), thus giving a complete constructive procedure for a x-Hodge structure on Q(H).

The Hodge operator £ : Q™(H) — Q™(H) is then used to introduce a left invariant inner product on
Q™(H), defined by:

(wa;wb)g_( = /ew;f A L(wa), (4.10)

on a basis of left invariant {w,} 2-forms, and then extended via the requirement of left invariance as in
(4.2). Tt is easy to see that the definition eventually corresponds to the inner product

(Da; )%, = Oap (4.11)
on Q"(H).

4.1 A x-Hodge structure on (SU,(2))

This section describes how the outlined procedure yields a left invariant inner product on the exterior
algebra Q(SU,(2)) generated by the left covariant 3D calculus from section 3.4.1, and the way it gives
rise to a x-Hodge structure. Such a x-Hodge structure will be then used to define a Laplacian operator
on A(SU,4(2)), which is completely diagonalised.

The Hopf algebra A(SU,(2)) has a Haar state h : A(SU,(2)) — C, which is positive, unique and
authomatically faithful. From the Peter-Weyl decomposition of A(SU,4(2)) in terms of the vector space
basis elements wy.; € W, (3.43), the Haar state is determined by setting:

h(1)=1 h(wp:rt) =0 Vp > 0.

The algebraic relations (3.19) among the generators of A(SU,(2)) makes it then possible to prove that
the only non trivial action of h on A(SU,4(2)) can also be written as:

k
* . 1
Mlee)) = QL @) = gy

j=0

with £ € N. One can define on A(SU4(2)) an inner product derived from h, setting:
(¢',x)su, (2) = h(z"z") (4.12)

with z,2" € A(SU,(2)). The differential 3D calculus being left covariant, the set of k-forms Q*(SU,(2))
has a basis of left invariant forms. The exterior algebra (SU,(2)) is endowed with an inner product,
defined on a left invariant basis and extended via the requirement of left invariance:

(2’ x w)su,(2) = h(xz*z") (W', w)su, (2)

for all z, 2" in A(SU,(2)) and w,w’ € Q(SU,4(2)) left invariant forms. Assume the top form 6 = o/w_ A
wy Aw, as volume form, with o/ € R so that 6* = 6. The integral on the exterior algebra Q(SU,(2))
associated to the volume form 6 is defined by fe n = 0 if n is a k-form with k£ < 2, and fe n = h(z) if
n = x 6. This integral is left-faithful.

Set a left invariant graded inner product by assuming that the only non-zero products among left
invariant forms are:

(1, Dsu, 2 = 1,
0,0)su,2) = 1; (4.13)

32



while in Q!(SU,(2)) are:
(w—,w)su,2) = B,
(Wi, wy)su,(2) = Vs
(wzy w2)su,2) = (4.14)
with G,v,v € R, and:
(W- ANwi,w- Awy)su,2) = 1,
(Wi ANwz,wy Awz)su,2) = 1,
(W Nw—,w, Aw_)su,2) =1 (4.15)

in Q2(SU,(2)). This choice comes as the most natural in order to mimic the properties of the classical
inner product (2.40), coming from the classical Hodge structure (2.30) originated from the metric (2.29).
The Hodge operator defined in (4.3) is:

6

w)=—-a'Bq w, ANw_,

)
wi)=—-advw; Aw,

(
(
(

L(w,) = —advyw_ Awy
(W_ Awy) = —d w,,
(
(
(

woAwyp Aw,) =a/ ! (4.16)

The Hodge operator L is used to define a new graded left invariant inner product on Q(SU,4(2)), as:
(@ 0)iy. @) = (@, Wsu,@) on QF(SU4(2)), k=0,1;
(w’,w)qu(z) = (L7 (W), L7 w))su, 2) on QF(SU,(2)), k = 2,3, (4.17)

on the basis of left invariant forms. On Q*(SU,(2))) — with k = 2,3 — one has:

—-2,.—1

0,00, 2) = I (4.18)

Associated to this new inner product there is in analogy a new unique left A(SU,(2))-linear operator
L7 QF(SU,(2)) — Q37#(SU,(2)) defined by [, n* AL%(n') = (n',n)*, which is a bijection. This operator
is such that (L%)2 = (=1)*G=%) = 1, so following (4.6) one has a x-Hodge structure on the exterior
algebra Q(SU,(2)):

* 1 Q8 (SUL(2) = Q¥H(SUL(2)) % (1) = Li(n), (4.19)
given by:
*x(1)=0=0d w_ Awy Aws,
*(w)=—a'Bqg %w, ANw_,
* (wy) = —ad'vwi Aws,
* (wy) = —a/yw_ ANwy,
*x(wo Awy) = =o'y 1w,
*(wy Aw,) = —a vt wy,
*(wy Aw_) = —a' 1710 w_,
*(Wo Awy Aw,) =a'™! (4.20)



Remark 4.2. The definition of the graded left invariant inner product (-, ')qu(z) in (4.17) shows that,

in order to have a *-Hodge structure on the exterior algebra Q(SU4(2)) generated by the 3D calculus,
it is sufficient to choice an hermitian volume form and a graded left invariant inner product only on
QF(SU,(2)) for k = 0,1. This is a general aspect: given a Hopf x-algebra H, equipped with a finite odd
N dimensional left covariant differential calculus, the formalism developed in [1]] shows, that what one
needs is an hermitian volume form and a graded left invariant inner product on Q¥ (H) for k < N/2.

4.1.1 A Laplacian operator on A(SU,(2))

Given a differential calculus and a *-Hodge structure on the Hopf algebra A(SU,4(2)) it is possible to
define a scalar Laplacian operator Ugy, 2y @ A(SU4(2)) — A(SU,4(2)) as Ogy,2)¢ = *d x d¢ for any
¢ € A(SU,(2)). This Laplacian can be written down by a computation on the basis of the left invariant
forms of the calculus:

dé = (X1p)ws + (X_pdla + (Xobd)ws;
*dgp = —o/ V(X yp)wi Aw. + g H(X pp)w. Aw_ +y(XopP)w_ Awy].

The last line comes from (4.20) and the left linearity of the x-Hodge on the exterior algebra Q(SU,(2)).
By (3.52) the derivative d acts on the previous 2-form as:

dxdp = —a'V(X_X,00)(w_ Awi Aw.) + B¢ (X1 X o) (wy Aw, Aw_) + (X X.00) (w. Aw_ Aw,)]
= —ad{[vX_X; + X X_ + X, X, ]poHw-_ Awy Aw,),

where the commutation rules (3.51) have been used. The last of (4.20) finally gives the Laplacian

operator the expression:
*dxdp = - X_X| + X X_ +7X. X ]po (4.21)

in terms of the left action of the quantum vector fields of the calculus. The expression (4.21) shows that
Osu,(2) : L£n + Ln. This operator can be diagonalised. One has to recall the decomposition (3.41) of
the modules £,, for the right action of U, (su(2)): this right action leaves invariant the eigenspaces of
the Laplacian since left and right actions of U, (su(2)) on A(SU,4(2)) do commute. On each irreducible

subspace VJ(n) (3.41) for the right action of U, (s5u(2)) one has a basis ¢, 5; = (¢!~ 2a*/+7/2) <« B! =
way.j—n (with [ =0,...,2J) of eigenvectors (3.43) for the Laplacian. The spectrum of the Laplacian
does not depend on the integer [: an explicit computation shows that

XzXz > ¢n,J,l = q2(n+1)[n]2¢n,J7l7
_ n n
Xy X > ¢n,J,l =q" 1([J - 5“J+ 1+ 5] + [n})gén,,],lv

n n
X Xyvdpg=q"J— 5][J +1+ 5])%“. (4.22)
The spectrum of the Laplacian (4.21) is then given as Osu, 2)®n,J0 = An,g1Pn,s, With:

Nua = =" {vald = ST+ 14 514+ B0 ([ = G+ 14 5]+ ) +9¢" ) (4.23)

5 A x-Hodge structure on Q(Sg) and a Laplacian operator on A(Sg)

The way the ~-Hodge structure (4.20) has been introduced on Q(SU,(2)) comes from the analysis in [14].
The aim of this section is to extend that procedure in order to introduce a x-Hodge structure on Q(S2).
The strategy is to directly follow the same path, and to apply to the differential calculus Q(Sg) the same
procedure, explicitly checking its consistency in the new setting.

5.1 A x-Hodge structure on A(S?)

The differential calculus on the quantum sphere Sg has been described in section 3.4.3 and formalised in
proposition 3.7. It is a 2D left covariant calculus: as a volume form consider = io/w_ A Wi .
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Lemma 5.1. The 2D calculus Q(Sg) formalised in proposition 3.7 is non degenerate.

Proof. The proof of this lemma is direct. To be definite, consider a 0-form n = f with f € A(Sﬁ) ~ Ego),
so to have a product ' An = f'(w- Awy)f = f'fw_ Awy from the commutation rules in (3.49), where

n = flw_ Awy with f/ € E(()O). One has n” An =0 < f'f = 0: such a relation is satisfied for any
fre it f=o.

Consider now the 1-form n = x w_ with x € E(_OQ), so to have a product ' An = (¢'w_+y'wi)A\ew_ =
—y'xw_ Aw, where (2/,y) € (E(_O%, Eéo)). The relation n’ An = 0 < y'x = 0 is satisfied for any ' € Eéo)
iff x = 0. The remaining cases can be analogously analysed, thus proving the claim. O

The restriction of the Haar state h to A(S?) yields a faithful, invariant — that is h(f<aX) = h(f)e(X)
for f € A(S?) and X € U,(su(2)) - state on A(S?), allowing the definition of an integral [; : Q(S2) — C
given by:

/f =0, onf € A(Sg),

g

[n=0 onn € Q1(S2),
g

/fw, Awy = —id " h(f). (5.1)
g

Lemma 5.2. The integral [; defined in (5.1) is left-faithful.

Proof. The proof of this result is also direct. Consider, to be definite, the 1-form n = zw_ with x € E(_O%,
and a generic /' = #'w_+y'wy € Q'(S2). The relation [;7/ An =0 for any ' € Q(S2) is equivalent to
the condition h(y'z) =0 Vy' € L’go). Since this last equality must be valid for any y’ € ﬁgo), choosing
y' = a*, it results h(x*z) = 0: the faithfulness of the Haar state h then gives x = 0. The claim of the
lemma is proved by an analogous analysis on the remaining cases. O

The restriction to (S?) of the left invariant graded product (4.17) on Q(SU,(2)), which is the one
compatible with the x-Hodge structure, gives a left A(Sg)—invariant graded inner product:

(LDse=1 - (f's flsz = h(f"f");
(@ +ywy, v +ywy)sy = ha)(wo,w )iy o)+ Y)W, w)iy, o) = M@"e)B+ hiy"y)v;

(W- Nwip,w- Awy)sz = (W- Awi,w- A w+)hSUq(2) =a' 2y (5.2)

with f, /' € Eéo), r, 1’ € E(_O% and y,y’ € Eéo). Recalling proposition 4.1 — namely equation (4.3) — and
the results proved in lemmas 5.1 and 5.2, a left A(S2)-linear Hodge operator L : QF(S2) — szk(Sg) can
be defined for k = 0,2. From the first line in the inner product relation (5.2) one has L(1) = 6, while

the third gives L(f) = o/?a/~2y~!. It is evident that for such an Hodge operator it is L? # 1, which is a
natural requirement for a x-Hodge structure on Qk(S?]) for k = 0,2. On the exterior algebra Q(SU,(2))
this problem was solved by changing the inner product via the definition (4.17), and proving that the
new Hodge operator does satisy all the required properties to have a consistent x-Hodge. Following an
analogous path, define

(1, 1)%g =1,

/!

wotYwp,rw. +yw) = @ t Yy Te fywy)ss,
q

(0.0)3 = (L0, L7 (0)sz = 1, (5:3)

(z

where the inner products on 1-forms amounts to a different labelling of the inner product in (5'2)L The
Hodge operator on Qk(Si) for k = 0,2 relative to such a new inner product is given by Lf(1) = 6 and

Lf(f) = 1. But now the inner product has changed: the requirement that the inner product (-, )hSU @)
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on the exterior algebra Q(SUy(2)) fixed — via a restriction, as given in (5.2) — the inner product (-, -)sz
on the exterior algebra Q(S?) implies that the condition

G e (g o\b
(0, 9)53 = (G,H)SUQ(2) (5.4)

has to be imposed, giving
ooy =1 (5.5)

as a constraint among the parameters. The constraint formalised by relation (5.4) can be interpreted as
the quantum analogue of fixing the classical metric on the basis 52 of the Hopf bundle as the contraction
of the Cartan-Killing metric on S® ~ SU(2), since that choice in the classical formalism, as stressed in
remark 2.4, gives the equality of the inner product on £2(S?) defined in (2.71) with the restriction of the
inner product on Q(S3) given in (2.41).

The differential calculus on Si is even dimensional with N = 2, so on Ql(Sz) define a sesquilinear
form:

(o) = / A = ia"Hh(y ) — ¢?hiz*a')} (5.6)

where n = zw_ +ywy and ' = 2’w_ + y'w,, with z, 2’ € ,C(_O% and y,1y € £§0). The quantum sphere
Sg is a quantum homogeneous space and not a Hopf algebra, so there is no left-invariant basis in Ql(Sg):
neverthless such a sesquilinear form can be ”diagonalised”, as

(rw_,zw_) = —ig* " h(z*z);
(ywi,ywi) =i~ h(y"y), (5.7)

where the faithfulness of the Haar state ensures that the coefficients on the right hand side of these
expressions never vanish. The general result from [14] — recalled in (4.8) — is no longer valid on a
quantum homogeneous space: the diagonalisation in (5.7) suggests indeed a way to define a Hodge
operator. Since o can be both positive or negative, define

" 1/2
- —1 |a | _

| 1/2
v = (My*y)) pes (58)
so to have from (5.7):
) a//
(x0_,x0_) = _Z|o/’|7
) a//
(oo =il (5.9)

In the same way as in (4.8), define a left A(S?)-linear operator £ : Q'(S2) — Q'(S?) setting:

Lz o) = ilzu xh_,
) |Oé//|
Lyby) = —i o yOi. (5.10)
Such an operator clearly satisfies the condition £2 = —1 for any value of o’. It is not yet a consistent

Hodge operator: it has to be compatible with the left invariant inner product on QI(S?I) obtained in
(5.3) as a restriction of the analogue on Q'(SU,(2)). ;From the relation (4.10), this compatibility must
be imposed:

oy = [ 0 n 2t (511)

This condition is fulfilled if and only if the parameters in this formulation satisfy:

|6 = ¢*, (5.12)
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o |v = 1. (5.13)

The x-Hodge structure on Q(S2) is defined as a left A(S2)-linear operator whose action is given by:

*x (1) =ia” w_ Awy,

x(zw_)=1 — (zw_),
'|a//|
*(ywi) =~ (yws),
* (iw_ Awy) =a" 71, (5.14)

with the parameters o/, o, 3, v, satisfying the constraints (5.5), (5.12), (5.13).

Remark 5.3. The x-Hodge structure (5.14) differs from the one in [18], because in that paper the author
required the x-Hodge structure to satisfy the relation x> = 1, while the path followed here is to remain
consistent with the requirement that x> = (fl)k(N*k) on k-forms from a N-dimensional calculus.

The definition (5.14) of the Hodge duality is still not complete. The constraints among the parameters
involve the absolute value of a’, so one still needs to choose their relative signs. In the classical setting
the only parameter was a € R, and it has been chosen positive so to give a riemannian metric g in the
analysis of section 2.2. As it is clear from (2.33) and from the definition (2.39), the positivity of the
metric implies the positivity of the symmetric form (-,-)¢s (2.33) and of the sesquilinear inner product
(-,)gs (2.39): the signature of the metric tensor implies the signature of both the bilinears.

In the quantum setting, having no metric tensor, the choice of the relative signs of the parameters
is equivalent to choose the signature of the left-invariant inner product (4.14) on Q(SU,(2)): this will
encode the formalisation of a specific metric signature.

The natural choice for a riemannian signature is, from (4.14) and (4.18), given by §,v,v € R,. This
choice turns out to be compatible with (5.5), (5.12) and (5.13) for every o and «”. From (5.12) and
(5.13) one also has that:

B =q*v. (5.15)

This relation has a number of interesting and important consequences, described in the next propositions.

Proposition 5.4. The x-Hodge structure given as a left A(S2)-linear map % : QF(S2) — Q27*(S2) for
k=0,1,2 and defined by (5.14), has the property®

() A’ = (=) Fn Ax(y) (5.16)

Jor any n,n € QF(S2).
Proof. The relation is trivially satisfied for £k = 0,2. Consider now the two elements n = rw_ + yw,
and 7 = 2'w_ + y'wy in Q'(S?), which means z,2" € E(_OQ) and y,y’ € Eéo) by proposition 3.7. The
multiplication rule formalised in the same proposition gives:

() A1’ =ia" (Bay' +vyrw- Awy,

nA(x1) = =i (¢ 2Byx’ + vy )w_ Aw,. (5.17)
The two expression are equal — up to the sign, which is the claim of the proposition — from (5.15). O

Proposition 5.5. The left A(Sg)—lmear *-Hodge map defined by (5.14) is right A(Sg)—lmear: given
e Q(Sg), it is x(nf) = *(n)f for any f € A(Sg),

3In the classical formalism, the %x-Hodge structure on an exterior algebra coming from a N dimensional differential
calculus * : QF (H) — QN —F#(H) satisfies the identity (2.32):

nAGn') =n" A (n)

to which the identity (5.16) reduces in the classical limit.
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Proof. The 2D differential calculus on the quantum sphere Sg has the specific property, coming from
the bimodule structure (3.49) of Q!(SU,(2)) — where one has wy¢ = ¢"dwy for any ¢ € £~ that
wif = fwi with f e L ~ A(S2). The claim of the proposition is trivial for n € Q°(S2) ~ A(S?). For
a 1-form n = zw_ + ywy in Q'(S7), one has:

*(nf) = *((aw- +ywy)f) = x(@fw- +yfwi) =idv(efw- —yfw) =id"v(ew- —ywi)f =*(n)f.
An analogue chain of equalities is valid for 7 = f'w_ Aw, € Q*(S2), with f" € A(S?). O

In the same way it is possible to prove the following identities, which will be explicitly used in the
analysis of the gauged Laplacian operator, and which slightly generalise the last proposition.

Lemma 5.6. Given the left A(Sg)—linear *-Hodge map defined by (5.14), with ¢ € E%O), S ﬁ(_o,)L and
ne Q'(S2) one has:
*(@'nd) = ¢’ (xn)¢,
(' (w- Awy)p) = ¢* ' {*(w- Awy)}o.

Proof. With ¢'n¢ € Ql(Sz), and again 1) = zw_ + yw, it is explicitly:
*(¢'ng) = *(¢'q" (ypwy + xgw-)) = —ig"a"v ¢ (ypw — vdw_) = —ia"v ¢’ (ywi — 2w_)d = ¢'(xn)¢.

#(@ (@o Awi)d) = 7" 5 (@d(wo Aws)) = 2706 % (o Aws) = g7 {x{w- Aws )},

where the last equality is evident, since x(w_ Awy) € C. O

5.2 A Laplacian operator on A(S?)

Using the 2D differential calculus on the Podles sphere Sg and the x-Hodge structure on Q(S%) it is
natural to define a Laplacian operator Us: A(S2) — A(S2) as Osz f = *xdxdf on any f € A(S7). An

explicit computation using the formalisation of the exterior algebra Q(Sg) represented in proposition 3.7
gives:

df = (X4 fog + (X>flw-,
*df = =i V(X > oy — ¢ 2B(X b flw-],
dxdf =—id"wvX_X, + X X_|of (w- Awy),
wdxdf = —[X_X, + X X_]bF. (5.18)

The relation (3.31) shows that such a Laplacian operator can be seen as an operator DSZ : /.’,80) — L((]O).
In particular, from (4.21), the Laplacian Osz is the restriction of the Laplacian Ugy, (2) to the subalgebra

A(S2) C A(SU4(2)). A basis of the eigenvector spaces C((JO) = ®Je NVJ(O) coming from (3.41) is given by

elements ¢g j1 = cla* B! = wa.71, so that formulas (4.22) drive to a spectrum of this Laplacian on
S? as:
q

Oszdo,00 = —(qv +q BT + 1} o,
= —2qv{[J][J + 1} o, s (5.19)

Remark 5.7. Equations (4.21) and (5.18) show that the classical relations between the Laplacians Ogy (o)
and Og2, coming from the Hodge duality associated to the metric tensor g (2.29) related to the Cartan-
Killing metric, is then reproduced in the quantum formalism, in the specific realisation of the quantum
Hopf bundle that has been described. The constraints among the 5 real parameters used in the analysis
of the Hodge duality can be written as:

v = a//2a/—2
v =la"|",
8 =qv. (5.20)
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The parameters o/, o are the coefficients of the volume forms. The analysis of the classical limit of this
formalisation is in section 8. The choice:

lirri o = —4a,

q—>

lim o =2« (5.21)
q—?

gives (4.21) and (5.18) in the classical limit. Being o a positive real number, it seems natural to assume
o' and o' negative real numbers. This also gives v = —a’~1 from the second relation in (5.20), so to
have a Hodge duality (5.14) which is now:

*x(1)=0=ia"w_ ANwy,

*(rw_) = —izw_,

* (Yywy) = iyws,

* (iw_ Awy) =a/™1, (5.22)

giving, if (5.21) is satisfied, the classical Hodge duality (2.63) in the classical limit.

6 Connections on the Hopf bundle

The structure of a quantum principal bundle (P, B, H; Np, Qs ) with compatible differential calculi, given
the total space algebra P and the gauge group Hopf algebra H, has been described in section 3.2. The
compatibility conditions ensure the exactness of the sequence (3.17):

0 — PQB)P — U (P) =& P& (kerey/Qx) — 0. (6.1)

with the map ~,s, defined via the commutative diagram (3.15). Among the compatibility conditions,
the requirement that AgpNp C Np @ H — formalising a right covariance of the differential structure on P
— allows to extend the coaction Ag of H on P to a coaction of H on 1-forms, Ag) :QYP) = QY P)OH,
defining Ag) od=(d®1)oAg.

Note that Ad(kerey) C kerey ® Q. If the right ideal Q¢ is Ad-invariant (which is equivalent to
say that the differential calculus on H is bicovariant), then it is possible to define a right-adjoint coaction
Ad® : kerey /Oy — kerey/Qpn @ H by the commutative diagram

ker ey e en/On
| Ad | AW

TQqy ®id

kereyy @ H = (kerey/Qn) @ H

Together with the right coaction Ar of H on P, such a right-adjoint coaction Ad® allows to define a
right coaction Agd) of H on P ® kerey/Qp as a coaction of a Hopf algebra on the tensor product of
its comodules. This coaction is explicitly given by the relation:

Ad
Ag% (p@ 7o, (h) = P(1) ® Tay (h(2)) @ P2y (Shy)hs), (6.2)

adopting the Sweedler notation as Ar(p) = p(1) ® pa)-
It is now possible to define a connection on the quantum principal bundle as a right invariant splitting
of the sequence (6.1). Given a left P-linear map o : P ® (ker g9/ Q) + Q' (P) such that

Ag) oo=(0® id)A%Ad),
N 00 = id, (6.3)
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then the map II : Q1 (P) — Q!(P) defined by II = go ~y, is a right invariant left P-linear projection,
whose kernel coincides with the horizontal forms PQ!(B)P:

% =11,
(PQY(B)P) =0,
AV ol = (w@id) oAl (6.4)

The image of the projection II is the set of vertical 1-forms of the principal bundle. A connection on
a principal bundle can also be formalised via a connection one form, which is a map w : H +— Q(P).
Given a right invariant splitting o of the exact sequence (6.1), define the connection 1-form as w(h) =
0(1®mg, (h—ex(h))) on h € H. Such a connection 1-form has the following properties:

w(Qy) =0,
~np (wn) =1®@mg, (h—en(h))  VheH,
AV 0w = (w®id) o Ad,
II(dp) = (id®w)Ar(p)  Vpe P. (6.5)

Conversely if w is a linear map kerey — Q!(P) that satisfies the first three conditions in (6.5), then
there exists a unique connection on the principal bundle, such that w is its connection 1-form. In this
case, the splitting of the sequence (6.1) is given by:

o(p @ [h]) = pw([h]) (6.6)
with [h] in ker €47/ Q%, while the projection II is given by:
II=mo (id@w)o ~r, (6.7)

The general proof of these results is in [4]. This section explicitly describes the connections on the
quantum Hopf bundle with the compatible differential calculi presented in sections 3.4.1 and 3.4.2.

6.1 Vertical subspaces on the quantum Hopf bundle

The right coaction Ag) : QN(SUL(2)) — Q'1(SUL(2)) ® A(U(1)) of the gauge group algebra A(U(1))
on the set of 1-forms on the total space algebra of the bundle, whose consistency is allowed by the
compatibility conditions between the 3D left covariant calculus on A(SU4(2)) and the 1D bicovariant
calculus on A(U(1)), gives:

Ag)wz =w,®1,

Ag)wi =wy ® 2T (6.8)
(From the analysis on the 1D calculus on A(U(1)) performed in section 3.4.4 and the result of lemma
3.5, a connection on the quantum Hopf bundle is formalised via a splitting map o : A(SU4(2)) ®
kereyy/Qua) — Q'(SU,4(2)), which can be defined recalling the isomorphism A : ker cuy/Quqa) — C.

Given w € C set:
clew)=cw®l)=ww, +Uwy +Vw_); (6.9)

and extend by the requirement of left .A(SU,(2))-linearity, so to have:

(1@ [p()]) = ¢ ¥ (w: + Uwy + Vo),

o(¢ @ [p(h)) = ¢ ¥ p(w. + Uwy + Vw_), (6.10)
where ¢ € A(SU4(2)) and the requirement of right covariance (6.3) selects — from (6.8) - U € Eéo) and

Ve E(_O%. The projection II associated to this connection is easily seen to be:

Mws) = o(~Nyy, @) (Wt)) =0,
(w:) = 0(~Nsy, ) (W2)) =01 @ [p(0)]) =w: + Vwi 4+ V. (6.11)
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In this expression the 1-forms wy are recovered as horizontal (3.61), a notion depending only on the
compatibility conditions between the differential calculi, while a choice of a connection is equivalent to the
choice of the vertical part of Q' (SU,(2)). The set of connections for the quantum Hopf bundle corresponds
to the set of the possible choices of 1-forms on the basis of the bundle as a = Uw; + Vw_ € Ql(Sg), S0
that the second line in (6.11) can be written as

M(w,) = w, + a. (6.12)
The connection one form (6.5) w : U(1) — Q!(SU,(2)) is given by:
wiz)=o(1® [ —1])

1— q—2j 1— q—2j
- (7= v+ Ve = (o0 o)

Given the projection IT and the connection 1-form w, it is possible to compute the lhs and the rhs of
the last line in (6.5). On the basis of left invariant differential forms and using the explicit form of the

quantum vector fields in (3.45), with ¢ € Eg_o) one has:

(d¢) = I((X;pd)w;) = (X;>e)(w))

1—q%

= (X,po)(w,) = <1 — qq_2> d(w, + Uwy +Vw_); (6.14)

and also:
(id @ W)AR(}) = (id @ w)(¢p @ 277)
1—q%

= (1 — q2> d(w, + Uwy +Vw_) =T1I(dg). (6.15)
The monopole connection corresponds to the choice U =V =0 < a = 0, so to have IIj(w,) = w, and
the monopole connection 1-form wg(2?) = [(1 — ¢~%)/(1 — ¢~ ?)]w,. With a connection, one has the

notion of covariant derivative D : A(SU,(2)) — Q'(A(SU,(2))) of equivariant maps. Given ¢ € £,
define
D¢ = (1 — I)do. (6.16)

The covariant derivative D¢ is clearly an horizontal 1-form: the adjective ”covariant” refers to the
behaviour under the coaction of the gauge group algebra, as one directly (3.32) shows that:

App=¢®z = ALY (Dp)=Dgw =, (6.17)

from the right invariance (6.4) of the projection II. In terms of the connection 1-form the covariant
derivative can be written, using (6.15), as :

D¢ = (1 —1)d¢ = d¢ — II(d¢)
=dp—pAw(z?) (6.18)

ona¢e€ E;O). It is then immediate to recover that, for any f € Eéo) ~ .A(S?I), one has Df = df.
Remark 6.1. Given any ¢ € E%O), from (6.18) and (6.12), the covariant derivative can be written as:

Dé = {(X456) — (X.04)Uhws + {(X_06) — (X.06)V Jw_.

It is an easy computation using the A(SU4(2))-bimodule properties (3.49) of Q'(SU,(2)) to prove that
D¢ ~ Q'(S2)- A(SU,(2)) for any connection represented by a € Q'(S2). This means that any connection
on this quantum Hopf bundle is a strong connection, following the analysis in [11].
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6.2 Covariant derivative on the associated line bundles

A covariant derivative, or a connection, on the left .A(SZ)-module £? is a C-linear map
V OF(S2) @as2) E) > QFT(S2) @acs2) £, (6.19)
defined for any k£ > 0 and satisfying a left Leibniz rule:
V(a(o]) =dan{o|+ (-1)"a A (V{d])

for any a € Q™(S2) and (0| € QF(S2) ®A(s2) &, A connection is completely determined by its
restriction V : 57(10) — Ql(Si) ®.A(s2) 5,(10) and then extended by the Leibniz rule. Connections always
exist on projective modules: the canonical (Levi-Civita, or Grassmann) connection on a left projective
A(S2)-module & is given as

Vo (o] = (d(a])p"™; (6.20)

the space C(&(LO)) of all connections on & is an affine space modelled on HomA(Sg)(&(LO),&SO) ®A(s2)
Q'(S2)), so that any connection can be written as:

V(o] = (d{a))p™ + (=1)* (o] A A®) (6.21)

with (o] € Qk(S?I) ®a(s2) £ and AM € M, 44 ®A(s2) Q'(S2) — which is called the gauge potential of
the connection V — subject to the condition A = AMp() = p(MIA®) = (M) AMp(")  The composition

VZ=VoV: Qk(S§) ®A(Sg) 57(10) — Q’“”(Sg) ®A(S§) ST(LO)

is ©(S2)-linear. This map can be explicitly calculated: given (o] € Qk(Sg) ®A(s2) 57(10), from (6.21) one
has

V2 (o] = d(V (o)p™ + (=1)*(V (o)) A A®)
{(do)p™ + (=1)* (o] A AP + (=1)F{(d (o )p™ + (=1)* (o] A A™F A AN
{(d (e)p™p™ + (=1)*(d (o] A AP 4 (o AdAR))pt™)

+ (=D (d (o )p™ AA®Y — (o] AA® A AW

= (o] {~=(dp™ A dp™)p™ 4 (AAM)p() — A A AW}, (6.22)

d
=d
d

The restriction of the map V2 to 57(10), seen as an element in 92(83) ®.A(s2) 57(10)7 is the curvature Fy of
the given connection.

In order to relate the concept of connection on the quantum Hopf bundle to that of covariant derivative

on the associated line bundles, one extends the left A(Sg)—module isomorphism between 51(10) and 57(10)
described in proposition 3.4. As first step, define the A(Sg)—bimodule:

LY = {p e OL,(SU,(2)) = A(SU,(2))QL(S2)A(SU,(2) : AR =@ 27"} (6.23)

and introduce the notations:
57(lk) =QF (Si) ®A(sg) 57(10).

The maps:
LD el g o], = (0],
gD =Ll (ol b= (o u™) (6.24)

formalise a left A(S2)-module isomorphism (in this notation the explicit dependence on (f| € .A(Sg)'"'Jr1
as in proposition 3.4 has been dropped). Via this isomorphism, any connection on the quantum Hopf

bundle — represented by a projection IT (6.11) or by a connection 1-form (6.13) — induces a gauge potential

A®™ on any associated line bundle &(LO).
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Proposition 6.2. Given the left A(S?])—isomorphism E%O) ~ &(LO) described in proposition 3.4, as well

as the analogue left A(Sg)—module isomorphism LSS) ~ &Y described in (6.24), there is an equivalence
between the set of connections on the quantum Hopf bundle formalise through a projection I1 in Q(SU4(2))

as in (6.11), and the set of covariant derivative V € C’(E,(LO)) an any associated line bundle. With ¢ € L)
so that (og| = ¢<\II(”)| € &Y, the equivalence is given by Dp = (V{aly) |\If(”)>.

Proof. Choose ¢ € LY, so to have o4 = ¢ (U™ and from the definition in (6.21) express a covariant

derivative on &(10) via a gauge potential as:

Viol,=d <¢ <\1/(n) ) \I,<n)> <\IJ(”)
= {d¢ - ¢[<‘I’("),d\11(")> - <\1/(n)

A (6.25)
q,(n>>]} <q,<n>

+ 0w
AM

(6.26)

since A(™ = AMp() On the other hand, being ¢ € E%O) one has:
D¢ = (1 —1)d¢ = d¢p — (X.>¢)II(w.)

_ 2n
—do— (1132) PI(w.),

with D¢ € L5 from (6.17). By the isomorphism (6.24), equating D¢ = (V (o) |@(™)) defines the
gauge potential A as:

1 _ 2n
<\I,<n)7d\1,(n>> B <\I/(n) A \1/<">> = 372 (s + Uw, + Vw_)
1 _ 2n
=1 372 (w, +a)=w(z™™): (6.27)

an explicit calculation shows that (U™ d¥(™) = [(1 - ¢*")/(1 — ¢~?)]w., so the previous expression

becomes: ,
v = 1-4q
1

A® —

<\1/<"> (Uws + Vw_), (6.28)

which is solved by

_ 2n
A - _1Z ]qf<">> (Uwy + Vew_) <qf<">

1—qg2
1— 2n
- - 5_2 ’\I!(")> a <\II(") . (6.29)

This solution is unique. Being the set of connection an affine space, any different gauge potential, solution
of equation (6.28), should be A(® = A 4 A’™ where A™ is given in (6.29) and A’(™ must satisfy
(00| A [ 50§ = 0, with A7) = pm Ap(m) = p(m o) = A)p(m) = A/ One directly has:

<\I;(") q,<n>> —0

0= ‘\IJ(”)> <\1f<">

A/

A/ = pMA/Mp(n) — A’(m)

\p(n)> <\Ij(n)

The complete equivalence claimed in the proposition comes by (6.28), which gives for any gauge potential
A™ a 1-form a € Q'(S2), suitable to define a connection as in (6.12). O

The form of the gauge potential (6.29) shows that the monopole connection Iy(w,) = w, corresponds

to the Grassmann, or canonical covariant derivative Vo (0| = (d (¢])p(™ on the line bundles £ having
A =0 for any n € Z.

The compatibility between the differential calculi allows to extend the concept of right coaction of

the gauge group algebra on the whole exterior algebra Q(SU,(2)), introducing a right coaction A%f) :
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OF(SU,(2)) — QF(SUL(2)) ® A(U(1)) by induction as Ag) od=(d®id)o Agfl). It becomes now
natural to define the A(S2)-bimodule:

LO) = {p e ASU,(2))Q%(SHAST,(2) : AP =g @ -; (6.30)
so that the maps:
LB ZED 0 g (ol = (W),
£ Z, L@ (g = <g,\11(”)> (6.31)

formalise a left A(Sg)—module isomorphism, generalising the isomorphisms given in proposition 3.4 and
in (6.24). In the formulation of [4], the elements in L are called tensorial forms.

Recall that the covariant derivative V is defined in (6.19) as an operator V : e g for
k = 0,1,2, since the differential calculus on A(S(ZI) is 2 dimensional; the covariant derivative D has

been defined by (6.16) only on the A(Sg)—bimodule E%O )7 while the proposition 6.2 shows the equivalence
between D : [:%0) — ES) and V : S,(LO) — 5,(L1). The isomorphism (6.31) allows then to extend the
covariant derivative to D : ES) — ££?>, defining:

D¢ = (V (ol,) ]xp<n>> (6.32)

for any ¢ € £ with <a|¢ =¢ <\II(")| e = Ql(Sg) ®A(s2) &\?. Such an operator can be represented
in terms of the connection (6.13) 1-form w. From the Leibniz rule one has:

(o (¥)) = (dg) ()

+ (—1)’“¢5d<\1/(")

)

with ¢ € E%k). This identity gives the next proposition.

Proposition 6.3. Given ¢ € [,53) , so that <0\¢ =¢ <\II(")’ € &(11)7 the action of the operator D : E%l) —
£ defined by (6.32) can be written as:

Dp=dop+pAw(z™") (6.33)

Proof. The proposition is proved by a direct computation. Start from ¢ € £$L1), so that from(6.21) one
has V (o], = (d (0|¢)p(") —{ofy A A™ o that :

Do = (V (o],) [#))
= (d{o],) q;(n)> — (o], AA® q,(n)>
= d(¢ <\I,<n> ) ‘q,<n>> —6A <\I,(n)
=d¢+ oA <\1/<">,d\11<”>> oA <\1/<”>

A

q,<n>>

AM

\IJ(”)> —dp+dAw(z™), (6.34)

where the last equality comes from (6.27), expressing the gauge potential A™ in terms of the connection
1-form w. O

To give the curvature Fy of the given connection (6.22) a more explicit form, one can make use of
two further relations. The first one, involving the projectors p(™ only, comes from [16], while the second
is proved again by direct calculation.

Lemma 6.4. Let p™ denote the projection given in (3.36). With the 2D calculus on Sg of section 8.4.8
one finds:

dp™ A dp™ p™ = —g7" ] p™M wy Aw_,
p™ dp™ A dp™ = —¢7"n] p™ wy Aw_.

44



Lemma 6.5. Given for any n € Z the projectors p™ as in (3.36) and the expression of the gauge
potential A™) as in (6.29), one has:

2
p(M A () — (11 —q¢"

— . (6.35)

) ‘\II(")> d{Uwy +Vw_) <\II(")

Proof. Setting

_ q2n

A — <\1/<”> A

\1/(”)> = —{0-¢"/A - PO + Vo) = 7 =a,

the expression (6.35) can be written as the sum of three terms, from the Leibniz rule satisfied by the
exterior derivation d:

p(™ dA (™ p()
— Hq,(n)> <\Il(”),d\ll(")>a(") <\11<"> } 4 H\I;(n)> (da™) <\I;(n)

- G_Zi’;) ‘\p(n)> {wz A a1 sz} <\1,<n> i H\II(”)>da(") <q,<n)

} _ Hq,(n>>a<n> <d\p(n)’\p(n)> <q,<n>

I

where the second equality comes from the identities <\II(”), d\I'(”)> =— <d\IJ("), \I/(")> ={(1-¢*"/(1 -
¢ ?)}w., while the A(SU,(2))-bimodule relations (3.49) of 1-forms in Q! (SU,(2)), as well as commutation
relations among them (3.51), give:

}

wo A(Uwy +Vw ) =qUw, Nwy + ¢ Vw, Aw_ = —(Uwy +Vw_) Aw,,
so that w, A al™ 4+ al®™ Aw, = 0 and the identity claimed in (6.35) is verified. O

Remark 6.6. The identity w, A a™ +al™ Aw, =0 also shows that the 1-form w, anti-commutes with
every 1-form in Q'(S7).

Proposition 6.7. Given the covariant derivative V : gflk) — ST(LkH) from (6.21) with a gauge potential
(6.29) A = —(1—¢*)(1—¢=2)~ |[¥™)a (™|, the operator V? : e &2 can be written as:

V2 (o] = (o] A Fy = — (o] A {‘w>> " n)(w_ Awy —da+ ¢ [nfa A a) <w> 3. (6.36)

Proof. {From the general expression (6.22), the action of the operator V2 on a (0| € 57(10) is linear, and
given by the sum of three terms. The first one, recalling the result of the lemma 6.4 and the commutation
rules (3.49) and (3.51), is:

—(dp™ A dp™pt™ = g7 M nlp™Mwy Aw-
= —¢"""[n] ‘\p(n)> <\I/(")

w_ Awy = —¢"[n] ’\I/(")> w_ ANwy <\I/(”)

. (6.37)

Since one has (o|p(™ = (o], being elements in the projective modules £, the other two terms in (6.21)
are:

)

1— 2n
(M) qA @) y(n) _ _ q ’ (n) (n)
pMAA My (1—q—2> v >da<\If

2 2
A A A _ G —4 Z) ‘\Il(n)>a/\a<\1/(n)
7q7

= ¢""[n] ‘\II(”)> da <\I/(”)

— 2D [p)2 ‘\1/(”>> ana <\W>

The sum of these three lines gives the curvature Fy € M, 1, ® A(s2) Q?(S?) the expression:

Fy=— ’\11(”)> "M n)(w_ Awy —da+¢" " n]a A a) <\Il(") . (6.38)
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The isomorphism (6.31) allows to formalise the curvature as a linear map D? : LE{” — 553), defined
by:
D% = (V* (a],) [w)) (6.39)

for a given ¢ = (o, W), This operator can also be written in terms of the connection 1-form w.
Proposition 6.8. The operator D? : £ @ defined in (6.39) can be written as
D% = —¢ Adw(="") + (=) Aw(z")} = o A ({2

(0)

Fy ’\1:<”>>) (6.40)

on any ¢ € Ly

Proof. The proof is a direct application of the result in propositions 6.18 and 6.3. It is D¢ = d¢ — ¢ A
w(z™™) with ¢ € £ so that:

D?¢ = d(D¢) + (D¢) Aw(x")
— A AW(ET) + (A6 — pAw(zT) Aw(z) = —p A (dw(z) T w(z"") Aw(z")).
The relation (6.27) can be rewritten as w(z™") = —¢* ™" [n](w. + a), so to have:

dw(z™") = —¢" " [n](dw, + da) = ¢" ™" [n](w_ A wy — da),
Wz Aw(z") = (g )P (W Fa) A (ws +a) = 2TV Pana,

where the last equality in the second line comes from the remark 6.6. It becomes then clear to recover
from (6.36)

D% = —¢ A g™ [n){w_ Aw, —da+ ¢ [nlana} = ¢ A (<x11<”> Fy ‘\If<”>>) :
meaning that the action of the operator D? can be represented by the 2- form <\I/ ’Fv |\I/(")>) €
. O

Remark 6.9. Recall from (6.16) that, given ¢ € E%O), the covariant derivative D : E%O) — ES) has been
defined in terms of the projector 11 associated to the connection as:

D¢ = (1 —T)d¢.

Given the left A(Sg)—module isomorphisms Eg,k) S Qk(Sz) ®.A(s2) 57(10) = ET(Lk), the proposition 6.2 show
that any connection formalised via a projector 11 as in (6.11) induces a gauge potential AW 50 to have
a covariant derivative V : Qk(Sg) ®.A(s2) Ep— Qk‘*‘l(Sg) ®.A(s2) En. The operator D is then extended in
(6.32) as D : ES) — 6512) in terms of the operator V, without using the projector 11. This definition is
perfectly consistent, but it seems natural to understand whether it is possible to define D : E%l) — cﬁf)
via the projector 11, and even whether it is possible to extend the domain of such a covariant derivative
operator D from the set of horizontal forms L5 to the whole exterior algebra Q(SU4(2)), in analogy to
the classical case (2.4).

Given ¢ € LS), the most natural definition of a covariant derivative seems to be:
D¢ = (1 —T)dg, (6.41)

with the horizontal projector (1 —1I) extended to Q?(SU4(2)) by assuming a compatibility with the wedge
product

0(SU,(2)) = {2 (SU4(2) ®asu,(2)) @' (SUg(2))}/Se = Q' (SU,(2)) A 2 (SU,(2))

so to have:

(1= IQ*(SU,(2)) = {(1 — Q" (SU4(2))} A {(1 — Q' (SU,(2))}- (6.42)
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It is easy to see that such a compatibility does not exist. To be definite, consider an example. Choose

wy € E(_lg, so that dwy = ¢*>(1 + ¢®)w, Awy = —(1+ ¢ 2wy Aw, by the commutation properties of the

A product (3.51). Compute now:
*(1+¢*)(1 = {w. Awp} = (1 +@){(1 = THw} A {1 - Twi} = (1 +¢*)Vw- Awy,
(1471 - T{wy Aw:} = =1+ ¢ {1~ Mws } A{(L - Mw.} = 1+ ¢*)Vw- Awy,

The two expressions are different: the problem is that, for the given 8D calculus on A(SU,4(2)), one has

(1-1)So ¢ So.

Consider the 6 relations (3.51) generating Sg. An explicit calculation shows that, from the three of them
not involving w,, one has:

{(1 = My} A {(1 = Mwy } = 0,
{(1 = Mw_} A {(1 = Tw_} =0,
{(1 =M} A (L= My} +¢72{(1 — Mws } A {1~} =0,
while from the remaining terms:
{(1 = Tw.} A (1 = Mw_} +¢(1 - w_} A{(1 = M.} = (1 ¢")Vws Aw,

{1 = Mw} A = Twi} + ¢~ {1 - e} A{( - Mw.} = (1 - ¢ Ve Awy,
{1-Tw A {(1-TNw.} =aAa.

These computations show that only in the case of the monopole connection — that is a =0 — it is
(1-1IIy)So C So -
only in the case of the monopole connection it is consistent to set
(1 - H)Q2(SU,(2) = {(1 — L)1 (SU,(2))} A {(1 — )2 (SU, (2))}

and to define

Do : 9¥(SU,(2)) = Q"1 (SU,(2)),  Doop = (1 —Tlp)d¢ (6.43)
The operator Dy is a ‘covariant’ operator: given ¢ € QF(SU,(2)) such that Agf)(b =z, it is
A%Hl)(Do(b) = Do ® z7", and moreover Dy¢ € ng): Do¢ is, so to say, horizontal. Note that
ES) = 0, as the calculus on S(QI is 2D. It becomes an easy computation to prove that the restriction

Dy : £ — £ acquires the form:
Do¢ = (1 —TIp)de = d¢ — (=1)* ¢ Awo(z™"). (6.44)

This relation is the quantum analogue of the classical (2.5). The classical covariant derivative of an
equivariant differential form ¢ can be expressed in terms of the connection 1-form w only if such ¢ is
horizontal. In this quantum formulation, the classical condition that ¢ is horizontal and equivariant has

been translated into the condition ¢ € /ngk).
7 A gauged Laplacian on the quantum Hopf bundle

With a covariant derivative V acting on the left A(S2)-projective modules el = Qk(Sg) ®a(s2) En and
the x-Hodge structure on the exterior algebra Q(Sg) introduced in section 5 it is possible to define a

gauged Laplacian operator Uy : ST(LO) — 57(10) as:

Oy (o] =*V x V (g] (7.1)
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on any (0| € &Y. From the left A(S2)-linearity of the x-Hodge map, and the relation (6.21), one has:
V V(o] = d{x(V (o)) }p™ = (xV (a]) A AD

= d{{(d{oDp™ ]+ (o] A (A®) pt™ — {([(d (o )p W] A A®) + (o] A (xA®)) A AW}
= d{+[(d (o)™ + df (o] A AW —x{(d ()p™} A A® —(a] A (xA™) A A®

(7.2)
The second term in the last line can be written as:
d{(o| A A™) 3™ = d (o] A (kAP + (o] A{d(xA™)}p™
=d (o] A (*A™) + (o] A {d(xA™)1p™) (7.3)
while the third term in (7.2) is:
— (P A A =~ (d (o])p) A A
= —(xd (a]) N AW (7.4)

in both the relations (7.3) and (7.4) the specific property of right A(S?)-linearity of the x-Hodge map
has been used, namely as x(A®™)p(") = (A p()) = A in (7.3) and as «{(d (¢])p™} = %(d (¢|)p™)
in (7.4). Moreover, from the proposition 5.4 one has d (o] A (xA™) = —(xd (¢]) A A®™ so that

* V4V (o] = %d{*(d (o] )p™ }p™ —24{ (xd (o) AA® } 4+ (| A {xdx A® 1p ™) — (G| Ax{ (xAP)AA®} (7.5)
The four terms componing the gauged Laplacian can be individually studied.

e Recalling the result of lemma 5.6, one has:

*AD) = g ] {00y a (WO} = @] [0 (xa) (0. (7.6)
The fourth term in (7.5) is, using once more the result of lemma 5.6 with <\I/(”)| € L(_Ogl:
— (o] A*{(FADY A ADY = — (o] A 20 [] % {]qf<">> (*a) Aa <qf<n> }
=~ (o] A [ (e{(xa) A a}) (). (7.7)

e ;From (7.6) the third term in the expression (7.5) of the gauged Laplacian is:

)hpt
= (ol A g™ ] {p™a (|0 ) (+A ) (w

(o] A frd « A }p() = (] A g+ ]+ {d (| 00)) (xa) (W)

Jp™L(78)

The last term in curly bracket is, by the derivation property of d:

p(d (‘\p(”)> (xA®) <\p<”> ) p() —
- ‘\I;(n)> <<\I;(n)7d\1;(7l)> (*a)> <q,(n) _ ‘q,<n>> ((*a) <d\p(n),qj(n)>> <\I;(n) i ‘\I,(n>> (d(xa)) <\I;(n)
= [U0) (=g " o A (xa) — "+ ) (xa) A s + d(xa)} (8] (7.9)

where the last equality comes from the identity <\If("), d\I/(")> = —¢'*"[n]w,. Recalling the remark
6.6, and using the commutation rules (3.49) as they were used in (7.7), the expression (7.8) becomes:

}
. (7.10)

(o] A {xd x A@ Y™ = g1 p] (o] A *{(w<n>> d(%a) <q/<">

=q¢'""[n] (o] A ’\Il(")> {xd * a} <\1/(n)
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e It is now straightforward to analyse the second term in the expression (7.5) of the gauged Laplacian.
From the definition (6.29) and the Hodge duality (5.14), with again a = Uwy + Vw_, U € Eg))
and V € E(_O% :

2% {d (o] A (FA™)} = 20y ¢ n] * {(X 4 (o])ws \w>> Aa <w>
q,<n>> % <q,<n>

= —2g[n){v(Xs> (o] ]\p<n>> 1% <\p<n>

— (X_> {o])w_ (\1:<">> Aa(wt

}
b (wo Awy)

}(7.11)

= —2ia"v g[n[{(X4> (o]

+ @ (X_p (o)) ’xp(“)> U <x11<">

+ B(X_>{o]) ’\1:<”>> U <\IJ(")

e To analyse the first term in (7.5), which is the only one not depending on the gauge potential a,

start with:
#{(@ (oo™} = x ({45 (o y + (X (o)1)
— (X0 (0P My + (X_o (o])pMw_}
— —ia" (X 4> ()P ™y — (X (o] )pMw_} (7.12)
so to have:

o {(@ (o)™} = —ia"v (X o [{Xy> (o]}p™ | w- Awy = X5 [{X> (o]} | wy Aw)
= —iav (X o [{Xy» (o] 1)] + X o [{X o (o}p™] ) w Ay
x (ax {(@(ohp™}) = —ia” (vX_> [{X 10 (o™ + BX 40 [{X-> (o] ) % (w- Awy)
- (VX_> [{X+> <a|}p<n>} +BX > [{X_> <0|}p(”)D (7.13)

The gauged Laplacian can be formalised as an operator (p : E%O) — E%O) via the equivalence between

equivariant maps ¢ € EEP) and section of the associated line bundles o € 57(,,0), represented by the
isomorphism in proposition 3.4:

Opo = (Ov (o],) [#™) (7.14)

on any equivariant map ¢ = (o, [¥(™)). The terms (X1> (o) |[¥(™)) in (7.11) and(7.13) need a specific
analysis. Given the coproduct AXy =1® X4 + X4 @ K2, it is:

(Xaw (o) [£0) = (Xanfo (9]} |9 )
= (X4 <\p(”) ) ‘\I/(n)> (X avd) = (X end). (r15)

This last equality is clear from (3.25) with X} and n < 0, and with X_ and n > 0. In the other two
cases, it is possible to apply once more the deformed Leibniz rule to products of elements in A(SU4(2)),
having:

(X ab <\I!(")

) ‘\I/(n)> = X4> <\1/(”)7\p(n)> _ <\I,(n)

= Xy(1) — <\1/(">

(X ’\1/<“>>)

(Xi> ‘\IJ(")>) S <\1/("> (

‘\1/<">>) —0;  (7.16)

since again from (3.25) one has X > ‘\II(")> =0 with n > 0, and X_» ‘\II(")> =0 with n < 0.
Recollecting the four terms from (7.5) and making use of the relation (7.15), one has:

—o Ax{(xA™) A A w> = —?[n)¢ A *{(xa) Aa},
o A {xdx A™Y @ >: [n] A {xd x a},
25 {do A ()} [U0)) = =2 " [n] (U(X450)V + BX_p0)U),
[* (d*{(da)pw}ﬂ q/(")> 2 (VX X4 + BX LX) b, (7.17)

49



It is clear that the gauged Laplacian operator can be completely diagonalised only if one chooses the
gauge potential a = 0, that is if one gauges the Laplacian by the monopole connection. Such a gauged

Laplacian Op, : E%O) — L%O) can be written as:

Opyd = —q " (wX_X,| 4+ 06X, X_)pg, forge LY. (7.18)
The diagonalisation is straightforward, following (4.22). One has:
—-n n n —1-n
Opybn,50 = —4¢" V{[J—*][J+1+§]}—q . 5{[J—*HJ+1+ ] (]} én, s
=—¢'"f{2[J - —][J+ 1+ ] (0]} én,.11- (7.19)

Recall the Laplacian operators on A(SU,(2)) and on A(S?) from equations (4.21) and (5.18):

Osu, 20 = —(vX_X4 + BX 1 X_ + X, X.)>0, pe £V,
O f = —(vX_X + BX X_)of, fe A2~y
Ope¢ = —q " (vX_ X1 + X1 X ) >¢, pe L. (7.20)

One has that the restriction of Op, to ¢ € L‘ ) coincides with the operator |:|S2 Moreover it is now
possible to generalise to the quantum Hopf bundle with the specific differential calculi studied so far, the
classical relation (1.1), from which this analysis started:

¢"Ope>¢ = (Osu,2) +1X:-X:) 00, ¢ € LY. (7.21)

This relation appears as the natural generalisation of the classical relation (1.1) to this specific quantum
setting. The quantum Casimir operator (3.21) can not be written as a polynomial in the basis derivations
X, (3.45) of the 3D left covariant calculus from Woronowicz, so its role is played by the Laplacian
Usu,(2)- Its quantum vertical part can still be written as a quadratic operator in the vertical field X, of
the quantum Hopf fibration.

8 An algebraic formulation of the classical Hopf bundle

The aim of this section is to apply the formalism developed to study the quantum Hopf bundle to the
case when all the space algebras are commutative, in order to recover the standard formulation of the
classical Hopf bundle, described at the beginning of the paper, from a dual viewpoint.

8.1 An algebraic description of the differential calculus on the group mani-
fold SU(2)

Rephrasing the relations (2.8) which define the matrix Lie group SU(2), the coordinate algebra A(SU(2))
of the simple Lie group SU(2) is the commutative x-algebra generated by u and v, satisfying the spherical
relation u*u + v*v = 1. The Hopf algebra structure is given by the coproduct:

u —v* u —v* u —v*
A[’u u*}:[fu u*]®[v u*}’ (8.1)
antipode:
S[“ _Z*]:[“* ”*], (8:2)
voou v u
and counit: .
e[z uﬁ}:[é?] (8.3)
The universal envelopping algebra U(su(2)) is the Hopf *-algebra generated by the three elements e, f, h
which satisfy the algebraic relations (2.12) coming from the Lie algebra structure in su(2):
[e, f] = 2h,
[£,h] =1,
[e,h] = —e. (8.4)
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The *-structure is:
h* = h, e’ =1, *=e, (8.5)

and the Hopf algebra structure is provided by the coproduct:
A(e) :e®1+1®e7

AN =t@1+10f,
A)=h@1+1®kh;

antipode:
S(e) = —e,
S(f) = —f,
S(h) = —h;
and a counit which is trivial:
gle) =e(f) =eh) =0. (8.6)

The centre of the algebra U (su(2)) is generated by the Casimir element:
1
C=h%+ i(ef—f— fe) (8.7)

The irreducible finite dimensional *-representations o; of ¢ (su(2)) are well known and labelled by non-
negative half-integers j € %N . They are given by:

UJ h) |jam> :m|j7m>a

i (
oj(e)lj,m) =/ —m)(j +m~+1)[j,m+1),
oi(f) 5, m) = /(G —m+1)(j +m)|j,m—1). (8.8)

The algebras A(SU(2)) and U(su(2)) are dually paired. The bilinear (3.5) mapping (-,-) : U(su(2)) x
A(SU(2)) — C, compatible with the *-structures, is set by:

<h7u> = _1/27

(h,u") =1/2,

<e’ U> =1,

<f,1}*> =-1 (89)

all other couples of generators pairing to 0. This pairing is non degenerate: the condition (I,z) =0Vl €
U(su(2)) implies & = 0, while (I, z) = 0 Va € A(SU(2)) implies h = 0.

It is possible to prove [13] that a finite dimensional vector space X of linear functionals on a Hopf
algebra H is a tangent space of a left covariant first order differential calculus (Q!(H),d) if and only if
X(1)=0and (A(X)—e®X) € X @ H°, for any X € X, where H° is the so called opposite algebra to
H. The ideal Q = {z € ker ey : X (z) = 0VX € X} characterises the calculus, the bimodule of 1-forms
being isomorphic to Q' (H) = QL. (H)/Ng with Ng = r~}(H ® Q). This result shows the path to prove
the following proposition.

Proposition 8.1. Given the nondegenerate bilinear pairing {-,-) : U(su(2)) x A(SU(2)) — C as in (8.9),
the set {e,f,h} of generators in U(su(2)) defines a basis of the tangent space Xgy(2y for a bicovariant
differential calculus on A(SU(2)). Such a differential calculus is isomorphic to the differential calculus
(2.24), once the algebra C>°(S®) is restricted to the polynomial algebra A(SU(2)).

Proof. The definition of counit in the Hopf algebra U (su(2)) shows that the generators [, = {e,f,h},
seen as linear functionals on A(SU(2)) via the pairing, are such that:

(1) = (e, 1) =¢e(e) =
(1) = {£,1) = e(f) =

)

—



while the coproduct relations can be cast in the form:

Ale)—1Re=e®1,
Aff) —1ef=f®1,
Ah)—1®h=h®1; (8.10)

thus proving that the set {e,f,h} in U(su(2)) defines a complex vector space basis of a tangent space
Xsy () for a left covariant differential calculus. In order to recover the ideal Qg (2) C keregy(z) for
this specific calculus, consider a generic element x € keregy(z). It must necessarily be written as
v = {(u— 1)z, (u* — 1)x2,vT3,v 24} With z; € A(SU(2)). Such an element x will belong to Qg (2) if
(o, ) = 0 for any of the generators I, € U(su(2)), since they form a vector space basis for the tangent
space Xgy (o) relative to this calculus. For the element x = (u — 1)z the three conditions are:

(e,(u—1)zq) =(e,u—1)(L,x1) + (1,u—1) {e,z1) =0,
f,(u—1Day) = {f,u—1)(1,21) + (L,u— 1) {f,21) =0,

(h,(u—Dzq) = h,u—1) (1, z1) + (L,u—1) (h,z1) = —% (1,z1) = —ée(xl), (8.11)

where, in each of the three lines, the first equality comes from the general properties of dual pairing
and from the specific coproduct in U(su(2)), while the final result depends on the specific form of
the pairing. This means that = (u — 1)x; belongs to Qgy(2) if and only if 21 € keregy(z). The
analysis is similar for the other three elements z = {(u* — 1)xo,vrs,v*x4}. It is then proved that
this left covariant differential calculus on A(SU(2)) - whose tangent space is 3 dimensional - can be
characterised by the ideal Qg (2) = {ker ESU(Q)}z C keregy(2), which is generated by the ten elements:
Qsu(z) = {(u—1)% (u—1)(u* = 1), (u—1)v, (u—1)v*, (u* —1)?, (u* — Do, (u* — 1)v*,v?, vv*,v*?}. The
equation (3.4) allows then to write the exterior derivative for this calculus as:

dz = (epz)we + (foz)wr + (h>x)wy (8.12)

The commutation properties between the left invariant forms {we,ws,wn} and elements of the algebra
A(SU(2)) depend on the functionals f,;, defined as A(l,) = 1 ® 1y + Iy ® fpo. From (8.10) one has
fab = ab, so 1-forms do commute with elements of the algebra A(SU(2)), wex = 2w,.

The ideal Qg (2 is in addition stable under the right coaction Ad of the algebra A(SU(2)) onto
itself: Ad(Qsu(2)) C Qsu(e) ® A(SU(2)). The proof of this result consists of a direct computation.
The stability of the ideal Qgy(2) under the right coaction Ad means that this differential calculus is
bicovariant.

The explicit form of the left action of the generators of U (su(2)) on the generators of the coordinate
algebra A(SU(2)) is:

hou = —%u e>u = —0v* fou=0

hou* = %u* esu* =0 f>u* =wv (8.13)
hsv = —%v e>v = u* fov=0 ’
h>v* = %v* e>v* =0 fov* = —u

Starting from these relations it is immediate to see that the left action of the generators I, € U(su(2))
is equivalent to the Lie derivative along the left invariant vector fields L, (2.11). This equivalence can
now be written as:

e>(z) = —il (z),
fo(x) = —iL_(x),
h>(z) = iL,(x), (8.14)

and it is valid for any = € A(SU(2)), as the Leibniz rule for the action of the derivations L, is encoded
in the definition of the left action (3.7) and the properties of the functionals f,; = 4. From relation
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(8.12) it is possible to recover:

1
du = —v*we — §uwh,

1
du* = vwp + §u*wh,

1
dv = v*we — §vwh,
1

dv* = —uwr + §U*wh'

These relations can be inverted, so that left invariant 1-forms {we,ws, wn} can be compared to (2.21):

we = udv —vdu = iy,

wr = v du* — urdv* = iw_,

wp = —2(u"du +v*dv) = —iw, (8.15)
These equalities, which are dual to (8.14), represent the isomorphism between the differential calculus
introduced via the action of the exterior derivative in (8.12), and the differential calculus analysed in

section 2.1 and formalised in (2.24).
O

It is now straightforward to recover this bicovariant calculus as the classical limit of the quantum 3D left
covariant calculus (Q(SU,(2),d) described in section 3.4.1. In the classical limit A(SU,(2)) — A(SU(2))
as ¢ — 1, with ¢ — x, one has:

Wy — We (X400) — (evw),
W_ — ws (X_po) — (f>x),
1

We = 5 Wh (X.pp) — (—2h>x).

The coaction Ag) of A(SU(2)) on the basis of left invariant forms defines the matrix Ag)(wa) =
wh @ Jpa:

AL (wr) = wr © u? + wy ® W* — we ® v,

Ag)(wh) = —wr ® 22U + wy ® (uu — V") — we ® 2uv®,
Ag)(we) = —wr ® V% + wh @ UV + we ® U, (8.16)

which is used to define a basis of right invariant one forms 7, = wpS(Jpq):
ne = ulwr — uv*wy — v 2w = v*du — udv*,
Mh = 2uvws + (uu® — vo™)wy + 2u™ v W, = 2(udu™ + v*dv),
Ne = —v%wr — u*vwy 4+ 1w, = u*dv — vdu*; (8.17)

- note that it has been made explicit use of the commutativity between forms w, and elements of the
algebra A(SU(2)). The right acting derivation associated to this basis are given by (3.12) as

dz = na<(—5’_1(la)) = Ng<l,

for any x € A(SU(2)), since an immediate evaluation gives S~1(l,) = —I, for the three vector basis
elements of the tangent space [, € X. Using again the commutativity of the right invariant one forms
7 with element of A(SU(2)), the action of the exterior derivation (8.12) can be written as:

dz = (z<f)ne + (x<h)ny + (x<e)ne. (8.18)
Comparing (8.17) to (2.22) one has:

nt = iﬁ—a
Th = _iﬁza
Ne = 114, (8.19)
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while for the right action of the generators I, on A(SU(2)) one computes:

u<h = —%u u<e =0 udf = v

u*<h = %u* u*<e = —v* uw*<f =0 (8.20)
v<h = %v v<de = u vaf =0 ’
vi<h = —1o* vi<e =0 viaf = —u*;

2

so that the identification with the action of the right invariant vector fields (2.14) can be recovered as:

(x)af = —iR_(x),

(Z‘)<]e - _ZR+ (l‘),

(z)<h = iR, (), (8.21)
being dual to the identification (8.19). It is also evident that relations (8.19) and (8.21) define a different

formalisation for the isomorphism between the differential calculus introduced in this section (8.18) and
the differential calculus from section 2.1.

Remark 8.2. The identification (8.14) can be read as a Lie algebra isomorphism between the Lie algebra
{e,f,h} given in (8.4) and the Lie algebra of the left invariant vector fields {Ly} (2.12):

e=—ilL,, f=—iL_, h=iL.. (8.22)

The notion of pairing between the algebras U(su(2)) and A(SU(2)) can be recovered as the Lie derivative
of the coordinate functions along the vector fields L, evaluated at the identity of the group manifold.
The terms in (8.9) giving the nonzero terms of the pairing are:

Lz(u)|id = % X - <h7u> = _1%
LZ(U*) id — _% - <h7U*> =3
Lyl =i S e =1

L_(v*)|,q=—1 — (f,v*) = -1

The whole exterior algebra Q(SU(2)) can now be constructed from the differential calculus (8.12).
Any 1-form 0 € Q'(SU(2)) can be written on the basis of left invariant forms as 0 = >, Opwi = wy Oy
with 6, € A(SU(2)). Higher dimensional forms can be defined by requiring their total antisimmetry,
and that d2 = 0. One has then wy A wp + wp A w, = 0 and:

dwr = wy A wy,
dwe = we A Wy,
dwp = 2w A we. (8.23)

Finally, there is a unique volume top form ws A we A wy,.

The algebra A(SU(2)) can be partitioned into finite dimensional blocks, whose elements are related to
the Wigner D-functions [27] for the group SU(2). Considering all the unitary irreducible representations
of SU(2), their matrix elements will give a Peter-Weyl basis for the Hilbert space £2(SU(2), ) of complex
valued functions defined on the group manifold with respect to the Haar invariant measure. The Wigner
D-function Dy (g) is defined to be the matrix element (k,s are the matrix indices) representing the
element g ~ (u,v) in SU(2) (2.8) in the representation of weight J. They are known:

u*lv*Jfkflefsflu*k:JrsnLl

NJT—k—DI(J—s—D(s+k+1)!

D, = (=) (T + )T = 8)!(J+k)!(J — k)12 Z(fl)k“ (8.24)
l

with J = 0,1/2,1,... and k = —J,...,+J, s = —J,...,+J. In (8.24) the index I runs over the set
of natural numbers such that all the arguments of the factorial are non negative. To illustrate the
meaning of this partition, proceed as in the quantum setting, and consider the element u* € A(SU(2)).
Representing the left action f> with a horizontal arrow and the right action <e with a vertical one yields
the box:

u — v
! ! (8.25)
v = u



while starting from u*? € A(SU(2)) yields the box:

u*? — 2u*v — 202
1 1 1
—2u*v* — 2ufu—ov*v) — 4w (8.26)
! 1 !
w0 - —4v*u —  4u?

A recursive structure emerges now clear. For each positive integer p one has a box W, made up of the
(p+1) x (p+ 1) elements wy,; ,» = f'>u*P<e”. An explicit calculation proves that:

thr! V2
flouPae” = it )1 )J Dr (8.27)

G P

with t < p,7 < p. As an element in U (su(2)), the quadratic Casimir C' (8.7) of the Lie algebra su(2)

acts on x € A(SU(2)) as Crx = 2<C, and its action clearly commutes with the actions f> and <e. This

means that the decomposition A(SU(2)) = @;enWW), gives the spectral resolution of the action of C:
C'I>U-)p:t,r = E(E

55+ Dwpr. (8.28)

8.2 The bundle structure
8.2.1 The base algebra of the bundle
Given the abelian *-algebra A(U(1)) = Clz,2*]/ < 2zz* — 1 >, the map 7 : A(SU(2)) — (U(1))

|uw vt | |z 0
W{v u*]_{o z*}’ (8.29)
is a surjective Hopf #-algebra homomorphism, so that A(U(1)) can be formalised as a *-subalgebra of
A(SU(2)), with a right coaction:
Ar=(1®7%) oA, A(SU(2) — A(SU(2)) ® A(U(1)). (8.30)

The coinvariant elements for this coaction, that is elements b € A(SU(2)) for which Ag(b) = b® 1, form
the subalgebra A(S?) C A(SU(2)), which is the coordinate subalgebra of the sphere S2. From:

Ar(u) =u® z,

Ar(u*) = u* ® 2%,

Ap(v) =v® 2z

Ar(v*) =v* ® 2%, (8.31)

one has that a set of generators for A(S?) is given by (2.44):

b, = uu* — vv*,

by, = uv™ + vu”,

by = —i(vu™ — uv™) (8.32)
The comparison with the description in section 2.3 shows that 7 dually formalises the choice of the gauge
group U(1) as a subgroup of SU(2), whose right principal pull-back action f} is now replaced by the
right A(U(1))- coaction Ag. The basis of the principal Hopf bundle S? ~ SU(2)/U(1) will be given as

the algebra A(S?) of right coinvariant elements b, € A(SU(2)). This is an homogeneous space algebra:
the coproduct A of A(SU(2)) restricts to a left coaction A : A(SU(2)) — A(SU(2)) ® A(S?) as:

A(be) = w2 @b — v u @by — v ® b,
A(by) = 2uv ® b + (u*u — v™V) @ by, + 2u*v* @ be,
(be) = =02 @ bt — u*v @ by, + u*? @ be. (8.33)

P>
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with bf = 1/2(b, — iby) = wv*, be = 1/2(by + ib;) = vu*, by = b.. The choice of this specific basis shows
that A(bg) = S(Jke) ® b, where the matrix J is exactly the one defined in (8.16) as Ag)(wa) = wy @ Jpq.

The identification (8.14) between the left action h>z — given the generator h € U(su(2)) on any
x € A(SU(2)) — and the action iL,(x) — given the left invariant vector field L, — as well as the definition
of the A(U(1))-right coaction Ar on A(SU(2)) (8.31), allow to recover the set of the U(1)-equivariant

functions £ ¢ A(SU(2)) in (2.49) as:

20 = (e ASU(2)) : hog = %d) o Ag(¢) =p@27"} (8.34)

8.2.2 A differential calculus on the gauge group algebra

The strategy underlining the proof of the proposition 8.1 brings also to the definition of a differential
calculus on the gauge group algebra A(U(1)). The bilinear pairing (-,-) : U(su(2)) x A(SU(2)) — C (8.9)
is restricted via the surjection 7 (8.29) to a bilinear pairing (-,-) : U{h} x A(U(1)) — C, which is still
compatible with the s-structure, given on generators as:

1
h = ——
< ,Z> 27

1
h,z71) = .
< ) % > 2
The set Ayr(1) = {h} is proved to be the basis of the tangent space for a 1-dimensional bicovariant commu-
tative calculus on A(U(1)). The ideal Qp 1y C ker g1y turns out again to be Ay 1) = (ker 6U(1))2 gen-
erated by {(z—1)2, (z—1)(z7* —1), (7' —1)?}, which can also be recovered as Q1) = #((ker sy (2))?).
From:

1
h>z = —=z,
2
1
hez ! = —z71
2
one has that:
1
dz = ——zw,
2
SR S
dz7" = 57w (8.35)

with zdz = (dz)z. The only left invariant 1-form is
O =—2z"1dz = 2zdz71,

while the role of the right invariant derivation associated to h € U{h} is played by —S~(h) = h, so that
the right invariant form generating this calculus is:

1
dz = n(z<h) = ﬁ(—iz) — 7= —2z"1dz,
1
dz™' =#j(z"<h) = 77(52_1) — 7 =2zdz7!

so that one obtains 7 = w.
It is possible to characterise the quotient ker ey(1y/Qu (1) = kerey 1)/ (ker 5U(1))2. The three elements
generating the ideal Qp (1) = (ker EU(l))2 can be written as:

E=G-DE"'-1)=(E=-D+("-1),
=GE-1(-1)=E+&z-1),
¢ =0ET"T-1)ETT 1) =g+ -1,

so that Q1) can be seen generated by { = (2 — 1) + (271 —1). Set a map A : kerey(qy — C by
AMu(z — 1)) = >2;c 7 uj, where u = Zjezujzj is generic element in A(U(1)). The techniques outlined
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in lemma 3.5 in the quantum setting enable to prove that A can be used to define a complex vector
space isomorphism between kereg 1)/ (ker EU(l))Q and C, whose inverse is given by A™! : w € C —
AHw) = w(z — 1) € kerey(y). It is evident that such a map X formalises the projection 7o, ,, :
kerey () + kerey()/Quy =~ C, since it chooses a representative in each equivalence class in the
quotient ker ey 1y/Qu)-

8.2.3 The Hopf bundle structure

With the 3D bicovariant calculus on the total space algebra A(SU(2)) and the 1D bicovariant calculus
on the gauge group algebra A(U(1)), one needs to prove the compatibility conditions that lead to the
exact sequence:

0 — A(SU(2)) (Q'(S?)) A(SU(2)) —
— QUA(SU(2) =2 A(SU(2)) ® kereyy/Quy — 0,

where the map ~ g, ,, is defined as in the diagram (3.15) which now acquires the form:

QOL(ST(2))un TN QLASU(2))
I x I~Naue, (8.36)
id ®7TQU(1)

A(SU(2)) @ ker eyr1) — " A(SU(2)) @ (kereg(1y/Qu()) -

The proof of the compatibility conditions is in the following lemmas. The first one analyses the right
covariance of the differential structure on A(SU(2)).

Lemma 8.3. ;From the 3D bicovariant calculus on A(SU(2)) generated by the ideal Qg 2y = (ker ESU(Q))2 C
keregy(2) given in proposition 8.1, one has ARNSU@) C Nsu(z) ® A(U(1)).
Proof. Using the bijection given in (3.3), it is Q' (SU(2)) ~ Q' (SU(2)) /Nsv 2y with Ngy(2) = 7~ H(A(SU(2))®
Qsu(2)). For this specific calculus one has that N, su(2) is the sub-bimodule generated by {d¢d¢} for
any ¢,% € A(SU(2)), where §¢ = (1© ¢ — ¢ ® 1) € Q(SU(2))un. Choose ¢ € £5) and ¢ € £
so to have Ar¢p = ¢ ® 27" and Agy = ¢ ® z~™. Extending the coaction Ag to a coaction Ag :
A(SU(2))®A(SU(2)) — A(SU(2))@A(SU(2))@A(U(1)) as Agr = (id® id @m)o(id @7 ®id) o (Ar®AR)
in terms of the flip operator 7, it becomes an easy calculation to find:
Ar(0pdY) = 1@ W + ¢ @1~ ¢ @9 — 9 @ ¢)
=1+l -0¢R@Y-YpRp)@2z """ = (dpd) @z """
O

Lemma 8.4. The map x : QY SU(2))un — A(SU(2)) @ A(U(1)) defined in (3.14) as x = (m ®id) o
(id ®AR) is surjecive.

Proof. The proof of this result closely follows the proof of the proposition 3.3. From the spherical relation
1= (uu+v*o)" =3%"_, ( Z > w3 %y® it is possible to set |\I/(”)>a cePfora=0,..., [n|

with <\II(”), \Il(”)> =1 as:
n>0: ’\I/(n)> — ( n > ,U*au*nfa’
a a

n<0: ‘\I/(")> = ( i )v*lnaua.
a a

Fixed n € Z, define v = <\Il(*”), 6\11(’”)>. Since ‘\Il(’”)> € 2(_07)” one computes that y(y) =1® (2" — 1),
and this sufficient to prove the surjectivity of the map x, being x left A(SU(2))-linear and ker eg/(1) is a
complex vector space with a basis (2 — 1).

O
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Lemma 8.5. Given the map x as in the previous lemma, it is x(Nsy(2)) C A(SU(2)) ® Quq), where
Nsu 2y is as in lemma 8.3 and Qu ) = (kerep(1))?.

Proof. To be definite, consider ¢ € 2510) and ¢ € 252). One has:
X)) =g @{z7""" +1-2"" - 27"}
— gv @ {(1— =)L - ™)} C A(SU(2)) ® (ker sy,
O

The results of these lemmas allow to define the map ~ g, QL(SU(2)) — A(SU(2))®ker cuy/Qua
from the diagram (8.36). Using the isomorphism A : keregr(1y/Qu 1) +— C described in section 8.2.2, one
has:

~Nsu(2) (w0> =0

~Nsuv(2) (Wf) =0

~Nsu(2) (wn) =-2® 7TQU(])('Z -=-2®1 (8.37)
The next lemma completes the analysis of the compatibility conditions between the differential struc-

tures on A(SU(2)) and on A(U(1)). The horizontal part of the set of k-forms out of Q¥(SU(2)) is defined
as QF (SU(2)) = QF(S%)A(SU(2)) = A(SU(2))QF(S?).

Lemma 8.6. Given the differential calculus on the basis Q'(S?) = Q' (52)un/Ng2 with Ng2 = Ngy(a) N
QOS2 )un, it is ker gy o= QH(S?)A(SU(2)) = A(SU(2))Q21(5?) = Qy,,,(SU(2)).

Proof. Consider a 1-form [n] € Q(SU(2)) and choose the element n = ¥ d¢ € QY(SU(2))un as a
representative of [n], with ¢ € 2510) and ¢ € 1:52). One finds:

X(¥dg) =@ (27" —1),
~Nsu(2) (77) =9Yp® Ty 1y (Z_" — 1).

Recalling once more the isomorphism A : ker ey (1y/Quy = C, it is A(2™" — 1) = 0 if and only if n = 0,
so to have n = 1 6¢ with d¢ € Q'(S?),n and then n € Q1(S?),, A(U(1)). It is clear that the condition
XNsu(2)) € A(SU(2)) ® Qu(ry proved in lemma 8.5 ensures that the map ~Nsuee 18 well-defined: its

image does not depend on the specific choice of the representative n € [n] C Q1(SU(2)).
O

The property of right covariance of the calculus on A(SU(2)) — proved in lemma 8.3 — allows to extend
the coaction A to a coaction Ag : QF(SU(2)) — QF(SU(2)) ® A(U(1)) via A Jod = (d®id)o A%c b,
Via such a coaction it is possible to recover (2.47) the set QF(SU(2)),,,, as the pen) (U(1))-equivariant
k-forms on the Hopf bundle:

Q’“(SU(?))M ={pe Q"SU?2): AP (¢) =92}

as well as the A(S?)-bimodule ) of horizontal elements in Q* (SU(2)) p(y -

8.2.4 Connections and covariant derivative on the classical Hopf bundle

The compatibility conditions bring the exactness of the sequence:

0 — QL (SU2)) — Q1 (SU(2)) =% A(SU(2)) @ kerepy/Qu),s (8.38)

whose every right invariant splitting o : A(SU(2))®ker ey(1)/Qu 1) — Q'(SU(2)) represents a connection
(6.3). With w € C ~ kerey(1)/Qu(1), one has:

oc(lew)= f%(wh + Uwe + Vuwy),

o(¢p®@w) = f%gb(wh + Uwe + V) (8.39)
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where ¢ € A(SU(2)), and U € 250), Ve ,Q(_OQ). The right invariant projection defined in(6.4) 1T :
QYSU(2)) — QY(SU(2)) associated to this splitting is, from (8.37):

M(we) = T(wt) =0,

M(wh) = wh + Uwe + V. (8.40)

The connection one form w : A(U(1)) — Q*(SU(2)) defined in (6.5) is:

wiE) =o(1®[" — 1)) = —g(wh + Uwe + V). (8.41)

The horizontal projector (1 —1I) : Q1(SU(2)) — Q} .(SU(2)) can be extended to whole exterior algebra

Q(SU(2)), since it is compatible with the wedge product: one finds that {(1 —IT)w, A (1 —TDwp}+ {(1—
Mwp A (1 — Mw, } = 0 or any pair of 1-forms. This property, which is not valid in the quantum setting

for a general connection — recall the remark 6.9 — allows to define an operator of covariant derivative
D : QF(SU(2)) — QFFL(SU(2)) as:

D¢ =(1-1dg, V¢ QFSU(?2)). (8.42)

This definition is the dual counterpart of definition (2.4). It is not dificult to prove the main properties
of such an operator of covariant derivative D:
e For any ¢ € QF(SU(2)), Do € QFFL(SU(2)).

hor

e The operator D is ’covariant’. One has A’f%qﬁ =" — A’%H(ng) =D¢p® 2".

e Given ¢ € S%k), that is ¢ € QF (SU(2)) such that Ake = ¢ @ 2, it is D¢ = do + w(z") A ¢.

hor

This last property recovers the relation (2.5).
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