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ON THE LOCALLY FINITE CHAIN ALGEBRA OF A PROPER
HOMOTOPY TYPE

Hans-Joachim Baues and Antonio Quintero

Abstract. In the classical paper [A-H] Adams-Hilton constructed a {ree chain
algebra which is an important algebraic model of a simply connected homotopy
type. We show that this chain algebra (endowed with an additional structure given
by a®*height function™) yields actually an invariant of a proper homotopy type. For
this we introduce the homotopy category of locally finite chain algebras without
using the usual methods of pro-categories. As examples we consider the locally
finite chain algebras of R"*1, 52 x §2 — {point}, and CP, — {point}.

§1 Proper homotopy types of locally finite polyhedra

Let Top be the category of topological spaces. A map f: X — Y is proper if
both f is closed and the fibre f=!(y) is compact for each point y € ¥. Let Topp
be the subcategory of Top consisting of topological spaces and proper maps. The
unit interval I = [0, 1] C R yields the cylinder IX = X x [ in Top and Topp such
that these categories are I-categories in the sense of [BAH;I §3], compare [BP;1.3.9)
or [ADQI]. Hence the homotopy categories Top/~ and Topp/~ are defined, and
isomorphisin types in these categories are homotopy types and proper homotopy
types respectively. We are interested in new algebraic invariants of the proper
homotopy type of a locally finite polyhedron. A polyhedron X is a topological
space homeomorphic to a simplicial complex; if every vertex helongs to only finitely
many simmplices the polyhedron is locally finite, this is the case if and only if the
space X is locally compact. For example, all topological manifolds have the proper
homotopy type of a finite dimensional locally finite polyhedron (see [K-S; p. 123]).




Given a topological space X a collection § = {Aj;7 € J} of subsets 4; C X is
said to be locally finite if every point in X has a neighbourhood U such that the
set {j € J;U N A; # 0} is finite; that is, every point has a neighbourhood which
meets only finitely many members of §. A polyhedron is locally finite if and only
if the collection ol all the closed simplices is locally finite.

A wtree 7', in this paper, is a contractible locally finite 1-dimensional simplicial
complex. We shall consider the category "UEET of objects in Topp under T,

such objects are proper maps 7" — X and morphisms in Tu-ng are commutative

VRN

X— Y

diagrams

in Topp. The category MT is a cofibration category, see [BAH;1.3.3 and I1.1.4].
The tree 7' plays the role of “base point” in proper homotopy theory. The category
MT is the analogue of the category T'op™ of pointed spaces * — X in classical
Lomotopy theory. A “pointed” object T = X is cofibragt if the map T — X is
a cofibration in Topp. An object in MT is T-connected il X is path-connected
and if 7 — X iuduces a homeomorphism, Ends(T) — Ends(X), between the
spaces of Freudenthal ends ({Fr]).

(1.1) Lemma: For each locally finite path-connected polyhedron X there exists
a tree T such that X is T-connected.

In fact, T can be chosen to be a suitable maximal tree in the 1-skeleton of X
([BP;ITL.1.9]), and in this case X is cofibrant.

(1.2) Definition: Let T° be the 0-skeleton of the tree T', and let £ be a countable
set. A height function is a finite-to-one function € : £ — T The spherical object
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ST is obtained by attaching n-dimensional spheres 57 to the vertices of T; more
precisely, S is the push-out in Top

LIeEE S:

k13
s:

E : ™CT

Hence S is a cofibrant ohject. Let
() = [57, 87

be the set of homotopy classes in MT of maps 5! — X. Forn > 1 n5(X)isa
group which is abelian for n > 2. The properties of the proper homotopy group
7&(X) are studied in [BP;Ch. IlI]. The space .X is properly simply connected if
both X is T-connected and 7§(X) = 0 for all height functions ¢. This implies that
X is simply connected in Top®.

(1.3) Definition: A finite dimensional proper CW-complex under T (or a T-
CW-complex) is a finite dimensional CW-complex X with the following properties

(i) The l-skeleton X! is a I1-dimensional spherical object.

(ii) For n > 1 the (n + 1)-skeleton X**! is obtained by a push-out diagram
in Top

C‘ S’:: fnil "\' n+1

Sg fn+l ‘x’n




where f,41 is a proper map under 7. Here CS% is the ‘cone’ of the spherical object
§7 given by attaching (n + 1)-dimensional balls D! with S2 = dD?*! to the
vertices of 7% as in the push-out diagram

e D2 CS5q

T & T(l C T

4

Hence the set of (n + 1)-cells of X — 7" can be identified with [, and therefore a
height fuction a : cells{X —T) — T? is given where cells{.X — T is the set of cells

inX-T.

(1.4) Proposition: Let X be a cofibrant finite dimensional locally finite
polyhedron in ToppT which is properly simply connected. Then there exists a

T-CW-complex Y with ¥1 = T and a proper homotopy equivalence X ~ Y in

T O‘E'{JT .

Compare [BP; 111.2.10].

The proposition will be used to replace locally finite polyhedra by equivalent

T-CW-complexes.

Let CW(T) be the full subcategory of ToppT consisting of T-CW-complexes
X with X! = 7 and let CW;(T")/~ be the associated homotopy category. Let
C'W, be the full subcategory of Top™ cousisting of CW-complexes Y with Y1 = x.

We have the forgetful functor

¢ CW(T) — CW,
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which carries X to the quotient X/T.

If T = * is a point we have the full inclusion
1 CW (%) C CW,

where the objects of CW () are the finite CW-complexes for which all the at-

taching maps are pointed. Any proper cellular map ¢ : 7" — T’ between trees
induces the functor

bu : CW(T) — CW(T)

which carries X to the space ¥ obtained by the push-out in Top

These functors ¢, 4, ¢4 induce lunctors between fhe corresponding homotopy
categories.

(1.5) Proposition: If ¥ is a proper homotopy equivalence then
by : CW(T) —s CW(T")

is an equivalence of calegorics.

Compare [BP;I1.1.4]

(1.6) Remark: We point out that the proper homotopy types of trees are in
1—1 correspondence with homeomorphisin types of closed subspaces of the Cantor
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set. The correspondence carries a tree T to the space of Freudenthal ends of T'.
Hence up to equivalence the homotopy category CW,(7T)/~ is determined by the
choice of a closed subset of the Cantor set ([BP; 11.1.10}).

§2 Chain algebras and locally finite chain algebras

Let R be a commutative ring of coefficient with unit 1 which we assume to bhe
a principal ideal domain.

Let A be a differential graded free R-module such that A, = 0 for n < 0 and
dA, C Aa—y. Then A will be called a chain algebra (over R) if a product is defined
in A such that

(i) A is an algebra over R with unit element
(it) ApAq C Apyq
(ii) d(zy) =dz y+ (-1)zx dy, if z € A,.

We also write p = |z| if # € A,. A function f from the chain algebra A to the
chain algebra A’ is called a map if it is a homomorphism of chain complexes and
a homontorphism of algebras.

A free chain algebra is a chain algebra for which the underlying algebra A is
free. In this case a graded sct B = {By;n > 0} is given such that A = ®*(B) is
the tensor algebra generated by B. That is, @*(B) is the frec R-module generated
by the free graded monoid, Mon(B), generated by B where Mon(B) consists of
all words by ...bp with b; € Bfor1 < i< kand & > (. The empty word for £ =0
is the unit. The degree is given by by ...bg| = o] + ... + [bxl.

Let Chain Algebras be the category of free chain algebras and maps.




A monoid M yields the associated algebra over R donted by R[M] which is
the free R-module generated by M, in particular the tensor algebra generated by
Bis

®"(B) = R[Mon(B)]

We define a carrier function
car: @ (B) — P(B)

where P(B) is the set of subsets of B = U{B,;n > 0}. This function carries an
element = € ®”(B) to the following subset of B. The element 2 can be expressed
uniquely as a sum 3 r;y; where y; is a word in Mon(B). Let car(z) = Ucar(y;)
where car(by...by) = {by,..., b} C B.

Given a tree T and a subset X C TP let T[] C T be the subtree generated
by X; that is the intersection of all the subtrees containing X.

(2.1) Definition: A locally finite chain algebra (with respect to the tree T)

Ao = (@7(B),d, o)

is a free chain algebra A = (®~(B),d) together with a height fuction o : B — T°
(see (1.2)) such that the collection of subtrees

{To(8) U alcar d(6))}oes
is locally finite in T. A proper map
f . Ac. h— A,;i

between locally finite chain algebras is a map of the underlying chain algebras such
that the collection of subtrees

{Ta(byU Blcar f(b))]}eB

is locally finite. The composition of proper maps is defined by the composition of
the underlying maps between chain algebras, indeed we have

(2.2) Lemma: The composition of proper maps is a proper map.




Clearly the identity is a proper map since a height function is finite-to-one.
Hence the lemma shows that the category of locally finite chain algebras and
proper maps is well-defined. We denote this category by Chain Algebras(T).

Proof of (2.2): Let f: A, — Aj and g : Ay — AJ be two proper maps. If
B, B’, and B" denote the basis of A,, A"B, and Ai; respectively, the collections of
finite subtrees

{T[a(b), Bcar f(b))]}en

and
{T[B(b'), v(car g(b)]}ves: (1)
are locally finite. Given a finite tree K/ C T, let B} C B’ be a finite set with
TIB(), v(car o8]0 57 = 0
for each ¥ € B' — Bj.
Let K C T be a finite subtree with K’ U 8(B}) C K. We take a finite subset

Bo C B with
Tla(b), Blcar f(B)]INK =0 (2)

foreach b € B—By. In particular, S(car f(b))NB(By) = B, and so car f(b)NB; = 0.
We claim that

Tle(b),y(car gf(LN]N K =0 (3)
for each b € B — Bg. Indeed, it is not hard to check the inclusions

Tla(b). v(car S(b))] C Tla(b),u {3(car g(v)):b € car J(b)}] C

C Tla(b), Alear F(5))] UATIB(), y(car g(b))};b' € car [(b))

And now equations (1) and (2) yield (3) since {car f(b))NB{, = § as it was remarked
above.

q.e.d.
As in [BAH; 1.7.11] we obtain the cylinder /A of the free chain algebra A =
(®*B, d) as follows. Let sB be the graded set with (sB), = B,_, and let B’ and
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B" be two copies of B. Then
IA =(®"(B'UB"UsB),d)
is the free chain algebra with the differential given by
dz' = igdx dz" = iydz dszx =z" —2z' - Sdz

Here z' € B',z" € B", and sx € sB are the elements which correspond to x € B,
and ig,i; : A = 1A are defined by ip(2) = 2, and i1(x) = 2”. Moreover §

S:4A— 1A

is the unique homomorphisin of degree +1 between graded R-modules which sa-
tisfies
Sz =gz forz e B

S(zy) = (S2)(i1(y)) + (=) (ioz)(Sy) for w,y € A

Since A is free 5 is well-defined by these conditions. Moreover, ([ A, g, i1,p) is a
cylinder object in the category of free chain algebras, where p : A — A satisfies
p(z") = p(2") = = and p(sz) = 0.

As it was shown in [BAM; 1.§7], this cylinder satisfies the axioms of an /-
category, where cofibrations are maps of the form
A=(®B,dyc A'=(®"B',d")

given by an inclusion of graded sets B C B'. A homotopy H : f ~ g between
maps f.g: A — A’ is given by a commutative diagram

in the category of free chain algebras. Let Chain Algebras/~ he the homotopy
category.

o




(2.4) Definition: Given a locally finite chain algebra A, = (@*B,d,a) we

obtain the cylinder
I{(A,) = (IA, [w)

by the cylinder /A above and the height function fa with (fa)(2') = (Ta)(2") =
(Ie)(sz) = a(z) for x € B. A cofibration A, C Aj is given as above where § is
an extension of o.

With the obvious changes the proof of [BAH; 1.7.18] can be mimiced to get

(2.5) Proposition: The cylinder I(A,) is a well-defined locally finite chain
algebra. an it satisfies the axioms of an I-category.

In particular homotopies lor proper maps are defined as above and one obtains
the homotopy category Chain Algebras(1')f=.

For locally finite chain algebras A,, Ap let (Aq, Ab]T be the set of homotopy
classes of proper maps 4, — Aj; thisis the set of morphisms in Chain_Algebras(T) f~.

Given a height function ¢ : £ — T, we obtain for each n > 1 the proper chain

algebra
A(SIHY) = (87 Egny,d = 0,0)

here £, is the graded set concentrated in degree n given by £. This chain algebra,
as we will see, is the Adams-Hilton model of the spherical object S7+'. We define
the proper homology of the proper chain algebra A, by the set of homotopy classes

Hi(Aa) = [A(STTY), Ad)T

As we will see, this homology is the analogue of the homotopy group 75 (X)) in §1.

There is an obvious forgetful functor

¢ : Chain Algebras(T) — Chain Algebras
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which carries A, to A. If T = % we have the full inclusion

i:Chain Algebras(x) C Chain Algebras

of finitely generated free chain algebras. Moreover any proper cetlular map ¥ :
T — T’ between trees induces the functor

pu : Chain Algebras(T) — Chain Algebras(T')

which carries A, to Ay,. These functors ¢, 1,9 induce functors between the
corresponding homotopy categories. Moreover, the category Chain Algebras(T)

up to equivalence depends only on the proper homotopy type of T In fact we have

(2.5) Proposition: If ¢ is a proper homotopy equivalence between trees then
g is an equivalence of categories.

Proof: Notice that for any two properly homotopic cellular maps ¢, ¢ : T — T”
the collection of finite subtrees of T

{T[a(b), ¥ a(b)]}sen

is locally finite. Therefore the identity 1 : Ay, — Ay s an isomorphism of locally
finite chain algebras. In fact it induces a natural equivalence

0oy = gy

As an immediate consequence one gets that 4 is an equivalence of categories if
¥ is a proper homotopy equivalence.

q.ed.

Similarly as in (1.6) above, the theory of locally finite chain algebras is deter-
mined by the choice of a closed subspace of the Cantor set.
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§3 Adams-Hilton models

Adams and Hilton {[A-H]) constructed for a CW-complex X with X! = « a
free chain algebra

A(X) = (®Cells(X — +),d)

where Cells(X — ) is the desuspension of the set of cells of X —, that is Cells(X —
*), is the set of (n + 1)-cells in X" — x. Moreover they constructed a homology
equivalence

fx 1 A(X) — C.(QX)

Here C.(Q2\') denotes the singular chain complex of the loop space of X which by
the multiplication in Q.X, is a chain algebra. The construction of fx is compatible
with subcomplexes, that is for each subcomplex K C X one has the commutative
diagram

fx

A(X) C.(QX)

i (1)

AK)Y 25— c(an)

The vertical arrows are induced by the inclusions Cells(h' — x) C Cells(X — #),
and K C A respectively.

For a pointed map f : X — Y in CW; which we may assume to be cellular,

we can choose up to homotopy a unique map f for which the following diagram
comtmutes up to homotopy

1

A(X) A(Y)
bx oy BG1)
c.ax) —<8, o ay)




The homotopy class of f is well-defined by the homotopy class of f and the choi-
ces of 8x and #y. Henceforth we assume that for all X in CW; the homology
equivalence 8y is chosen. Then we obtain the functor

A CWhf~ — Chain Algebras f~

which carries X to A(X) and the homotopy class of f to the homotopy class of f.

The next result shows that the Adams-Hilton functor A admits a canonical
analogue in proper homotopy theory. For this we use the functors ¢,7, ¢y in §1
and §2.

(3.1) Theorem: There exists a commutative diagram of functors

CW(TYf= ...R....o Chain Algebras(T)p

@ ]

CWq A Chain Algebras f~

Moreover the functor [} commutes with the functors ¢ and 4. That is, Hyy =

e B, and Hi=i4.

We use the functor [ for the definition of the following Hurewicz homomor-
phism
A sm(X) — Hi_ (H(X))
which carries an element £ € {S7, X7 1o the induced map A(€) € [ R(S?), R(X)I7,
compare §1 and §2. This Hurewicz homowmorphism is the proper analogue of the
homomorphism

h: TTn(;Y) = TT'H_](Q_'Y) -_— [In—l(QI\’)

which is used in the Milnor-Moore theorem ([M-M]). We shall study the proper
analogue of the Milnor-Moore theorem concerning h elsewhere.
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For the proof of the theorem we shall use the following additional properties
of the Adams-Hilton construction. Given f: X — ¥ in CWj the map f together

with a homotopy

H)f . C’.(QI)G)" =~ Hyf
in the category of differential chain algebras can be chosen to be filtration preser-
ving; this means for any pair of subcomplexes X' C X and L C ¥ with f(K)C L
the map f admits a restriction 7 = ﬂﬁ‘ for which the diagram

AY) —L— (a(m)

i iL (1)

T

A(K) A(L)

commutes and for which the restriction of Hy is H,, where » : K — L is the
restriction of f. Moreover, given a filtration preserving map 7 and fI, for r, we
can choose f and H¢ to be filtration preserving such that f extends T and Hy
extends H.; this is the extension property of the Adams-Hilton construction,

We have for a T-CW-complex X the equation
Cells(X = T)= Cells(X/T — %)
Hence the height function a for X in §1 vields a height function

o Cells(X[T - +) — T°

For the proof of the theorem we show

(3.2) Lemma: For X in CW;(T) the object H(X) = A(X/T), is a well-defined
locally finite chain algebra. This shows that ¢ f{X) = A¢(X).

Amap f: X =Y in CW(T) induces a map ¢(f) : X/T — Y/T in CW,.
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(3.3) Lemma: A filtration preserving chain algebra map ¢(f) : A(X/T) —
A(Y/T) associated to ¢(f) above is proper with respect to the height functions o
and B of X and ¥ respectively, and the homotopy class of ¢( f) in Chain Algebras(T)

—_—

is well-defined by the homotopy class of f in CW,(T'). Henceforth we shall denote
#(f) simply by f.

The functor { carries a T-CW-complex X to H{X) = A(X/T), in (3.2) and
carries the homotopy class of f: X — ¥ in CW{(T) to the homotopy class of f

in (3.3).

(3.4) Lemma: H is a well-defined functor and satisfies the compatibility
properties ¢ } = A¢, Hix = ¥z H, and Hi = A

A key lemma for proving these proposotions is the charaterization of proper
maps between T-CW-complexes in the next lemma. Given a subset U C X of
a T-CW-complex X let < U > be the smallest T-CW-subcomplex containing U;
that is the union of T and the smallest CW-subcomplex containing /.

(3.5) Lemma: Let X and Y be T-CW-complexes with height functions « and
B respectively. Then a continuous map f: X — Y under 7 is proper if and only
if the collection of subtrees

{T{a(cells(< e > =T)) U Bcells(< [ < e >> =T))}eecelts(x -T) (1)

is locally finite in 7.

Proof of (3.5): A T-CW-complex X is a finite dimensional locally finite CW-
complex, and hence X is strongly locally finite ([F-T-W]). That is, X is the union
of a locally finite sequence of finite subcomplexes. Let {X;;i > 1} and {¥;;i >
1} be such sequences for X and Y respectively. It is not hard to show that
[+ X = Y is proper if and only if for each Y,y = U{¥};7 > m} we can find
Xny = U{X457 2 n} such that f(X(,)) C Y(m). Moreover, since f is a map under

15




T, we have X() N T C Y,y N7, and for any component € C X(,j N T we have
f(Dc) C Dei. Here €' C Yy NT is the unique component with ~ . f(C) C C/,
and D¢ C X(n), Do C Yoy are the components defined by € € D¢ and ¢! C Der
respectively. Therefore, for any cell e C D¢ we have a(< e > -T)C ¢ C €, and
then f(< f < e>> -T) C C’. Thus the family in (1) is locally finite since for a
compact subset A" C T we can choose Y.,y with K NY,,, = 0.

Conversely, assume that this family is locally finite. Given a compact subset
K CVYlet YO = U{Y;;i <t} such that & C ¥, We now choose X(n) such thav
XyNT C T~ K, and for cach cell e € X,

Tla(cells(< e > =Y)),Blcells(< f < e>> =T NYH =9

Hence (< f < e >> =T)NY® =@, and for each cell ¢ in < f < e >> T we
have ¢ ¢ Y. Thatis, (< f<e>> -T)Nn¥Y® =9, and so f(Xm) CX-K.
Therefore f is proper.

q.e.d.

Proof of (3.2) and (3.3): Property (III) with K =< e > and L =< ¢(f) <
e >> implies that car(fe) C cells{(< f < e >> —T). This shows by (3.5) that
f in (3.3) is proper. Next the differential in A(X/T) is induced by the attaching
map

Tl

fﬂ-i—] : S:: -

. 1 . . . .
that is, d(e) = sl (s¢) with s, € A(S2/T) being the generator in degree n — 1
corresponding to Sy C Sy, see §2. Since f, ., is proper and since a T-CW-complex
is finite dimensional we sec that d satisfies the properness condition in §2 and hence
(3.2) holds.

Nowlet H: f~g:X — Y beahomotopy in CW,(T"). Then ¢(H): ITX =

IX/IT — Y is amap in CWj and H can be chosen

to be an extension of f and g so that H:[~Gisa homotopy in Chain Algebras(T).
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q.e.d.

Proof of (3.4): Let f: X — Y and g:Y — Z be maps in CW;(T) and let f,
7. and ¢f be the associated maps in Chain Algebras(T). We have to show that

there is a proper homotopy G : gf ~ Gf. Now we have a homotopy
G=—Hey+g-Hs+ Hylf:0z9f ~08;5f

Let 7 be the set of triples j = (K, L, R) where K C X, L C Y, R C 7 are
subcomplexes with f(A) C L and g(L) C R and hence gf{ K} C R. For each such
7 the homotopy & retricts to a homotopy

G 0r(gf1R) ~ 0@

We now consider the following category DA(J), objects A are chain algebras A
together with a collection {A;;7 € [J} of chain subalgebras indexed by J, and
morphisms are collection preserving chain maps. We obtain the following objects
and morphisms in _D__A(J)

The corresponding collections indexed by 7 = (K, L, R) € J are defined by

AX/T); = A(K[T), A(Y/T); = A(LIT), A(Z|T); = A(R/T)

The properties above show that the diagram is well-defined in DA(.7). Using
the homotopy G : 8z9f ~ #27f we construct inductively a homotopy G’ : gf ~Gf
in DA(T). For the induction we use the skeleta and the assumption that f and ¢
are cellular. Let 7" defined as above by the n-skeleta of X,Y, and Z, and let ¢,
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and f, be retrictions to the n-skeleta and assume G™ : g, f, =~ Gn fn in DA(J") is
constructed. Let e be an (n + 1)-cell in X then we have in 7 the triple

Je=(Ke=<e> L,=< f<e>> Re=<g< f<e>>>)

and an inclusion < gf K. >C R.. Hence we obtain the following commutative
diagram of unbroken arrows

A(Up K™ T) Int1fns1 UG  Ugngifntr A(R./T)

” -""““-..(-"'Iahl-1 ~| B8R

A(ITK/T) CLQ(R/T)

Let GT*! be a lift of this diagram in the cofibration category ol chain algebras
([BAH;I1.1.11]). Then the homotopy G™! @ guti fat1 = Fagifuts 1s defined on
the cell Te by G™*Y(le) = GP*1(Ie). This completes the induction since one can
check that G™**' is a homotopy in Qil.(j"""l); in fact this is a consequence of the
inclusion of triples j. = (K., L., Re) C (K, L, R) whenever e C A'. Let G’ be given
by the sequence G" (n > 1). It is clear how to start the induction for n = 1 since
all 1-skeleta coincide with 7. The homotopy G’ being a homotopy in DA(T),
can be checked to be also a homotopy in Chain Algebras(T). This compla-s the
proof that [ is a well-defined functor. It is obvious that ¢ [} = A¢ and Hi = (A,
Moreover Hiby = g H since (¢pX)/T = X/T.

gq.ed.

§4 Examples
Let Ry be the half-line [0,00) which is a tree with O-skeleton R} = {z € Z;2 >
0}. The product §™ x Ry is a Ry-CW-complex. We

assume n > 2 so that §" x Ry is properly simply connected. The closed
cells are &y = S x {t} and y = S x [t,t + 1] for t € RY. The height function
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a:cells(S™ x Ry ~ Ry) — RY is given by o(=z,) = o(y) = 1. Moreover we obtain
the locally finite chain algebra

H(S™ x Ry) = A(S™ x Ry /Ry )

with degree |z¢| = n — 1, || = n, and dz, = 0, dy, = —x + z441. More generally
let X be a finite CW-complex with pointed attaching maps and trivial 1-skeleton
X! = %. Then X x Ry is again an R,.-CW-complex which can be obtained by
gluing cylinders on X’

AxRy=XxTUy X xTuy...
Hence
H(X xRy) = A(X xRy /Ry ) = TA(X) Uyx) TA(X) Uyxy - (4.1)

where 1 A(X) is the cylinder of the chain algebra A(X), see §2. The explicit formula
for this cylinder hence gives us the differential of A(X x Ry /Ry). For each cell
e C X — % we obtain the cells e, = e X {1} and ¢} = e x (£,¢ + 1) which yield all
cells of X x Rt — {*} x R4. Hence we have

B(X xRy} = (@ {e, ep;e € cells(X — x),t e RYY, d, o)

with degrees |e;| = dim(e) — 1 and |e;| = dim(e), and a(e;) = w(e}) = 1. Using
the differentials of 7 A(X') and the union above one easily obtains formulas for the
differential d of H(X x Ry). A particular example is S" x Ry above.

We can identify S" x Ry and D**! — {p} where p is a point in the interior of
the closed disk D®*!. This gives us the possibility of computing

for a simply connected manifold M the locally finite chain algebra H(M — {p})
where p is a point in M. As examples we consider the cases M = §% x §? and
M = CP, for which we have the homeomorphisms

§2x §* = {p} = (S*v SHu, S* xRy
CP,—{p} = 5%U, S xR,
Here w is the Whitehead product and 7 is the Hopf map. These homeomorphisms

yield the structure of properly simply connected R;-CW-complexes. The associa-
ted locally finite chain algebras are given as follows.

A(S? x 5% = {p}) = (®{a,b,z¢,ys; .5 €RL, 1 > 0}, d, )
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Here the degrees are |a| = || = 1, |z4] = 2, and |ys| = 3. The height function
o satisfies a(a) = a(d) = a(y) = 0 and oz:) = a(y) = ¢t for t > 0. The
differential d is determined by d(a) = d(b) = d(z) = 0 and d(yo) = —(ab+ba)+z4,
d(y:) = —xy + €44 for ¢ > 0. Similarly we have

AP, — {p}) = (& {a, 2,303 ,t € RS, 1> 0}

with degrees and height function as above, and with the differential d(a) = d(x,) =
0 and d(yo) = —aa + z1, d(y1) = —z¢ + 244y for t > 0.

Finally we consider the locally finite chain algebra of the euclidean space R"t!,
n > 2. The Ry -CW-structure of R**! is given by the identification

R**!' = §" x R./S™ x {0}
Hence we get

H(Rn-l-l) - (@'{gjhys;f., S E RO ;" > 0}, d; 0')

with degrees |z, = n — 1 |ys| = n, and height function o(z,} = ¢, a(y,) = s.
The differential is d{z;) = 0 and d(yo) = =1, d(y) = —z4 + 244y for t > 0.
Clearly, since R™*! is contractible also the underlying chain algebra of H{R™*1!)
is homotopy equivalent to the trivial chain algebra. However it is well-known that
R™*! is not contractible in the proper homotopy category. Similarly the locally
finite chain algebra [J(R™*') is not homotopy equivalent to the trivial algebra in
Chain Algebras(R.). This is also a consequence of the following computation of

sets of homotopy classes in C'hain Algebras(Ry) f~.

(4.2) Proposition: Let k,n > 2. Then we have

[H(RH])a AR )R = { Zfor(k-1)y=(n—-1ym, m>1

0 otherwise

This result might be surprising since the underlying chain algebra of f(R**!) is
very large. We know however, see [ADQ2], that the function

71"[\-(5") __fi'_' [Rk+l,Rn+l]R+
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which carries a map f : §F — S" to the proper map R¥t! — R*! induced by
f X Ry, is an isomorphism. Here 7(S™) is the usual homotopy group of a sphere
while [R¥H1 R R+ is the homotopy set in ToppR+. Similarly the proposition is

a consequence of the isomorphism
O : [A(S%), A AR*HY, AR®

where the left-hand side denotes the homotopy set in Chain Algebras. The iso-

morphism © carries the map f : A(SF) — A(S") to the map induced by If
on each cvlinder in F(S$™ x Ry) = TA(S™)U TA(S™) U ..., compare (4.1), with
AR™1) = A(S™ x RY)/A(S™ x {0)).
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