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1.Introduction

Lie groups G have been used in mathematical physics for a long time. Recently,

infinite-dimensional groups staned to appear there too'(as gauge and current graups). Same of

those groups have the form G(A), where G is a simple connected Lie group and A is a ring of

continuous functions on a topological space X (in this notation, we use the algebraic group

structure on a4G ,see below). When A = IRx is the ring of all continuous functions X ~ IR

(where IR is the reals), then G(A) is just the group (]X of all continuous maps X ~ G. In the

case when X is a circle, those groups are known as loop groups [9].

Ta give a precise defInition of G(A), we consider the adjont representation ad of G on its Lie

algebra g. Picking a basis in g, we obtain a group morphism ad: G ~ GLmlR, where m =

dim(g). We assurne that G is a simple Lie group, Le. its Lie algebra 9 is simple. Then ad is a

local isomorphism from G to Aut(Q), and the kernel of ad is the center of G. We do not

assume that G is connected. so G could be the whole Aut(g).

By definition, the group G(A) consists of all g E c;X = G(IRX) such that ad(g)e GL,,{\.

Assuming that A contains all constants, this does not depend on choice of basis in g. For any

ideal B of A, let G(B) denote the group of all g in G(A) such that ad(g) is congruent to the

identity matrix 1m modulo B.

We assume that A contains all constants and that an functions in A are boundecL We endow A

with the topology of uniform convergence, and consider the induced topology on G(A). For

every ideal B of A, let G(B)O den.ote its connected component ofidentity in G(B).
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We will impose on A the following condition with a natural number N depending on G:

(1) al/N e GL1A for any a in A sufficiently c10$OO to 1

In particular, this condition with N = 1 says that GL1A is open in A. By the way, allN means

, the positive root, which is defmed for positive functions a. Note that the condition (1) with some

N implies this condition with N replaced by any divisor of any power of N.

Sometimes (depending on G), we will impose a stronger than (1) condition on A:

(2) al/N E GL1A[ll for any a E A[l1 sufficiently closed [0 1.

Here A[ll is the subring of all complex functions a on X with both real and imaginary

part in A. For any a in (Ix. with sup Ia - 11 < 1, al/N is defined by the series al/N = 1 +

(a __ l»l/N = 1 + (a -l)/N + (a - 1)2(I/N)(I/N -1)/2 +...

Note that the conditions (1) and (2) hold for all natural numbers N when A is closed in IRx
(then A is a Banach algebra). They also hold for all natural numbers N when A is the ring of all

smooth bounded functions 00 a manifold X or the ring of real analytic bounded functions on an

analytic set X.

Here is the main result of this paper.

Theorem 3. Let X be a topological space, A a ring of bounded real continuous functioos on

X containing all constants and satisfying the condition (2) for all natural numbers N. Tben for any

simple Lie group G of classical type a subgroup H of G(A) is nonnalized by G(A)O if and

only if G(B)O eHe G(B) for an ideal B of A.

When X is a single point, so A =IR, the theorem says that the group G(IR)O modulo its

center is simple (as an abstract group). This fact goes back to Dickson [3], van der Waerden [12],

E.Cartan [1].

We will prove Theorem 3 together with the following theorem.



L.N. Vaserstein Gauge groups 3

Theorem 4. Undcr the canditions ofTheorem 3:

(a) the group 0(8)° is arcwise connected far any ideal B of A;

(b)there is a natural number N' such that for any ideal B of A and any open neighbourhood

U of 1 in' G, the set of all products of N' commutators of the form fg, h], where g e G(A) n
U>; and hE G(B) (1 uX, is open in G(B); so

[G(A), G(B)Ü] = [G(A)O, G(B)] = [G(A)O, O(B)O]= O(B)O for any ideal B.of A.

It seems that the restriction that G is of classical type in the theorems is redundant. When G

is a Chevalley group (for example, G is a complex Lie group, i.e. G is not absolutely simple as

algebraic group aver lR), the conclusions of Theorems 3, 4 follows easily from [15] (rank ~ 2)

and [16] (rank = 1, Le. G(lR) is loc.ally isomorphic to S~lR or S~CI). In this case G(A)O is

generated by all its "root sUbgroUpS" with respect to a fixed maximal torus as weIl as by all its

elements g with wripotent ad(g). This seems to be true whenever G is isotropic, i.c. G(lR) is not

compact, Le. its lR-rank: is not 0, Le. there are non-trivial unipotent elements in G (for G of

classieal type, this ean be shown by our methods).

We will use results of [16] to prove Theorems 3, 4 in same eases. For orthogonal groups of

lR-rank ~ 2 and for some other classieal groups of lR-rank ~ 3, we could use results of [19],

[20]. However we da not da this here, because we have to deal also with smalllR-rank: cases, and

when lR-rank: is 0, ehe methods of [19], [20] using unipotent elements do not work.·

Note ~at the strueture of anisotropie grOups over rings is mueh more intricate than that of

isotropie groups. This is true even when ehe ring is a field. Same work on anisotropie case was

done in [2], [4]- [11] .

In partieular, de la Harpe [4] proved that every maximal nonnal subgroup of G(A)O has ehe

fonn G(B) n G(A)O, where B is a maximal ideal of A, provided that G is compaet and A is

ehe ring of all bounded smooth funetions on a smooth manifold X. He noted that the analogous

result look plausible for the real analytie functions A and non-compaet G. We cofmn this here for

classieal G, and our Theorem 3 describes all normal subgroups of G(A)O (not only the maximal

ones).We can handle a wider than in [4] elass of rings A, because our methods do not use

partitions of 1. Our methods allow in fact to handle also power senies rings [2], [8], but in this

paper we rcstrain ourselfs to subrings A of IRx.



L.N. Vaserstein Gauge groups 4

The result of [4] on the maximal normal subgroups of G(A)O was used there to describe all

automorphisms of this group, improving a previous result of [9]. Similarly, our results allow to

describe all automorphisms of G(A)o (under the conditions ofTheorem 3), but we da not pursude

this in the present paper. ..

Often tbe structure of Lie group on G in Theorem 3 can be refined to the structure of an

algebraic group Qver IR (when the center of G is finite). In this ease, we can consider the group

GA of the points Qver A for any commutative IR-algebra A. When G is adjoint, Le. has trivial

center, GA =G(A). It is not clear whether GA and G(A) could be different. In any case, we will

see that GA0 and G(A)O. We use the groups G(A) rather than GA for the following (Wo reasons:

they malee sense even if G is not algebraic, and they behave nicely under Iocal isomorphisms.

Namely, in the next seetion, we show that the statements of Theorems ~, 4 for locally

isomorphie groups are equivalent. Then we give a compiete list of simple Lie groups of classical

types up to local isomorphisms. We also indicate the number N in the condition (1) or (2) usecL In

Seetions 3-13 we prove Theorems 3,4 for each G on the list.

Note that the "if'l part in the conclusion of Theorem 3 is obvious (it follows from the inciusion

G(B)O::) [G(A)O, G(B)] ). So it suffices to show the "oniy jfl part, Le. the following statement:

(5) for any subgroup H of G(A) which is nonnalized by G(A)O there is an ideal B of A

such that G(B)O eHe G(B)

However to show the equivalence of (4) for locally isomorphie groups we had to couple it

with the conelusion (b) ofTheorem 4. It is conceivable that ODe can take N' =2 independently of

G in Theorem 4(b), but minimization of N' is not a goaJ of this paper. Also it seems that in the

case when the fundamental 1t1G(lR) is finite and the dimension of X is finite, every element of

G(A)O is the product of a bounded number commutatol'S, where the bound depends ooly on G and

the dimension of X. See [23] about the case G =SLnlR or SLn[.
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2. Locally isomorphie groups
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It is clear that if the conclusion (a)of Theorem 4 and the first half cf 4(b) (~hieh obviously

implies the second half of (b)) hold for a simple Lie group G, then the correspondiog conelusions

also hold far any Lie group~G' whieh is locally isomorphie to G.

Here we show that if the statement (5) and 4(b) is true for a simple Lie group G, then the

eorresponding statements are also true for any Lie group G' locally isomorphie to G. It suffiees

to show that in the ease when the other group is G' = Aut(g), where 9 is the Lie algebra of G. We

will use the symbol ad (adjoint representation) for the canonieal homomorphism G(A) -+ O'(A)

for any ring A.

By our definition, O(B) is the inverse image of G'(B) for any ideal B of A. Since G and

G' are locally isomorphie, ad(G(B)~ = G'(B)O for any ideal B cf A.

Assume flfSt that (5) holds for G, and let us prove it for G'. Let H' be a subgroup of

0'(A) whieh is normalized by G'(A)O. Theo its inverse image H in G(A) is normalized by

G(A)O. By (5) for G, we have O(B)O eHe G(B) for same ideal B of A. Applying ad,

we obtain that ad(G(B)~ = O'(B)O c H' c ad(G(B) c G'(B) . (We did not use 4(b) .)

Assurne now the statements (5) and 4(b) with G' instead of G, and let us prove (5) for G.

Let H be a subgroup of G(A) which is normalized by G(A)O. Then H' =ad(H) is a subgroup

of G'(A) whieh is normalized by G'(A)O. By (5) for G', G'(8)0 c H' c G'(ß) for an ideal B

of A. Taking the inverse image, we conclude that ker(ad)G(B)O eHe G(B). Now we have

to rid off ker(ad) (whieh is the center of G(A» here. That is, we want to show that fEH for

any f in O(B) suffieiently close to 1.

Using the condition 4(b) (for Gor, equivalently, for G'), we pick a neighborhood U cf 1 in

GCR) such that 00 produet of 4N' elements cf U is a non-trivial element of the center cf

G(1R) (whieh is a discrete subgroup of G(1R»). Then we use 4(b) with this U. Any f E G(B)

sufficiently elose to 1 can be written as f= [gl' htJ ... [gAr'. hN,] with Km in G(A) f"'l UX and hm
in G(B) (l UX. Replaee hm here by hmcm E H with cm in the center of G(A), we ebtain that /

=[gl' h1Ct] ···[gN" hN.cN'] E H. Thus, we have obtained the conelusion (5) for G.
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Under thc conditions of Theorem 3, thc group G(R) is locally isomorphie to one of the

following Lie groups.

Complex Lie groups: G(R) =SUna:, n ~ 2; G(lR) =SP2nCI, n ~ 2; G(R) =SOnlI, n ~ 7.

Real 01 type A: G(R) = SLnlR, n ~ 2; GOR) = SLn(lH), n ~ 1; G(IR) = SU(p,q; ~), p""'2:. q ~ 0, p

, +q~ 3.

Realo/ types B anti D : G(lR) = SO(p, q; IR), p ~ q ~ 0, p + q ~ 7; G(R) =SO(n, lH), n ~ 3.

Realo/ type C: GOR) =SP2J.lR, n ~ 2; G(IR)) =Sp(p, q; lH), p ~ q ~ 0, p + q ~ 2.

In Seetions 3-13 we remind definitions of these groups, and we prove (5) and Theorem 4 in

each of these cases.

Every group on the list has its own algebraic group structure over lR. It is not clear whether

the corresponding group GA may differ from G(A). In any case, we will see that G(B)O =GBO

for a1l ideals B of A (including B = A) under the conditian (1) or (2) with an appropriate N.

Now we specify N in the condition (1) or (2) used in our proof. We will use the following

condition:

the' condition (1) with N = n in the case G(R) =SLnlR; the condition' (1) with N = 2n in the

case G(lR) =SLn(H); the condition (2) wi~ N = n in the cases q(IR) ::: SUnCI, and

SU(p, q; CI) , n =p + q; the conditian (1) with N =2 in allother cases. "

Note that this N is the order of the center of G(CI) in the case C(R) = SLnlR, and N is the

order of the center of GOR) in allother cases, except the cases G(IR) = SO(p, q; R)with odd p +

q and G(R) =SOIlCI: with odd n (in which cases the center is trivial). It can be shown that under

the condition (2) with N =1, for each listed C, the above conditian is necessary for (5) or 4(b)

to be true.

In alI cases above, G(R) is rcalized as a subgroup of GL/ for same n, where F = lR, IX, or

IH is a finite-dimensional division algebra aver R. Its Lie algebra 9 will be realized as a

subalgebra of the Lie algebra of all n by n matrices over F. The adjoint representatian is given

by ad(g)h = ghg -1, where gE G and hE g.
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Sometimes we will use improved versions of the conditions (I), (2) which in fact follow from

them:

. Lemma 6. Under the condition (1) (resp. (2»,let B be an ideal of A. Then al/N E GLIB

(resp. al/N E GLIB[ll ) for any a eA such that a -1 E B and sup la - 11 < 1. Moreover, under

the candition (1), a1/N E GL1A for any a E A with inf(a) > O.

Proof. Consider flfSt the case when a is very elose to 1. Then a l /N =I + xe GLIA (resp.

al/N E GLIA[l1). Moreaver, from (1 + x'/' = a, we see that x(N + N(N - 1);c/2 +...) = a - 1

E B. For a elose to I, x is elose to 0, henee N + N(N - 1)x(2 +... E GLIA (resp. GLIA[zl)

and x E B (resp. B[11 ). So al/N E GLIß (resp. al/N E OL IB[11 ).

Now, given any a as in the lemma, and any natural number M, we ean approximate a arbitrary

elosely by the M-th power of a trunneated Taylor semes b for (1 + (a -1 )l/M. SO (a/1JM)l/N

E OLlE (resp. GL IB[ll ). Taking a !arge M we ean make b arbitrary elose to I, so that bllN E

GLIß (resp. OL IB[l1). Then al/N E GLIß (resp. GL IB[11).The first part of the lemma is

proved. To prove ehe second pan, we set e = sup(a) E lR. Then sup laie -11 =1- inf(a)/e < 1. So

(a/e)l/N E GL1A , henee al/N E GLIA . The lemma is proved.

It is elear that the eondition (2) implies (1) (with the same N). In Scetion 6 we will show that

the eonditions (1) and (2) with N = 2 arc equivalent
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3. The case G(lR) =SLnlR, n ~ 2
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The Lie algebra 9 of G(lR) eonsis15 of all n by n real matrices of trace O. 115 dimension is

n(n -1{2. The group 0 acts on 9 by ad(g)(h) =ghg-1, where g E G and h E g~

We pick the basis of 9 consisting of all matrix units ep,q with 1 S P ':F- q Sn and all ep,p­

eq,q with 1 S P < q Sn. Then it is elear that G(A) consists of all g in SLnlRX such that xy E A

far any entry x of g and any entry y of g-l.

In partieular, multipiying the equality det( g-l) =1 by ;Cl, we obtain that xn E A for every

entry x of g..

Now we assume the condition (1) with N = n (note that this N is the order of the center of the

complexifieation SLnct of G(lR) ). Then, give~ g =(gp,q) in G(A) sufficiently dose to In' the

above inclusion;c'l E A implies that all diagonal entries x of g belang to A. Now the inclusions

xy E A imply that all eotries of g-l belang to A. Thus, SL~ contains a neighbourhood of In

in G(A), hence G(A)O =(SL,..A)O = E,(\ (see [16].[18], [21] , [22] about the last equality).

Similarly, O(B)O =(SL~)O =En(A , B) for any ideal B of A. (We have used that, by

Lemma 6, (1 + b)l/n E 1 + B for any b in B sufficiently elose to 0.)

Here E,ti is the subgroup of SL,(\ generated by al1 elementary matrices aP4 with a E A,

1 S P ~ q S n. The group En(A, B) is the normal subgroup af E,(\ generated by elementary

matrices in SL,fl. Now it is dear, that 0(8)0 = (SL,/J)O is arcwise connected.

By [16], En(A , B) =[En(A , B), E,r4] =[E,fl, E~]. So the second part of 4(b) for our

G(IR) =SLnlR is proved. To prove the frrst pan of 4(b), we have to make same estimates on the

number and size of commutators.

For any real a> 0, let Ua denote the set of matrices g in G(lR) such that I(ln - g)p,q < afor

all p, q. These Ua and their left shifts genetrate the topology on G. For a< I/n ,every matrix

hin UaX n O(B) is the product of an upper triangular matrix in Ua/(l..an)X n G(B) with ones

along the diagonal and a lower diagonal matrix in Ua/(l.an)X n G(B). So h is a product of

n(n - 1) elementary matrices in Ua/(l..an)X n G(B) and a diagonal matrix in Ua/(I.(jn)X n
G(B) .
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Every elementary 1JP.q in Ua/(l-an)X (""l G(B) is a commutator of an elementary matrix in

U;rX n G(B) and a diagonal matrix in Ua', where a' = (1 + (af(l-an) I/2) I/2 -1. Forexample,

bl ,2 =[diag(l+ 0'. ( 1+ aj-l), (bf« 1+ dj-2) 1,2].

Every diagonal matrix in Ua/(l-an)X n G(B) is a product of n -1 diagonal matrices of the

foml diag(d,l. .. l, a l ,1...) in Ua"X n G(B) , where alt is a number depending on aand n

~hich tends to 0 as a~ O. Every matrix diag(d, (/"1) in S~B n Ua"X can be writt,en as

, diag(d, a 1)

=(-Ed'1 )2.1 «d -1 )fE) 1,2(e)2~1 «1- a1)/E)1,2

=[(-ELt1)2.1 ,«d -I )fE) 1~2]«d -I )fE)1,2(E-ed"1)2~1«1- tt1)fE)1.2,

where E =on1n. -xJ as a-+0. So diag(d~ a1) is a product of 4 commutators of the fonn [g, h]

where g E G(A) n Ue,X ~d he G(B) (""l Uf,X with E' ~o as a~ O. Adding up the number

of commutators involved, we see that every matrix h in UaX (""l O(B) is the product of N' =

n(n - 1) + 4(n - 1) commutators of the fonn [g, h] where g E G(A) (""l U)...X and hE G(B)

n U)...X with some number A. -? 0 as a~ O. Theorem 4 is proved.

Now we prove (5). Let H be a subgroup of G(A) which is normalized by O(A)O =(SL,fl)O

= E,t1. Set H' = H n SL,t1. By[16], there is an ideal B of A such that En(A, B) c H'

c G(B) (1 SL~. We claim that H c G(B), Le. hE G(H) for an arbittary element hE H.

Indeed. since [g, h] eH' c G(B) n SLnf1. for every g in En-4, the assignment g ....

[g, h] modulo B gives a homomorphism from the group En-4 to the group of scalar matrices in

SLn(AJB). Since the fIrSt group is perfect and the second one is abelian, this homomorphism must

be trivial. That is, hgh-1=g (mod B) for any g in E,{\. Now we use that EnlR (""l 9 spans

9 over lR (in fact, the following matrioces in EnlR span 9 over lR: (-I)q'P2P,q, (-2)q,PIP,q,

2q,P(-1)P,Q withlSp <q Sn). So hgh· l =g (modB) forany g in g,hencehe G(B).
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4. Tbe case G(lR) =SLn(I, n ~ 2
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The proof of (4), (5) in this ease ~peats the proof given in the previous seetion. The only

difference is that now we use the eondition (2) with N =n instead of (1) with N = n. The

condition (2) with N = 1 (whieh follows from (2) with N = n) implies that SLn-4[ll0 = E,.A[ll and

CSL,/J')O =EnCA[i], Bj for any ideal B' of A[l1. The eondition (2) with N =n gives that G(A)O

= SL~[ll0. Since every ideal B' of A[ll has the fonn B + Bi, where B is an ideal of A, we

obtain also that (SL,I]')O =G(B)O.

S.The case GOR) =SP2nlR , n ~ 2

We proceed as in Seetion 3 with the following changes. The group G(R) =SP2nJR consists of

all matrices g in SLnIR such that gTJg = J , where J is a non-singular altemating 2n by 2n

matrix in S~2 which can be chosen to be in a standard fonn. The Lie algebra 9 of G eonsists

of all 2n by 2n matrices h Qver IR with hTJ + Jh = O. The adjont representation is given by

ad(g)(h) =ghg-t .

The group G(A) consists of all matrices g in SP2nlRX such that ghg-1 is a matrix over A

for all h in g. Then the product of any entry of g with the diagonal entry in the same row

belangs to A.

Assuming the condition (1) with N = 2,. we conclude that G(A)O =(SP2!f\)O =Ep~ (tbe

last equality follows from the condition (1) with N = 1). For any ideal B of A we have G(B)O

=(SP2ß)O = EP2n(A, B). The standard description of al1 subgroups H of SP2Jr4 normalized by

EP2Jr4 is obtained in [15] for any commutative ring A = 2A, n ~ 2 (when n =1, SP2A =S~

and see Section 3 above). This gives (5), (Proving (5) we havc'to use that the least ideal B of A

such that H c G(B) coineides with the least ideal B of A such that H fl SPu\ c G(B).

This fallows from the fact that 9 is spanned over IR by its elements of the fonn g - 12n with

g in G(lR) = SP2nIR =EP2nIR.)



L.N. Vaserstein Gauge groups

6. The case G(lR) =SP211(I, n ~ 2
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The proof cf Theorem 4 and (5) in this ease repeats the proof given in the previous seetion.

The only difference is that now we use the candition (2) with N =2 instead cf (1) with N = 2.

10is condition implies that G(B)O = (SPmB')O = EP2n(A[ll, B') for any ideal B' =B[ll =B +. Bi,

of A[ll- Finally, we observe the following fact

Lemma 7. When N =2, the conditions (1) and (2) are equivalent.

Proofo Clearly, (2) implies (1) for any No Let us show now that (1) implies (2) when N = 2.

We will show that h1(2 e A[t1 for any h E A[ll with sup Ih - 11 < 1. We write h = a + bi and

hl12 = x + yi. Then a = xL- - Y. E A, b =2xy E A, and a2 + bl = (x2 + r)2 E A, henee x2 +

r = (Ql + b2)1/2 E A by Lemma 6. So x = «a + (a2 + bl)ln)/2)1f2 E GL1A, henee y =

bl2x E A.

7. Tbe case G(lR) =SOnlI, n ~ 5

Now G(IR) = SOnCI, consists of all matriees g in SL"CI such that gTg =1n' When n =2

(resp. n =4) this group is not simple, and it is locally isomorphie to GL I CI: (resp. s~cr x s~cr).

So we assurne that n ~ 50 When n = 5 (resp. n =~), this group is locally isomorphie with Sp4a:
(resp. SL4CI ),

The Lie algebra 9 cf GOR) consists cf all altemating (skew-symmetric) n by n matrices

ever ([. Its dimension ever lR is n(n -1).

The group G(A) eonsists of all matrices g in SO([X) such that all 2 by 2 minors cf g

belong [0 A[ll- When n is cxid (i.e. the center of G is trivial), every enrry of g.l is a polynomiaI

in these minors with coefficients ±l, so g.l E S0n-4. So G(A) = SO~[ll for odd n, and,

simalarly, G(B) = SO~[ll for any ideal B of A
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When n is even, to prove that G(BfJ = (S0wB[ll)o , we assume the condition (1) with N::z 2

(note thac 2 is the order of the center of G(lR) for even n). By Lemma 7, the condition (2) with N

= 2 holds.

Every matrix g in G(A) sufficiently close to In has all its diagonal minors in GL1([x.
Consider the submatrix g' of gwhich is formed by the first 4 rows and columns. Its detenninant

ctet(gj is a polynomial with coeffieients ±1 in 2 by 2 minors of g, so det(gj E A[ll. No~ we

, use the entry x = (g')1~1 =gl,1 E aLl a:X of g' to elirninate the off diagonal entries in the frrst

row and column of g' by addition operations. We obtain a matrix of the form x EB h with a 3 by 3

matrix h such that xy is a 2 by 2 minor of g' for every entry y of h. So xy E A[ll, and

x2det(gj= x3det(h) e A[ll.

Using (2) with N = 1 (which follows from (2) with N = 2), we see that x2 E GLIA[ll.

Using (2) with N =2, we eonclude that x E GLIA [ll Now we ean take any n -1 by n -1

submatrix g' of g eontaining x = gl.t and bring it by addition operations to the fonn x EB h with

a matrix h of size n -2 by n -2 sueh that xy is a 2 by 2 minor of g' for every entry y of h.

So all entries of h are in A[ll, henee det(g') E A[ll Similarly, det(g') E A[l1 for an arbitrary n

-1 by n -1 submatrix g' of g, Le. g -1 E S0,r4[ll, i.e. g E S0,t1[l1.

Thus, G(AfJ =(SO,r\[zl)o. similarly, G(B) =SO~[ll for any ideal B of A.

Note now that the quadratie form Xt2 +...+ Xn
2 is isomorphie over a: to the quadratie form

YIY2+.•.+ Yn-tYn when n is even~ .and it isomorphie to YIY2+...+ Yn-2Yn-1 +Yn
2 when n is odd.

(Here YI = Xl +~,Y2 = Xl -U2' ....) So G ~s a Chevalley group. of rank [n/2], and we ean use

results of [15] to describe all subgroups of SOn(A[Jl) whieh are nonnalized by EOn(A[ll).

It is easy to see that EOn(A) = G(A)O = (SO~[ll)o. Indeed, every matrix g in (SO~[ll)

suffieiendy elose to In is the product of 2n - 4 elementary onhogonal matriees and a matrix of the

form diag(z, z -I) eh, where h is a matrix of size n -2 by n -2 acting on Ym with m 2= 2, and

z =gI.l. So if n is~ we are redueed to the ease n =5 when G(lR) is locally isomorphie to

SP4CI, and if n is even, we are redueed to the ease n = 6 when G(IR) is locally isomorphie (0

SL4(!,

Details are similar to those in Section 3.
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Now G(R) consists of all Hamilton quate~ons g =a + bi + cj + dk with the reduced norm

Igl~ ~ a2 + ~ + c2+ d2 = 1. As topological space, G(lR.) is the sphere 53. The Lie algebra 9 of

G(1R.) consists of al1 quaternions bi + cj + dk of trace O. Its dimension is 3, and we take i,j, k as

a basis.

Tbe group G(]RX) can be identified with all g = a + bi + cj + dk, where a, b, c, d are in lRX

,lgl =a2 + b 2 + Cl+ d 2 = 1, and k = ij = -ji, i 2 = j 2 =-1. The group G(A) consists of all g

as above with xy E A for all x, y e (a, b, c, d). For an ideal B of A, G(B) consists of g as

above with an X)' above in B, except far a 2, for which we have a 2 - 1 E B.

Now we assume the condition (1) with N = 2 (this N is the order of the center of G(lR) or

G(CI».
Then for any g sufficiently elose to 1 we have a,b,c, d in A. If B is an ideal of A, then

for any g in O(B) sufficiently elose to 1 we have a -1, b, c, d in B. So a - 1, b,c,d E B.

for any g = a + bi + cj + dk in O(B)O.

Let G1 (resp., G2,resp. G3) denote the (algebraic) subgroup of G consisting of g = a + bi +

cj + dk with Q, b, c, d in A , Ql + b 2 + c2+ d 2 = 1 and with d =c = 0 (resp, d = b = 0, resp.

b =c =0). So the Lie groups GI(IR), G2(IR), and G3(lR.) are all isomorphie to the circle S 1.

Lemma 8. If B is an ideal of A, g = a + bi E G1(B) and Ig -11 < 1, then g =h 2 with h
in the path-component of 1 in G1(B).

Proof. We have 2 - 2a =1g - 112 < 1, hence 1/2 < a S 1. By (1) with N =1 (see also Lemma

6), 1 + a e GL1A. Set t = bl(l + a) e B. Then g = a + bi = (1 - t 2)/(1 + t 2) + 2tl(1 + t 2);.

We set now s = t/«1 + ?-)1/1 + 1) E B and h = (1 - s 2)/(1 + s 2) + 1s1(1 + s2);. Then t =

1s1(1 - s 2) and g = h 2. Replacing here s by S Jl with real J.L ranging from 0 to 1, we obtain a

continuous path in Gt (B) eonnecting 1 with h.
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Corollary 9. If B', B" are ideals of A, then the subgroup GI (B" + ß")O of G(A) is

generated by its subgroups GI (BJO and GI (B'')O.

. Proof. It suffices [0 show that every g =a + bi in G}(ß' + B") with Ig - 11 < 1 is in

G} (B')OO} (B'')O. We write b =b' + b" with~' in B' and b" in B", and set

Lemma 10. For any ideal B of A every element g = a + bi + ci + dk, of O(B) with Ig - 11

< (0.4)1/2 has the form g =g1g2g3 with gm in 0m(B) and Igm- 11 S 2 Ig - 11.

Proof. We want [0 find an element g3 in 03(B) such that

(a + bi + cj + dk )g3-1 E 0}(B)G2(B). Writing g3-} =
(1 .+ xk)(1 + x2y'tl2 =
«(a - dx) + (b +cx)i + (e - bx)j + (d + ax)/c )(1 + x2r1/2, we obtain the following equation for x:

(a - dx) (d + ax) = (b + ex)(c - bx),

or x 2(bc -ad) +x(a2 + bl- Cl - d 2) + ad -be = 0,

or 2x/(1 -x2) =2(be - aä)/(a'l + tJ. - Cl - d 2).

So we set g3 = (a2 +bl-Cl - d 2 + (be - aä)k)/w, where
w = «e? + Ji2 - Cl - d 2)2 + (be - ad)2)1!2.

The condition Ig - 11 < (0.4)1/2 means that a 2: 0.8. So a2 + b2 - Cl - d 22: 2a2 -1 ~ 0.28,

henee g3 E 03(B)0. Note also that w2 =(a2 + iJ2 - Cl - d 2 )2 + (be - ad)2 S Ql + bl s 1. So g3

-2 =a' + d'k with a' 2: 2a2 -1. This implies that Ig3 -11 = Ig3 -I - 11 S Ig - 11.

Therefore Igg3 -I -11 S 2 Ig - 11, so when we write gg3 -I as g1g2 with tr(g1)' tr(g2) > 0 (this

can be done uniquely), we have Igm - 11 S Igg3-I -11 S; 2 Ig - 11 for m = I, 2.

. Corollary 11. For any ideal B of A the group G(Bo is generated by its subgroups O}(B)o,

02(B)0 and 03(B)0. Also G(Ifl is the normal subgroup of O(A)o generated by 01(B)0 .

To prove the second conclusiont we use that 02 and 03 are conjugated to GI by elements

from G(A)O. Namely a + bi =g(a + b])g -I = h(a + bk)h-1, where g =(l+ k)(21/2 E G3(IR) =
G3(IR)O and h = (1+])/21f2 E G2(IR) = G2(IR)0.
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Corollary 12. If b. c, d E A and b > 1, then there is g E G(A)O such that

g(bi + cj + dJc)g ~l = (Jil + Cl + d2)lfli.

.. Proo! Set b' =(JJl + c'l)l/2 E GL1A and write (b + dJ)/b' = Jt2 with h in G(A)O. Then

h(bi +c} + dk)h ~l =cj + hi(b + dJ)h ~l = c} + i(b + dJ)h ~2 =cj + b'i. Now we set b" =

(b,2 + c'l)l/2 e GL1A and write (ck - b')fb" = h' 2 with h' in G(A)O. Then for g = h'h

, we have g(bi + cj + dk)g ~ 1 = h'(cj + b'i.)h' ~1= h' 2(ck + b')i =b"i = (b2 + Cl + d2)1/2i.

Lemma 13. Let h =a + bi e G1A . Then every element f + bzi in GtA withJ: z E A, Izi S

2, inf(f) > 0 can be written as f + bzi = g[u, h]g ~ 1 with

u = (1 - z 2/(2 + 2j))1/2 + z(2 + 2j)~1/2j and gE G(A)O.

Proo! Tc take advantage cf trigoncmetry in the following computations, we write

u = (1 - z 2/(2 + 2j))1/2 + z(2 + 2fr1f2j =cos9 + jsin9

with 9 e R X , 191 < rcf2. Then [u, h] =(a + bu2J)(a - bi)

=1 + b(ul - 1)j(a - bi)

=a2 + l?cos29 + bai(cos29 - 1) - bak sin29 -';'j sin29

=a2 + Jilcos29 - 2b sin9(ai sinS + ak cos9 + bj cosS) .

By Corollary 12, there is g E G(A)O such that

g(ai sine + ak cos9 + bj cos9)g ~t = i(cos29 + a2sin2e)I/2

(we used that i, j, k are similar in G(lR) c G(A)Ü). So h' =g[u, h] g -1

=a2 + b2cos29 - 2bi(cos2e + a2sin29) It2sine =1 - 21J2sin29 + 2hi(1 - b2sin29) If2sin9.

Note that 1 - Wsin29 = 1 - z 2JJ1/(1 +fJ
=(I +1- z 2bl)/(1 + fJ =Cf +12)/(1 +fJ =1
and that both 2b(1 - b 2sin2e) Iflsin9 and bz have the same sign as sine (ar 8). So

h' =g[u, h] g-1 =1+ bzi .

Corollary 14. Let H be a subgroup of G(A) normalized by G(Aoand containing h =a +

bi with a, b in A. Then H =' Gt(Ab)O.

Proof. We have to prove that any h' =1+ zbi in G1(Ab), where.t: Z E A, belongs to H

provided mat it is sufficiently elose to 1. We assume that I h' - 11 < 1, i.e. 1/- 11 < 112. As in

Lemma 8, we c~ write h'= hn
2 with h" =/1 + zlbi, where/1' zl e A and

zl =z(1 +fJ~l«l -: «bz/(l + t)2)1f2 + 1). Note that IZll S Izl(2. Iterating this, we can write h' as a

power cf an elementfn +znbi with an arbitrary small Izl. So without loss of generality we can

assume that Izi ~ 2 and inf(f) > O. Then h' =1+ zbi E GI (Ab) by Lemma 13.
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Corollary 15. Let H be a subgroup of G(A) nonnalized by G(Ao, and let h = a + bi + cj

+ dk e H with a, b, c, d in A and Ih - 11 < 112.. Theo H ~ G(Ab + Ac + Atf)0.

• <

. Proof By Lemma 10, it sufficcs to show that H ~ Gm(Ab + Ac + Ad)° for m = 1,2, 3.

Since 0z and 03 are conjugated to GI by elements from G(A)O (sec thc proof of Corollary 11

above), it suffices to da this for m = 1. By Corollary 9, it suffices to show that H ~ GI (Ab),

G1(Ac), G1(Ad). By symmetry it suffices to prove the fltSt inclusion, i.e. that H ~ G1(Ab).

Since i e G(R) = G(lR)O, we have h' = ihi ·1 = a + bi - cj - d1c e H. So h" =hh' = 1 +

2hbi =1 - 2JJ1 + 2abi + 2bdj - 2bck E H. By Corollary 12, there is g E G(A)O such that g(ai

+dj + ck)g -1 = a'i with a' = (a Z + d 2 + c 2 )1/2 e GL 1 A.

Tben gh"g -I = 1 - 2JJ2 + 2ba'i E H. Thc candition lh - 11 < 112 means that a > 3/4, hence

b 2 S 1 - a2 < 7/16 and 1 - 2b 2 > O. By Corollary 13, H ~ GI (A(2baj)O = GI (Ab)O, because

2a'e GL1A.

ProojofTheorem 4 for GOR) = SL1(lH). The part (a) follows from Lemma 8, Pan (b) with

N' = 3 follows from Lemma 10 and Lemma 13 (wherc we can take z to be a small real number

(note that the neighborhoods Ih -11< e of 1 in Gareinvariant under inner automorphisms).

Proofcf (5) for G(IR.) =SL1(H). Let H be a ~ubgroup of G(A) normalized by G(A)O. We

denote by B the largest ideal of A such that H ::J G(B)O'(see Corollary 9 and Lemma 10. We

have to prove that G(B) ~ B, Lc. h'gh,·1 E g (mod B) for every qutemion ging. By

Corollary 14, applied to h = [h', g), we have h'gh,..l E g (mod B) for all g in G(R)

sufficiently close to L Therefore we have this for al1 g in G(lR)O = GOR). Since lH is spanned

over lR by G(lR) (in fact, the standard basis 1, i, j, k is contained in G(R) =SL1lH), we

conclude that h'gh' -1 s g (mod B) fer an g in lH.
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. The group SLnlH consists of all n by n matrices g over the quatemions lH with the reduced

nonn 1. If we write every enrry of an n by n matrix g over lH as a + bi + cj + dJc with real

numbers a, b, c, d ("real coordinatesU of this enrry) and replace

. b th . a+bi -c+di th th red d flt Y c matpx ), cn e uce nonn 0 g
\c+di a -bi

is the determinant of the obtained 2n by 2n matrix over er. In particular, the reduced norm of g

is a homogeneous polynomial of degee 2n with integral coefficients in real coordinats of eotries of

g. It is well-known that SLnlH = EnlH

The Lie algebra 9 consists of all n by n matrices over IR with the trace of the sum of

diagonal entries =O. The adjoint representation is given by ad(g)h =ghg -I .

An element g of oX belongs to G(A) if an ooly if xy E A for any real coordinate x of

any cnrry in g and any real coordinate y of any entry in g -1. Multiplzing the equation that the

reduced norm of g -1 is 1 by ibt, where xis as above, we obtain that x2n e A.

Now we assume the conditioD (1) with N == 2n. Then G(B)O =(SL,/J)O = En(A, B) for any

ideal B of A. NQW we can use results of [16] for the ring A' = A + Ai +Aj + Ak to obtain (5).

We use that every ideal B' of A' has the form B' = B + Bi + Bj + Bj, where B = B' n A is an

ideal of A. In the case n =2 we have to usc that A' =A + D, wherc A is the center of A' and D

is the ideal of A' generated by all additive commutators xy - yx in A'.
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10.Tbe case 01 0(2) =SU(p, q: (t), p 2: q 2: 0, p+q~
r

.' Now' GOR)= SU(p, q: et) consists of g in SLn([ such that g*Fg =F, where n =p + q, and

F = ip E9 (L 1)q is the diagonal matrix with p ones and q minus ones. If we extend scalars from

1R to CI, then the algebraie group G becomes isomorphie to SL,,[. Assuming the eondition (2)

with N = n, we eonclude that G(A)O =SU(p, q; A[ll)O = GAO.

Tbe group GA = SU(p, q; A[l1) c G(A) aets on the A[ll-module A[ll" of all eoIumns v over

A[ll by left multiplications preserving the hermition squares v*Fv E A. Let em denote the standard

basis of IRn c A[ll".

When n =2, the Lie group G(IR) has been dealt with above. Namaly, SV(I, 1: IX) is

isomorphie to SL:2lR, and SU(2,0: CI) is isomorphis to SL1H. So we ean assume that n 2: 3,

and we will proceed by induetion on n.

Let G(m,m';A) denote the subgroup of GA =SU(pJ q; A[J1) eonsisting of matriees aeting

onIyon the coordinates m and m', where 1 Sm< m' Sn. So G( m,m'; IR) is isomorphie to

both SU(2,0; CI) and SL1lH when m' Spor m > p, and it is isomorphie to both SU(1, 1; a: )
and S~lR when m Sp < m'. It is eonjugated in SV(p, q; CI) with G(l,n; lR) or with G(l,l;IR).

Lemma 16. Let B be an ideal of A, e· E lR such that 0 < e < 1, v = (v m) e A[ll".

Suppose that vI -1, vm E 8[11, Ivml Se fer m ~ 2, lVI - 11 Se, v*Fv 2: (1 - e)2, Then there

arc gns in G(1,m; B) such that gn••.g2v = elv*Fv and Ld S e/(1 - e) for every entry x of

every matrix gm - 12, m == 2,..., n.

Proof. Set wl = vI and Wm =(Yl*Olvl + ...+ vm*amym)112 E A for m = 2,..., n, where

ans =1 for m s,p and 0m =-1 for m 2: p+ 1 (so am =em*Fem and F = diag(ol' ... , an»' Then

Wn
2 =v*Fv and wm ~ 1 - e for all m 2: 2. Now we set

(

Ym-1*/wm dmVm*iwm J
.
E Gm(B)

- v"lwm vm_1/wm

for m =2,..., n. Then the first entry of the eolumn (gm g2)v is wm' the next m - 1 entries are

0, and the rest is the same as in v. In particular gn g2v = erw" =elv*Fv . It is elear that I

vm*/wm I = I -v,rlwm I S, eI(l - E).
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Corollary 17. For any open neighbourhood U of 1 in G(IR) and any ideal B of A, the set

of all products llia is open in G(H), where a nms over all pairs (m, m') of integers such that

1 ::; m< m' ~ n, ga e G(a.;B) (1 UX, and the the factors U; the product are ordered such that m'

grows from left to right and, when m' is constant, m also grows from left to right

This corollary follows from the lemma b~ induction on n.

Proof of Theorem 4 for G(lR) = SU(p, q: CI:), p 2: q 2: 0, P + q~. Corollary 17 reduces it to

the case p + q = 2, which has been dealt with.

Proof of (5). Let B =L(H) be the largest ideal cf A such that H ~ O(B)O. We have to

prove that G(B)::> H. We proceed by induction by n = p + q. The case n =2 has been dealt with.

So we assume that n 2: 4.

Take an arbitrary h in H. We want to prove that h E G(8).

Case 1: hen =eil. Then hE G'(A) for G'(lR)= SU(p, q.. l; CI:). By the induction hypothesis,

either h e G'(B) c O(B) or G'(8') c H (1 O'(A) c H for an ideal B' of A such that

B ?!B'::>B.

Let us show that H ~ G(B') in the second case, so it is impossible. Since H ::>

G(m, m'; B') far m' < n, it remeins to show that H ~ G(m, n; B') for m =1,... , n -1. Sinee H

~ G(I, m; B'), we conclude that H::> G(rn; B'), where G(m) =0(1, m) (1 G(m, n) is the

subgroup of G acting only on the coordinate m (so G(m, lR) is isomorphie to the circle Si).

Working now inside G(m, n), we conelude that H ~ G(m, n; B').

Case 2:hem =em for same m. This case is similar to Case 1.

Case 3: h E GA' e2*he,. = 0, and lxl S O.l/n for every entry x of the column ge2 - e2' We

set

g =diag(A., A,l-n, A.,..., Ä) e G(lR) c G(A)O,

where Ä = 0.8 + 0.6i E tI. Then the ~atrix ghg· l E H has the same last column as h, so

[g, h]en =en. By Case 1, [g, h] E G(B). This implies that he2 == e2 (mod B). By Lemma 16,

there is h'e G(B)OcH such that h'ge2 = e2' By Case 2 with m = 2, h'g E G(B, hence g E

G(B).
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Case 4: hE GA and Ix/ S O.l/n for every entty x of the column Ml - el' Far any ~ in IR,
we set

Ä =(1 - iJ,2 + 2J.Li)/(1 + ~2) E (I

and

g= diag(ll-Il, Ä,•.., Ä) e G(lR) c G(A)O. .

Tbe matrix gh ~Ig ~I differs from h -I anly in the fIrst row and column. The last column eh,

g]e,. cf the matrix h' = eh, g] = hgh -lg -I E H has thc fonn en + (h1)x, where x =
el*h~len(Ä.~1l-1). Clearly, h' -+ I,. as ~ -+ O.

Set

By Case 3, (g2 e I n-2)h'(g2 e I n_2,-1 e G(B), hence h' e G(B) (for all J.L sufficiently elose

te 0). It fellows that he1 ;: el (mod B). By Lemma 16, there is h" E G(B)O eH such that h"hel

=el' By Case 2 with m = 1, h"h e G(B), hencc hE G(B).

General case. By Case 4, [g,. h] E G(B), Le. ad(h)g = hgh ~1 == g (mod B) for every g in

G(R) sufficiently close to In. Since the vector space in n by n complex matrices spanned by

any open neighbourhood U cf In in G(lR.) contains g, we obtain that hgh -1= g (mod B) far

all g in g. So hE G(B).
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NO\l( G(lR)= SU(p, q: [) n SL"IR, where n = p + q. Sincc 0(0:) = 50,,[, we can use

resuIts cf Seetion 7 above to conelude that O(A) =GA =SO(p, q; A) when n is odd, and that

G(B)O = GBQ for any n and any ideal B of A under the condition (1) with N =2. -

The group 0 A =SO(p, q; A) c G(A) acts on the A-module Alt of all columns v aver A by

left multiplieations preserving the sealar squares vTFv =v*Fv E A. Let em denote the standard

basis of Rlt cA....

When n = 2, the Lie group G(lR) is not simple. Namely,

50(1, 1: R) is locally isomorphie to OLl IR, and 50(2, 0: lR) is isomorphie to the circle S 1.

When n = 3, the Lie group G(IR) has been dealt with above. Namely, 50(2, 1: IR) is locally

isomorphie co 5~lR, and SO(2, 0: IR) is locally isomorphie to SL l lH.

Whcn n =4, the Lie group G(R) is not simple or has been dealt with above. Namely,

50(4, 0: lR) is locally, isomorphie to SL1IH x 5L1lH, 50(2, 2: R) is locally isomorphie co

S~lR. x S~lR, and 50(3, 1: IR) is locally isomorphie to S~[ .

So we ean assume that n :2: 5, and we,will proceed by induetion on n.

Let G(m,m';A) denare the subgroup of GA =SO(p, q; A) eonsisting of matriees acting oniy

on the coordinates m and m', where 1 Sm< m' Sn. So G(m,m'; lR) is isomorphie to both

SO(2,0; IR) and S I when m' Spor m > p, and it is locally isomorphie to OLIlR when m S p

< m'. It is eonjugated in SO(p, er, lR) wich 0(1, n;lR) or with 0(1, l;lR).

Lemma 18. Let B be an ideal of A, e E IR such ehat 0< e <1 v =(vm) E An. Suppose

that vI -1, vm E B, Ivml Se for m:2: 2, lVI - 11 Se, V*Fv :2: (1 - e)2, Then there are gm in

G(l,m; B) such that gn...g2v = elv*Fv and Ix! S e,I(1 - e) for every entry x of every matrix Km­

12, m = 2,..., n.
Proof. See the proof ofLemma 16 above.

Corollary 19. Corollary 17 holds for our G(lR) = SO(p, q: lR), p + q:2: 3.

Proof of Theorem 4 for G(lR) = SO(p, q: lR), p ~ q ~ 0, p + q ~S. Corollary 19 reduces i t co

ehe ease p + q::: 3, which has been dealt with..
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Proof of (5) for G(lR) =SO(p, q: lR), p ~ q ~ 0, p + q ~ 5.. Let B = L(H) be the largest

ideal of A such that H ::> O(B)O. We have to prove that O(B):) H. We proceed by induction by

n =p + q. The case n = 3 has been dealt with. So we ass~ that n ~ 5.

. take an arbitrary h in H. We want to prove that hE O(B).

Case 1: hen = en. Then hE O'(A) for O'(lR) = SO<p, q -1; C!). By the'-induction

hypothesis. either hE G'(B) c O(B) or G'(B') c H n G'(A) c H for an ideal B' of

A such that B *B'~ B.

Let us show that H ::> G(B') in the secand case. so it is impossible. When q ~ 1 we

eanelude that H => G,lB')O, because Gn is similar to Gn- I , henee H::::> G(B') by Corollary 17

(with B' instead of B). When q =1, we eonsider the subgroup 0" of 0 whieh flXes em with m

~ n /3. Then G"(R) is isomorphie to both SV(1,l; CI) and S~lR. Sinee G"(A) n H => G"(A)

n G'(B')O, we conclude that Off(A) n H ::> 0"(8')°. So we obtain again that H::::> O(B')

(using again Corollary 17).

Case l:he" =eil' Then he C'(A) for G'(R) = SO(p, q-l; IR). By the induction hypothesis,

either h e G'(B) c G(B) or G'(B') c H n G'(A) c H far an ideal B' of A such that B

;6 B':::> B.

Let us show that H:::> G(B') in the seeond ease, so it is impossible. Since H:J G(rn. m';

B') for m' < n, it remains to show that H ::::> G(rn. n; B') for m = 1,..., n -1. Sinee H:::> .

G(l, rn; B'), we cODelude that H:::> G(l, m, n; Bl, where G(l,m, n) is the subgroup of G acting

only on the coordinate m -(so G(I,m.n; IR) is isomorphie to 50(3,0; R) or SO(2,l; R».

Therefore H :::> G(m, n; B').

Cas~ 2:hem = em for same m. This ease is similar to Case 1.

Case 3: h E GA' e3*hen_I =e3*hen = 0, and Ixl S O.l/n for every entry x of the column gen

- en' Let g E G(n-l, n; IR) c G(lR) c G(A)O. Then the matrix ghg· I E H has the same third

row as h, so e3*[g, h] =e3*' i.e. [g, h]e3 =e3' By Case 2 with m =3, [g, h] E G(B). This

implies that hell == eil (mod B). By Lemma 16, there is h' e O(B)O c H such that h'gen = en' By

Case 1, h'g E G(B), henee gE G(B).
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Case 4: h E GA and Ixt S O.1/n for every entry x of the columns ~1 - e1 and he2 - e2'

For any J..L in IR, we set

g =
(

CO~IJ.
-smJ..L

sinJ..L JE G(1,2;IR)O c G(A)O .
COSIl

The matrix gh .lg .1 differs from h -I only in the fll'St and second rows and colurnns. Tbe last

two columns [h, g](e
ll
_l' eil) of the matrix h' = [h, g] = hgh .lg -I E H has the form (e,.•• , eil) +

(hel' he2)x, where x is a 2 by 2 matrix over A. Clearly, h' ~ In as J..L ~ o.
Now we find maaices g2 in G(l, 2;;1.)0 and g3 in 0(1, 3;A)0 such that em*g2g3hel = 0 for

m =2, 3 (we use Lemma 17 with p + q =3, B = A). Then we fmd 81 in 0(2, 3;A)0 such that

e3*8182B3he2 = O. Then for 8' =g18283 we have e3*g'he1 ::: e3*g'he2 =O. So e3*g'h'g' -le,._1 =
e3*g'h'g' -le,. =O.

By Case 3, g'h'g' -I E G(8), hence h' E O(B) (for all J.L sufficiendy elose to 0). It follows

that he I :3 el (modB). By Lemma 16, therc is h" E O(B{J eH such that h"he l =el' By Case 2

with m = 1, h"h E G(B), henee hE G(B).

General case. By Case 4, [g, h] E G(B), Le. ad(h)g = hgh ·1 =g (mod B) for every g in

.G(lR) sufficiently close to In. 5ince the vector space in n by n complex matrices spanned by any

open neighbourhood U of In in G(IR) eontains g, we obtain that hgh .1 3 g (mod B) for all g

in g. So hE G(8).
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12. The case oe G(R) =SO(n, E), n ~ 3
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Now·. 9(IR) = SO(n, lH) consists of all matrices g in SLplH such that g*g = In ,where thc

involution on matrices is indueed by the following involution on the quaternions IH:

, (a + bi + cj + dk)* = a + bi - cj + dk. '

When n =1 (resp. n =2), thc Lic group G(R) is not simple; it is isomorphie 10 the eircle

S 1 (resp. locally isomorphie to SLtlH x S~R).

When n =3 (resp. n = 4) the group G(lR) is localIy isomorphie to SU(3, 1; <I) (resp.

isomorphie to SO(6, 2; IR», so it has been dealt with.

Thus, we can assume that n ~ 5. We procecd by induction on n as in Scetion 10. For any

ideal B of A, we set B' = B + Bi + Bj + Bk c IHX. We assume the eondition (1) with N =2.

Lemma 20. If x =x* e B' and Ix I < 112, then there is yeB' such that y = y* t 1 + x =
(} + y)*(} + y), and Iy I S Ix L

Proof. We write x = a -} + bi + dJc with a - l,b, d E B, and set y =z ~ 1 + bi/(2z) +

dk/(2z). Then the equality } + x =(1 +y)*(l +y) takes the fonn.

1 + x = a + bi + dk = (1 + y)2 =(z + bi/(2z) + dk/(2z»2, or z 4 - az 2 - (b 2 + d 2)/4 = O.

Using (1) with N::: 2, we fmd the solution t = u t/2 E 1 + B, where

2u =a + (a2 + b 2 + d 2)112 e 1 + B.

Let G(m,m';A) denote the subgroup of GA =SO(n, AJ consisting of matriccs acting ooIy on

the coordinates m and m', whcre 1 Sm< m' s: n. So G(m,m'; lR) is isomorphie to 50(2, lH).

It is conjugated in 50(2, lH) with G(I,l;lR).

Lemma 21. Let B be an ideal of A, e E IR such that 0 < E <I v :: (vm) E A In. Suppose

that V t -1, vm E B, fvml SEIn for m ~ 2, Ivl - 11 Sein, Then there are gm in G(I,m; B)

such that gn...g2v = e tUrn with Um E GLIB, um*um =v·v, and lxi S €/(} - e) for every entry

x of every matrix gm - 12, m =2,..., n.
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, and for um == wm-1 um-l + wm.1(Vnflm_I-1)* Ym for m =2,... , n. Theo the frrst entry of the

column (gm ...g2)v is um' th next m - 1 entries are 0, and the rest is the same as in v. In

particular gn".g2v =elun, The rest of the proof is also similar to that in Section 10.

13.The ease ol G (lR.) =Sp(p, q; 11), p? q ~ 0, p+q ~2

Now the group G(IR) =Sp(p, q; lH), consists of matrices gE GL"lH such that g*Fg:= F ,

wherc the involution on matrices is induced by the usual involution on the quternions IH and

where F = Ip (B (-l q) as before. Note that g E SLnlH (Le. the reduced norm of g is 1)

automatically.

When n =p + q =1, Le. p =1 =q + 1, the Lie group G(lR) =SL1H has been dealt with.

When n =p + q =2 the Lie group GOR) has also been dealt with. Namely, Sp(2,0; lH) is locally

isomorphie with 50(5, 0; lR) and Sp(l, 1; lH) is Iocally isomorphie with SO(4, 1; lR). So we

can assume that n = p, + q ~ 3.

The rest of the proof in the case at hand is so similar to those in Sections 10-12, so we leave it

to the reader.

14. Subnonmal subgroups

Combining methods of this paper with those of [17] and [18], one obtain the follov.:ing resul t

Theorem 22. Undcr the conditions of Theorem 3, a subgroup H of G(A)O is subnormal if

and onIy if G(Bm) eHe G(B) for an ideal B of A and a natural number m.
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