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L.N. Vaserstein

L.Introduction

Lie groups G have been used in mathematical physics for a long time. Recently,
infinite~dimensional groups started to appear there too (as gauge and current groups). Some of
those groups have the form G(A), where G is a simple connected Lie group and A is aring of
continuous functions on a topological space X (in this notation, we use the algebraic group
structure on adG ,see below). When A = RX is the ring of all continuous functions X - R
(where R is the reals), then G(A) is just the group GX of all continuous maps X — G. In the
case when X is a circle, those groups are known as loop groups [9].

To give a precise definition of G(A), we consider the adjont representation ad of G on its Lie
algebra g. Picking a basis in g, we obtain a group morphism ad: G — GL,,R, where m =
dim(g). We assume that G is a simple Lie group, i.e. its Lie algebra g is simple. Then ad is a
local isomorphism from G to Aut(Q), and the kernel of ad is the center of G. We do not
assume that G is connected, so G could be the whole Aut(Q).

By definition, the group G(A) consists of all g e GX = G(RX) such that ad(g)e GL,A.
Assuming that A contains all constants, this does not depend on choice of basis in @. For any
ideal B of A, let G(B) denote the group of all g in G(A) such that ad(g) is congruent to the
identity matrix 1,, modulo B.

We assume that A contains all constants and that all functions in A are bounded. We endow A
with the topology of uniform convergence, and consider the induced topology on G(A). For
every ideal B of A, let G(B)0 denote its connected component of idendty in G(B).
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We will impose on A the following condition with a natural number N depending on G:
(1)aN e GL,A forany a inA sufficiently closed to 1

In particular, this condition with N = 1 says that GL,A is open in A. By the way, a'¥ means
the positive root, which is defined for positive functions a. Note that the condition (1) with some
N implies this conditon with N replaced by any divisor of any power of N.

Sometmes (depending on G), we will impose a stronger than (1) condition on A: -

(2)aN e GL,A[i] forany a e A[i] sufficienty closed to 1.

Here A[7] is the subring of all complex functions @ on X  with both real and imaginary
part in A.For any a in €X withsup la- 11 <1, alV is defined by the series a!V = 1+
(a=-1))UN = 1 & (@ -1)/N + (@ - DZ(U/N)Y(I/N =1)/2 +.

Note that the conditions (1) and (2) hold for all natural numbers N when A is closed in RX
(then A is a Banach algebra). They also hold for all natural numbers N when A is the ring of all
smooth bounded functions on a manifold X or the ring of real analytic bounded functions on an
analytic set X, '

Here is the main result of this paper.

Theorem 3. Let X be a topological space, A a ring of bounded real contnuous functions on
X containing all constants and satisfying the condition (2) for all natural numbers N. Then for any
simple Lie group G of classical type a subgroup H of G(A) is normalized by G(A4)0 if and
only if G(B)Y « H c G(B) foranideal B of A.

When X is a single point, so A = R, the theorem says that the group G(R)° modulo its
center is simple (as an abstract group). This fact goes back to Dickson [3], van der Waerden [12],
E.Cartan [1].

We will prove Theorem 3 together with the following theorem.



L.N. Vaserstein Gauge groups 3

Theorem 4. Under the conditions of Theorem 3:

(a) the group G(B)? is arcwise connected for any ideal B of A;

(b)there is a natural number N’such that for any ideal B of A and any open neighbourhood
U of 1 in G, the set of all products of N’ commutators of the form [g, 4], where g € G(A) N
UX and he G(B)N UX, is openin G(B); so
[G(A), G(B)®] = [G(A)®, G(B)] = [G(A)0, G(B)®1= G(B)°® for any ideal B of A.

It seems that the restriction that G is of classical type in the theorems is redundant. When G
is a Chevalley group (for example, G is a complex Lie group, i.e. G is not absolutely simple as
algebraic group over R), the conclusions of Theorems 3, 4 follows easily from [15] (rank 22)
aMUﬂ(mﬁ=LL&ﬂRﬁﬂmMmemwmmSHRMS%Q.mmmmmGMPB
generated by all its "root subgroups;' with respect to a fixed maximal torus as well as by all its
elements g with unipotent ad(g). This seems to be true whenever G is isotropic, i.e. G(R) is not
compact, i.e. its R-rank is not 0, i.e. there are non—trivial unipotent elements in G (for G of
classical type, this can be shown by our methods). |

We will use results of [16] to prove Theorems 3, 4 in some cases. For orthogonal groups of
R-rank 2 2 and for some other classical groups of R-rank 2 3, we could use results of [19],
[20]. However we do not do this here, because we have to deal also with small R—rank cases, and
when R-rank is 0, the methods of [19], [20] using unipotent elements do not work.’

Note that the structure of anisotropic groups over rings is much more intricate than that of
isotropic groups. This is true even when the ring is a field. Some work on anisotropic case was
done in (2], (4]-[11].

In particular, de la Harpe [4] proved that every maximal normal subgroup of G(A)° has the
form G(B) M G(A)0, where B is a maximal ideal of A, provided that G is compact and A is
the ring of all bounded smooth functions on a smooth manifold X. He noted that the analogous
result look plausible for the real analytic functions A and non-compact G. We cofirm this here for
classical &, and our Theorem 3 describes all normal subgroups of G(A ) (not only the maximal
ones).We can handle a wider than in [4] class of rings A, because our methods do not use
partitions of 1. Our methods allow in fact to handle also power serries rings [2], [8], but in this
paper wé restrain ourselfs to subrings A of RX.
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The result of [4] on the maximal normal subgroups of G(A)? was used there to describe all
automorphisms of this group, improving a previous result of [9]. Similarly, our results allow to
describe all automorphisms of G(A ) (under the conditions of Theorem 3), but we do not pursude
this in the present paper.

Often the structure of Lie group on G in Theorem 3 can be refined to the structure of an
algebraic group over R (when the center of G is finite). In this case, we can consider the group
G4 of the points over A for any commutative R-algebra A. When G is adjoint, i.e. has trivial
center, G4 = G(A). It is not clear whether G4 and G(A) could be different. In any case, we will
see that G AO and G(A )0. We use the groups G(A) rather than G4 for the following two reasons:
they make sense even if G is not algebraic, and they behave nicely under local isomorphisms.

Namely, in the next section, we show that the statements of Theorems 3, 4 for locally
isomorphic groups are equivalent. Then we give a complete list of simple Lie groups of classical
types up to local isomorphisms. We also indicate the number N in the condition (1) or (2) used. In
Sections 3—13 we prove Theorems 3, 4 for each G on the list.

Note that the "if" part in the conclusion of Theorem 3 is obvious (it follows from the inclusion
G(B° o [G(A), G(B)]). So it suffices to show the "only if" part, i.e. the following statement:

(5) for any subgroup H of G(A) which is normalized by G(A )0 there is an ideal B of A
such that G(B)' < H < G(B)

However to show the equivalence of (4) for locally isomorphic groups we had to couple it
with the conclusion (b) of Theorem 4. It is conceivable that one can take N =2 independently of
G in Theorem 4(b), but minimization of N’ is not a goal of this paper. Also it seems that in the
case when the fundamental ;G(R) is finite and the dimension of X is finite, every element of
G(A)° is the product of a bounded number commutators, where the bound depends only on G and
the dimension of X. See [23] about the case G =SL, R or SL C.
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2. Locally isomorphic groups

It is clear that if the conclusion (a)of Theorem 4 and the first half of 4(b) (which obviously
nnphcs the second half of (b)) hold for a simple Lie group G, then the corrcspondmg conclusions
also hold for any Lie group-G’ which is locally isomorphic to G.

Here we show that if the statement (5) and 4(b) is true for a simple Lie group G, then the
corresponding statements are also true for any Lie group G’ locally isomorphic to G. It suffices
to show that in the case when the other group is G’ = Aut(g), where g is the Lie algebra of G. We
will use the symbol ad (adjoint representation) for the canonical homomorphism G(4) — G'(A)
for any ring A.

By our definition, G(B) is the inverse image of G'(B) for any ideal B of A. Since G and
G’ are locally isomorphic, ad(G(B )0) =GB )0 for any ideal B of A.

Assume first that (5) holds for G, and let us prove it for G'. Let H' be a subgroup of
G’(A) which is normalized by G'(A )0. Then its inverse image H in G(A) is normalized by
G(A)0. By (5) for G, we have G(B)® = H c G(B) for some ideal B of A. Applying ad,
we obtain that ad(G(B)%) = G(B)® < H' < ad(G(B) < G'(B).(We did not use 4(b) .)

Assume now the statements (5) and 4(b) with G’ instead of G, and let us prove (5) for G.
Let H be a subgroup of G(A) which is normalized by G(A)O. Then H'=ad(H) is a subgroup
of G’(A) which is normalized by G'(4)°. By (5) for G, G'(B)°® — H’< G'(B) for an ideal B
of A. Taking the inverse image, we conclude that ker(ad)G(BP® ¢ H < G(B). Now we have
to rid off ker(ad) (which is the center of G(A)) here. That is, we want to show that fe H for
any f in G(B) sufficienty close to 1.

Using the condition 4(b) (for G or, equivalently, for G'), we pick a neighborhood U of 1 in
G(R) such that no product of 4N’ elements of U is a non-trivial element of the center of
G(R) (which is a discrete subgroup of G(R)). Then we use 4(b) with this U. Any f € G(B)
sufficiently close to 1 can be written as f={g,, h;] ...[gx~ Ay with g in G(A) M UX and -
in G(B) N UX. Replace h,, here by h,c, € H with c,, in the center of G(A), we obtain that f
=[g1, Mycy] ..[gn» By<cy] € H. Thus, we have obtained the conclusion (5) for G.
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Under the conditions of Theorem 3, the group G(R) is locally isomorphic to one of the
following Lie groups.

Complex Lie groups: G(R) = SU,C, n22; G(R) =8p,,C,n22; G(R) = S0,C,n 27.

Real of type A: G(R) = SL,R, n22; G(R) =SL,(H),n21; G(R) =SU(p,q; C), p2q20, p
+q23.

Real of types Band D : G(R)=SO(p,q; R), p2g20,p+q 27; G(R) =SO(n, H), n 23,
Real of type C: G(R) =Sp,,R, n22; G(R)) =Sp(p,¢; H),p2q 20,p+q22.

In Sections 3-13 we remind definitions of these groups, and we prove (5) and Theorem 4 in
each of these cases.

Every group on the list has its own algebraic group structure over R. It is not clear whether
the corresponding group G, may differ from G(A) . In any case, we will see that G(B Q= GBO
for all ideals B of A (including B = A) under the condition (1) or (2) with an appropriate N.

Now we specify ¥ in the condition (1) or (2) used in our proof. We will use the following
condition:

the condition (1) with N = n in the case G(R) = SL_RR; the condition (1) with N =2n in the
case G(R) = SL,(H); the condition (2) with N =n in the cases G(R) = SU,C, and
SU(p, q; ©), n=p + q; the condition (1) with N =2 in all other cases.

Note that this N is the order of the center of G(T) in the case G(R) =SL R, and N is the
order of the center of G(RR) in all other cases, except the cases G(IR) = SO(p, ¢; R)with odd p +
g and G(R) = SO,C with odd n (in which cases the center is trivial). It can be shown that under
the condition (2) with N = 1, for each listed G, the above condition is necessary for (5) or 4(b)
to be true.

In all cases above, G(R) is realized as a subgroup of GL,F for some n, where F =R, C, or
H is a finite-dimensional division algebra over R. Its Lie algebra g will be realized as a
subalgebra of the Lie algebra of all » by n matrices over F. The adjoint representation is given
by ad(g)h= ghg "', where ge G and he g.
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Sometimes we will use improved versions of the conditions (1), (2) which in fact follow from
them:

. Lemma 6. Under the condiﬁbn (1) (resp. (2)),let B be an ideal of A. Then alN ¢ GL,B
(resp. a'N GL,B(i] ) for any a € A such thata — 1 € B and sup la - 1l < 1. Moreover, under
the condition (1), a¥ & GL,A forany a € A with inf(a) > 0.

Proof. Consider first the case when a is very close to 1. Then a!N =1+xe GLA (resp.
alN e GL,A[i] ). Moreover, from (1 +x)N =gq, we see that X(IN+ NN -1)x2 +.)=a-1
€ B. For a closeto ], x iscloseto 0, hence N + NN - 1x/2 +.. e GL A (resp. GL,A[i])
and xe B (resp. B(i]). So a'Ne GL,B (resp. a'/N e GL,BIi}).

Now, given any a as in the lemma, and any natural number M, we can approximate a arbitrary
closely by the M-th power of a trunncated Taylor serries b for (1 + (a-1 WM So (arpM)IIN
€ GL,B (resp. GLB[i] ). Taking a large M we can make b arbitrary close to 1, so that pIN ¢
GLB (resp. GL,B[i]). Then a!/N e GL,B (resp. GL,B[i]).The first part of the lemma is
proved. To prove the second part, we set ¢ = sup(a) € R. Then supla/c-11=1- inf(a)/c <1.So
(@c)N e GL,A , hence a'N e GL,A . The lemma is proved.

It is clear that the condition (2) implies (1) (with the same N). In Section 6 we will show that
the conditions (1) and (2) with N =2 are equivalent.
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3. The case G(R) =SL,R,n 22

The Lie algebra @ of G(R) consists of all 2 by » real matrices of trace 0. Its dimcnsion is
n(n—1/2. The group G actson @ by ad(g)(h)=ghg!, where ge G and he g

We pick the basis of g consisting of all matrix units g with1Sp #g<n andall €pp~
€4 with 1 S p < g < n. Then it is clear that G(A) consists of all g in SL,l]RX such that xye A
for any entry x of g and anyentryy of g'l.

In particular, multiplying the equality det( g°1) =1 by x", we obtain that x* € A for every
entry x of g..

Now we assume the condition (1) with N = n (note that this N is the order of the center of the
complexification SL, @ of G(R)). Then, given g = (8p,y) in G(A) sufficiently close 10 1, the
above inclusion x* € A implies that all diagonal entries x of g belong to A. Now the inclusions
xy € A imply that all entries of gl belong to A. Thus, SL,A contains a neighbourhood of 1,
in G(A), hence G(AY = (SLnA)o =EA (see [16].[18], [21], [22] about the last equality).

Similarly, G(B)®=(SL B0 =E,(A, B) for any ideal B of A. (We have used that, by
Lemma 6, (1 +5)"e 1 +Bforany b in B sufficiently close 0 0.)

Here E A is the subgroup of SL,A generated by all elementary matrices 4”4 with a € A,
1<p#q Sn The group E (A, B) is the normal subgroup of E,A generated by elementary
matrices in SL,B. Now it is clear, that G(B)0 = (SL,B)? is arcwise connected.

By {16], E, (A, B) =[E (A, B), E,A] =[E,B, E,A]. So the second part of 4(b) for our
G(R) =SL_R is proved. To prove the first part of 4(b), we have to make some estimates on the
number and size of commutators.

For any real d > 0, let U denote the set of matrices g in G(R) such that I(1,, — 8pgq < o for
all p, q. These Uy and their left shifts genetrate the topology on G. For @ < 1/n, every matrix
hin Uax M G(B) is the product of an upper riangular matrix in Ua/(l ,an)x M G(B) with ones
along the diagonal and a lower diagonal matrix in Ua,(l,an)x M G(B). So h isa product of
n(n — 1) elementary matrices in Ua/(l_an)x M G(B) and a diagonal matrix in Ua/(l-an)X M
G(B) .
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Every elementary %4 in Up/( en)x M G(B) is a commutator of an elementary matrix in
UzX N G(B) and a diagonal matrix in Uy, where 3’ = (1 +(3/(1-3n))/%)!22 _ 1 For example,
b12 = [diag(1+ 3", ( 1+ 9)L), (B/(( 1+ 3y 12,

Every diagonal matrix in Uy _an)x M G(B) isa product of n — 1 diagonal matrices of the
form diag(d,1...1,d"},1...) in UyX M G(B), where 9" is a number depending on 9 and n
which tends to O as @ — 0. Every matrix diag(d, d'!) in SL,B M U;X can be written as
diag(d, d'1)

=(-ea 12 (d -y 2P (- d ey
=[(-ed")2L,((d -1)/e)12)((d -1)/e) (e-ed 2 (1 a Y ye) 12,

where €=23"12 0 as 9 —0. So diag(d, 1) is a product of 4 commutators of the form [g, A]
where g € G(A)NU,Xard he G(B)NUX with € —0 as 9 — 0. Adding up the number
of commutators involved, we see that every matrix k& in U3X M G(B) is the product of N’ =
n(n—1) + 4(n — 1) commutators of the form (g, h} where g € G(A) N Uxx and he G(B)
M U3 X with some number A — 0 as @ — 0. Theorem 4 is proved.

Now we prove (5). Let H be a subgroup of G(A) which is normalized by G(A)? = (SL,A)°
=E,A.SetH' = HN SL,A. By[16], there is an ideal B of A suchthat E (4, B) < H’
< G(B) N SL,A. Weclaimthat H c G(B),i.e. he G(B)for an arbitrary element he H.

Indeed, since (g, Al cH' < G(B) N SL,A forevery g inE, A, the assignment g P
[g, h] modulo B gives a homomorphism from the group E A to the group of scalar matrices in
SL,(A/B). Since the first group is perfect and the second one is abelian, this homomorphism must
be trivial. That is, hgh'!= g (mod B) forany g in E,A. Now we use that E.R M g spans
g over R (in fact, the following matrioces in E, R span g over R: (-1)4P2P4, (-2)7.P1P4,
29P(-1P4 with 1 Sp <q <n).So hgh'l=g (modB) forany g in Q,hence he G(B).
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4. The case G(R)=SL,C,n22

The proof of (4), (5) in this case repeats the proof given in the previous section. The only
difference is that now we use the condition (2) with N =ninstead of (1) with N =n. The
condition (2) with N = 1 (which follows from (2) with N = n) implies that SL,A(i]° = E A[{] and
(SLnB')O = E (A[i], B") for any ideal B’ of A[i]. The condition (2) with N = n gives that G(A)
= SL,,A[;']O. Since every ideal B’ of A[i] has the form B + Bi, where B is an ideal of A, we
obtain also that (SL,B80 =G(BJ.

5.The case G(R) = Sp,,R ,n22

We proceed as in Section 3 with the following changes. The group G(R) = Sp,, R consists of
all matrices g in SL,R such that gTJg=J, where J is a non-singular alternating 2n by 2n
matrix in SL,,Z which can be chosen to be in a standard form. The Lie algebra g of G consists
of all2n by 2n matrices k over R with ATJ+Jh=0. The adjont representation is given by
ad(g)(h) = ghg'1.

The group G(A) consists of all matrices g in sznIRX such that ghg'l is a matrix over A
for all A in g. Then the product of any entry of g with the diagonal entry in the same row
belongs to A. '

Assuming the condition (1) with N =2, we conclude that G(A)0 =(S pzuA)0 =Ep,y,A (the
last equality follows from the condition (1) with N =1). For any ideal B of A we have G(‘B)O
= (SpZ,,B)0 = Ep,,(A, B). The standard description of all subgroups # of Sp,,A normalized by
Ep, A is obtained in [15] for any commutative ring A =24, 222 (when n =1, Sp,A =SL,A
and see Section 3 above). This gives (5), (Proving (5) we have to use that the leastideal B of A
such that H < G(B) coincides with the least ideal B of A such that H N Sp,, A < G(B).
This follows from the fact that g is spanned over R by its elements of the form g —1,, with
g in G(R)=Sp,,R =Ep,,R))
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6. The case G(R) = Sp,,C,n2>2

The proof of Theorem 4 and (5) in this case repeats the proof given in the previous secuon.
The only difference is that now we use the condition (2) with N =2 instead of (1) with N = 2.
This condition implies that G(B)0 = (sz"B')o = Ep,,(A(i], B") for any ideal B’=B[i]=8 +Bi,
of A[{]. Finally, we observe the following fact.

Lemma 7. When N =2, the conditions (1) and (2) are equivalent.

Proof. Clearly, (2) implies (1) for any N. Let us show now that (1) implies (2) when N =2.
We will show that 2 € A[i] forany he A[{] with suplh~ 1l < 1. We write h=a +bi and
M2 =x+yi Then a=x2-y2e A, b=2xy € A4, and a%+ b2 =(x2 +y%)2 € A, hence x*+
¥ = @2+ b1 e A by Lemma 6. So x = ((a+ (a2 + v»)1/2)/2)12 & GL,A, hence y =
bf2x € A.

7. The case G(R) =S0,C,n25

Now G(R) = SO,CQ, consists of all matrices g in SL,T such that glg=1 a When n=2
(resp. n = 4) this group is not simple, and it is locally isomorphic to GLC (resp. SL,C x SL,T).
So we assume that n2 5. When n =5 (resp. n = 6), this group is locally isomorphic with Sp,C
(resp. SL,C ), |

The Lie algebra g of G(IR) consists of all alternating (skew-symmetric) n by n matrices
over (€. Its dimension over R is n(n -1).

The group G(A) consists of all matrices g in SO(CX) such that all 2 by 2 minors of g
belong to A[{}. When n is odd (i.e. the center of G is trivial), every entry of g'l 1S a polynomial
in these minors with coefficients %1, so g'1 e SO, A. So G(A) = SO,A[]. for odd n, and,
simalarly, G(B) = SO,B{i] for any ideal B of A '
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When 7 is even, to prove that G(B )0 = (SO,,B[:“J)0 , we assume the condition (1) with N =2
(note that 2 is the order of the center of G(R) for even n). By Lemma 7, the condition (2) with N
= 2 holds.

Every matrix g in G(A) sufficiently close to 1, has all its diagonal minors in GL1¢X.
Consider the submatrix g’ of g which is formed by the first 4 rows and columns. Its determinant
det(g') is a polynomial with coefficients *1in 2 by 2 minors of g, so det(g) € A[i]. Now we
use the entry x=(8);,=81; € GLI(IX of g’to eliminate the off diagonal entries in the first
row and column of g’ by addition operations. We obtain a matrix of the form x @ 2 witha 3 by 3
matrix A such that xy isa 2 by 2 minor of g’ foreveryentry y of h So xy € A[i], and
x2det(g=x3det(h) e Ali).

Using (2) with N =1 (which follows from (2) with N = 2), we see that 12 e GL,A[].
Using (2) with N =2, we conclude that x € GL,;A[i]. Now we can take any n -1 by n -1
submatrix g’ of g containing x = g, ; and bring it by addition operations to the form x @ h with
amatrix & of size n-2 by n-2 such that xy is a2 by 2 minor of g’ for every entry y of A.
So all entries of h arein A[{], hence det(g) € A[i]. Similarly, det(g") € A[i] for an arbitrary »
-1 by n-1 submatrix g’ of g,ie. g e SOA[], ie. g € SOA[].

Thus, G(A)® = (SO,A[1)°. similarly, G(B)=SO,Bli] for any ideal B of A.

Note now that the quadratic form x,2 +...+ x,2 is isomorphic over @ to the quadratic form
Y12+...+ Yn-1¥n When n is even, and it isomorphiC t0 y,Yo4 4 Yao¥pq + yn2 when n is odd.
(Here y, = x| + ixy, Y5 =Xy -iXy, ... .) S0 G is a Chevalley group. of rank {n/2), and we can use
results of [15] to describe all subgroups of SO, (A[i]) which are normalized by EO,(A[i]).

It is easy to see that EQ,(A) = G(A O = (SO,‘A[[])O. Indeed, every matrix g in (SO A[])
sufficienty close to 1, is the product of 2n — 4 elementary orthogonal matrices and a matrix of the
form diag(z, z 1) ® h, where & is a matrix of size n -2 by n-2 acting on Y, With m22,and
z=g 1 Soif n is odd, we are reduced to the case n =35 when G(R) is locally isomorphic to
Sp4C, and if n is even, we are reduced to the case n = 6 when G(R) is locally isomorphic to
SL4C,

Details are similar to those in Section 3.

|
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7. The case of G(R) = SL{H

Now G(R) consists of all Hamilton quaternions g =a + bi +¢j + dk with the reduced norm
g% = a2 + b2 + 2+ d? = 1. As topological space, G(R) is the sphere $3. The Lie algebra g of
G(IR) consists of all quaternions bi + ¢j + dk of trace 0. Its dimension is 3, and we take i, j, k as
a basis.

The group G(R¥) can be identified with all g =a + bi + ¢j + dk, where a, b, ¢, d are in RX
g =a?+b2+2+d?=1, and k= ij = -ji, i2=j2=-1. The group G(A) consists of all g
as above with xye A forall x,y € {a, b, ¢, d}. Foranideal B of A, G(B) consists of g as
above with all xy above in B, except for a2, for which we have a2 -1 ¢ B.

Now we assume the condition (1) with N =2 (this V is the order of the center of G(R) or
G(D)).

Then for any g sufficiently close to 1 we havc abc,d in A If Bisanideal of A, then
forany g in G(B) sufficiently closeto 1 we have a —1,b,¢,d in B. So a-1,b,cd € B.
forany g=a +bi+cj+dk in G(B)O.

Let G (resp., Gyresp. G3) denote the (algebraic) subgroup of G consistingof g =a + bi +
cj+dk with a,b,c,d in A, a®+b%+c2+d?=1and with d=c =0 (resp, d = b =0, resp.
b = ¢ =0). So the Lic groups G(R), Go(R), and G4(R) are all isomorphic to the circle S 1.

Lemma 8.1f B isanideal of A,g=a+bi € G;(B)and g -1l <1, then g =h? with h
in the path-component of 1 in G(B).

Proof. We have 2-2a=Ig- 12< 1, hence 1/2<as 1. By (1) with N = 1 (see also Lemma
6). 1 +a € GL,A. Set t=bf(1+a)e B.Then g=a+bi=(1-12/1 +12)+2/1 +1)i.
Wesetnow s= (1 +2)2+1)e B and h = (1 -s D1 +52) + 25/(1 +52)i. Then 1=
25/(1 -5 2y and g= h2. Replacing here s by sy withreal u rangmg from O to 1, we obtain a
continuous path in G(B) connecting 1 with A.
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Corollary 9. If B’, B” are ideals of A, then the subgroup G,(B" + B"Y of G(A) is
generated by its subgroups G,(B 0 and G(8 "9,

. Proof. It suffices to show thatevery g =a+bi in G(B" +B"”) with Ig-1l<1lisin )
G,(BY0G(B")0. We write b=b'+b" with b’ in B’ and b” in B”, and set

g’ =(a+bia*+b a2 e G(BY.
Then g“'g € G(B"). So ge G,B" )0G,(B" ).

Lemma 10. For any ideal B of A everyelement g =a + bi +¢j + dk, of G(B) with Ig - 1|
< (0.4))/2 has the form g = g,g,g5 With g,, in G,,(B) and lg,,— 11S21g-1l.

Proof. We want to find an element g5 in G4(B) such that
(@+bi+cj+dk)gy! € G,(B)Gy(B). Writing g1 =
('+ xk)(1 + 22y 12 =
((a—dx) + (b + cx)i + (c - bx)j + (d + a0k )(1 + x2) 112, we obtain the following equation for x :
(@ —dx) (d + ax) = (b + cx)(¢c - bx),
or x 2(bc-ad) +x(@® + b2 -2 —d?) +ad —bc =0,
or 2x/(1 —x%) = 2(bc - ad)/(@® + b2 - 2 - d 2.

So we set gy = (a2 + b2 -2 ~d?+ (bc - adk)/w, where
w = (@+b-2-d 2+ (bc-adH)2,

The condition Ig — 11 < (0.4)}2 means that @ 2 0.8. So a® + % -2 -d 22242 -1 20.28,
hence g3 € G5(B)°. Note also that w? = (a? + 6>~ 2 -d 2 2 + (bc —ad)? <a* + b2 S 1. Sog,
2=g'+d'k with a’ 22a%-1. This implies that g5~ 1= 1g5-1 — 1l Slg~11.

Therefore Iggs 1.1 €£21g - 11, so when we write 883 -1 as 2185 with tr(gy), tr(g,) > O (this
can be done uniquely), we have | g, — 11 S lgg3"1-11 S21g— 1l for m=1, 2.

Corollary 11. For any ideal B of A the group G(B? is generated by its subgroups G,(B)°,
GZ(B)O and G:;(B)0 . Also G(B? is the normal subgroup of G(A )0 generated by GI(B)0 .

To prove the second conclusion, we use that G, and G; are conjugated to G| by elements
from G(A)0. Namely a+bi=g(a+bj)g ! =h(a +bi)h’, where g =(1+ k)22 e G4(R) =
Gy(R)%and & = (1+ )22 & Gy(R) = Go(R)0,
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Corollary 12.If b,c,d € A and b > 1, then thereis g € G(A)® such that
g(bi +cj + dk)g "} = (B2 + 2 + d®)12,
~ Proof. Set b'= (b2 +cH2 e GL)A and write (b+dj)/b" = K with h in G(A)®. Then
h(bi + ¢j + dk)h "L =¢j + hi(b + djh L= oj+i(b +dh 2= ¢j + b'i. Now we set b” =
®'2+cH12 ¢ GLA and write  (ck-b)/b" =h'? with A4’ in G(A)O. Then for g = h'h
we have g(bi +c¢j + dk)g 1= R(cj + b'ih 1= R Hck + )i =b"i = (b% + 2+ dD)12,
Lemma 13.Let h =a +bie G,;A . Then every element f+ bzi inG,A withf,ze A,z <
2, inf(f) >0 can be written as f+ bzi = glu, hlg ! with :
u=(1-zY2+2MP +22 + 2% and ge Ga)P.
Proof. To take advantage of trigonometry in the following computations, we write
u=(1-z2%2+2M72+ 22+ 202 = cosd + jsin®
with 8 € RX, 181 <n/2. Then [u, ] =(a + bu?)(a - bi)
=1+ b(u? - 1)j(a - bi)
= a2 + b2c0s26 + bai(cos2 ~ 1) — bak sin20 — b sin28
= a2 + b%c0s20 — 2b sinb(ai sin® + ak cos® + bj cosb) .
By Corollary 12, there is g € G(A )9 such that
g(ai sin® + ak cos® + bj cosB)g ! = i(cos?@ + a%sin20)1/2
(we used that i, j, k are similar in G(R) < G(A)®). So #’=g[u, h] g !
= a2 + b%c0s20 - 2bi(cos?® + a%sin?8)2sind = 1 - 2b%sin?0 + 2bi(1 - bsin26) /Zsing.
Note that 1 —-25%sin20 = 1 -z 26%/(1 + )
=+ 22O+ H =+ DA+ =F
and that both 2b(1 - b 2sin?8)25in@ and bz have the same sign as sin8 (or 8). So
R =glu, hlgl=f+bzi .

Corollary 14. Let H be a subgroup of G(A) normalized by G(A® and containing & =a +
bi with a,b in A. Then H > G(4b)C.

Proof. We have to prove thatany h’=f+zbi in G,(Ab), where f, z € A, belongs 1o H
provided that it is sufficiently close to 1. We assume that [ A" - 1l < 1,ie. [f- 1l < 1/2. As in
Lemma 8, we can write h'= A" 2 with A”=f| +z,bi, where f;,z; € A and
zp = 2(1 + /711 + ((b2/(1 + H?)2 + 1). Note that Iz1] < IzI/2. Trerating this, we can write 4’ asa
power of an element fn +2,bi with an arbitrary small IzI. So without loss of generality we can
assume that 1z1<2 and inf(f) > 0. Then A'=f+zbi e G,(Ab) by Lemma 13.
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Corollary 15. Let H be a subgroup of G(A) normalized by G(A% andlet h =a+bi+ ¢j
+dk € Hwitha, b,c,d in A and Jh - 11 < 1/2.. Then H > G(Ab + Ac + Ad)°.

. Proof. By Lemma 10, it suffices to show ﬂiat H S G,(Ab+Ac +Ad)0for m=1,2, 3.
Since G, and Gy are conjugated to G, by elements from G(A)? (see the proof of Corollary 11
above), it suffices to do this for m = 1. By Corollary 9, it suffices to show that H > G,(4b),
G,(Ac), G,(Ad). By symmetry it suffices to prove the first inclusion, i.e. that H> G,(Ab).

Since i € G(R) = G(R)?, wehave h'=ihiY=a+bi—cj —dke H. So h"=hh'=1+
2hbi =1-~2b2 + 2abi + 2bdj - 2bck € H. By Corollary 12, thereis g € G(A)? such that g(ai
+dj +ck)g ! =ai with a = (@2 +d? +c?)l/2 ¢ GL,A.

Then gh”g "! =1-2b% +2ba’i € H. The condition th — 11 < 1/2 means that a > 3/4, hence
b2<1-a?<7/16and 1 -2b2 > 0. By Corollary 13, H> G,(AQ2ba"))® = G,(Ab)°, because
2a'e GLJA.

Proof of Theorem 4 for G(R) = SL,(IH). The part (a) follows from Lemma 8, Part (b) with
N’ =3 follows from Lemma 10 and Lemma 13 (where we can take z to be a small real number
(note that the neighborhoods |h—1l<e of 1 in G are invariant under inner automorphisms).

Proof of (5) for G(R) = SL(H). Let H be a subgroup of G(A) normalized by G(A . We
denote by B the largest ideal of A suchthat H O G’(B)0 ‘(see Corollary 9 and Lemma 10. We
have to prove that G(B) D H,ie. h'gh’"! =g (mod B) for every quternion g in g . By
Corollary 14, applied to h = [4’, g], we have h'gh"1 =g (mod B) forall g in G(R)
sufficiently close to 1. Therefore we have this forall g in G(RY = G(R). Since H is spanned
over R by G(R) (in fact, the standard basis 1, i, j, k is contained in G(R) = SL;H), we
conclude that h'gh’"l =g (mod B) forall g in H.
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9. The case of G(R) =SL, H,n > 2

. The group SL,H consists of all n by n matrices g over the quaternions H with the reduced
norm 1. If we write every entry of an n by n matrix g over H as a + bi + ¢j + dk with real

numbers g, b, ¢, d ("real coordinates" of this entry) and replace

it by the magix atbi -jwﬂ , then the reduced norm of g

c+di a-bi
is the determinant of the obtained 2n by 2n matrix over €. In particular, the reduced norm of g
is a homogeneous polynomial of degee 2n with integral coefficients in real coordinats of entries of
g. Ttis well-known that SL,H = E, H

The Lie algebra g consists of all n by n matrices over H with the trace of the sum of
diagonal entries = 0. The adjoint representation is given by ad(g)h = ghg 1.

An element g of GX belongs to G(A) ifanonly if xy € A for any real coordinate x of
any entry in g and any real coordinate y of any entry in g -!. Multiplzing the equation that the
reduced norm of g "lis 1 by x?*, where x is as above, we obtain that x** e A.

Now we assume the condition (1) with N =2n. Then GBP = (SL,,B)0 =E, (A, B) for any
ideal B of A. Now we can use results of [16] for the ring A" = A + Ai +Aj + Ak to obtain (5).
We use that every ideal B’ of A’ has the form B'=B + Bi + Bj + Bj, where B=B'MA isan
ideal of A. Inthe case n=2 we have touse that A=A + D, where A is the centerof A’ and D
is the ideal of A’ generated by all additive commutators xy — yx in A"
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10.The case of G(R)=SU(p, ¢: ©),p2¢ 20, p+q 22

~ Now G(R)=SU(p, q: @) consists of g in SL,C such that g*Fg = F, where n=p + ¢, and
E =1 p ® (L l)q is the diagonal matrix with p ones and ¢ minus ones. If we extend scalars from
R 1o C, then the algebraic group G becomes isomorphic to SL,C. Assuming the condition (2)
with N = n, we conclude that G(A)0 = SU(p, ¢; A[))° =G 0.

The group G4 = SU(p, ¢q; A[i]) € G(A) acts on the A{i]-module A{i}" of all columns v over
A[{] by left multiplications preserving the hermition squares v*Fv € A. Let ¢, denote the standard
basis of R < A[{]”.

When n =2, the Lie group G(IR) has been dealt with above. Namaly, SU(1, 1: @) is
isomorphic to SL,R, and SU(2, 0: €) is isomorphis to SL;H. So we can assume that n23,
and we will proceed by induction on a.

Let G(m,m’;A) denote the subgroup of G4 = SU(p, ¢; A[i]) consisting of matrices acting
only on the coordinates m and m', where 1 Sm<m’Sn. So G(m,m’; R) is isomorphic to
both SU(2,0; €) and SLyH when m’'Sp orm>p, and it is isomorphic to both SU(1, 1; C)
and SL,R when m <p <m’ Itis conjugated in SU(p, ¢; €) with G(1,n; R) or with G(1,1;R).

Lemma 16. Let B beanidealof A,ee R suchthatO0<e<l1, v=(v, ) € A[]"
Suppose that v; -1, v, € B[i], v, /<€ for m22, iv;-1Sg v*Fv 2(1 ~¢)?, Then there
are g, in G(1,m; B) suchthat g,..gv=ev*Fvand i<e/(l -€) foreveryentry x of
every matrix g, -1, m=2..,n.

Proof. Setw, =v,and w, =(v1*81v1 + ..+ vm“‘an,lvm)lf2 € A form=2,..., n, where
d,=1form<p and 0, =-1form2p+1(so 9, =e,*Fe, and F =diag(d,, ..., d,)). Then
w,2 =v*Fv and w,, 21 —¢ forall m2 2. Now we set

(vm-l */ WY amvm*/ Wi

Em=
. Vm/wm vm-l/wm

] € G,(B)

for m =2,..., n. Then the first entry of the column (g,,...g,)v is w,, the next m - 1 entries are
0, and the rest is the same as in v. In particular g,...g,v = e;w, =¢,v*Fv . It is clear that |
Vpiwp I =1y w1 <e/(1 ~€).
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Corollary 17. For any open neighbourhood U of 1 in G(RR) and any ideal B of A, the set
of all products Hga is open in G(B), where o runs over all pairs (m, m’) of integers such that
1Sm<m'Sn,gge G(aB) N UX, and the the factors in the product are ordered such that '
grows from left to right and, when m’ is constant, m also grows from left to right.

This corollary follows from the lemma by induction on .

Proof of Theorem 4 for G(R) = SU(p, ¢: ©),p2¢ 20, p + g 22. Corollary 17 reduces it to
the case p + ¢ =2, which has been dealt with.

Proof of (5). Let B=L(H) be the largest ideal of A such that H > G(B )0. We have to
prove that G(B) o H. We proceed by induction by n =p + q. The case n =2 has been dealt with.
So we assume that n 2 4.

Take an arbitrary 2 in H. We want to prove that h € G(B).

Case 1: he, =e,. Then he G'(A) for G'(R)= SU(p, g-1; ©). By the induction hypothesis,
either h € G'B)< G(B) orG(B’) c H N G(A) <« H foranideal B’ of A such that
B #B'>B.

Let us show that H > G(B’) in the second case, so it is impossible. ‘Since H O
G(m, m’; B’) for m’ <n, it remeins to show that H > G(m, n; B’) for m=1,..., n -1. Since H
o G(1, m; B?), we conclude thai H > G(m; B’), where G(m)=G(1, m) "N G(m, n) is the
subgroup of G acting only on the coordinate m (so G(m, R) is isomorphic to the circle § h.
Working now inside G(m, n), we conclude that H > G(m, n; B’).

Case 2:he,, = e, for some m. This case is similar to Case 1.

Case 3: he Gy, e;*he, =0,and Il < 0.1/n for every enry x of the column ge, -e,. We
set
g = diag(A, A" A, M) e GR) < G(A)O
where A = 0.8 + 0.6i € €. Then the matrix ghg Y€ H has the same last column as 4, so
(g, hle, =e,. By Case 1, [g, Al € G(B). This implies that he, =e, (mod B). By Lemma 16,
there is #'e G(B)? c H such that h'ges =ey. By Case 2 withm =2, h'g € G(B, hence ge
G(B).
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Case 4: he G, and Ix/ S 0.1/n forevery entry x of the column he, —e;. Forany i in R,
we set
A=(-p?+2u)1 +pde €
and
g = diag1" ..., 1) € G(R) < G(A)0. |

The matrix gh "1g -1 differs from 4 ! only in the first row and column. The last column [A,
gle, of the matrix A" =[h, g] = hgh 'lg -t € H has the form e, + (hy)x, where x =
e *hle, (A" - 1). Clearly, & — 1, as p —0.

Set
hy Mw *fw
8 = L Je GAP < G(AP,
| Sha o kv
where h,, | =e,*he; and w= (k2 +1hy,12)12,

By Case 3, (g, @1, ,)0'(g, @ 1 ,-:.2)'1 € G(B), hence h’ € G(B) (for all p sufficiently close
to 0). It follows that he, =e; (mod B). By Lemma 16, there is h" € G(B)0 C H such that A"he,
=e;. By Case 2 withm =1, h"h € G(B), hence h € G(B).

General case. By Case 4, [g, h] € G(B), i.e. ad(h)g =hgh!=g (mod B) for every g in
G(R) sufficiently close to 1,. Since the vector space in n by n complex matrices spanned by
any open neighbourhood U of 1, in G(R) contains g, we obtain that hgh “= g (mod B) for
all g in g.So he G(B).
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11.The case of G(R) = SO(p, ¢: R),p2q2 0, p+q 25

Now G(R)=SU(p, ¢: ©) N SL, R, where n=p +¢. Since G(C) = SO,C, we can use
results of Section 7 above to conclude that G(A) =G, = SO(p, ¢; A) when n is odd, and that
G(B)? = Gg0 forany nand any ideal B of A under the condition (1) with N =2.

The group G, = SO(p, q; A) € G(A) acts on the A-module A” of all columns v over A by
left multiplications preserving the scalar squares vIFv =v*Fv e A. Let e,, denote the standard
basis of R* c A"

When 7 =2, the Lie group G(R) is not simple. Namely,

SO(1, 1: R) is locally isomorphic to GL;R, and SO(2, 0: R) is isomorphic to the circle §!.

When n =3, the Lie group G(R) has been dealt with above. Namely, SO(2, 1: R) is locally
isomorphic to SL,R, and SO(2, 0: R) is locally isomorphic to SL,H.

When »n = 4, the Lie group G(R) is not simple or has been dealt with above. Namely,
SO(4, 0: R) is locally isomorphic to SL,H x SL|H, SO(2, 2: R) is locally isomorphic to
SL,R x SL,R,and SO(3, 1: R) is locally isomorphic to SL,C .

So we can assume that n 25, and we will proceed by induction on a.

Let G(m,m’;A) denote the subgroup of G, =SO(p, q; A) consisting of matrices acting only
on the coordinates m and m’, where 1 Sm <m’< n. So G(m,m’; R) is isomorphic to both
SO(2,0; R)yand S ! when m’<p or m>p, and it is locally isomorphic to GL,R when m<p
<m’. It is conjugated in SO(p, ; R) with G(1, n;R) or with G(1, 1;R).

Lemma 18. Let B beanidealof A,e e R suchthat0<e<lv=(v,) € A" Suppose
that vy -1,v,, € B, lv,lS€ for m22, v;-11S¢e v*Fv 2(1 —¢€)?, Then there are g, in
G(1,m; B) such that g,...gov = ;v*Fv and I/ < ¢/(1 - ¢€) for every entry x of every matrix g, -
lhb,m=2,..,n

Proof. See the proof of Lemma 16 above.

Corollary 19. Corollary 17 holds for our G(R) =SO(p, ¢: R),p+¢q23.

Proof of Theorem 4 for G(R) =SO(p, q: R),p2¢ 20, p + g 25. Corollary 19 reduces it to
the case p + g =3, which has been dealt with.
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Proof of (5) for G(R)=SO(,¢:R),p2q20,p +q 25..Let B=L(H) be the largest
ideal of A such that H > G(B)0. We have to prove that G(B) > H. We proceed by induction by
n=p +q. The case n =3 has been dealt with, So we assume that n 2 5.

. Take an arbitrary h in H. We want to prove that A € G(B).
" Case 1: he, = e,. Then he G(A) for G'(R)= SO(p, q-1; €). By the induction
hypothesis, either he G'(B)c G(B) or G'(B’) <« H M G'(A) < H foranideal B’ of
A such that B#B'DB.

Let us show that H O G(B’) in the second case, so it is impossible. When g # 1 we
conclude that H o Gn{B')O, because G, is similarto G,_;, hence H > G(B’) by Corollary 17
(with B’instead of B). When q =1, we consider the subgroup G” of G which fixes e, with m
S n/3. Then G"(R) is isomorphic to both SU(1,1; €) and SL,R. Since G"(A)N H > G"(A)
M G'(B’)0, we conclude that G"(A) N H > G"(B’). So we obtain again that H > G(B’)
(using again Corollary 17).

Case 1:he, =e,. Then he G'(A)for G'(R) = SO(p, ¢-1; R). By the induction hypothesis,
either h ¢ G(B)c G(B) or G'(B’) <« H M G(A) < H foranideal B’of A such that B
#B' D B.

Let us show that H 2 G(B’) in the second case, so it is impossible. Since H > G(m, m’;
B’) for m’ < n, it remains to show that H > G(m, n; B’) for m=1,.,n =1.Since H o
G(1, m; B), we conclude that H > G(1, m, n; BY), where G(1,m, n) is the subgroup of G acting
only on the coordinate m -(so G(1,m,n; R) is isomorphic to SO(3,0; R) or SO,1; R)).
Therefore H o G(m, n; B’).

Case 2:he,, = e, for some m. This case is similar to Case 1.

Case3: he G,, e3*he, | =ey*he, =0,and xI £ 0.1/n for every entry x of the column ge,
-e,. Letg & G(n-1,m R) cG(R) < G(A)L. Then the matrix ghg "l € H has the same third
row as h,so e3*[g, k] = ey*, ie. g, hle3=e3. By Case 2 with m =3, (g, h] € G(B). This
implies that he, =e, (mod B). By Lemma 16, there is &’ e G(B)® c H such that h'ge,=e,. By
Case 1, h'g € G(B), hence g e G(B).
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Case4:he Gy and i< 0.1/n for every entry x of the columns he; —e; and hey—es.
Forany pin R, we set

[cosu sinyt

_ ]e G(1, 2R)? cG(A).
—~sinyl  COsf
The matrix gh "lg -1 differs from 4! only in the first and second rows and columns. The last
two columns {4, g)(e, 1, €,) of the matrix h'={(h, g] = hghlg " € H has the form (e, ;, e,) +
(he|, he))x, where x is a2 by 2 matrix over A. Clearly, A" =1, as p—0.

Now we find matrices g, in G(1, 2:4)% and g4 in G(1, 3;4)° such that e, *g,g5he, =0 for
m = 2,3 (we use Lemma 17 with p +q =3, B = A). Then we find g, in G(2, 3;A)0 such that
e3*818,83he, = 0. Then for g’ = g g8, we have e3*g’he; = e3*g’he, = 0. So ey*g’h'g’ 'le,,_l =
ey*g’h’g’ 'le,I = 0.

By Case 3, g'h’g’ "t € G(B), hence &’ € G(B) (for all p sufficiently close to 0). It follows
~ that he; s e, (mod B). By Lemma 16, there is 4" € G(B)® c H such that h"he, = e,. By Case 2

with m=1, A"h € G(B), hence he G(B). :

General case. By Case 4, [g, h] € G(B), i.c. ad(h)g = hgh!=g (mod B) forevery g in
G(R) sufficiently close to 1, Since the vector space in n by n complex matrices spanned by any
open neighbourhood U of 1,in G(R) contains g, we obtain that Agh 1= ¢ (mod B) forall g
in g.So he G(B).
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12. The case of G(R)=SO(n, H),n23

Now G(R) = SO(n, H) consists of all matrices g in SL,H such that g*g=1,, where the
involution on matrices is induced by the following involution on the quaternions H:
' (@ + bi + ¢j + dk)* = a + bi - ¢j + dk. ’

When n =1 (resp. n = 2), the Lie group G(R) is not simple; itis isomorphic to the circle
s ! (resp. locally isomorphic to SL;H x SL,R).

When n =3 (resp. n = 4) the group G(R) is locally isomorphic to SU(3, 1; @) (resp.
isémorphic to SO(6, 2; R)), so it has been dealt with.

Thus, we can assume that n2 5. We proceed by induction on n as in Section 10. For any
ideal B of A,wesetB'=B +Bi+Bj+Bk < HX. We assume the condition (1) with N=2.

Lemma 20.If x=x*e B’and x| < 1/2, then there is yeB’ suchthat y=y* 1+ x=
(1+y}*(1+y)and lylskl

Proof. We write x=a—1 +bi+dkwith a—-1,b,d € B,andset y=z~1 + bi/(22) +
dk/(2z). Then the equality 1 +x = (1 + y)*(1 + y) takes the form
l+x =a +bi +dk=+y)2=(z +bi/(22) + dk/Qz)%, or 2% —az2 -2 +d /4 = 0.
Using (1) with N = 2, we find the solution z=u 12 & 1 + B, where
Qu=a+ (@ +b2+dH¥2¢ 1 +B.

Let G(m,m’;A) denote the subgroup of G, = SO(n, A") consisting of matrices acting only on
the coordinates m and m’, where 1 Sm<m’<Sn. So G(mm’; R) is isomorphic to SO(2, H).
It is conjugated in SO(2, H) with G(1,1;R).

Lemma 21.Let B beanidealof A,ee R suchthatO<e<lv=(v,) € A™ Suppose
that vy ~-1,v,€ B, v, I<€/n for m22, Wv;~1I<e/n, Then there are g, in G(1,m; B)
such that g,..g,v =eu, with u, e GLB, u,*u, =v*v, and il S&/(1 ~¢) for every entry
x of every matrix g, -1y, m=2,.,n
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Proof. Setu; =v,.We define g, € G,(B) and u,, w,€ GL;B,m = 2,.,n,
inductively as follows: w,, = Vit 1 'Vt 1 D* + D72 (see Lemma 20),

-1 -1 -1
(wm Yn (Vm“m-—l )*

-1 -1 -1
Yo Vmbm-1 Wn

]e G,.(B), B

E&m =

and for u,, = wm'I Up-1 + wm“l(vmum_l'l)* vy for m=2,..., n. Then the first entry of the
column (g,....89)v is u,, th next m — 1 entries are 0, and the rest is the same as in v. In
particular g,...gov =eu,. The rest of the proof is also similar to that in Section 10.

13.The case of G(R) = Sp(p, ¢; H), p2¢q 20, p+q 22

Now the group G(R) = Sp(p, ¢; H), consists of matrices g € GL,H such that g*Fg=F,
where the involution on matrices is induced by the usual involution on the quternions H and
where F = Ipe (-1q) as before. Note that g € SL,H (ie. the reduced norm of g is 1)
automatically.

When n=p+q =1,ie.p=1=q+1, the Lie group G(R) = SL,H has been dealt with.
When n = p + g = 2 the Lie group G(R) has also been dealt with. Namely, Sp(2, 0; H) is locally
isomorphic with SO(5, 0; R) and Sp(l, 1; ) is locally isomorphic with SO(4, 1; R). So we
can assume that n=p +q 23.

The rest of the proof in the case at hand is so similar to those in Sections 10-12, so we leave it
to the reader.

14. Subnormal subgroups
Combining methods of this paper with those of [17] and [18], one obtain the following result,

Theorem 22. Under the conditions of Theorem 3, a subgroup H of G(A )9 is subnormal if
and only if G(B™) c H < G(B) foranideal B of A and a natural number m.
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