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1. Introduction and results.

In 1932, K. Mahler [6] introduced the classification cf

all (real or complex) nurnbers into four disjoint classes

A,S,T and U (see the detailed treatment of this classi-

fication and of an equivalent one by J.F. Koksma in Th. Schneider

[9], Kapitel II! and A. Baker [1], Chapter 8). This classi-

fication has the Invariance Property, i.e., two nurnbers which

are algebraically equivalent over ~t belang to the same

class. In the present paper, a generalization of Mahler's

classification to several variables, i.e. a classification

of all points (in mn or ~n) into '3n + 1 disjoint classes

n n n n
A ,St,Tt,Ut , t = 1,2, ... ,n, will be introduced. We will prove

that this classification possesses the Invariance Property, i.e.,

any two points, which (i.e. the two sets of whose coordinates)

are algebraically equivalent over W, belong to the same class.

We will show that each of the 3n + 1 classes are nonempty. We

will classify (referred to as in the sequel) further

into continuum many disjoint classes Tn(u) :Tn = U Tn(u)
n~u~~

and prove that any two algebraically equivalent points of

* Supported by an Alexander von Hurnboldt Fellowship.

t We say that two nonempty subsets B1 and B 2 of ~ are

algebraically equivalent over W if and only if every element

of B1 1s algebraic over W(B 2 ) and vice versa; i.e., if and

only if W(B 1 )=W(B 2 ) , where for any subfield F of ~ , F

denotes its algebraic closure contained in ~ .
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Tn belong to the same class Tn(a) and that there

exist infinitely many a wi th n ~ a ;;; 00 such that

Tn (a) n JRn * e:p. We should like to refer to that

K. Mahler [7] in 1971 introduced a new classification

of ~, a generalization of which to ~n was obtained

by A. Durand [2].

The following notations will be used. For every

P(x1 , ... ,x) E ~[x1' ... 'x ], denote by deg P its- n n

total degree, by H(P) the maximum of the absolute

values of its coefficients, by L(P) the sum of the

absolute values of its coefficients. L(P) has the

two properties

(1 ) L (P + Q) ~ L (P) + L (Q), L (pQ) :s; L (P) L (Q) .

Let F be the set of nonnegative functions of integral

variables D ~ 0 and H;;; 1, which are nondecreasing

in D and H, respectively. For a(D,H) and b(O,H)

in F we write

a(D,H) « b(D,H)

if there exist positive integers k 1 ,k2 ,k 3 ,OO,H O and a

positive number y such that the inequality

(2 )

holds for all 0;;;:00 and H2:H O. If a(O,H) «b(O,H)
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and b(O,H) « a(D,H), we write

a(O,H) >< b(O,H) .

Evidently, this defines an equivalence relation. Let

G be the set of nondecreasing sequences of nonnegative

numbers aD' 0 = 0,1,2, .•.• For aD,bo in G we write

a D «bD if there exist positive integers k,OO and a

positive number y such that the inequality

holds for 0 ~ 0
0

• If a D « bo and bo « a
O

' we write

a O >< b o. This defines also an equivalence relation.

Put P (D,H) = {FE71[x
1

, ••• ,x l[F:t:O, deg P:iD, H(P)~H}
n n

for D GO, H;;; 1. For any
n

E IT ~ -, set

wD(HIE;) :::: min IP«() I,

where the minimum is taken over all the PEP (D,H)
n

with P(l;):t: 0. Clearly, wD(HIl;) :;i 1 , since 1 E Pn (D,H).

Let

8(D,H I() = - log wO(HI(),

then 0(D,HI~) belongs to F. Set

lim
H-l--OO

8(D,HL~)
log H
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Denote by t(t) the transcendence degree of W(~1' .•• '~n)

over W. When t(() - t ~ 1, put

w(~) = lim
D-roo

We put ~(~) =00 if wD(t)<oo for all D, otherwise

let ~(() be the least D such that wD(t) = 00. Let

S~ = {~E a:nlt(E;) = t, w(~) <00

T~ ;:;: {I: E a:n It (~) ;:;: t, W (E;) ;:;: 00

U~ = {( E a:n It (E; ) ;:;: t, w ( ~) =00

~(~) ;:;: oo}

J.l(E;) < oo}

Note that

t;:;: 1,2, ... ,n

are exactly Mahler's A ,

S,T,U, respectively.

Theorem 1. Let

{

1 ,
o (~:) ;:;:

2

if E; E JR~ ,

otherwise

Suppose that ~1' ... '~ are algebraically independent. n

over W. Then there exists a constant c 1 > 0 depending

only on ~1' ... '~n and n such that the inequality

(3) e (D,R lt) ~ (0 (() -1 (D~n) -1) log (H - 1) - C
1

D

holds for D ~ 1, H ~ 2, whence
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wD (~) '= a (() - 1 (.D +n) -1 , D ~ 1.
n/

I
I

Theorem 2. Suppose that ~1'···'~p' n1 ,···,nq

are not all algebraic nurnbers and the sets

{~1'···'~p},{n1,···,nq}

over (0. Then

are algebraically equivalent

(4) 8(D,Hlt»< 8(D,H!n)

and

By virtue of Theorem 2, we can reduce the investigation

n n n (n=1,2, ... , t 1 , ..., n) theon St,Tt,Ut = to investigation

on Sn Tn Un (referred to as Sn Tn Un
in the sequel) ,n' n' n ' ,

1 ,2, ... In particular, to show that n n n
n = . St,Tt,Ut

(t = 1, ... ,n) are nonempty, it suffices to show so are

Sn,Tn,Un , n = 1,2, ...• The Si~gel-Shidlovsky theory

for E-functions furnishes many examples of points

(:;;: (~1'···' ~n ) in with (see, for.

example, N.I. Feldman and A.B. Shidlovsky [3], pp. 58-59),

D+n nwhence by Theorem 1 wD (I;;) = ( n ) - 1 if (: E::IR •
0. 1 o.n

In particular, (e , ... ,e ) is such a point for any

algebraic a 1 , ••• ,an linearly independent over (0. By the

inequality

l;:1'···'~n

WD(~1 , ..• ,~ )~ max wD(~i) we see that if
n 1 ~i:;;n

are algebraically independent over (D and at

least one from ~1' ... '~n is Mahler l s U-number, then

(~1' ... '~n) belongs to ~. Thus, for instance, the work

of I. Shiokawa [10] and Y.C. Zhu [13] provides many
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exarnples of points in Un
i we see that

co
-11

where t;i :::::: L g. with 9i ~'.2 being
1:::::: 1 J.

integers, belongs to tf. We now classify

(t; 1 ' • • • '';n) ,

distinct positive

Tn further.

Write

a ::::::a(t) for the infirnum of the positive numbers a

with wD(() :::::: O(Da ) as D --+ co. By Theorem 1, we have

a (~) ;;: n for any (E T
n . Fo'r each a wi th n ~ a ~ co

set

T.n (Cl) :::::: { ~ E Tn ICl (It;;) :::::: Cl}.

Note that Satz 3' in G. Wüstholz [12], p. 388 implies

particularly that if p(z) is a Weierstrass elliptic

function with algebraic invariants g2,g3 and complex

rnultiplication over the irnaginary quadratic field k and

if a 1 , ••• ,an are algebraic numbers linearly independent

over k, then (p(a
1

), ••• ,p(an » belongs to either

or n
T (n).

Theorem 3. All points in ~n are classified into the

disjoint nonernpty classes

t:::::: 1,2, ... ,n.

Any two algebraically equivalent (over ~) points in

~n fall into the same class. All points in Tn are

classified into the disjoint classes: Tn(a), n~a~oo . Any

two algebraically equivalent (over W) points in Tn
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fall into the same class

FrOGf. The assertion that
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nT (a).

(t = 1" ••• ,n)

are nonempty fellows from Theorem 4 below and the remark

made after the formulation of Theorem 2. The remaining

part ef the tneerem 1s a direct consequnce of Theorem 2.

The assertion that there exist infinitely many a

such that Tn
(cd n JR

n * 4J follows from the following

Theorem 4. Let a~ ~ 3 and
L.

Cl > n (n = 3, 4 , . . . ) be
n

any positive nurnbers. Then for n = 2,3, ... there exists

wi th Cl ~ l,; ~ 2n -1 (ci +")-1n n such that

To prove Theorem 4 our starting point is W.M. Schmidt's

famous result

Theorem. S. For any. Cl with 3 $ 0. ;;a co ,

1
T (a) n JR * ep •

This follows from W.M. Schrnidt [8], p. 278, Corollary 3.

One needs only to note that Schmidt's KD(~) is just

Koksma's wD(~) + 1 (See Th. Schneider [9], p. 73) and

(See E. Wirsing [11], p. 68).
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2. Proof of Theorem· 1 ..

The theorem is a direct consequence of Th. Schneider

[9], pp. 139-140, Hilfssatz 27 and 28. When o(t) ;: 1,

H is even, on taking in Hilfssatz 27 M = 1, N = (D~n),
n D

X = H., A = ( ~ max (I s. I ,1» and noting that
i=1 1.

s1, ... ,sn are algebraically independent over W , we

see that there exists P E: P (D,H)n
such that

n
Thus (3) follows at once with c 1 = n + log ~ max (I~. 1,1).

i= 1 1.

The remaining cases can be similarly verified.

3~_Proof o~. Th~?rem 2.

We need three lemmas

Lemma 1. Let P.. E a: [x1 ' ... , x ] (1:i i, j ~ ~) and
1.J q

ß = det (Pij ). Then

(5 )

and

deg ß ~

~

L rnax
i=1 1~j~~

deg P ..
1.J

(6 )
~ ~

L(ß)~ n L
i=1 j=1

L(P .. ) .
1.J

Proof. (5) is ·trivially true. If !t = 1, (6) is obvious.

Suppose that (6) holds for 9.. - 1 wi th 9.. ~ 2. Let
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Jl..
IJ.= L (_1)j-1 P

1j
A

J
,

j =1

be the expansion of D. according to the first row.

By the inductive hypothesis we have for j = 1 , ... ,n

n n n n
L (A

j
) :;i n L L(P'k) :;i n L L (P, ,) .

i=2 k=1 l. i=2 j=1 1.J

k*j

Hence, by (1 ) , we have

R- n n
L(IJ.) ~ I L(P

1
,)L(A,) ~ n l. L(Pij )·

j=1 J J i=1 j =1

Thus, the lemma is proved.

Recall the d~efini tions of Fand G introduced in

Sect. 1. For any a(D,H) in F write

a D
= lim

a(D,H)

H-+oo log H

Clearly a D E G .

Lemma 2. Suppose that a(D,H) ,b(D,H) in F satisfy

a(D,H) >< b(D,H). Then a D
>< b

D .

Proof. It suffices to show that a(D,H) «b(D,H) implies

a D « b D. In fact from (2), we get

D k 3log(k2H )

log H
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provided D 2: DO and" H ~ HO I whence

:Lernma 3 Suppose that t- = t(~) = t(~1 I··· I~n) 2: 1

and n is algebraic over W(~1' .•• '~n). Then for any

PEPn+ 1 (D I H) (D ~ 1 I H ~ 2) with P (~1 I • • • I ~n ,n) * 0 I

there exist positive integers c 2, ... , c S depending only

on ~ 1 I • • • I E;n ,n and n such that the inequality

(7 )

holds for D ~ 1 I H 2: 2 I whence

(8 ) e (D I Hj E; 1 I • • • I E; n ,n) <<e (D I H I~ 1 I • • • I ~n) •

Proof. We first prove (7). Let ~ = deg P(x1, .•• , x ,Y).
Y n

If R.=O, (7) is triv"ial. So we rnay assume R.2:1. Clearly

R. ;a;D. Let m 2: 1 be the degree of n over W(~1 I··· IE;n).

Then there exist f i (x1 I ••• IXn ) E Z [x1 I ••• IXn ] (i = 0 11 I •• • ,m)

with g.c.d.

Obviously I there exist constants da > 0 I h O > 0 depending
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such that

Write

We have

P (x1 ' • • • , x n ' Y) :::::.:
~ t-i
L g.(x1 ,···,x)y

i=O ~ n

(10) deg g. :.6. D , H (g. ) ;;i H ( i = 0, 1 , ••• , t) •
~ l

Let R(x 1 , ,xn ) be the y-resultant of F(X
1

, ... ,x
n

,y)

and P(x1 , ,x
n

,y) :

f Of 1 ... f
In

f Of 1 ... f m
t......... ,. .

f Of 1 f m
R (x 1 ' • • • , xn ) ==

gOg1 ... g.e.

gOg1 ... gt
rn...........

gOg1 ... g.e.

~I

t+rn
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y~-1F

~-2Y F

m-1y p

m-2y p

On expending the determinant according to the last column,

we obtain

( 11 )

where

we get

Qj(X1 ,· •• ,xn ) EZ[x1 , ••• ,x
n

J. By Lemma 1 and (9), (10)

(13) H(R(x
1

, ••• ,x
n

)) :SL(R(x
1

, ••• ,x
n

))

rn .Q,

:;i ( L L(f.))~ .( L L(g.))rn
i=O ~ j=O ]

:o«m+ 1) (do~n)ho)J/, «J/,+ 11 (D~n)H)m
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Similarly, we obtain for j = 1,2, ... ,m

deg Q.9..+j ~ C 2D,

C

L(Q.9..+j) ~C~H 4

Hence

(14 )
m .

I \' rn-]
,L n Q.I!.+J' (t) I
J=1 n c D
::ii rn(rnax(lnl,1»m-1 max L(QIl+]') ( Tl max(\~.I,1» 2

1 _,- N 1--1 1.
:lJ~'m

On substituting with ~" Y
1.

with n in (11) and noting

that F(~1' .•. '~n,n) = 0, we obtain by (14)

( 15)

We assert that R (t) * 0, for otherwise . f 0 «(;) * 0 and the

fact that F(t,y) is irreducible over W(~1'··· '~n) would

imply F(t,y) devides P(~,y.) in W(~1' ... '~n)[Y]' a

contradiction to the hypethesis that P (t ,Tl) * o.

Thus, by (12), (13), we see tha t

and (7) fellows from this and (15) irnmediately. Further,

without 1055 of generality, we may assume that ~1' ... '~t
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are algebraically independent over W. By Theorem 1, we

have

( 16 )
D c 4

D + log H;i; c 6 e (D , His 1 ' • • • , l;: t) ~ c 6 6 (c 2D , c 3His 1 ' • • • , t; n) ·

Now choose PEP 1(D,H)
n+

such that

= exp (-6(D,Hlt;1, .•• ,t;n,n»,

then (7) and (16) imply (8) at once. This completes the

proof of the lemma.

Froof of Theorem 2. In virtue of Lemma 2, i t suff iees to prove

only (4). By the hx..?otheses, t «() = t ("':") . = t;;; 1.. Since
;~ I

n1 , ... ,nq are algebraic over m(s1' ... ;sp)' we see, by

Lemma 3, that

On the other hand, by the definition,

6(D,Hls 1 ,···,t; )«6(D,Hls 1 ,···,s ,n1,···,n).,p p q

Thus
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Similarly, we have

(18 ) e (D , HIn 1 ' · • . , nq) > < e (D, H \ n1 ' · • · , nq , t; 1 ' • • . , ~p )

(17) and (18) yield (4), since >< is an equivalence

relation. The theorem is proved.

4. Proof of·.Theorem· 4.

We use some idea from E. Wirsing [11]. In this

section we suppose is in n-1a: with

algebraically independent. over W. Let

K = W(E;:1, ... ,sn_1) and ßEC[ be algebraic over K.

Clearly, there exists· an irreducible polynomial
,/

F (x 1 , ..• ,x
n

) E Z[x1 , ... ,Xn ] with coprime coefficients and

deg F ~ 1
x

n
such that

Since F is determined by ß up to a factor u = ±1

(see S. Lang [5], pp. 197 -1 99), we can define

d(ß) = deg F, H(ß) = H(F).

For any n E CI:, wr i te Wo (n i ~ 1 ' · · · , ~n-1 ) for the
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supremum of the numbers w > 0 such that there exist

infinitely many

satisfying

ß algebraic over K of d (ß) 'S D

o < ln- ßI < H(ß)-1-w •

In this section we use « in the sense different

from that defined in Sect. 1, i.e., we use it as the

Vinogradov's symbol, the constant involved i~ « may

depend on ~1' ... '~n-1,D and n, but independent of Hi

in the proof of Lemma 7 below it mayaIso depend,on n.

If E is a measurable subset of :IR, we wri te ~ (E) for

its Lebesgue measure.

Lemma 4. The inequality

holds for almost all real numbers n.

Froof. Let

E = {nElRk

00

1 * (C' C') "'> (Dn+n) - 1 + ~} •Wo ni""'1'···''''''n-1 '" K

Clearly E = U Ek . To prove the lemma, it suffices to
k=1

prove Jl(Ek ) = 0, k = 1,2, .... If nE Ek , by definition,

there exist infinitely many ß algebraic.over K with
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d(ß) :;; D satisfying

_ (Drin) _ 1

(19) 0< In-ßI < H(ß) j(

Let SH be the set of ß algebraic over K with

and d(ß) :;; D. Let C ( ß) bethe disc centered at
D+n 1

radius H(Sr( n )-j( . Set RH = U (C (ß) n lR)
ßESH

Obviously

-(1+ .1)
(20) ~(~)«H k

since the cardinal of the set SH is at most

We have by (1 9)

E
k

C U ~ (N = 1,2, ••• ) •
H=N

H (ß) = H

ß with

This and (20) imply, by Borel-Cantelli lemma, that ~(Ek) = 0,

whence the lemma follows at once.

Lemma 5. (see E. Wirsing [11], p. 70, Hilfssatz 2.)

Suppose that i; E CI: and 0 (x) = a O(x - u
1

)

wi th a O * O. Then there exists c 7 = c 7 (i; ,m) > 0

m
Ia OI TI Ii; - u i I :;; c 7H (0) ,

i=1
1i;-ui !::1

... (x - u ) EID[x]
m

such that
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where a ppssibly ernpty product means 1.

Lemma 6. (A.O. Gelfond [4], p. 135) Suppose that
"

are arbitrary polynomials

and degrees of the.polynornial

in s variables with heights

by Hand in the

H1 , ... ,Hrn . Oenote the height
rn

P (x1 ' . · .,X ) = n P. (x1 ' ... ,x )
s i= 1 1. S

variables x 1"",xs '

respectively. Then we have the inequality

Hrn

s
, n = L

i=1
n.

1.

Lemma 7. Suppose ~1""'~n-1 ,n(in ~) are algebraically

independent over ·W. Then the inequality

(21 )

holds for 0:;;:2.

Proof· By the definition of wO(~1" "'~n-1 ,n) and

Lemma 6 , we see that for any w l < wD(~1""'~n-1 ,n) there

exist infini tely rnany irreducible polynomials P E: Z [x1 ,. · · ,xn ]

with deg P S D and coprime coefficients such that

Write P as
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n

_ 1 ,Y) =

-19-

m rn-i
L p. (x1 '···,x 1)Y

i=O 1 n-

where m = deg P. Evidently
Xn

(24 ) deg p. :;;; D ~ m + i, H (p. ) :;;; H (P), i = 0,1,. '.• ,m.
1 1

If for any w I < WD (i;1 ' ••• , i;n-1' n) among the P in (22)

there are infinitely many P with rn = 0, then

W D (E,:1'· · · ,-E,:n-1) ~ w' , whence

and (21) holds. Further, suppose that for any

w l < WD (E,:1' ••. '~n-1 ,n) among the P in (22) there are

in~initely many P with m = 1. Let ß be the zero of

P(i;1,···,i;n-1'y) = PO(S1'···'Sn-1)y + P1(S1'···'Sn-1)·

Recalling the definition of d(ß) and H(ß), we have

(25) d(ß) ~ D, H(ß) = H(P) •

Note that by (24)

This with (22) ,(25) gives

o < 1n- ß 1=

for infinitely many ß. Hence Wö(n i i; 1 ' • • · , Sn-1) ~ w I -wD ( i; 1 f··· '·~-1 ) f

therefore WD(S1'··· ,i;n-1 ,n) ~ wD(i;1'··· 'Sn-1) + wö(nii;1'··· '~n-1) ,
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i.e. (21) holds. Thus we may assume that for any

w' < w
D

(t';1' ... ,sn-1 ,n) the infinitely many P in (22)

are all irreducible with m = deg P ~ 2 and coprimex n
coefficients, and have the expression (23). Denote by

Dp (X
1

, ... ,x
n

_
1

) the discriminant of P(x 1 , ... ,x
n

_
1

,y)

as a polynomial in y. Since P(x 1 , ... ,xn _
1

,y) is

irreducible in Z[x1 , ... ,X
n

_
1
,y], we see, by Gauss lemma,

that P(x 1 , ... ,xn- 1 ,y) is an irreducible polynomial in

y over the field W(x
1

, ... ,x
n

_
1

)". Hence

It follows from the definition of discriminant that

where the left-hand side is the resultant of P(x 1 , ... ,xn- 1 ,y)

and ap(x1,···,Xn-1,y) as polynomials in y. So we have
3y

1 P1 ..• Pm

P OP 1 ... Pm
m-1

m (m-1 )

(-1) 2 Dp (X
1

, ••• ,xn_
1

)= m (m-1)P1 ... Pm- 1

~mPO(m-1)p1 ... Pm- 1

mP O(m-1)P1 Pm- 1J' --------..-JJ
T

2m-1

m
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On applying Lemma 1 and (24), we obtain
\

(27) D+n-1 m-1 m(m+1) D+n-1 m
H(Dp (x1 ,···,xn_ 1 »·$«m-+ 1) (n-1)H(P» (2 (n--1)H(P»

where Cs is a positive integer depending only on D,n.

On utilizing (24) and Lemma 1 to the transposed determinant

of Dp (x
1

, ... ,x
n

_
1
), we get

m-1
(2S) deg Dp(x1, ... ,xn_1)~ L (D-m+i) + (m-:1)D

i=1 '

= (2m-2)D _ m(m-1)
- 2

3
$ '2D(D-1),

since 1 ~ m $ D. By (26) and the hypothesis that

~1' ... '~n-1' ~ are algebraically independent over m,
we have

This together with (27), (2S) gives (writing D =[10 (0-1)])o 2

I 20-1 I
( 29) Dp ( ~ 1 ' · · · , ~ n-1) I ~ exp (- e (0 0 ' c SH (P) ~ 1 ' · · . , ~n-1 » •

By the definition of wD (~1' ... '~n-1) we see that for any
o

given 0 > 0 the inequality
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2D-1 I(30) 8 (Do,CaH (P) E;:1' ... '~n-1) Ilog' H(P)

:;; ( 2D- 1 ) wD ( E;: 1 ' · · · , ~ n _ 1) + 2 Ö
o

holds for P with H(P) being sufficiently large. It

follows from (29), (30) that

( 31 )

provided H(P) is sufficiently large.

On the other hand, let ß1 , ... ,ßm be the zeros of

P (~1' ... '~n-1'Y) so arranged that qi =1 n - ßi I (i = 1, ... ,m)

satisfy

q 1 S q 2 ~ ••. S qm •

Then for i, j with 1.$. i < j Sm,

On applying Lemma 5 to

we see, by (24), that

(33)
m

IpO(~1'···'~n-1)1 TIq·sc7 (n,m) max IPi(~1'···'~n-1)1
i=1 ]. 0 S i S m

q. ?; 1
J.

D+n-1 n-1 D
S c 7 ( _1)H(P) (TI max( 1~·I,1)) SCgH(P),

n j=1 ]
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where Cg depends only on S1' ... 'Sn_1,n,D,n.

It is well-known that

We, have, by (32),

. 2m-2 n 2
= (PO(S1'···'S -1))' (ß.-ß,)

n 1~i<j~m 1 J

1
1- 1 1l,T\-1

1 Dp ( S1 ' · · · , sn-1) 2 ~ Po (s 1 ' · · · , sn-1 )

By (33) we obtain

mn (2q.)j-1
j=2 ]

n
m j-1q.

j=2 J

1
(34) Q1 IDp(s1'··· ,sn-1) 1"2

I I 1 Im-2 nm
j-2

<< Po ( ~ 1 ' · · . , ~n- 1) q 1q 2 • • • qm Po (~1 ' · · . , ~n- 1 ) , q j
j=2

2 m m-2
~ Ip(~1'···'Sn-1,n) 11po (s1'···'Sn-1) I

m
- n q.

J=1 J

I I
D-2 q.~1

« P(s1, ... ,sn-1;n) H(P) J

On noting the fact that q1 = In - ß11, H(ß 1 ) = H(P), it

follows from (22), (31) and (34) that

(35) I n-ß1 1

-w I + (D -1) WDo (s 1 ' • • • , S -1) + D - 2 + 0
« H(ß ) n,

1

provided H(ß 1 ) = H(P) is sufficiently large. Note that

d (ß 1 ) = deg P ~ D, w' 1s any given number with

o < w'< wD(S1' ... 'Sn-1,n) and 0 'can be arbitrarily smaIl.
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So (35) implies that

- D + 2 •

Recalling
-3

DO= [2D(D - 1)], (21) follows at once. The proof

of the lemma is complete.

Froo! of Theorem 4. We prove the theorem by induction on n.

When n = 2 ,'we can choose, by Theorem S,

By Lemma 4, there exists il E JR such that-

algebraically independent over Wand

1
~ E' JR n T (a 2) •

1 .

~1,n are

(36) * ( C):-:::;_ (D+
2

2 )wD nil.;.1 - 1,

since the set of real numbers algebraic over m(~1) is

. countable, whence it is of measure zero. Now

so Cl ( ~ 1 ' n) ~ Cl ( ~ 1) = a 2 ~ 3. On the other hand, Lemma 7

and (36) give

WD(~1 ,n) :;i (D - l)w (~ ) + (D+2) + D - 2,
2 [iD (D-1 ) ] 1 2

whence a(~1 ,n) :;;; 2a.(~1) + 1 = 20. 2 + 1. Obviously 2 2
(~1 ,n) E T nJR •

Thus the theorem holds for n = 2. Suppose that the theorem

holds for n - 1 wi th n ~ 3, we proceed to prove that i t
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holds for n. On applying the inductive hypothesis with

Cl 1 = a > n li:: 3, we see that there existsn- n
n-1 n-1

(t;1' ... '~n-1) ET n:IR with

By Lemma 4, there exists niE m such that ~1' ... ,t;n-1 ,ni

are algebraically over Wand

(38) *(' ) _< (Dn+n)_ 1,wD n;'; 1 ' · · · , f;n-1

since the set of real numbers algebraic over K = W(';1' ... '~n-1)

is countable, whence it has measure zero. By virtue of

On the other hand, Lemma 7 and (38) give

1 D+n
~ (D - 2") w 3 ( ~ 1 ' • • • , t;n -1 ) + ( n ) +D- 2

[2"D (D-1 ) ]

so

n-1
~2 (a + 1) - 1n

I n n
by (37). Obviously (~1' ... '~n-1 ,n) E: T n:IR • Thus the theorem

holds für n. The proof of the theorem is complete.
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