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A generalization of Mahler's classifiaction

to several variables

By Kunrui Yu* in Beiljing and Bonn

1. Introduction and results.

In 1932, K. Mahler [6] introduced the classification &f
all (real or complex) numbers into four disjoint classes
A,S,T and U (see the detailed treatment of this classi-
fication and of an equivalent one by J.F. Koksma in Th. Schneider
[9], Kapitel III and A. Baker [1], Chapter 8). This classi-
fication has the Invariance Property, i.e., two numbers which
are algebraically equivalent over m+ belong to the same
class. In the present paper, a generalization of Mahler's
classification to several variables, i.e. a classification

of all points (in R or a” ) into '3n + 1 disjoint classes

An,SE,TE,Un, t = 1,2,...,n, will be introduced. We will prove
that this classification possesses the Invariance Property, i.e.,
any two points, which (i.e. the two sets of whose coordinates)
are algebraically equivalent over {§ , belong to the same class.
We will show that each of the 3n + 1 classes are nonempty. We
will classify Tg (referred to as T in the sequel) further
into continuum many disjoint classes Tn(a):Tn = U Tn(a),

: nigsw
and prove that any two algebraically equivalent points of

* Supported by an Alexander von Humboldt Fellowship.

+ We say that two nonempty subsets B1 and B, of € are
algebraically equivalent over @ if and only if every element
of B1
only if @(B,)=Q(B,) , where for any subfield F of € , F

is algebraic over m(Bz) and vice versa; i.e., if and

denotes its algebraic closure contained in C



" belong to the same class ™ (a) and that there

exist infinitely many o with nsaf£« such that
Tn(a)njmn # ¢. We should like to refer to that
K. Mahler [7] in 1971 introduced a new classification

n

of &, a generalization of which to € was obtained

by A. Durand [2].

The following notations will be used. For every
P(xj,...,xn) € G[x1,...,xn], denote by deg P its
total degree, by H(P) the maximum of the absolute
values of its coefficients, by L(P) the sum of the

absolute values of its coefficients. L(P) has the

two properties
(1) L(P+Q) sL(P) +L(Q), L(pQ) s L(P)L(Q)

Let F be the set of nonnegative functions of integral
variables D20 and H=z2 1, which are nondecreasing
in D and H, respectively. For a(D,H) and b{(D,H)

in F we write
a(D,H) << b{(D,H)

if there exist positive integers k1,k2,k DO,H0 and a

3’

positive number Yy such that the inequality

D, *3
(2) a(D,H) s yb(k{D,kH °)

holds for all Dz2D and H2H.. If a(D,H) << b(D,H)

0 0



and b{(D,H) << a(D,H), we write

a(D,H) >< b(D,H) .

Evidently, this defines an equivalence relation. Let
G be the set of nondecreasing sequences of nonnegative

b in G we write

numbers ans bpb=20,1,2,... . For an,by

ap << bD if there exist positive integers k,D0 and a
positive number <y such that the inequality

a, $ yb

D kD

> .
holds for D"DO' If ap << bD and bD << aps we write

ap >< bD. This defines also an equivalence relation.

Put P (D,H) = {Pez(x .,xn]|P4=0, deg P<D, H(P)sH}

1,--

for Dz0, Hz1. For any ¢§ =(€1,---,En) € Env, set

wD(HIE) = min |P(E) I,

where the minimum is taken over all the P € Pn(D,H)
with P(E) # 0. Clearly, wD(HlE) £ 1, since 1 € ﬂl(D,H).

Let

Q(D,H |E) = - log wD(HIE),

then ©O(D,H|E) belongs to F . Set

wp(8) = lim O{RLEIE)

log H :

Ho®



Denote by t(g) the transcendence degree of Q(E1,...,£n)

over {@. When t(&€) = tz1, put

wD(E)

wi(E) = lim T

Do D

We put p(E) = if wD(£)<w for all D, otherwise

let p(E) be the least D such that wD(g) = o, Let

A" = {gea’|t(g) = o}={EE, €@, i = 1,....,n}
sp = LE€CMt(E) = £, w(E) <= , p(g) = =}
Ty = (E€C[E(E) = t, w(B)=e , p(E) = =}
up = (E€a™[t(E) = t, w(E)=> , p(E) < =}

t=1,2,...,n .

Note that A1,S:,T:,U1 are exactly Mahler's A ,

s,T,U, respectiVely.

Theorem 1. Let

1, if EEeRm,
s(g) ={

2 , otherwise

Suppose that E1,...,En are algebraically independent

over @ . Then there exists a constant Cq > 0 depending

only on 51,...,£n and n such that the inequality

1.D+n

(3) o(D,H|E) & (c(&) (" 7)-1) log (H - 1) - ¢,D

holds for D21, H=z 2, whence



—1_D+n)_

wp(E) 2 o(6) (T N1, Dz
!
Theorem 2. Suppose that €1""'Ep ’ n1,...,nq

are not all algebraic numbers and the sets
{51,...,£p},{n1,...,nq} are algebraically equivalent

over @. Then

(4) 0(D,H|E)>< ©(D,H|n)

and

wD(E)>< wD(n)

By virtue of Theorem 2, we can reduce the investigation

on SE,TE,UE (n=1,2,..., t =1,..,n) to the investigation
on Sg,Tg,Ug (referred to as s%,T",u" in the sequel),
n=1,2,... . In particular, to show that SE,TE,UE

(t =1,...,n) are nonempty, it suffices to show so are
Sn,Tn,Un, n=1,2,... . The Siegel-Shidlovsky theory

for E-functions furnishes many examples of points

n

£=(£,,...,6) in 8" with w (8) s (°I™) - 1 (see, for

example, N.I. Feldman and A.B. Shidlovsky [3], pp. 58-59),

D+n

n
n ) -1 if EER .,

whence by Theorem 1 wD(E) = |
a o

In particular, {e 1,...,e n) is such a point for any

algebraic Qqroees 0 linearly independent over @. By the

inequality wD(g1,...,gn)a max wD(gi) we see that if

1s8isn
E1""’En are algebraically independent over @ and at
least one from 51""'En is Mahler's U-number, then

(51,...,£n) belongs to Un. Thus, for instance, the work

of I. Shiokawa [10] and Y.C. Zhu [13] provides many



examples of points in " ; we see that (51,...,gn),

where £, = 121 g;l! with g, 22 being distinct positive
integers, belongs to Uu". We now classify ™ further.
Suppose that E = (51,...,£n) is in T% . write

¢ =a(&) for the infimum of the positive numbers a

with WD(£) = O(Da) as D —» «, By Théorem 1, we have
a(€) 2 n for any g € . For each o with nc<asg«

set
™ («) = {E € T%|a(g) = a}.

Note that Satz 3' in G. Wistholz [12], p. 388 implies
particularly that if p(z)}) is a Welerstrass el;iptic
function with algebraic invariants 95193 and complex
multiplication over the imaginary quadratic field k and
if Gqree- 0 are algebraic numbers linearly independent

over k , then (P(a1),...,P(an)) belongs to either

Theorem 3. All points in t" are classified into the

disjoint nonempty classes

AT,SL, T UL .t = 1,2,...,0.
Any two algebraically equivalent (over Q) points in

" fall into the same class. All points in ™ are

classified into the disjoint classes: T' (a), nsoase . Any

two algebraically equivalent (over @) points in ™



fall into the same class Tn(a).

Proof. The assertion that S:,T:,Ug (t =1,,...,n)
are nonempty follows from Theorem 4 below and the remark
made after the formulation of Theorem 2. The remaining

part of the theorem is a direct consequnce of Theorem 2.
The assertion that there exist infinitely many o

such that Tn(a)n:mn¢¢ follows from the following

Theorem 4. Let o 2 3 and a >n (n = 3,4,...) be

any positive numbers. Then for n = 2,3,... there exists

t=c(n,a,) with a S¢S o0 (6 + 1)-1 such that

™) n R 4 .

To prove Theorem 4 our starting point is W.M. Schmidt's

famous result
Theorem. S. For any o with 3sase ,
1
T (¢} NIR *# ¢ .

This follows from W.M. Schmidt [8], p. 278, Corollary 3.
One needs only to note that Schmidt's KD(E) is just

Koksma's wB(E) + 1 (See Th. Schneider [9], p. 73) and
wD(E) 2 ws(&) ZwD(E) - D+ 1

(See E. Wirsing [11], p. 68).



2. Proof of Theorem 1.

The theorem is a direct consequence of Th. Schneider

(9], pp. 139-140, Hilfssatz 27 and 28. When ¢ (g) = 1 ,
H 1is even, on taking in Hilfssatz 27 M= 1, N = (D;n),
X =H., A= ( TET max (Igil,1))D and noting that
51""'En arei;lgebraically independent over @ , we
see that there exists pEZPn(D,H) such that
D+n
0 <[P(g)] < (Dﬁ“)<T¥I max (151L1MDH e .
i=

n
Thus (3) follows at once with c, =n + log [T max (|£i|,1).
i=1

The remaining cases can be similarly verified.

3. Proof of Theorem 2.

We need three lemmas

Lemma 1. Let Pij(EE[x1,...,xq] (11,352 and

A = det (Pij). Then

b
(5) deg A s ) max deg P,.
i=1 15358 tJ
and
L %
(6) La)ys T 1 % L(Pij) .

i=1 =1

Proof. (5) is -trivially true. If £=1, (6) is obvious.

Suppose that (6) holds for £-1 with £22. Let



-3V p. .2

A= .
1 1373

[ o)

J
be the expansion of A according to the first row.

By the inductive hypothesis we have for j = 1,...,n

TT 3 TT 1
L(A,) s } L(P.,) $ L(P,.) .
] i=2 k=1 K525 529 1D
k#j
Hence, by (1), we have
i TT
L(A) s L(P,.)L(A.) S ) L(P..).
=1 137773 iaq 4= 1]

Thus, the lemma is proved.

Recall the dgfinitions of F and G introduced in

Sect. 1. For any a(D,H) in F , write

- T3 a(D,H)
ap lim Tog B

Ho>oo

Clearly ap € G

Lemma 2, Suppose that a(D,H),b(D,H) in F satisfy

a(D,H) >< b(D,H). Then a. >< bD .

D

Proof. It suffices to show that a(D,H) << b(D,H) implies

ap << bD. In fact from (2}, we get
k.- k
D. "3 D73
a(D,H) < Yb(k, D,k H 7) ' log (koH 7)
log H log H !

log(kng3)



provided Dz2D and. Hz2 Ho , whence

0

a. 2 k,Yyb

D 3'7k,D

1

provided DZDO, i.e. a <<bD

D

:Lemma_3 Suppose that t = t(§) = t(£1,...,£n) 21
and n is algebraic over 9(51,...,En). Then for any
there exist positive integers CorereiCg depending only

on 51,...,En,n and n such that the inequality

-C

.-
. D -

(7) [PE, e sEom) | 2 exp(=0(c,D,c3H leyegPu ¢

holds for Dz 1,H2 2, whence

(8) 8 (D/H|E senn B /M) <<O(DH[E .0 B ).

Proof. We first prove (7). Let & = degyP(x1,...,xn}y).

If 2=0, (7) is trivial. So we may assume 22 1. Clearly
2£<D. Let mz21 be the degree of n over m(£1,...,§n).
Then there exist fi(x1,...,xn) € z[x1,...,xn] (i=0,1,...,m)
Wlth g.c.do (f0’f1 FAC ’fm) = 1 and fo(g1 F AL} ’gn) * 0 Such

that F(£1,...,En,n) = 0, where

n ' m-i
F(XgreeerX ,Y) =izo £o(x reex )y .

Obviously, there exist constants do >0, h0 >0 depending
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only on 51,...,£n,n such that

(9) deg f, <d H(fi) Sh0 (i=20,1,...,m.

0 7

Write

i

2=
P(x1:-o-:xn'Y) gi(X.l,...,Xn)y .

I~

i=0

We have

(10) deg g, 5D, H(gi) sH (1i=20,1,...,2).

Let R(x1,...,xn) be the y-resultant of F(x1,...,xn,y)

and P(x1,...,xn,y) :

f

f0f1 . o - m p

R(x.l,...,xn):

gog1 . - gE
g0g1 c e ggl

9991 -+ 9y

3

2+m



-12=

=1
fof1 . fm y F
-2
f0f1 . fm Y F
fof1 . fm_1 F
m—1
m-2
9091 9 Y P
9091 - 9e-1p

On expending the determinant according to the last column,

we obtain

(11)

R(x1,...

where Qj(x1,...

we get

(12)

(13) H(R(x1

s

d
S{m+1)( 9 Mn

s

deg R(x1,...,xn)s 2d

F e u .

CD

lxn) =

n&ﬂ Gz[x1,...,xn

0

L
)
j:

L
o) |

m
I3
'Zo L(fi))

i 0

c
4
3H

F-(y£-1Q1+

,xn)) b L(R(x1,...

...+Qz)+P(ym_1Qg+1+.

]. By Lemma 1 and (9), (10)

+ mD g ¢,D

2 f

rxn))

m
Lgc

D+n

(2+ 1) C M

°'+Q2+m

)

r
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Similarly, we obtain for 3 = 1,2,...,m

deg Qg,+j pS c,b,

o
D, 4
L(Q£+j) ScoH .
Hence
m m_j
(14) I_Z1 Q4 (8|
J m=1 n c_ D
s m{max{|n|,1)) max L{(Q, ) max(]g;],1)) 2
1535m SR £
C
D, 4
s 05H .

On substituting Xy with €.,y with n in (11) and noting

that F(g1,...,€n.n) = 0, we obtain by (14)

m
(15) IREV] = [R(Eq,eenrgd) | = IPCe e e ) ] ]

m=-7j .
; n QE+jI£)|.

:
Ca

D
S |P(E1f'°‘lgnln)| CSH L
We assert that RI(E) #0, for otherwise 'fo(g) #+ 0 and the
fact that F(&,y) is irreducible over m(€1,...,gn) would
imply F(£,y) devides P(E,y) in Q(E1,...,§n)[y], a
contradiction to the hypothesis that P(g,n) #0.

Thus, by (12), (13), we see that

C
|R(£) | 2 exp(~8(c,D,con *[£)),

/

and (7) follows from this and (15) immediately. Further,

without loss of generality, we may assume that 51""'Et
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are algebraically independent over {@. By Theorem 1, we

have

C
< D. 4
(16) D+ log H.,c6e(D,H|£1,...,gt) scg8(c,D,cqH |g1,...,gn).

Now choose PEZPn+1(D,H) such that

[PAE reensEpem) ] = wolH[E o onyE /)

eXp (_e(DIHI£1""IEnIn)),

then (7) and (16) imply (8) at once. This completes the

proof of the lemma.

Proof of Theorem 2. In virtue of Lemma 2, it suffices to prove
only (4). By the hypotheses, t(g) = t(m) = tz 1. Since
n1""'nq are algebfaic over Q(£1,.;.;gp), we see, by

Lemma 3, that

G(D:H|€1:---aﬁprn1:---:nq) <<6(D;H|£1r---:ﬁp:n1r---,nq_1)<<
<<...<<e(D,H|g1,...,g,,n1)<<e(D,H|a1,..,,gp).

P

On the other hand, by the definition,

e(DpH|£1;o--,Ep)<<6(D:H|£1:-o-:Eprn1r---,nq)-

Thus
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{(17) e(DIng1I"'IEP)>< G(D,H1€V---:Ep:n1,---,n ).
Similarly, we have

(18) 9(D,H|n1,...,nq)><e(D,H|n1,...,nq,£1,...,§p)
=@(D;H|E1,----Ep,n1;---;nq)

(17) and (18) yield (4), since >< is an equivalence

relation. The theorem is proved.

4. Proof of Theorem 4.

We use some idea from E. Wirsing [(11]. In this
section we suppose (£4,...,& _4) is in e with
g1,...,§n_1 algebraically independent over @. Let
K = m(£1,...,gn_1) and B8 ET be algebraic over K.
Clearly, there exists an irreducible polynomial
F(XqreoesX) Gzﬁx1,...,xn] @ith coprime coefficients and

deg Fz1 such that
*n

F(g1l"'l€n_118) = 0.

I+
—_

Since F is determined by 8 up to a factor u =

{see S. Lang [5], pp. 197-199), we can define

d(B) = deg F, H(B) = H(F).

For any n€€, write wB(n:€1,...,En_1) for the
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supremum of the numbers w>0 such that there exist
infinitely many B algebraic over K of d(B) €D
satisfying

0 < |n-8] < H(B 7Y

In this section we use << in the sense different
from that defined in Sect. 1, i.e., we use it as the
Vinogradov's symbol, the constant involved in << may
depend on 51,...,En_1,D and n, but independent of H;
in the proof of Lemma 7 below it may also depend . on n.
If E 1is a measurable subset of R, we write p(E) for

its Lebesgue measure.

Lemma 4. The inequality

< (D+n

n-1) n ) = 1

WS(T];E1p-.-:€

heolds for almost all real numbers n .

Proof. Let
E={neR [whn;gy,oor8 ) > (D;n) - 11,
E = (n€R |wk(n;E g Py oy
k HRELMES RS n -

[+«
Clearly E = U E To prove the lemma, it suffices to

k
1 .
0, k=1,2,... . If neg Ek' by definition,

n =

prove p(Ek)

there exist infinitely many 8 algebraic. over K with
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d(B) D satisfying

D+n 1
-{'n’) - E
(19) 0 < |n-8| < H{(B) .
Let Sy be the set of B algebraic over K with H{B) = H
and. d(B) £D. Let C(B) be the disc centered at B with
D+n, 1
radius HG U P )TK L set Ry = U (C(B)NRR) .
BESH
Obviously
-1+
{20) u(RH) « H ,
since the cardinal of the set SH is at most
D+n D+n,

We have by (19)

This and (20) imply, by Borel-Cantelli lemma, that u(Egx) = 0,

whence the lemma follows at once.

Lemma 5. (see E, Wirsing [11], p. 70, Hilfssatz 2.)
e

n

Suppose that £€C and Q(x) ao(x - a1) ve. (x - am)EZm[x]

with ag * 0. Then there exists 5 c7(£,m) >0 such that

m
|a0| I:I |E-—ail s c H(Q) ,

le-a, |21
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where a possibly empty product means 1.
Lemma 6. (A.O. Gelfond (4], p. 135) Suppose that

P1(x1,...,xs),...,Pm(x1,...,xs) are arbitrary polynomials

in s variables with heights H1""'Hm' Denote the height

m

and degrees of the .polynomial P(x1,...,xs) = T ] Pi(x1,...,xs)
i=1

by H and Nqreve Ny in the variables XyreoorXgy

respectively. Then we have the inequality

Lemma 7. Suppose.£1,...,5n_1,n(in C) are algebraically

independent over .Q. Then the inequality

:
(21) wD(g.l,...,En_.I,n)S(D-i)w[3 (Eqreenrl o)

ED(D-1)]
+ wﬁ(n;€1.---,5n_1) + D -1

holds for D2z 2.

Proof. By the definition of WD(EH""’gn-1'n) and
Lemma 6 , we see that for any w'< wpl(g;,...,& _,,n) there
exist infinitely many irreducible polynomials E‘E![x1,...,xn]

with deg P & D and coprime coefficients such that

(22) 0 < |P(Ey,.nn b g | < HE)TY L

Write P as



m .
m-=21
(23) PXqreee X _1sY) = izo Py (xXgreverx )y
where m = degx P . Evidently
n
(24) deg p, SD = m + i, H(p,) sH(P), i = 0,1,...,m.

If for any w'<:wD(£1,...,£n_1,h) among the P in (22)

there are infinitely many P with m = 0, then

wolEyreea g 1) 2w' , whence wp(E,,...,8 4}z wD(g1,...,En_1,n)
and (21) holds. Further, suppose that for any
w"<wD(£1,...,£n_1,n) among the P in (22) there are
infinitely many P with m = 1. Let B Dbe the zero of
P(Eqrevnr _q0¥) = PolEqreeasE )Y + Pi(EgrenahE ).

Recalling the definition of d(B) and H(B), we have
(25) d(B) sD, H(B) = H(P) .

Note that by (24)

-1 e(DrH(P)lE1l°°'lE.>n_1)/lOg H(P)-

|PQ(E1,--.,£D_1)| < H(P)

This with (22),(25) gives

IP( E foes 'g-n—1-' n)

| ~w'+ o(D,H(8)|E,, ... ,£__, )/ 10gH(8)
Pol&reerrtnq) -

<H(R)’

0< |n-B|=

for infinitely many B8 . Hence ws(n;g1""’gn—1);EW'_WD(E1’"'"%,1)'

therefore wD(E1,...,En_1nﬂ st(£1,...,£n_1)4-w5(n;51,..,,gn_1?,
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i.e. (21) holds. Thus we may assume that for any
w'<<wD(£1,...,£n_1,n) the infinitely many P in (22)
are all irreducible with m = degan 22 and coprime
coefficients, and have the expression (23). Denote by
Dp(x1,...,xnw1) the discriminant of P(x1,...,xn_1,y)

as a polynomial in y. Since P(x1,...,xn_1,y) is
irreducible ih Z[x1,...,xn_1,y], we see, by Gauss lemma,

that P(x1,...,xn_1,y) is an irreducible polynomial in

y over the field ®Q(x;,...,x__,). Hence
(26) DP(X1""'xn-1) # 0 .

It foilows from the definition of discriminant that

m{m-1)
OP, _ 2 '
R(P;§§) =(-1) po(x1,...,xn_1)DP(x1.,...,xn_1

where the left-hand side is the resultant of P(x1,...,xn_1,y)

3P(Xq,+.e,Xp=1,Y)

and as polynomials in y. So we have
3y
1 Py «++ Pp
PoP1 -+ Pp
m(m-1) PoPq -+ Pq
o) 2 D_ (x X )= |m (m-1)
(=1) p Ry %o P1 -+ Ppq
>mp0(m-1)P1 . . pm_1
mpo(m—1)p1 e P

J

T
2m-1

b m—1
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On applying Lemma 1 and (24), we obtain

(27)  HDL(xy,...ox _ ) sCm+ 1) O] r(e))™ T @D DTy p)ym
$ cgH(R) D71

where Cg is a positive integer depending only on D,n.

On utilizing (24) and Lemma 1 to the transposed determinant

of DP(X1""' n— 1), we get
m-1
(28) deg DP(X1""'xn—1)$ ¥ (D-m+i) + (m-"1)D
i=1
= (2m-2)D - E‘g‘1’
3
S ﬁD(D-‘I),

since 1smsD. By (26) and the hypothesis that
€1""'€n-1"m are algebraically independent over § ,

we have
DP(€1i...,£n_1)¢ 0
This together with (27), (28) gives (writing D,=[3D(D-1)1)

2D-1

(29) Do (&, eev B ()| 2exp(=8(Dy,cgH(P) 27 £, .. 8 1)) .

By the definition of wp (£,,...,§ _;) we see that for any
0

given ¢ > 0 the inequality
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2D-1

(30) 8 (Dy,cgB (P) |&q4rerE _1)/1log H(P)

$ (2D-Nwpy (Eq,een B 1) + 26
0

holds for P with H(P) being sufficiently large. It

follows from (29), (30) that

1
1 (D-5)w (EyrevesE ) +8
- 2'7"Dg "1 n-1
(31) |DP(£1,...,£H_1)|2 < H(P) _ ,

provided H(P) 1is sufficiently large.

On the other hand, let B1""'Bm be the zeros of
P(E1,...,£n_1,y) so arranged that gq; =]n—-Bi| (i =1,...,m

satisfy
q15q25...5qm .
Then for i,j with 1£i<jsm,

(32) 8y 851 = {8 -n+n=-8] s 2q,

J J

On applying Lemma 5 to
P(E‘I""'gn—1'y) = P0(51f---;§n_1)(y - 81)'--(Y_Bm)l

we see, by (24), that

m
(33) [Pg (EqreeerE 1) | E qi$c7(n,m)0énixsm I (EqreeerE )]
qiz1
< D+n-1 n-l D
c ( n_1)H(P)(lt¢'max(|gj|,1)) scgH(P),
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where Cq depends only on 51,...,£n_1,n,D,n.

It is well-known that

A 2m-2 2
D€ reverlE _4) = (PalEy, e & 1)) : | (B.-B.)
P71 n-1 0'™1 n-1 15i<jsm i "

We have, by (32),

1 m .
5 m-1 =1
|DP(E1,...,En_1)|25 |p0(E1,...,£n_1)| [‘[ (2qj)

j=2
m-1 = j=1
<<lP0(E1""'gn-1)l J=2| q]
By (33) we obtain
1
(34) q1|DP(g1,...,gn_1)\2
m-2 —= j=2
<< |pglEqreesE ) 1aqqy - qp [Py (& v ) g:g-qj
s |p(e £ _.n) | |pg(E gy |m2 TET m-2
1'°'°In_1l PO 1'0-01 n_1 J=1 qj
- .21
<< [P(Eyrenn B _qin) [HR)PTZ 95
On noting the fact that q, = |n-81l, H(B,) = H(P), it

follows from (22), (31) and (34) that

1
"W""(D- )WD (E 'ooolg_ )+D-2+6
(35) In-8,| << H(B,) 277001 n-1 '
provided H(B1) = H(P) 1is sufficiently large. Note that
d(B1) = deg PsD, w' 1s any given number with

0 < w'< wD(£1,...,£n_1,n) and ¢ -can be arbitrarily small.
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So (35) implies that

14+ wE(MIE g seeesE _g) ZWp(E o B o) - (D-%)wDO(a1,...,an_1)

- D+ 2,

Recalling Dy= [%D(D - 1)1, (21) follows at once. The proof

of the lemma is complete.

Proof of Theorem 4. We prove the theorem by induction on n.
When n = 2 , we can choose, by Theorem S, 51 €R N T1(a2).
By Lemma 4, there exists 74 € R such that £1,h are
algebraically independent over @ and

(36)  witnigg) s (%54 -1,

since the set of real numbers algebraic over Q(E1) is

. countable, whence it is of measure zero. Now

SO a(£1,n) 2 a(€1) = 022 3. On the other hand, Lemma 7

and (36) give

1

wolE,,1) S (D - 2w p*2

(g + (P3%) + b - 2,
(3p(p-1)71 2

+ 1. Obviously (&;1 N} E T2n1R2.

whence a(g,,n) s 2a(£1)+ 1= 2a,
Thus the theorem holds for n = 2. Suppose that the theorem

holds for n - 1 with nz2 3, we proceed to prove that it
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holds for n . On applying the inductive hypothesis with

@ _4 = @ ,>n23, we see that there exists
(Egreverb, ) €T T aRY! with
(37) a  Salfy,e.. b ) 527 3@ +1) -1,

By Lemma 4, there exists n'€ R such that £1""’En-1'n'

are algebraically over {0 and

(38)  wA(n3Eq ... 06 g) s CR- 1,

since the set of real numbers algebraic over K = Q(E1,...,En_1)
is countable, whence it has measure zero. By virtue of

wD(£1,...,£n_1,n5;:wD(£1,...,£n_1) and (37), we see that
]
G(E1I"'l£n_1ln) =4 U-n> n .

On the other hand, Lemma 7 and (38) give

' 1 D+n
w (E.v ""IE - In) 5 (D = _)w (E ’o--’E_, - )+( n )+D"2 r
D'*1 n-1 2 [%D(D-1)] 1 n-1
SO
a(g‘l!"'lgn_-llh') gza(glll"‘lgn_A]) + 1
n-1
52 (a,, + 1) =1

n

by (37). Obviously (£y,...,f _s,n) €T" N R" . Thus the theorem

holds for n . The proof of the theorem is complete.
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