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Abstract

Using intensive computer calculations, the author empirically discov-
ered unusual methods for calculating high-precision approximations to the
non-trivial zeroes of Riemann’s zeta function, its values and values of its
derivative on the whole complex plane. So far no theoretical explanation
to these phenomena is known.

This paper is a slightly extended presentation of a talk given by the
author on March 15, 2013 at the Number Theory Lunch Seminar in the
Max Planck Institute for Mathematics at Bonn; more information related
to this talk and the whole ongoing research can be found at http://
logic.pdmi.ras.ru/~yumat/personaljournal/artlessmethod.

1 General settings

1.1 The Questions
Suppose that we have some function F from any set into some com-

mutative ring R and have found N − 1 distinct zeroes of F :

F (x1) = · · · = F (xN−1) = 0. (1)

Question 1. Knowing only x1, . . . , xN−1, how could we construct
some function F̃N (x) defined on the domain of F with values in the same
ring R such that

F̃ (x1) = · · · = F̃ (xN−1) = 0? (2)

Question 2. What are other zeroes of F̃N (x)? In particular, could
some of them be close to some zeroes of F (x)?

Question 3. Could F̃N be used for calculating the values of F at
other points?

1.2 Interpolating determinants
One way to answer Question 1 above is as follows. Let us select any

N functions
f1(x), . . . , fN (x) (3)
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defined on the domain of F with values in the same ring R and take for
the role of the function F̃N (x) the interpolating determinant

∆̃N (x) =

∣∣∣∣∣∣∣
f1(x1) . . . f1(xN−1) f1(x)

...
. . .

...
...

fN (x1) . . . fN (xN−1) fN (x)

∣∣∣∣∣∣∣ . (4)

Clearly,

∆̃N (x1) = · · · = ∆̃N (xN−1) = 0. (5)

1.2.1 An example

With such a definition of F̃N (x) the possibility to give answers to
Questions 2 and 3 above depends heavily on our choice of functions (3).
If we define fn(x) = xn−1, then the function F̃N (x) will be simply the
well known interpolating polynomial

C

N−1∏
k=1

(x− xk), (6)

evidently having no further zeroes.

1.2.2 Case when it works

If
F (x) = f1(x) + · · ·+ fN (x) (7)

then the determinant (4) vanishes at every zero of F (x) because in such
a case summing up all the rows results in the row containing only zeroes.

1.3 Generalization
The main interest for us are situations where instead of (3) we have

an infinite sequence of functions

f1(x), . . . , fN (x), fN+1(x), . . . (8)

and the finite sum from (7) is replaced by the infinite sum:

F (x) ∼ f1(x) + · · ·+ fN (x)+fN+1(x) + . . .. (9)

In the case when ∼ is the equality, i.e., when the series converges, we
might hope that the determinants (4) will still have extra zeroes close to
certain zeroes of F (x) because each column would sum up to a small value
approaching zero with the growth of N .

However, most interesting (and surprising) are the cases when the se-
ries in (9) diverges so the ideograph ∼ has only some symbolic meaning.
Two choices for F (x), x1, . . . , xN−1, and f1(x), f2(x), . . . will now be con-
sidered.
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2 First example: Riemann’s zeta function

2.1 Definitions
Riemann’s zeta function can be defined by Dirichlet series

ζ(s) = 1−s + 2−s + 3−s + . . . (10)

The series converges only for Re(s) > 1 but the function defined by it in
that half-plane can be analytically extended to the whole complex plane
except the point s = 1 which is its only pole.

Negative even integers are known as trivial zeroes of the zeta function;
they won’t be used for constructing the determinants (4).

All others, the non-trivial zeroes, come in conjugate pairs:

· · · = ζ(ρ3) = ζ(ρ2) = ζ(ρ1) = 0 = ζ(ρ1) = ζ(ρ2) = ζ(ρ3) = . . . (11)

Assuming that all zeroes satisfy Riemann’s Hypothesis and are simple, we
write

ρn =
1

2
+ iγn (12)

where
0 < γ1 < γ2 < γ3 . . . (13)

We will always select an odd value for N , N = 2M + 1, and use 2M
non-trivial zeroes with the smallest (in absolute value) imaginary parts:

∆̃N (s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1 1
...

...
. . .

...
...

...
n−ρ1 n−ρ1 . . . n−ρM n−ρM n−s

...
...

. . .
...

...
...

N−ρ1 N−ρ1 . . . N−ρM N−ρM N−s

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (14)

2.2 Numerical examples
It turns out that the determinants (14) indeed have zeroes very close

to the zeroes of the zeta function ρM+1, ρM+2, . . . not used in (14).

2.2.1 Case N = 17

We have:

0 = ∆17(ρ9 − 4.396 . . . · 10−3 + 5.711 . . . · 10−3i) (15)
0 = ∆17(ρ10 − 1.141 . . . · 10−2 − 3.345 . . . · 10−3i) (16)
0 = ∆17(ρ11 − 1.498 . . . · 10−2 + 1.762 . . . · 10−3i) (17)
0 = ∆17(ρ12 − 1.158 . . . · 10−2 + 2.264 . . . · 10−2i) (18)
0 = ∆17(ρ13 − 1.317 . . . · 10−2 + 7.545 . . . · 10−2i) (19)
0 = ∆17(ρ14 − 7.400 . . . · 10−2 − 5.559 . . . · 10−4i) (20)
0 = ∆17(ρ15 + 4.486 . . . · 10−2 + 8.379 . . . · 10−2i) (21)
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2.2.2 Case N = 101

For largerN the approximation is better and we can approximate more
zeroes of the zeta function:

0 = ∆101(ρ51 + 3.469 . . . · 10−15 − 1.283 . . . · 10−15i) (22)
0 = ∆101(ρ52 + 1.472 . . . · 10−14 − 4.170 . . . · 10−15i) (23)
0 = ∆101(ρ53 − 3.949 . . . · 10−13 + 1.223 . . . · 10−14i) (24)
0 = ∆101(ρ54 − 4.684 . . . · 10−13 − 9.387 . . . · 10−13i) (25)
0 = ∆101(ρ55 − 5.303 . . . · 10−12 + 2.129 . . . · 10−12i) (26)
0 = ∆101(ρ56 + 2.104 . . . · 10−11 + 4.691 . . . · 10−11i) (27)
0 = ∆101(ρ57 + 1.054 . . . · 10−10 + 1.430 . . . · 10−10i) (28)
0 = ∆101(ρ58 + 1.081 . . . · 10−10 + 2.883 . . . · 10−10i) (29)
0 = ∆101(ρ59 + 6.849 . . . · 10−10 − 9.371 . . . · 10−10i) (30)
0 = ∆101(ρ60 + 5.453 . . . · 10−9 − 8.730 . . . · 10−9i) (31)
0 = ∆101(ρ61 − 5.038 . . . · 10−9 − 9.649 . . . · 10−9i) (32)
0 = ∆101(ρ62 − 2.178 . . . · 10−8 − 1.230 . . . · 10−8i) (33)
0 = ∆101(ρ63 − 8.237 . . . · 10−8 + 6.583 . . . · 10−8i) (34)
0 = ∆101(ρ64 − 1.142 . . . · 10−7 − 8.478 . . . · 10−8i) (35)
0 = ∆101(ρ65 + 1.023 . . . · 10−7 + 5.621 . . . · 10−7i) (36)
0 = ∆101(ρ66 − 6.315 . . . · 10−8 + 7.740 . . . · 10−7i) (37)
0 = ∆101(ρ67 + 5.274 . . . · 10−7 + 8.361 . . . · 10−7i) (38)
0 = ∆101(ρ68 + 2.072 . . . · 10−6 − 4.269 . . . · 10−7i) (39)
0 = ∆101(ρ69 + 4.560 . . . · 10−6 − 1.954 . . . · 10−6i) (40)
0 = ∆101(ρ70 + 9.541 . . . · 10−6 − 2.034 . . . · 10−6i) (41)
0 = ∆101(ρ71 − 2.469 . . . · 10−5 − 9.102 . . . · 10−6i) (42)
0 = ∆101(ρ72 + 1.104 . . . · 10−5 − 3.538 . . . · 10−5i) (43)
0 = ∆101(ρ73 − 5.557 . . . · 10−6 − 2.750 . . . · 10−5i) (44)
0 = ∆101(ρ74 − 6.747 . . . · 10−5 + 8.847 . . . · 10−6i) (45)
0 = ∆101(ρ75 − 1.254 . . . · 10−4 + 7.809 . . . · 10−5i) (46)
0 = ∆101(ρ76 − 1.437 . . . · 10−4 − 4.558 . . . · 10−5i) (47)
0 = ∆101(ρ77 − 2.782 . . . · 10−5 + 1.655 . . . · 10−4i) (48)
0 = ∆101(ρ78 + 9.818 . . . · 10−5 + 3.774 . . . · 10−4i) (49)
0 = ∆101(ρ79 − 2.381 . . . · 10−4 + 4.799 . . . · 10−4i) (50)
0 = ∆101(ρ80 + 6.954 . . . · 10−4 + 2.673 . . . · 10−4i) (51)
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2.2.3 Case N = 3001

0 = ∆3001(ρ1501 − 4.005 . . . · 10−1113 + 1.113 . . . · 10−1113i) (52)
0 = ∆3001(ρ1601 − 5.155 . . . · 10−952 − 3.960 . . . · 10−952i) (53)
0 = ∆3001(ρ1701 − 7.652 . . . · 10−849 + 1.788 . . . · 10−848i) (54)
0 = ∆3001(ρ1801 + 1.966 . . . · 10−766 + 3.803 . . . · 10−766i) (55)
0 = ∆3001(ρ1901 + 1.044 . . . · 10−696 − 4.253 . . . · 10−696i) (56)
0 = ∆3001(ρ2001 + 1.021 . . . · 10−636 − 8.184 . . . · 10−636i) (57)
0 = ∆3001(ρ2101 − 5.402 . . . · 10−582 + 8.070 . . . · 10−583i) (58)
0 = ∆3001(ρ2201 + 9.843 . . . · 10−535 + 5.389 . . . · 10−535i) (59)
0 = ∆3001(ρ2301 − 7.327 . . . · 10−492 − 5.590 . . . · 10−491i) (60)
0 = ∆3001(ρ2401 + 6.471 . . . · 10−452 + 8.088 . . . · 10−452i) (61)
0 = ∆3001(ρ2501 + 1.523 . . . · 10−416 − 2.324 . . . · 10−416i) (62)
0 = ∆3001(ρ2601 − 6.612 . . . · 10−384 − 2.011 . . . · 10−384i) (63)
0 = ∆3001(ρ2701 + 6.698 . . . · 10−354 + 3.094 . . . · 10−353i) (64)
0 = ∆3001(ρ2801 + 5.714 . . . · 10−326 + 6.670 . . . · 10−326i) (65)
0 = ∆3001(ρ2901 + 6.513 . . . · 10−300 − 2.414 . . . · 10−300i) (66)
0 = ∆3001(ρ3001 − 5.997 . . . · 10−277 − 2.977 . . . · 10−276i) (67)
0 = ∆3001(ρ3101 − 5.538 . . . · 10−255 − 7.989 . . . · 10−254i) (68)
0 = ∆3001(ρ3201 − 2.033 . . . · 10−233 − 9.025 . . . · 10−234i) (69)
0 = ∆3001(ρ3301 − 8.552 . . . · 10−215 + 2.085 . . . · 10−214i) (70)
0 = ∆3001(ρ3401 − 1.457 . . . · 10−196 + 3.140 . . . · 10−197i) (71)
0 = ∆3001(ρ3501 + 5.426 . . . · 10−180 − 4.737 . . . · 10−181i) (72)
0 = ∆3001(ρ3601 + 1.967 . . . · 10−164 + 2.281 . . . · 10−165i) (73)
0 = ∆3001(ρ3701 + 2.146 . . . · 10−150 − 4.669 . . . · 10−150i) (74)
0 = ∆3001(ρ3801 + 1.289 . . . · 10−136 + 1.372 . . . · 10−136i) (75)
0 = ∆3001(ρ3901 − 3.114 . . . · 10−124 + 1.867 . . . · 10−124i) (76)
0 = ∆3001(ρ4001 + 5.678 . . . · 10−113 + 1.233 . . . · 10−112i) (77)
0 = ∆3001(ρ4101 − 6.271 . . . · 10−102 − 1.398 . . . · 10−102i) (78)
0 = ∆3001(ρ4201 − 1.532 . . . · 10−92 − 1.135 . . . · 10−91i) (79)
0 = ∆3001(ρ4301 + 6.145 . . . · 10−83 + 5.745 . . . · 10−83i) (80)
0 = ∆3001(ρ4401 + 3.781 . . . · 10−74 − 5.207 . . . · 10−74i) (81)
0 = ∆3001(ρ4501 + 4.241 . . . · 10−69 − 2.521 . . . · 10−66i) (82)

The author does not have a full explanation for the high accuracy of the
zeroes of determinants ∆N (s) as approximations to the zeroes of ζ(s).
Two heuristic hints will be presented below.
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2.3 First partial explanation
Each determinant (14) can be expanded according to the last column:

∆̃N (s) =

N∑
n=1

δ̃N,nn
−s. (83)

Clearly, the numbers δ̃N,n can be calculated from the initial zeroes of the
zeta function as signed minors:

δ̃N,n = (−1)n+1×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1
...

...
. . .

...
...

(n− 1)−ρ1 (n− 1)−ρ1 . . . (n− 1)−ρM (n− 1)−ρM

(n+ 1)−ρ1 (n+ 1)−ρ1 . . . (n+ 1)−ρM (n+ 1)−ρM

...
...

. . .
...

...
N−ρ1 N−ρ1 . . . N−ρM N−ρM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.(84)

Since at the moment we are interested only in the zeroes of ∆̃N (s), we
can perform the normalization

δN,n =
δ̃N,n

δ̃N,1
(85)

and deal with the finite Dirichlet series

∆N (s) =

N∑
n=1

δN,nn
−s =

∆̃N (s)

δ̃N,1
(86)

having the same zeroes as ∆̃N (s).
The coefficients δN,n turn out to be very interesting numbers encoding

a lot of information about Riemann’s zeta function and prime numbers.

Figure 1: Coefficients δ17,n

Figure 1 justifies our writing

∆17(s) =

17∑
n=1

δ17,nn
−s �

∞∑
n=1

n−s = ζ(s) (87)
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with the ideograph � having here and the sequel a very weak sense: a
few intial coefficients of the two Dirichlet series are approximately equal.

We see from Figure 1 that ∆17(s) is not a sharp but a smooth trun-
cation of the divergent series (10). It is known that smooth truncations
can accelerate convergence of a series and can even transform a divergent
series into a convergent one. The smoothness of the truncation might be
the first “reason” why the summands of the divergent series (10) are useful
for calculation of the zeroes.

Usually a smooth truncation is to be invented and it isn’t evident in
advance what smooth truncation will turn out to be suitable; the num-
bers δN,n seem to give a natural smooth truncation.

2.4 Approximations at other points on the criti-
cal line
2.4.1 Case N = 17

Figure 2 shows that ∆17( 1
2

+ it) approximates ζ( 1
2

+ it) very well be-
tween the eight zeroes used for constructing the former function, and a
bit further.

Figure 2: Re and Im of ζ( 1
2 + it) and ∆17( 1

2 + it)
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2.4.2 Case N = 101

According to (15)–(21) and (22)–(51), the extra zeroes of ∆101( 1
2

+ it)
are much closer to certain zeroes of ζ( 1

2
+ it) than the extra zeroes of

∆17( 1
2

+ it); however, Figure 3 shows that ∆101( 1
2

+ it) doesn’t give a
good approximation to ζ( 1

2
+ it) at points that aren’t in the vicinity of

points t = γ1, γ2, . . . . How is it possible?

Figure 3: Re and Im of ζ( 1
2 + it) and ∆101( 1

2 + it)

An explanation comes from Figure 4. It shows that for N = 101,
instead of (87), we should write

∆101(s) =

101∑
n=1

δ101,nn
−s �

∞∑
n=1

(−1)n+1n−s = (1− 2 · 2−s)ζ(s). (88)

Figure 4: Coefficients δ101,n for even n and odd n
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Respectively, Figures 5 and 6 show that ∆101( 1
2

+it) approximates the
product (1− 2 · 2−

1
2
−it)ζ( 1

2
+ it) very well indeed.

Figure 5: (1− 2 · 2− 1
2−it)ζ( 1

2 + it) and ∆101( 1
2 + it)

Figure 6: Re and Im of (1− 2 · 2− 1
2−it)ζ( 1

2 + it)−∆101( 1
2 + it)
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2.5 Second partial explanation
The factor 1−2 ·2−s from (88) was used already by Euler for assigning

values to ζ(s) for s < 1. The alternating series in (88) converges for
Re(s) > 0, and this can be viewed as the second “reason” for the high
quality of approximation demonstrated by ∆101(s).

However, in the next two section we’ll see that alternation does not
play such an important role.

2.6 Convergence on the real axis
Figures 7 and 8 show that determinants ∆N (s), constructed from non-

trivial zeroes of the zeta functions, “know” also about the existence and
positions of some trivial zeroes and give good approximations to the values
of ζ(σ) for not too small negative values of σ where the alternating series
from (88) diverges.

Figure 7: (1− 2 · 2−σ)ζ(σ) and ∆101(σ)

Figure 8: (1− 2 · 2−σ)ζ(σ) and ∆121(σ)
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2.7 Alternation
Two “reasons” for the efficiency of ∆N (s) as an approximant were

indicated above:

• the smoothness of truncation,

• convergence of the alternating series in (88).

Figure 9: Alternating coefficients (−1)n+1δ101,nfor even n and odd n

Now we are to get rid of the second “reason”. Figure 9 shows that

101∑
n=1

(−1)n+1δ101,nn
−s �

∞∑
n=1

n−s = ζ(s), (89)

so we define

∇N (s) =

N∑
n=1

(−1)n+1δN,nn
−s (90)

in the hope that values of ζ(s) will be well approximated by∇N (s). Figure
10 shows that this is indeed so for N = 101 but the approximation isn’t
as good as it was in the case of ∆101(s) (see Figure 3). However, if we
compare Figures 6 with the plot of the analogous difference for ∇N (s) on
Figure 11, we shall see much more regular curves. Moreover, Figure 12
shows that the absolute value of the difference doesn’t oscillate at all (for
not too big values of t).

The plots on Figure 11 look similar to plots of several classic functions
but so far the author wasn’t able to identify the difference ζ( 1

2
+ it) −

∇101( 1
2

+ it) as an approximation to any such function.
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Figure 10: Re and Im of ζ( 1
2 + it) and ∇101( 1

2 + it)

Figure 11: Re and Im of ζ( 1
2 + it)−∇101( 1

2 + it)
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Figure 12: Re and Im of ζ( 1
2 + it)−∇101( 1

2 + it), ±|ζ( 1
2 + it)−∇101( 1

2 + it)|

2.8 Finer structure of the coefficients δN,n

We now look at the finer structure of δN,n in the case N = 3001.
Similar to (88), for small n these numbers are very close to (−1)n+1.
Figure 13 exhibits differences δ3001,1−1, . . . , δ3001,300−1 with logarithmic
scale.

Figure 13: log10 |δ3001,n − 1|

The top row corresponds to even values of n for which δ3001,n is close
to −1.

The second row corresponds to odd values of n divisible by 3.
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Figure 14: log10 |δ3001,n − 1|

The third row corresponds to those values of n that are divisible by 5
but are relatively prime to 2 · 3 (see Figure 14).

Figure 15: log10 |δ3001,n − 1|

The fourth row corresponds to those values of n that are divisible by
7 but are relatively prime to 2 · 3 · 5 (see Figure 15).
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Figure 16: log10 |δ3001,n − 1|

The fifth row corresponds to those values of n that are divisible by 11
but are relatively prime to 2 · 3 · 5 · 7 (see Figure 16).

Figure 17: log10 |δ3001,n − 1|

The sixth row corresponds to those values of n that are divisible by
13 but are relatively prime to 2 · 3 · 5 · 7 · 11 (see Figure 17).
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Figure 18: log10 |δ3001,n − 1|

The seventh row corresponds to those values of n that are divisible by
17 but are relatively prime to 2 · 3 · 5 · 7 · 11 · 13 (see Figure 18).

Figure 19: log10 |δ3001,n − 1|

The remaining dots correspond to prime values of n (see Figure 19). So
we can say that the initial part of the plot of log10 |δ3001,n − 1| represents
the Sieve of Eratosthenes.
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Figure 20: log10 |δ3001,n − 1|

Figure 20 extends Figure 13 up to n = 3001. We see that horizontal
rows corresponding to values of n divisible by 2, by 3, . . . break off when
they touch a “smooth curve” of increasing values of log10 |δ3001,n − 1|.
These horizontal rows will be called Eratosthenes levels.

Figure 21: log10 |δ7999,3m − δ7999,3|

Closer examination reveals that each Eratosthenes level in its turn
contains sublevels corresponding to a slightly modified Sieve of Eratos-
thenes. Figure 21 shows such sublevels for the main Eratosthenes level
corresponding to prime p = 3 in the case N = 7999. These sublevels
correspond to deleting composite numbers according to their divisibility
at first by 2, then by 5, 7, 3, 11, 13, . . . .

In the general case deleting composite numbers divisible by p happens
between deleting composite numbers divisible by consecutive primes q1
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and q2 such that q1 < p2 < q2. It seems that the sublevels contain
subsublevels and so on.

2.9 Calculation of values of ζ(s)
The factor 1 − 2 · 2−s appeared in (88) from the visual observation

(made from Figure 4) that initial coefficients are close to (−1)n+1. Now
we know that they have a finer structure and wish to replace 1 − 2 · 2−s
by a “correct” factor. Namely, we define numbers µN,n via formal division
of Dirichlet series:

∆N (s)

ζ(s)
=

∑N
n=1 δN,nn

−s∑∞
n=1 n

−s =

∞∑
n=1

µN,nn
−s. (91)

By Möbius inversion, we can give explicit expressions for these numbers

µN,n =
∑
m|n

µ
(
n
m

)
δN,n (92)

where µ(k) is the Möbius function and we assume that δN,n = 0 for n > N .
Defining

νN (s) =

∞∑
n=1

µN,nn
−s (93)

we have the equality
∆N (s) = νN (s)ζ(s) (94)

where the right-hand side is understood as the formal product of the two
Dirichlet series. Shouldn’t we expect that numerically

∆N (s) ≈ νN,Mζ(s) (95)

where

νN,M (s) =

M∑
n=1

µN,nn
−s (96)

is a truncation of (93)? In other words, can ζ(s) be well approximated by
the ratio of two finite Dirichlet series:

ζ(s) ≈ ∆N (s)

νN,M (s)
=

∑N
n=1 δN,nn

−s∑M
n=1 µN,nn

−s
. (97)
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To begin with, let us look at Figures 22 and 23 exhibiting the values
of log10 |µ3001,n|. These plots look similar to the plots on Figures 13 and
20. Indeed, according to (92), for a prime n we have µN,n = δN,n − 1
so points corresponding to the prime n occupy the same positions. For
composite n corresponding to points not lying on the Eratosthenes levels,
the differences µN,n−(δN,n−1) are very small so the right parts on Figures
20 and 23 are visually the same. But points lying on the Eratosthenes
levels and corresponding to composite n on Figures 13 and 20 drop down
to fit, on Figures 22 and 23, onto a “smooth curve” with the other points.

Figure 22: log10 |µ3001,n|

Figure 23: log10 |µ3001,n|
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Table 1: Calculation of ζ(s) at s = 1
4 + 1000i for N=3001

M µN,M

∣∣∣ζ(s)− ∆(s)
νN,M (s)

∣∣∣
2 −2 + 1.43 . . . · 10−127 2.24128 . . . · 10−127

3 −2.14787 . . . · 10−127 1.57968 . . . · 10−299

4 −1.62673 . . . · 10−299 4.85859 . . . · 10−448

5 +5.29034 . . . · 10−448 1.00748 . . . · 10−569

6 −1.14817 . . . · 10−569 1.83153 . . . · 10−672

7 +2.16930 . . . · 10−672 3.15150 . . . · 10−756

8 −3.85941 . . . · 10−756 2.34266 . . . · 10−829

9 −2.95462 . . . · 10−829 3.17791 . . . · 10−891

10 +4.11503 . . . · 10−891 6.45307 . . . · 10−946

11 −8.55748 . . . · 10−946 6.55682 . . . · 10−994

12 +8.88627 . . . · 10−994 1.00011 . . . · 10−1036

13 +1.38282 . . . · 10−1036 2.32048 . . . · 10−1074

14 −3.26844 . . . · 10−1074 1.18994 . . . · 10−1108

15 +1.70521 . . . · 10−1108 7.70890 . . . · 10−1142

16 −1.12267 . . . · 10−1141 7.13768 . . . · 10−1168

17 −1.05536 . . . · 10−1167 1.30877 . . . · 10−1193

18 −1.96297 . . . · 10−1193 2.02873 . . . · 10−1217

19 −3.08422 . . . · 10−1217 4.26737 . . . · 10−1239

20 −6.57127 . . . · 10−1239 2.13752 . . . · 10−1259

21 −3.33194 . . . · 10−1259 4.48286 . . . · 10−1278

22 −7.06955 . . . · 10−1278 5.73053 . . . · 10−1295

23 +9.13814 . . . · 10−1295 8.80688 . . . · 10−1311

24 +1.41940 . . . · 10−1310 1.24696 . . . · 10−1325

25 −2.03034 . . . · 10−1325 1.15887 . . . · 10−1339

26 −1.90550 . . . · 10−1339 5.47316 . . . · 10−1353

27 +9.08470 . . . · 10−1353 1.16240 . . . · 10−1365

28 +1.94705 . . . · 10−1365 4.81799 . . . · 10−1377

29 −8.14135 . . . · 10−1377 5.73845 . . . · 10−1388

30 +9.77926 . . . · 10−1388 5.76237 . . . · 10−1398

31 −9.90086 . . . · 10−1398 1.22940 . . . · 10−1407

32 −2.12919 . . . · 10−1407 1.65327 . . . · 10−1416

33 −2.88538 . . . · 10−1416 4.62738 . . . · 10−1425

34 +8.13647 . . . · 10−1425 5.22887 . . . · 10−1433

35 −9.26096 . . . · 10−1433 1.53755 . . . · 10−1440

36 −2.74243 . . . · 10−1440 3.53025 . . . · 10−1448

37 +6.33998 . . . · 10−1448 1.28345 . . . · 10−1454

38 −2.32037 . . . · 10−1454 2.55684 . . . · 10−1461

39 +4.65266 . . . · 10−1461 4.67633 . . . · 10−1468

40 −8.56354 . . . · 10−1468 2.42671 . . . · 10−1473
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Table 1 shows that taking larger and larger values of M we get better
and better approximations of ζ(s) via (97). Probably, the situation here
is similar to what we have with asymptotic expansions: one has to stop
at a certain optimal number of summands.

2.10 Special values of νN,M(s)

Let

M = LCM(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) = 2520, N = M+1 = 2521. (98)

We have the following interesting expansion into a simple continued frac-
tion:

2M · νN,M (1) = 0.9998015873172093... (99)

=
1

1 + 1

5039+ 1

2520+ 1
1680+ 1

1260+ 1
1008+ 1

840+ 1
720+ 1

630+ 1
560+ 1

504+ 1

. . .

(100)

It is rather unusual that the partial quotients have such big values (ac-
cording to Gauss-Kuzmin distribution partial quotients of a “random” real
number are mainly rather small). Moreover, these large partial quotients
have the following structure motivating our choice of values in (98):

5039 = 2M − 1, 2520 = 2M
2
, 1680 = 2M

3
, 1260 = 2M

4
, 1008 = 2M

5
,

840 = 2M
6
, 720 = 2M

7
, 630 = 2M

8
, 560 = 2M

9
, 504 = 2M

10
. (101)

The continued fraction (100) suggests consideration of the function

φ(M) =
1

2M
· 1

1 +
1

2M − 1 +
1

2M
2

+
1

2M
3

+
1

2M
4

+
1

2M
5

+
. . .

(102)

It seems that

φ(M) =
1

2
ψ

(
M

2
+ 1

)
− 1

2
ψ

(
M + 1

2

)
(103)

where, as usual,

ψ(z) =
Γ′(z)

Γ(z)
. (104)
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Function (103) turns out to be a good approximation to νN,M (1) with
M and N from (98) and for other values of these parameters as well:

ν2521,2520(1)

φ(2520)
= 1− 1.063066513532... · 10−108 (105)

ν3001,3000(1)

φ(3000)
= 1 + 7.158776770618... · 10−128 (106)

ν6001,6000(1)

φ(6000)
= 1 + 5.411860996641659... · 10−259 (107)

It seems that among the two arguments of ν, the second is more impotant:

ν7001,6000(1)

φ(6000)
= 1 + 5.258535208832606... · 10−209 (108)

The author came to the expected equality (103) by calculating a few
initial coefficients of expansions of the both sides into series over 1

M
;

D. Zagier [2] verified that all coefficients coincide by giving yet another
representation for φ via a continued fraction studied in [1]:

φ(M) = x− x · x

1 +
1 · 2 · x2

1 +
2 · 3 · x2

1 +
3 · 4 · x2

1 +
4 · 5 · x2

1 +
5 · 6 · x2

1 +
. . .

(109)

where x = 1
2M

.
The question about the convergence of the continued fractions remains

open.

3 Second example: Riemann’s xi function
It is well-known that Riemann’s zeta function and gamma function

have a close relationship; however, the appearance (via (103)) of the
gamma function in (105)–(108) seems to be new. Traditionally, the gamma
function is used for defining the function

ξ(s) = g(s)ζ(s) (110)

where

g(s) = π−
s
2 (s− 1)Γ

(
s
2

+ 1
)
. (111)

In terms of the function ξ(s) the functional equation takes the simple form

ξ(s) = ξ(1− s). (112)
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3.1 Coefficients of new interpolating determinants
In order to use ξ(s) in the role of F (x) in (9), we need to select new

functions f1(s), f2(s), . . . . According to (10) and (110)

ξ(s) = g(s)ζ(s) =

∞∑
n=1

g(s)n−s. (113)

Due to (112) we also have:

ξ(s) = g(1− s)ζ(1− s) =

∞∑
n=1

g(1− s)ns−1. (114)

The series in (113) converges only for Re(s) > 1, the series in (114) con-
verges only for Re(s) < 0, nevertheless we define

fn(s) =
g(s)n−s + g(1− s)ns−1

2
(115)

and formally write

ξ(s) ∼
∞∑
n=1

fn(s). (116)

The zeroes of ξ(s) are exactly the non-trivial zeroes (12) of the zeta
function, and (assuming the Riemann hypothesis, as in Section 2)

ρn = 1− ρn. (117)

Functions (115) trivially satisfy a counterpart of the functional equation:

fn(s) = fn(1− s). (118)

Due to (117) and (118), we need not (and cannot!) use zeroes with nega-
tive imaginary parts and we define

∆̃Γ
N (s) =

∣∣∣∣∣∣∣
f1(ρ1) . . . f1(ρN−1) f1(s)

...
. . .

...
...

fN (ρ1) . . . fN (ρN−1) fN (s)

∣∣∣∣∣∣∣ =

N∑
n=1

δ̃Γ
N,nfn(s). (119)

Clearly,

∆̃Γ
N (ρN−1) = · · · = ∆̃Γ

N (ρ1) = 0 = ∆̃Γ
N (ρ1) = · · · = ∆̃Γ

N (ρN−1). (120)

Similar to (85) and (86) we define

δΓ
N,n =

δ̃Γ
N,n

δ̃Γ
N,1

(121)

and

∆Γ
N (s) =

N∑
n=1

δΓ
N,nn

−s. (122)
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Notice that ∆Γ
N (s), as so defined, is not a normalization of ∆̃N (s), they

are related in the following way:

∆̃Γ
N,n(s) = δ̃Γ

N,1

(
g(s)∆Γ

N,n(s) + g(1− s)∆Γ
N,n(1− s)

)
. (123)

Figure 24: log10(|δΓ
3000,n − 1|)

3.2 Sieve of Eratosthenes
Coefficients δΓ

N,n behave similar to coefficients δN,n but there are cer-
tain distinctions. The plot of log10(|δΓ

3000,n − 1|) for initial values of n
looks as if construction of the sieve of Eratosthenes has been broken at
some stage–on Figure 24 we see only four Eratosthenes levels. In the case
N = 3000, the lowest row contains both prime and composite numbers.

3.3 Calculation of values of ζ(s)
Similar to (91) we define

∆Γ
N (s)

ζ(s)
=

∑N
n=1 δ

Γ
N,nn

−s∑∞
n=1 n

−s =

∞∑
n=1

µN,nn
−s (124)

or directly

µΓ
N,n =

∑
m|n

µ
(
n
m

)
δΓ
N,n (125)

by assuming that δΓ
N,n = 0 for n > N . Further, similar to (96) we define

νΓ
N,M (s) =

M∑
n=1

µΓ
N,nn

−s (126)
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and consider approximations of ζ(s) by the ratio∑N
n=1 δ

Γ
N,nn

−s∑M
n=1 µ

Γ
N,nn

−s
. (127)

Table 2: Calculation of ζ(s) at s = 1
4 + 1000i for N=3000

M µΓ
N,M

∣∣∣∣ζ(s)− ∆Γ(s)

νΓ
N,M (s)

∣∣∣∣
2 −2− 4.93 . . . · 10−126 7.72773 . . . · 10−126

3 +7.40565 . . . · 10−126 2.77621 . . . · 10−284

4 +2.85890 . . . · 10−284 1.70620 . . . · 10−411

5 −1.85782 . . . · 10−411 2.24778 . . . · 10−509

6 −2.56167 . . . · 10−509 4.24006 . . . · 10−585

7 −5.02202 . . . · 10−585 3.59049 . . . · 10−641

8 +4.39701 . . . · 10−641 6.70503 . . . · 10−681

9 +1.08444 . . . · 10−681 6.85250 . . . · 10−681

10 +1.90599 . . . · 10−716 6.85250 . . . · 10−681

11 +2.37291 . . . · 10−681 8.03260 . . . · 10−681

12 −8.19041 . . . · 10−753 8.03260 . . . · 10−681

13 +2.53822 . . . · 10−681 7.77032 . . . · 10−681

14 −8.82811 . . . · 10−755 7.77032 . . . · 10−681

15 +7.90462 . . . · 10−756 7.77032 . . . · 10−681

16 +6.85925 . . . · 10−682 7.90768 . . . · 10−681

17 +2.80369 . . . · 10−681 6.13061 . . . · 10−681

18 +9.79035 . . . · 10−755 6.13061 . . . · 10−681

19 +2.91376 . . . · 10−681 7.51911 . . . · 10−681

20 +8.85123 . . . · 10−755 7.51911 . . . · 10−681

21 −1.28032 . . . · 10−754 7.51911 . . . · 10−681

22 −1.44488 . . . · 10−754 7.51911 . . . · 10−681

23 +3.10282 . . . · 10−681 5.58306 . . . · 10−681

24 −5.83115 . . . · 10−755 5.58306 . . . · 10−681

25 +1.59266 . . . · 10−681 5.89767 . . . · 10−681

26 −7.27060 . . . · 10−755 5.89767 . . . · 10−681

27 +1.08716 . . . · 10−681 6.50614 . . . · 10−681

28 −1.61246 . . . · 10−755 6.50614 . . . · 10−681

29 +3.33221 . . . · 10−681 4.79343 . . . · 10−681

30 +1.00523 . . . · 10−755 4.79343 . . . · 10−681

Table 2 shows that for N = 3000 increasing the value of M stops to
improve the accuracy of the approximation rather soon in contrast to the
case of Table 1. Indeed, numbers µΓ

N,n behave differently from numbers
µN,n, namely, Table 2 and Figure 25 show that after n = 11 the values of
µΓ
N,n begin to oscillate between values of orders 10−681 and 10−754.
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Figure 25: log |µΓ
3000,n|, magenta, if µΓ

3000,n > 0, green otherwise

What is remarkable is the way in which this splitting happens: values
close to 10−681 correspond to those values of n that are either primes
or powers of primes. Figure 26 demonstrate futher splitting–the upper
“curve” correspond to genuine prime values of n.

Figure 26: µΓ
3000,n, magenta, if µΓ

3000,n > 0, green otherwise

The “curve” on Figure 26 looks like a plot of the logarithmic func-
tion, and indeed after divison by log(n) points on Figure 27 lie on several
horizontal lines.
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Figure 27: µΓ
3000,n

log(n) , magenta, if µ
Γ
3000,n > 0, green otherwise

This further suggests that we should divide µΓ
N,n not by log(n) but by

the von Mangoldt function Λ(n), and this results in points corresponding
to prime and prime power values of n lying on the same line on Figure 28.
Indeed, let

ω3000 =
µΓ

3000,13

ln(13)
= 9.895811... · 10−682, (128)

then for a prime p such that 13 ≤ pk ≤ 419 we have∣∣∣∣∣µ
Γ
3000,pk/ ln(p)

ω3000
− 1

∣∣∣∣∣ < 3.85... · 10−73 (129)

and ∣∣∣∣∣µ
Γ
3000,pk

ln(p)
− ω3000

∣∣∣∣∣ < 3.81... · 10−754. (130)

Figure 28: µΓ
3000,n

Λ(n)
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Figure 29: Modified series (91)

3.4 Calculating zeta derivative
By modifying the first 11 summands in (91) (see Figure 29) we can

write
11∑
n=1

(
ω3000Λ(n)− µΓ

3000,n

)
n−s +

∆Γ
3000(s)

ζ(s)
�

∞∑
n=1

ω3000Λ(n)n−s. (131)

For Re(s) > 1 the values of the right hand side in (131) are well-known:

∞∑
n=1

ω3000Λ(n)n−s = −ω3000
ζ′(s)

ζ(s)
. (132)

So shouldn’t we expect that

ζ(s)

11∑
n=1

(
ω3000Λ(n)− µΓ

3000,n

)
n−s + ∆Γ

3000(s)≈− ω3000ζ
′(s), (133)

and even if s is inside the critical strip? At first, this seem to be rather
implausible because the ideograph � in (131) has a very weak meaning:
Figure 30 shows that from some n the values of the coefficients in the left
hand side (equal to µΓ

3000,n) become in absolute value many orders larger
than the coefficients in the right hand side (having the absolute value at
most |ω3000Λ(n)|). Nevertheless, the left hand side of (133) produces very
good approximations to the right hand side.

3.4.1 Calculating zeta derivative at zero

We start by choosing for s a zero of ζ(s)—in this case (133) simplifies
to

∆Γ
3000(ρk) ≈ −ω3000ζ

′ρk) (134)
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Figure 30: log10 |µΓ
3000,n|

(but the right hand side in (132) turns into ∞ for such s). Indeed, we
have: ∣∣∣∣∆Γ

3000 (ρ100)

−ω3000
− ζ′(ρ100)

∣∣∣∣ = 4.092... · 10−36, (135)∣∣∣∣∆Γ
3000 (ρ500)

−ω3000
− ζ′ (ρ500)

∣∣∣∣ = 1.063... · 10−74. (136)

3.4.2 Calculating zeta derivative inside the critical strip

For s = 1
4

+ 1000i we have:∣∣∣∣∣ζ(s)
∑11
n=1

(
ω3000Λ(n)− µΓ

3000,n

)
n−s + ∆Γ

3000(s)

−ω3000
− ζ′ (s)

∣∣∣∣∣ =

1.61... · 10−71. (137)

3.4.3 Calculating both zeta and its derivative. I

Using (133) for calculating ζ′(s) requries knowledge of ζ(s) with great
precision. Instead of this, we can use two copies of (133) with sufficiently
different values of N . For example, solving the system

ζ(s)

11∑
n=1

(
ω3000Λ(n)− µΓ

3000,n

)
n−s + ∆Γ

3000(s)≈− ω3000ζ
′(s) (138)

ζ(s)

11∑
n=1

(
ω3500Λ(n)− µΓ

3500,n

)
n−s + ∆Γ

3500(s)≈− ω3500ζ
′(s) (139)

for s = 1
4

+ 1000i produces 908 correct decimal digits for ζ(s) and 72
correct decimal digits for ζ′(s).
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3.4.4 Calculating both zeta and its derivative. II

We can avoid the necessity to calculate δN,n for two different values of
N by using a copy of (133) with s replaced by 1− s:

ζ(1− s)
11∑
n=1

(
ω3000Λ(n)− µΓ

3000,n

)
ns−1 + ∆Γ

3000(1− s)≈

− ω3000ζ
′(1− s). (140)

Then we can differentiate both sides of the functional equation

g(s)ζ(s) = g(1− s)ζ(1− s) (141)

and get a fourth relation

g′(s)ζ(s) + g(s)ζ′(s) = −g′(1− s)ζ(1− s)− g(1− s)ζ′(1− s) (142)

between ζ(s), ζ(1 − s), ζ′(s), and ζ′(1 − s). Solving the system of four
equations (133), (140), (141), and (142) for s = 1

4
+ 1000i produces 752

correct decimal digits for ζ(s) and 72 correct decimal digits for ζ′(s).

3.5 Approximation of νΓN,M(1)

It turns out that the same function (103) gives a good approximation
not only to νN,M (1) but to νΓ

N,M (1) as well:

νΓ
2520,2520(1)

φ(2520)
= 1 + 3.822274405191727... · 10−105 (143)

νΓ
3000,3000(1)

φ(3000)
= 1− 2.468278393149214... · 10−126 (144)

νΓ
6000,6000(1)

φ(6000)
= 1 + 2.663814892833696... · 10−253 (145)
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