NORMAL AFFINE SURFACES PROPERLY DOMINATED BY $\mathbb{C} \times \mathbb{C}^{*}$

by

Mikio Furushima

Max-Planck-Institut für Mathematik

Gottfried-Claren-Str. 26
5300 Bonn 3
Federal Republic of Germany

Kumamoto National College of Technology
Suya, Nishi-goshi-machi, 861-11 Kumamoto
Japan

NORMAL AFFINE SURFACES PROPERLY DOMINATED BY $\mathbf{C} \times \mathbf{C}^{*}$

Introduction. In 1980, Nishino-Suzuki [11] had a beautiful theorem on a cluster set of a holomorphic mapping of a punctured disc in C into a compact non-singular surface, and Suzuki [12] applied it to the study of complex analytic compactifications of $\mathbb{C} \times \mathbb{C}^{*},\left(\mathbb{C}^{*}\right)^{2}$.

Later, the author applied it to the linearization of a polynomial automorphism of \mathbb{C}^{2} of finite order ([2]) and the determination of a normal affine surface properly dominated by \mathbb{C}^{2} ([4]), (see also Miyanishi [8], Gurjar-Shastri [5]). An affine variety X is said to be properly dominated by an affine variety V if there is a proper morphism $\mathrm{f}: \mathrm{V} \longrightarrow \mathrm{X}$ of V onto X .

Now, in this paper, we will apply it to the determination of a normal affine surface properly dominated by $\mathbb{C} \times \mathbb{C}^{*}$. Our main result is the following

Theorem. Let X be a normal affine surface properly dominated by $\mathbb{C} \times \mathbb{C}^{*}$. Then, (i) $X \cong \mathbb{C}^{2}$ or $\mathbb{C} \times \mathbb{C}^{*}$ if X is non-singular, (ii) $X \cong \mathbb{C}^{2} / G_{a}$ for a small finite subgroup G_{a} of $G L(2 ; \mathbb{C})$, or $X \cong \mathbb{C} \times \mathbb{C}^{*} / G_{b}$ for a small finite subgroup G_{b} of $\operatorname{Aut}\left(\mathbb{C} \times \mathbb{C}^{*}\right)$ with exactly two fixed points if \mathbf{X} is singular.

Acknowledgement. This paper was prepared while the author stays at the Max-Planck-Intitut für Mathematik in Bonn. He is grateful to the institute, especially, Professor Dr. F. Hirzebruch for hospitality and encouragement.

Notation

$b_{i}(M) \quad: \quad i-t h$ Betti number of M
χ (M) : the Euler number of M
$\mathrm{K}_{\mathrm{S}} \quad: \quad$ a canonical divisor on a normal Gorenstein surface S
$\mathrm{q}(\mathrm{S}) \quad:=\quad \operatorname{dim} \mathrm{H}^{1}\left(\mathrm{~S}, \boldsymbol{q}_{\mathrm{S}}\right)$
$P_{g}(S) \quad:=\quad \operatorname{dim} H^{2}\left(S, Q_{S}\right)$
$\mathrm{P}_{\mathrm{m}}(\mathrm{S}) \quad:=\quad \operatorname{dim} \mathrm{H}^{0}\left(\mathrm{~S}, 0\left(\mathrm{mK}_{\mathrm{S}}\right)\right.$
$\bar{\kappa}(\mathrm{X}) \quad: \quad$ the logarithmic Kodaira dimension of an open surface X
$c_{1}(\mathscr{L}) \quad: \quad$ the first Chern class of a line bundle \mathscr{L}
[D] : the line bundle defined by a divisor D
(m): a non-singular rational curve with the self-intersection number m

transversal (resp. tangential) intersection of two non-singular

rational curves corresponding to the vertices
$\operatorname{Aut}\left(\mathbb{C}^{2}\right) \quad: \quad$ the group of algebraic automorphisms of \mathbb{C}^{2}
$\operatorname{Aut}\left(\mathbb{C} \times \mathbb{C}^{*}\right): \quad$ the group of algebraic automorphisms of $\mathbb{C} \times \mathbb{C}^{*}$
§ 1. Theory of cluster sets of holomorphic mappings

1. Let S be a normal Gorenstein projective algebraic surface and $C=\bigcup_{i=1}^{n} C_{i}\left(C_{i}\right.$ is irreducible) be an algebraic curve in S with $\operatorname{Sing} S \cap C=\phi$. Assume that
(i) any singular point of $\mathrm{C}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{C}_{\mathrm{i}}$ is an ordinary double point,
(ii) there is no non-dingular rational irreducible component of C with the self-intersection number -1 which has at most two intersection points with other components of C.

We call such a pair (S, C) the minimal normal pair.

Let (S,C) be a minimal normal pair. Then we have

Lemma 1.1 (Nishino-Suzuki [11]). Assume that for each C_{i}, there is a holomorphic mapping $\phi_{\mathrm{i}}: \Delta^{*} \longrightarrow \mathrm{~S} \backslash \mathrm{C}$ of a punctured disc $\Delta^{*}:=\{\mathrm{z} \in \mathbb{C} ; 0<|\mathrm{z}|<1\}$ into $S \backslash C$ such that

$$
\mathrm{C}_{\mathrm{i}} \subset \phi_{\mathrm{i}}(0 ; \mathrm{S}) \subset \mathrm{C}
$$

where $\phi_{i}(0 ; S)=\bigcap_{\rho>0} \overline{\phi_{i}\left(\Delta_{\rho}^{*}\right)}, \Delta_{\rho}^{*}:=\{z \in \mathbb{C} ; 0<|z|<\rho\}, \overline{\phi_{i}\left(\Delta_{\rho}^{*}\right)}$ is the closure of $\phi_{\mathrm{i}}\left(\Delta_{\rho}^{*}\right)$ in S . Then the curve $\mathrm{C}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{C}_{\mathrm{i}}$ must be one of the type from (α) to (ε) in Table I below, in which, for types $\left(\beta_{\mathrm{r}}\right)(\mathrm{r} \geq 2),(\gamma),\left(\gamma^{\prime}\right),(\delta),(\varepsilon)$, each irreducible
component of C is a non-singular rational curve and assigned Figures ($1-5$) represent the dual graph $\Gamma(\mathrm{C})$ of C .
2. Since S is Gorenstein, one can define a canonical divisor K_{S} on S .

Then we have

Proposition 1.2. Assume that $\mathrm{C}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{C}_{\mathrm{i}}$ is one of the types $(\gamma),\left(\gamma^{\prime}\right),(\delta)$, (ε) in the Table I. If K_{S} is written as follow:

$$
K_{S}=\sum_{i=1}^{n} \lambda_{i} C_{i} \quad\left(\lambda_{i} \in \mathbb{Z}\right),
$$

then the dual graph $\Gamma(C)$ is one of the type from F. 1 to F. 15 in Table II, in which, adjacent to the vertex representing the irreducible component C_{i} of C, we write the order λ_{i} of K_{S} on C_{i}.

For the proof, we need the following

Lemma 1.3 (Lemma 6 in Suzuki [12]).

Let $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}$ be irreducible non-singular rational curves on a smooth projective algebraic surface M such that $A:=\bigcup_{i=1}^{m} A_{i}$ is simply connected. If there is a pair $i, j(1 \leq i, j \leq m) \quad$ such that $\quad\left(A_{i}^{2}\right) \geq 0, \quad\left(A_{j}^{2}\right) \geq 0 \quad$ and $\quad A_{i} \cap A_{j}=\phi$, then $\left(A_{i}^{2}\right)=\left(A_{j}^{2}\right)=0$, and there is only one $A_{k}(k \neq i, j)$ which intersects $A_{i} \cup A_{j}$. Further, for this A_{k}, we have $\left(A_{i} \cdot A_{k}\right)=\left(A_{j} \cdot A_{k}\right)=\nu \geq 1$.

Table I.

Name of type	Explication of C
(α) $\alpha(\mathrm{n})$	an irreducible non-singular elliptic curve with the self-intersection number $\left(C^{2}\right)=n \geq 0$
(β) $\beta(\mathrm{n})$	an irreducible rational curve with only one ordinary double point and $\left(\mathrm{C}^{2}\right)=\mathrm{n} \geq 0$
$\left(\beta_{\mathrm{r}}\right) \beta\left(\mathrm{n}_{1}, . ., \mathrm{n}_{\mathrm{r}}\right)(\mathrm{r} \geq 2)$	Figure 1, all $n_{i}=-2$ or $\max \left\{n_{i}\right\} \geq 0$
$(\gamma) \gamma\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{r}}\right)(\mathrm{r} \geq 1)$	Figure 2, all $n_{i}=-2$ or $\max \left\{n_{1}+1, n_{2}, . ., n_{r-1}, n_{r}+1\right\} \geq 0$
$\left(\gamma^{\prime}\right) \gamma^{\prime}\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{r}}\right)(\mathrm{r} \geq 1)$	Figure 3, max $\left\{\mathrm{n}_{1}+1, \mathrm{n}_{2}, . ., \mathrm{n}_{\mathrm{r}}\right\} \geq 0$.
$(\delta) \delta\left(\mathrm{n}_{0} ; \frac{\mathrm{q}_{1}}{\ell_{1}}, \frac{\mathrm{q}_{2}}{\ell_{2}}, \frac{\mathrm{q}_{3}}{\ell_{3}}\right)$	Figure 4, (i) $n_{0} \geq-2$, (ii) $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)=(3,3,3),(2,4,4)$ or ($2,3,6-\mathrm{m})(0 \leq m \leq 3)$, (iii) for each $\mathrm{i}(1 \leq \mathrm{i} \leq 3),\left(\mathrm{q}_{1}, \ell_{\mathrm{i}}\right)$ is a pair of coprime integers such that $0<q_{i}<\ell_{i}$ and that $\frac{\ell_{\mathrm{i}}}{\mathrm{q}_{\mathrm{i}}}=\mathrm{n}_{\mathrm{i}_{1}}-\frac{1}{\mathrm{n}_{\mathrm{i}_{2}}-\frac{1}{\ddots_{n_{i r}}}} \begin{gathered} \text { (continued } \\ \text { fraction } \\ \text { expansion) } \end{gathered}$ where $n_{i, j} \geq 2$ are integers appearing in Figure 4
(ε) $\varepsilon\left(\mathrm{n}_{1}, . ., \mathrm{n}_{\mathrm{r}}\right)$	Figure 5, max $\left\{\mathrm{n}_{\mathrm{i}}\right\} \geq 0$.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Let us denote, for simplicity, by $\left\langle\mathrm{n}_{1} ; \ldots ; \mathrm{n}_{\mathrm{k}}\right\rangle$ the dual graph which looks like Figure 5. Let us consider the configuration $\langle\mathrm{m} ; 0 ; \mathrm{n}\rangle$ of non-singular rational curves in a smooth complex surface. Blowing up the point of intersection of the curves corresponding to the vertices with weights 0 and n, we have the configuration $\langle m ;-1 ;-1 ; n-1\rangle$. Blowing down the (-1)-curve which is the proper transform of the rational curve corresponding to the vertex with weight 0 , we have the new configuration $\langle m+1 ; 0 ; n-1\rangle$. We call this transformation $\langle m ; 0 ; n\rangle \mapsto\langle m+1 ; 0 ; n-1\rangle$ the elementary transformation (with center 0). By a succession of N-elementary transformations, we have the configuration $\langle m+N ; 0 ; m-N\rangle$ of non-singular rational curves.
3. We will prove Proposition 1.2 below.
(1) The case where C is of the type (γ).

First, let us consider the case of $\max \left\{n_{1}+1, n_{2}, \ldots, n_{k-1}, n_{k}+1\right\} \geq 0$.

Claim (1.1). $\mathbf{k} \neq 1$.

Indeed, if $k=1$, then we have the dual graph $\Gamma(C)$ which looks like Fig. 16.

Fig. 16

By the adjunction formula, we have $2(2 \lambda+1)+(2 \lambda+1) n_{1}=0$, hence, $n_{1}=-2$. Since $n_{1}+1 \geq 0$, this is a contradiction.
q.e.d.

Repeating blowing ups and elementary transformations on C , we have the dual graph which looks like Fig. 17.

Fig. 17

Claim (1.2). $q=2$ and $m_{2}=1$.

Indeed, if $\mathrm{q} \geq 3$, then, contracting the (-1)-curve corresponding to the vertex with weight -1 in Fig. 17, we have the dual graph Fig. 17'.

$$
\left(m=2-m_{1}\right)
$$

Fig. 17'

By Lemma 1.3, we have $\max \left\{-\mathrm{m}_{2}, \ldots,-\mathrm{m}_{\mathrm{q}}\right\}<0$. We may assume that $\mathrm{m}_{\mathrm{j}} \geq 2$ $(2 \leq j \leq q-1)$. If $m_{q}=1$, then, by Lemma 1.3 , we must have $q=2$. This is a contradiction, since $q \geq 3$ by assumption. Thus $m_{j} \geq 2$ for $1 \leq j \leq q$.

By the adjunction formula, we have easily

$$
\left\{\begin{array}{l}
2 \mu=\left[\mathrm{m}_{\mathrm{q}}, \ldots, \mathrm{~m}_{2}\right]\left(\lambda_{2}+1\right) \tag{1.3}\\
2 \mu=\left[\mathrm{m}_{\mathrm{q}-1}, \ldots, \mathrm{~m}_{2}\right]\left(\lambda_{2}+1\right)
\end{array}\right.
$$

where $\left[\mathrm{m}_{\mathrm{q}}, \ldots, \mathrm{m}_{\mathrm{i}}\right](1 \leq \mathrm{i} \leq \mathrm{q})$ represents an integer defined inductively by the following way:

$$
\left\{\begin{array}{l}
{[\phi]=1, \quad\left[m_{q}\right]=m_{q}} \tag{1.4}\\
{\left[m_{q}, \ldots, m_{i}\right]=m_{q}\left[m_{q-1}, \ldots, m_{i}\right]-\left[m_{q-2}, \ldots, m_{i}\right]}
\end{array}\right.
$$

Since $\quad\left[m_{q}, \ldots, m_{j}\right]>\left[m_{q-1}, \cdots, m_{i}\right] \quad$ if $\quad m_{j} \geq 2$ ($i \leq j \leq q$), by (1.3), we have $\lambda_{2}=-1$. Let C_{1} be the irreducible component of C corresponding to the vertex with weight $-m_{1}$ (see Fig. 17). Then we have

$$
m_{1}-2=\left(K_{S} \cdot C_{1}\right)=2 \lambda+m_{1}+\lambda_{2}
$$

Since $\quad \lambda_{2}=-1$, we have $\lambda=-\frac{1}{2} \notin \mathbb{I}$. This is a contradiction. Therefore we have $q \leq 2$. Using the adjunction formula, one can easily verify that $q \neq 1$. Thus, $q=2$. By the adjunction formula, we have $(2 \mu+1)\left(\mathrm{m}_{1}-1\right)=0$, hence, $\mathrm{m}_{1}=1$.
q.e.d.

By Claim (1.2), we have the dual graph F.2.

Next, if all $n_{i}=-2$, then we have the dual graph F.1.
(2) The case where C is of the type (γ^{\prime}).

Since $\max \left\{n_{1}+1, n_{2}, \ldots, n_{\mathbf{k}}\right\} \geq 0$, repeating blowing ups and elementary transformations on C , we have the dual graph which looks like Fig. 18.

Fig. 18
where $\mathrm{q}=0$, or $\mathrm{q} \geq 1$ and $\mathrm{m}_{\mathrm{j}} \geq 2(1 \leq \mathrm{j} \leq \mathrm{q})$ by Lemma 1.3. By the adjunction formula, we have $\left[\mathrm{m}_{\mathrm{q}}, \ldots, \mathrm{m}_{1}\right]\left(\lambda_{1}+1\right)=1$. Thus we have $\left[\mathrm{m}_{\mathrm{q}}, \ldots, \mathrm{m}_{1}\right]=1$, namely, $\mathrm{q}=0$. Then we have $\lambda=-1$. Therefore we have the dual graph F.3.
(3) The case where C is of the type (δ).

Let $\mathrm{C}_{0}, \mathrm{C}_{\mathrm{i}, \mathrm{j}_{\mathrm{i}}}\left(1 \leq \mathrm{i} \leq 3,1 \leq \mathrm{j}_{\mathrm{i}} \leq \mathrm{r}_{\mathrm{i}}\right)$ be the irreducible components of C corresponding to the vertices with weights $n_{0},-n_{i, j_{i}}$, respectively (see Figure 4). Then we put

$$
\begin{equation*}
\mathrm{K}_{\mathrm{S}}=\lambda_{0} \mathrm{C}_{0}+\sum_{\mathrm{i}=1}^{3}\left(\sum_{\mathrm{j}_{\mathrm{i}}=1} \lambda_{\mathrm{i}, \mathrm{j}_{\mathrm{i}}} \cdot \mathrm{C}_{\mathrm{i}, \mathrm{j}_{\mathrm{i}}}\right) \tag{1.5}
\end{equation*}
$$

where $\lambda_{0}, \lambda_{i, j_{i}} \in \mathbb{Z}$. By the adjunction formula, we have

$$
\left\{\begin{array}{l}
-2-n_{0}=\sum_{i=1}^{3} \lambda_{i, 1}+\lambda_{0} \cdot n_{0} \tag{1.6}\\
-2-n_{i, j_{i}-1}=\lambda_{i, j_{i}-2}-\lambda_{i, j_{i}-1} \cdot n_{i, j_{i}-1}+\lambda_{i, j_{i}} \\
-2-n_{i, r_{i}}=\lambda_{i, r_{i}-1}-\lambda_{i, r_{i}} \cdot n_{i, r_{i}}
\end{array}\right.
$$

We put $\ell_{i}=\left[n_{i, r_{i}}, \ldots, n_{i, 1}\right]$ and $q_{i}=\left[n_{i, r_{i}}, \ldots, n_{i, 2}\right]$. Since $n_{i, j_{i}} \geq 2$, we have $\ell_{i} \geq r_{i}+1, \quad \ell_{i}>q_{i}>0$. By (1.6), we have easily

$$
\begin{equation*}
\ell_{i}\left(\lambda_{i, 1}+1\right)-q_{i}\left(\lambda_{0}+1\right)=1 \quad(1 \leq i \leq 3) \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
\left(\lambda_{0}+1\right) n_{0}+\Sigma\left(\lambda_{i, 1}+1\right)=1 \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\left(\lambda_{0}+1\right)\left(n_{0}+\sum_{i=1}^{3} \frac{q_{i}}{\ell_{i}}\right)+\sum_{i=1}^{3} \frac{1}{\ell_{i}}=1 \tag{1.9}
\end{equation*}
$$

Since $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)=(3,3,3),(2,4,4),(2,3,6),(2,3,5),(2,3,4),(2,3,3)$, we have
(i) $\sum_{\mathrm{i}=1}^{3} \frac{1}{\ell_{\mathrm{i}}}=1 \Leftrightarrow\left(\ell_{1}, \ell_{2}, \ell_{3}\right)=(3,3,3),(2,4,4),(2,3,6)$
(ii) $\sum_{i=1}^{3} \frac{1}{\ell_{i}}>1 \Leftrightarrow\left(\ell_{1}, \ell_{2}, \ell_{3}\right)=(2,3,5),(2,3,4),(2,3,3)$

Case (i). $\sum_{i=1}^{3} \frac{1}{\ell_{i}}=1$.

In this case, by (1.9), we have $\left(\lambda_{0}+1\right)\left(n_{0}+\sum_{i=1}^{3} \frac{q_{i}}{\ell_{i}}\right)=0$. By (1.7), we have $\lambda_{0}+1 \neq 0$. Hence, $\sum_{i=1}^{3} \frac{q_{i}}{\ell_{i}}+n_{0}=0$. Since $n_{0} \geq-2$, we must have $n_{0}=-1$ or -2. If $\mathrm{n}_{0}=-1$, then we have $\left[\frac{\mathrm{q}_{1}}{\mathrm{~L}_{1}}, \frac{\mathrm{q}_{2}}{\ell_{2}}, \frac{\mathrm{q}_{3}}{\mathrm{~L}_{3}}\right]=\left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right],\left[\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right],\left[\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right]$. Thus we have the dual graphs F.4, F.5 and F.6, respectively. If $n_{0}=-2$, then we have $\left[\frac{\mathrm{q}_{1}}{\ell_{1}}, \frac{\mathrm{q}_{2}}{\ell_{2}}, \frac{\mathrm{q}_{3}}{\mathrm{l}_{3}}\right]=\left[\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right],\left[\frac{1}{2}, \frac{3}{4}, \frac{3}{4}\right],\left[\frac{1}{2}, \frac{2}{3}, \frac{5}{6}\right]$. Thus we have the dual graphs F.7, F. 8 and F.9, respectively.

Case (ii). $\sum_{\mathrm{i}=1}^{3} \frac{1}{\ell_{\mathrm{i}}}>1$.

In this case, we have

$$
-\left(\lambda_{0}+1\right)=\sum_{i=1}^{3} \frac{1}{l_{i}}-1 / \sum_{i=1}^{3} \frac{q_{i}}{\ell_{i}}+n_{0} \in I I
$$

Hence, we have $n_{0}=-1$ or -2 . If $n_{0}=-1$, then we have $\left[\frac{q_{1}}{l_{1}}, \frac{q_{2}}{l_{1}}, \frac{q_{3}}{\ell_{1}}\right]=\left[\frac{1}{2}, \frac{1}{3}, \frac{1}{5}\right],\left[\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right],\left[\frac{1}{2}, \frac{1}{3}, \frac{1}{3}\right]$ and $\lambda_{0}=-2$. Thus we have the dual graphs $F .10, F .11$ and $F .12$, respectively. If $n_{0}=-2$, then $-\left(\lambda_{0}+1\right)=\sum_{\mathrm{i}=1}^{3} \frac{1}{\ell_{\mathrm{i}}}-1 / \sum_{\mathrm{i}=1}^{3} \frac{\mathrm{q}_{\mathrm{i}}}{\ell_{\mathrm{i}}}-2$ is not integer. Hence $\mathrm{n}_{0} \neq-2$. Thus, we have finally the dual graphs F. $4-$ F. 12 .
(4) The case where C is of the type (ε).

Since $\max \left\{n_{i}\right\} \geq 0$, repeating blowing ups and elementary transformations on C as before, we have the dual graphs F.13, F. 14 and the following Fig. 19.

Fig. 19
where $\mathrm{q} \geq 1$ and $\mathrm{m}_{\mathrm{j}} \geq 2(1 \leq \mathrm{j} \leq \mathrm{q})$ by Lemma 1.3. By the adjunction formula, we have

$$
\begin{equation*}
\left[\mathrm{m}_{\mathrm{q}}, \ldots, \mathrm{~m}_{1}\right]\left(\lambda_{1}+1\right)+\left[\mathrm{m}_{\mathrm{q}}, \ldots, \mathrm{~m}_{2}\right]=1 \tag{1.10}
\end{equation*}
$$

Thus we have

$$
-\left(\lambda_{1}+1\right)=\frac{\left[\mathrm{m}_{\mathrm{q}}, \ldots, \mathrm{~m}_{2}\right]-1}{\left[\mathrm{~m}_{\mathrm{q}}, \ldots, \mathrm{~m}_{1}\right]} \in \mathbb{I}
$$

Hence, $q=1$ and $\lambda_{1}=-1$. Thus we have the dual graph F.15. This completes the proof of Proposition 1.2.

Corollary 1.4. Let (S,C) be as in Proposition 1.2. Then we have Table III below.

Type	F .1	F .2	F .3	F .4	F .5
$\mathrm{~K}_{\mathrm{S}}^{2}$	0	$\mathrm{~m}+4$	$\mathrm{n}+4$	$-\lambda^{2}$	$-2 \lambda^{2}$

Type	F.6	F.7	F.8	F.9	F. 10
$\mathrm{~K}_{\mathrm{S}}^{2}$	$-3 \lambda^{2}$	0	0	0	-2

Type	F.11	F.12	F.13	F.14	F.15
$\mathrm{K}_{\mathrm{S}}^{2}$	-1	0	8	8	$8-\mathrm{m}_{1}$

Table III
§ 2. A characterization of $\mathbb{C}^{2}, \mathbb{C} \times \mathbf{C}^{*}$

Let (S,C) be a minimal normal pair of a smooth projective algebraic surface S and an algebraic curve $\mathrm{C}=\bigcup_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{C}_{\mathrm{i}}$ on S . Assume that C is one of the type from (α) to (ε) in Table I. We put $\mathrm{X}:=\mathrm{S} \backslash \mathrm{C}$.

Proposition 2.1. If $H_{i}(X ; \pi)=0$ for $i>0$, then $X \cong \mathbf{C}^{2}$.

Proof. Let us consider an exact sequence over \mathbb{I} :

Since $H_{i}(X ; Z)=0$, we have $H^{i}(S ; Z) \cong H^{i}(C ; Z)$ for $i \geq 1$. In particular, $H^{1}(C ; \eta) \cong H^{1}(S ; Z)=0$. Thus C is one of the types $(\gamma),\left(\gamma^{\prime}\right),(\delta),(\varepsilon)$. Since $b_{1}(S)=0$, we have $q(S)=0$. Further, $H^{2}(S ; I)$ is generated by $c_{1}\left(\left[C_{1}\right]\right), \ldots, c_{1}\left(\left[C_{n}\right]\right)$ over \mathbb{I}. Thus we have
(i) $\quad K_{S}=\Sigma \lambda_{i} C_{i} \quad\left(\lambda_{i} \in \mathbb{Z}\right)$
(ii) $\operatorname{det}\left(\left(\mathrm{C}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{j}}\right)\right) \neq 0$

Let T be a tubular neighborhood of C in S and $\partial \mathrm{T}$ be the boundary of T . We may assume that $T \backslash C \approx \partial T$ (deformation retract). Let us consider the following diagram over $I l$:

Then, we have
(iii) $H_{1}(\partial T ; Z)=0$

On the other hand, by the Noether formula, we have

$$
\text { (iv) } 12 \mathrm{P}_{\mathrm{g}}(\mathrm{~S})=\mathrm{K}_{\mathrm{S}}^{2}+\mathrm{b}_{2}(\mathrm{C})-10
$$

since $q(S)=b_{1}(S)=0, b_{2}(S)=b_{2}(C)$. By (i), we can apply Proposition 1.2. Thus, C is one of the type from F. 1 to F.15. By (ii), C is one of the types F.3, F.10, F.11, F.12, F. 13 and F. 15 (c.f. Suzuki [p. 457, 12]). By (iii), we have the types F. 10 and F.13. If C is of the type F.10, then, by (iv) and Table III, we have $12 \mathrm{P}_{\mathrm{g}}(\mathrm{S})=-8<0$. This is a contradiction. Therefore C must be of the type F.13. In particular, $S \cong \boldsymbol{\Sigma}_{\mathrm{m}}{ }^{\text {(a }}$ Hirzebruch surface), since $b_{2}(S)=b_{2}(C)=2$. One can easily show that $\mathrm{X}=\mathrm{S} \backslash \mathrm{C}=\mathbb{C}^{2}$.
q.e.d.

Proposition 2.2. (c.f. Suzuki [12]). Let (S,C) and X be as above. If $H_{1}(X ; \mathbb{Z})=\mathbb{Z}, H_{i}(X ; \mathbb{Z})=0$ for $\mathrm{i} \geq 2$, then $X \cong \mathbb{C} \times \mathbf{C}^{*}$.

Proof. Since $H_{2}(X ; Z)=0$, by (2.1), we have

$$
\begin{equation*}
0 \longrightarrow \mathrm{H}^{2}(\mathrm{~S} ; I \mathrm{I}) \longrightarrow \mathrm{H}^{2}(\mathrm{C} ; \Pi) \longrightarrow \mathrm{H}_{1}(\mathrm{X} ; I) \longrightarrow \mathrm{H}^{3}(\mathrm{~S} ; I)=0 . \tag{2.3}
\end{equation*}
$$

Since $b_{1}(S)=b_{3}(S) \leq b_{1}(X)=1$ and S is projective, we have $b_{1}(C)=q(S)$, $\mathrm{b}_{1}(\mathrm{~S})=0$, that is, C is one of the types $(\gamma),\left(\gamma^{\prime}\right),(\delta),(\varepsilon)$. Further, we have
(i) $\quad K_{S}=\sum_{i=1}^{n} \lambda_{i} C_{i} \quad\left(\lambda_{i} \in \mathbb{Z}\right)$
(ii) $\quad \operatorname{det}\left(\left(\mathrm{C}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{j}}\right)\right)=0$.

By the Noether formula, we have

$$
\begin{equation*}
12 \mathrm{P}_{\mathrm{g}}(\mathrm{~S})=\mathrm{K}_{\mathrm{S}}^{2}+\mathrm{b}_{2}(\mathrm{C})-11 \tag{iii}
\end{equation*}
$$

since $b_{2}(S)=b_{2}(C)-1$. Since $b^{+}(S)=2 P_{g}(S)+1 \geq 1$ and $\mathrm{i}^{*}: \mathrm{H}^{2}(\mathrm{~S} ; \mathbb{R}) \longrightarrow \mathrm{H}^{2}(\mathrm{C} ; \mathbb{R})$ is injective, we have,
(iv) $\quad\left(\left(\mathrm{C}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{j}}\right)\right)$ is not negative semi-definite.

Now, by (i) and Proposition 1.2, we have the dual graph from F. 1 to F.15. By (ii), we have the dual graphs F.1, F.2, F.4-F.9, F.14. By (iii), we have F.1, F.2, F. 14 (see Table П). By (iv), we have F.2, F. 14 (c.f. [p. 457, 12]). If C is of the type F.2., blowing down two (-1)-curves, we have a smooth projective surface S^{\prime} and an algebraic curve C^{\prime} with the dual graph $\Gamma\left(C^{\prime}\right)$ which looks like Fig. 20.

Fig. 20

Let $C_{i}^{\prime}(i=1,2), C_{0}^{\prime}$ be the non-singular rational curves corresponding to the vertices with weights 0,4 , respectively. Then there is a ruling $\varphi: S^{\prime} \longrightarrow \mathbb{P}^{1}$ which has C_{i}^{\prime} as a smooth fiber and C_{0}^{\prime} as a double section.

Thus S' is a rational ruled surface. Since $1=b_{2}\left(C^{\prime}\right)-b_{2}(S)=b_{2}\left(C^{\prime}\right)-b_{2}\left(S^{\prime}\right)=3-b_{2}\left(S^{\prime}\right)$, we have $b_{2}\left(S^{\prime}\right)=2$. Hence, we have $S^{\prime} \cong \Sigma_{n}$ (in fact, $S^{\prime} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ or Σ_{1}).

On the other hand, one can easily verify that
$\mathrm{H}_{1}(\mathrm{X} ; \mathbb{Z}) \cong \mathrm{H}^{2}(\mathrm{C} ; \mathbb{Z}) / \mathrm{H}^{2}(\mathrm{~S} ; \mathbb{Z}) \cong \not \mathbb{I}^{(} \oplus \mathbb{I}_{2}$ (see Fig. 20). This cannot occur, since $H_{1}(X ; \mathbb{Z}) \cong \mathbb{Z}$ by assumption. Therefore we have finally the dual graph F.14. Then one can verify that $S \cong \Sigma_{m}$ and $S \backslash C \cong \mathbb{C} \times \mathbb{C}^{*}$.
q.e.d.

§ 3. Affine surfaces properly dominated by $\mathbb{C} \times \mathbf{c}^{*}$

1. Let X be a normal affine surface over \mathbb{C} and $\mathrm{f}: \mathbf{C} \times \mathbf{C}^{*} \longrightarrow \mathbf{X}$ be a proper morphism of $\mathbb{C} \times \mathbb{C}^{*}$ onto X. Let (S, C) be a minimal normal completion of X, namely, S is a normal projective algebraic surface and $C=\bigcup_{i=1}^{n} C_{i}$ is an algebraic curve on S such that $X \cong S \backslash C$. By a resolution of singularities, we may assume that S is non-singular at every point on C.

Lemma 3.1 C is one of the type from (α) to (ε) in Table I.

Proof (c.f. [2]). By the proof of Lemma 2 in Suzuki [12], we can find two regular points P_{1}, P_{2} of C_{i} and a divergent sequence of points $\left\{\left(x_{k n}, y_{k n}\right)\right\}_{n=1}^{\infty}$ in $\mathbb{C} \times \mathbb{C}^{*}$ satisfying (i) $\lim _{\mathbf{n} \rightarrow \infty} f\left(\mathbf{x}_{\mathbf{k n}}, \mathbf{y}_{\mathbf{k n}}\right)=\mathrm{P}_{\mathbf{k}}(\mathrm{k}=1,2)$,
$\lim _{n \rightarrow \infty} x_{1 n}=\lim _{n \rightarrow \infty} x_{2 n}=\infty$, (iii) $x_{1 n} \neq x_{2 n}$. Further, we can find a holomorphic function with no zero on Δ_{ρ}^{*} such that $h\left(x_{k n}\right)=y_{k n} \neq 0$ for $k=1,2$ and $\mathrm{n}=1,2, \ldots$. We put $\phi_{\mathrm{i}}(\mathrm{x}):=\mathrm{f}(\mathrm{x}, \mathrm{h}(\mathrm{x}))$. Then we have a holomorphic mapping $\phi_{\mathrm{i}}: \Delta_{\rho}^{*} \longrightarrow \mathrm{~S} \backslash \mathrm{C}$ such that $\phi_{\mathrm{i}}(0 ; \mathrm{S})(\mathrm{C} \mathrm{C})$ contains two regular points of C_{i} of C . Thus, by Proposition 3 of Nishino-Suzuki [11], we have $C_{i} \subset \phi_{i}(0 ; S) \subset C$. By Lemma 1.1, we have the claim.
q.e.d.
2. Since $\mathbb{C} \times \mathbb{C}^{*}$ is Stein and f is proper finite, X is also Stein, and further $H_{i}(X ; \mathbb{Z})=0$ for $\mathrm{i}>2, \mathrm{H}_{2}(\mathrm{X} ; \mathbb{Z})$ is a torsion free group (see Narasimhan [9], [10]).

Lemma 3.2. Assume that $H_{1}(X ; I)$ has a torsion. Then there is a finite unramified covering $\pi: \stackrel{\tilde{X}}{\longrightarrow} \mathrm{X}$ of X such that $\mathrm{H}_{1}(\tilde{\mathrm{X}} ; \bar{l})$ is free.

Proof. Since X is Stein, we have $H^{1}\left(X, 0^{*}\right) \cong H^{2}(X ; Z) \cong H_{2}(X ; Z) \oplus$ Tor $H_{1}(X ; \mathbb{Z})$ (the universal coefficient theorem). Then, there is a line bundle L on X with $L^{\otimes m}=1$ for some $m>1(m \in \mathbb{I})$. Let $\mathrm{s} \neq 0$ be a non-zero section of $L^{\otimes m}=1$. Then we put $\tilde{\mathrm{X}}:=\mathrm{R}\left({ }^{\mathrm{n}} \sqrt{8}\right)$ (the Riemann domain over X). Then $\tilde{\mathrm{X}}$ is a n-fold section of L, which is desired.
q.e.d.

Let V be the fiber product of $\mathbb{C} \times \mathbf{C}^{*}$ and $\tilde{\mathrm{X}}$ over X . Then we have a commutative diagramm:

where π^{\prime}, f^{\prime} are the natural projections. Since $\pi: \tilde{\mathrm{X}} \longrightarrow \mathrm{X}$ is a finite unramified covering, so is $\boldsymbol{\pi}^{\prime}: \mathrm{V} \longrightarrow \mathbb{C} \times \mathbb{C}^{*}$. Then we have $\mathrm{V} \cong \mathbb{C} \times \mathbb{C}^{*}$ by Lemma 3.3 below.

Lemma 3.3. Let $\mathbf{v}:=\left\{\mathbf{v}_{1}, \ldots, v_{\mathbf{k}}\right\}(\mathbf{k} \geq 0)$ be a set of \mathbf{k} points in $\mathbf{C} \times \mathbf{C}^{*}$, where $\mathbf{v}=\phi$ if $\mathbf{k}=0$. Let $\varphi^{\prime}: \mathbf{M}^{\prime} \longrightarrow \mathbb{C} \times \mathbb{C}^{*}-\mathbf{v}$ is a finite unramified algebraic covering. Then there is a finite unramified algebraic covering $\varphi: \mathbb{C} \times \mathbb{C}^{*} \longrightarrow \mathbb{C} \times \mathbb{C}^{*}$ such that $\mathbf{M}^{\prime} \cong \mathbb{C} \times \mathbb{C}^{*}-\varphi^{-1}(\mathbf{v})$. In particular, if $\mathbf{k}=0$, then $\mathbf{M}^{\prime} \cong \mathbb{C} \times \mathbb{C}^{*}$.

Proof. M^{\prime} can be imbedded in a normal (affine) surface M such that φ^{\prime} extends to a proper morphism $\varphi: \mathbf{M} \longrightarrow \mathbf{C} \times \mathbb{C}^{*}$. Since $\mathbb{C} \times \mathbb{C}^{*}$ is smooth and φ^{\prime} is unramified, M is smooth, and thus, $\varphi: M \longrightarrow \mathbb{C} \times \mathbb{C}^{*}$ is also unramified. Now, since $\pi_{1}\left(\mathbb{C} \times \mathbb{C}^{*}\right) \cong \mathbb{Z}$, we have $\pi_{1}\left(\mathbb{C} \times \mathbb{C}^{*}\right) / \pi_{1}(\mathbb{M}) \cong \mathbb{Z}_{\mathrm{m}}$ for some $\mathrm{m}>1(\mathrm{~m} \in \mathbb{Z})$. Thus $\varphi: \mathbf{M} \longrightarrow \mathbb{C} \times \mathbb{C}^{*} \quad$ is equivalent to a covering $\phi: \mathbb{C} \times \mathbb{C}^{*} \longrightarrow \mathbb{C} \times \mathbb{C}^{*} \quad$ with $\phi(\mathrm{z}, \mathrm{w})=\left(\mathrm{z}, \mathrm{w}^{\mathrm{m}}\right)$, where (z, w) is a coordinate system of $\mathbb{C} \times \mathbb{C}^{*}$.
q.e.d.

Definition 3.4. We call the normal affine surface \tilde{X} the torsion free reduction of X.

§ 4. Proof of Theorem (Non-singular case)

Assume that X is non-dingular. Since $f: C \times \mathbb{C}^{*} \longrightarrow X$ is proper finite, we have $b_{i}(X) \leq b_{i}\left(\mathbb{C} \times \mathbb{C}^{*}\right)$ for $i \geq 1$ (c.f. Theorem (2.1) in Fujita [1]). Thus we have two cases:
(i) $b_{i}(X)=0$ for $i>0$,
(ii) $b_{1}(\mathrm{X})=1, \mathrm{~b}_{\mathrm{i}}(\mathrm{X})=0$ for $\mathrm{i}>1$.

Since X is Stein, we have $\mathrm{H}_{\mathrm{i}}(\mathrm{X} ; \mathbb{Z})=0$ for $\mathrm{i} \geq 2$ in any case.

Let (S,C) be the minimal normal completion of X . By Lemma 3.1, C is one of the type from (α) to (ε) in Table I. If $\mathrm{H}_{1}(\mathrm{X} ; \mathbb{Z})$ is free, then, by Proposition 2.1 and Proposition 2.2, we have $\mathrm{X} \cong \mathbb{C}^{2}$ or $\mathbb{C} \times \mathbf{C}^{*}$.

Lemma 4.1. $\mathrm{H}_{1}(\mathrm{X} ; \bar{I})$ has no torsion.

Proof. If $H_{1}(X ; \Pi)$ has a torsion, then we take the torsion free reduction $\pi: \tilde{\mathrm{X}} \longrightarrow \mathrm{X}$. Then there is a proper morphism $\mathrm{f}^{\prime}: \mathbb{C} \times \mathbb{C}^{*} \longrightarrow \tilde{\mathrm{X}}$ (see (3.1)). Since $\mathrm{H}_{1}(\tilde{\mathrm{X}} ; \mathbb{Z})$ is free, we have $\tilde{\mathrm{X}} \cong \mathbb{C}^{2}$ or $\mathbb{C} \times \mathbb{C}^{*}$. In the case of $\tilde{\mathrm{X}}=\mathbb{C}^{2}$, since $1=\chi\left(\mathbb{C}^{2}\right)=(\operatorname{deg} \pi) \cdot \chi(\mathrm{X})$, we have $\operatorname{deg} \pi=1$, namely, $\tilde{\mathrm{X}} \cong \mathrm{X}$. In the case of $\mathbf{X} \cong \mathbb{C} \times \mathbb{C}^{*}$, by the same argument as in Proposition 1.2, we can see that the dual graph $\Gamma(C)$ looks like F. 2 or F.14. If the dual graph looks like F.2, then one can easily see that $\bar{\kappa}(\mathrm{X})=1$. On the other hand, since $\pi: \tilde{\mathrm{X}} \longrightarrow \mathrm{X}$ is a finite unramified covering, we
have $-\mathbb{\Phi}=\bar{\kappa}\left(\mathbb{C} \times \mathbb{C}^{*}\right)=\bar{\kappa}(\mathbb{X})=\bar{\kappa}(X) \quad$ (c.f. Iitaka [6]). This is a contradiction. Thus the dual graph must be F.14. Hence $X=S \backslash C=\mathbb{C} \times \mathbb{C}^{*}$. Therefore $H_{1}(X ; \mathbb{Z})$ has no torsion.
q.e.d.

This completes the proof of the non-singular case.

§ 5. Proof of Theorem (Singular case)

Let $x=\left\{x_{1}, \ldots, x_{I}\right\}$ be the singular points of X, and \bar{U}_{j} be a small closed contractible neighborhood of x_{j} such that $\overline{\mathrm{U}}_{\mathrm{j}} \mid \mathrm{x}_{\mathrm{j}} \approx \partial \mathrm{U}_{\mathrm{j}}$ (deformation retract) and $\bar{U}_{j} \cap \bar{U}_{k}=\phi(j \neq k)$, where ∂U_{j} is the boundary of U_{j}. Take a point $\nabla_{j} \in f^{-1}\left(x_{j}\right)$. Since $f: \mathbb{C} \times \mathbb{C}^{*} \longrightarrow X$ is a proper finite mapping, there is a small ball Δ_{j} with center v_{j} in $\mathbb{C} \times \mathbb{C}^{*}$ such that $f \mid \Delta_{j}: \Delta_{j} \longrightarrow U_{j}$ is a proper finite mapping with $\Delta_{j} \cap f^{-1}\left(x_{j}\right)=\left\{v_{j}\right\}$. Since $\pi_{1}\left(\Delta_{j} \mid v_{j}\right)=1$ and $\operatorname{deg} f \mid \Delta_{j}<+\infty, \pi_{1}\left(\bar{U}_{j} \mid x_{j}\right)=\pi_{1}\left(\partial U_{j}\right)$ is a finite group.

Thus we have

Lemma 5.1 Each x_{j} is a quotient singularity.

Now, let K be a subgroup of $\pi_{1}(X \backslash x)$ of finite index and $\sigma^{\prime}: Y^{\prime} \longrightarrow X \backslash x$ be a finite covering associated with the subgroup K. Then the finite quotient group $\mathrm{G}:=\pi(\mathrm{X} \backslash \mathrm{x}) / \mathrm{K}$ acts on Y^{\prime} freely. Let Z^{\prime} be the fiber product of $\mathbf{C} \times \mathbf{C}^{*}-\mathrm{v}$ and Y^{\prime} over $X \backslash x$, where $v:=f^{-1}(x)$. Then we have a commutative diagram:

where $\boldsymbol{\tau}^{\prime}, g^{\prime}$ are the natural projections. One can easily, show that $\tau^{\prime}: \mathbb{Z}^{\prime} \longrightarrow \mathbb{C} \times \mathbb{C}^{*}-\mathbf{v}$ is a finite unramified covering. Then Z^{\prime} (resp. Y^{\prime}) can be im-
bedded in a normal affine surface Z (resp. Y) such that r^{\prime} (resp. σ^{\prime}) extends to a proper morphism $\tau: \mathbf{Z} \longrightarrow \mathbb{C} \times \mathbb{C}^{*}$ (resp. $\sigma: Y \longrightarrow \mathrm{X}$), since $\mathbb{C} \times \mathbb{C}^{\boldsymbol{*}}, \mathrm{X}$ are normal and f, σ^{\prime} are proper morphisms. Further, the morphism $g^{\prime}: Z^{\prime} \longrightarrow Y^{\prime}$ also extends to a proper morphism $\mathrm{g}: \mathrm{Z} \longrightarrow \mathrm{Y}$. Thus we have a commutative diagram:

In particular, G can be extended to algebraic automorphisms of Y (with isolated fixed points). Thus we have

Lemma 5.2. $\mathrm{X} \cong \mathrm{Y} / \mathrm{G}$.

Next, since $\tau: Z-\tau^{-1}(\nabla) \longrightarrow \mathbb{C} \times \mathbb{C}^{*}-\mathbf{v}$ is a finite unramified covering, by Lemma 3.3, we have

Lemma 5.3. $\mathrm{Z} \cong \mathbb{C} \times \mathbb{C}^{*}$.

We put $\mathrm{y}:=\sigma^{-1}(x)$ and $\mathrm{z}=\mathrm{g}^{-1}(\mathrm{y})$. Then we have $\mathrm{Y} \backslash \mathrm{y}=\mathrm{Y}^{\prime}$. Since $\pi_{1}(Z \backslash z)=\pi_{1}\left(\mathbb{C} \times \mathbb{C}^{*}-\mathrm{z}\right) \cong \mathbb{Z}$, the image $\operatorname{Im}\left(\pi_{1}(\mathrm{Z} \backslash \mathrm{z}) \longrightarrow \pi_{1}(Y \backslash y)\right.$ is isomorphic to $\eta_{m}(m \in \mathbb{N} U\{0\})$. Since $\operatorname{Im}\left(\pi_{1}(Z \backslash z)\right.$ is a subgroup of $\pi_{1}(Y \backslash y)$ of finite index (c.f. Theorem (2.12) in Fujita [1]), $\pi_{1}(Y \backslash y)$ is a finite subgroup if $m \neq 0$.

Taking a finite covering associated with the subgroup $\operatorname{Im}\left(\pi_{1}\left(\mathbb{C} \times \mathbb{C}^{*} \backslash \mathbf{z}\right)\right.$) (or taking the universal covering if $\pi_{1}(Y \backslash y)$ is a finite group) if necessary, we may assume
that $\pi_{1}(Y \backslash y)=1$ or $I I$. Further, taking the torsion free reduction of Y if necessary, we may assume that $H_{1}(Y ; \mathbb{I})$ is free.

Thus we have

Lemma 5.4. $\pi_{1}(Y \backslash y)=1$ or \mathbb{I}, and $H_{1}(Y ; \mathbb{I})$ is free.

Let W be a contractible neighborhood of y in Y with $W \backslash y \approx \partial W$ (deformation retract), where $\partial \mathrm{W}$ is the boundary of W . Then we have an exact sequence over II :

$$
\begin{equation*}
\longrightarrow \mathrm{H}_{\mathrm{i}}(\partial \mathrm{~W}) \longrightarrow \mathrm{H}_{\mathrm{i}}(\mathrm{Y} \backslash \mathrm{y}) \oplus \mathrm{H}_{\mathrm{i}}(\mathrm{~W}) \longrightarrow \mathrm{H}_{\mathrm{i}}(\mathrm{Y}) \longrightarrow \mathrm{H}_{\mathrm{i}-1}(\partial \mathrm{~W}) \longrightarrow . \tag{5.3}
\end{equation*}
$$

We know that $\mathrm{y}=\sigma^{-1}(x)$ consists of at worst quotient singularities (c.f. Lemma 5.1). Thus, both $\pi_{1}(\partial \mathrm{~W})$ and $\mathrm{H}_{1}(\partial \mathrm{~W} ; I)$ are finite groups.

On the other hand, since $g: \mathbb{C} \times \mathbb{C}^{*}-z \longrightarrow Y-y$ is proper finite, we have $b_{i}(Y \backslash y) \leq b_{i}\left(\mathbb{C} \times \mathbb{C}^{*}-z\right) \quad$ namely, $b_{1}(Y \backslash y) \leq 1$ and $b_{2}(Y \backslash y)=0$. Thus by Lemma 5.3 and (5.3) above, we have

Lemma 5.5.

(a) $\quad \pi_{1}(Y \backslash y)=1 \Leftrightarrow \quad H_{i}(Y ; I)=0(i>0), H_{2}(Y \backslash y ; \mathbb{Z})=0$,

$$
\mathrm{H}_{1}(\partial \mathrm{~W} ; l)=0
$$

(b) $\quad \pi_{1}(Y \backslash \bar{Y})=\mathbb{Z} \Leftrightarrow \quad H_{1}(Y ; \mathbb{Z})=\mathbb{Z}$,
$\mathrm{H}_{\mathrm{i}}(\mathrm{Y} ; I)=0 \quad(\mathrm{i}>1)$,
$\mathbf{H}_{2}(Y \mid y ; Z)=0$,
$H_{1}(\partial W ; I I)=0$.

Since $\pi_{1}(\partial \mathrm{~W})$ is a finite group and $\mathrm{H}_{1}(\partial \mathrm{~W} ; \Pi)=0$, we have

Corollary 5.6 The set $\mathrm{y}=\sigma^{-1}(x)$ consists of at worst rational double points of E_{8} - type.

Let (S, C) be the minimal normal completion of X such that S is smooth in a neighborhood of $\mathrm{C}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{C}_{\mathrm{i}}$ (see §3). By Lemma 3.1, C is one of the type from (α) to (ε).

Let $\nu: \hat{S} \longrightarrow S$ be the minimal resolution of S and put $\nu^{-1}(y)=E=\bigcup_{j=1}^{m} E_{j}$, where $\mathrm{y}=\sigma^{-1}(x) \longrightarrow \mathrm{X} \longrightarrow \mathrm{S}$. By Corollary 5.6 , one can define a canonical divisor K_{S} on S , and further, we have

Lemma 5.7. Supp $\mathrm{K}_{\hat{\mathbf{S}}} \cap \mathrm{E}=\phi, \mathrm{K}_{\hat{\mathbf{S}}} \cong \mathrm{K}_{\mathrm{S}}$.

Proof. We have $K_{\widehat{S}}=\nu^{*} K_{S}+\Sigma n_{j} E_{j}\left(n_{j} \in \mathbb{Z}\right)$. Since each E_{j} is (-2)- curve and the intersection matrix $\left(\left(\mathrm{E}_{\mathrm{i}} \cdot \mathrm{E}_{\mathrm{j}}\right)\right.$) is negative definite, we have all $\mathrm{n}_{\mathrm{j}}=0$.
q.e.d.

Let us consider an exact sequence over \mathbb{Z} :

$$
\begin{gather*}
\longrightarrow H^{i}(\hat{S}, C \cup E) \longrightarrow H^{i}(\hat{S}) \longrightarrow H^{i}(C \cup E) \longrightarrow H^{i+1}(\hat{S}, C \cup E) \longrightarrow \\
\int||r| r y) \\
H_{4-i}(Y \backslash y)
\end{gather*}
$$

By Lemma 5.5, we have

$$
\begin{equation*}
0 \longrightarrow \mathrm{H}^{2}(\hat{\mathrm{~S}} ; \mathbb{Z}) \longrightarrow \mathrm{H}^{2}(\mathrm{C} \cup \mathrm{E} ; \mathbb{Z}) \longrightarrow \mathrm{H}_{1}(\mathrm{Y} \backslash \mathrm{y}) \longrightarrow 0 \tag{5.5}
\end{equation*}
$$

Indeed, by (5.4), we have $b_{3}(\hat{S}) \leq b_{1}(Y \backslash y) \leq 1$. Since \hat{S} is projective, we have $0=\mathrm{b}_{3}(\hat{\mathrm{~S}})=\mathrm{b}_{1}(\hat{\mathrm{~S}})=\mathrm{b}_{1}(\mathrm{C})=\mathrm{q}(\hat{\mathrm{S}})$. By (5.5) and Lemma 5.6, we have

$$
\begin{equation*}
K_{S}=\sum_{i=1}^{n} \lambda_{i} C_{i} \quad\left(\lambda_{i} \in I\right) \tag{i}
\end{equation*}
$$

(ii) ${ }_{a} \quad \operatorname{det}\left(\left(C_{i} \cdot C_{j}\right)\right) \neq 0$ if $\pi_{1}(Y \backslash \mathrm{y})=1$,
(ii) ${ }_{b} \quad \operatorname{det}\left(\left(C_{i} \cdot C_{j}\right)\right)=0$ if $\pi_{1}(Y \backslash y) \cong \mathbb{I}$.

Since $b^{+}(\hat{S})=2 P_{g}(\hat{S})+1 \geq 1$ and $\left(\left(E_{i} \cdot E_{j}\right)\right)$ is negative definite, we have
(iii) $\quad\left(\left(\mathrm{C}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{j}}\right)\right)$ is not negative semi-definite.

By the Noether formula, we have
(iv) ${ }_{a} \quad 12 P_{g}(\hat{S})=K_{\hat{S}}^{2}+b_{2}(C)+8 t-10$ if $\pi_{1}(Y \backslash y)=1$,
(iv) ${ }_{b} \quad 12 \mathrm{P}_{\mathrm{g}}(\hat{\mathrm{S}})=\mathrm{K}_{\hat{\mathrm{S}}}^{2}+\mathrm{b}_{2}(\mathrm{C})+8 \mathrm{t}-11$, if $\pi_{1}(\mathrm{Y} / \mathrm{y}) \cong \mathbb{Z}$,
where $t(\geq 0)$ is the number of singularities of E_{8}-type in Y.

Let $\partial \mathrm{T}$ be the boundary of a small tubular neighborhood T of C in $\hat{\mathrm{S}}$. Replacing, in the diagram (2.2), C, S by $\mathrm{C} \cup \mathrm{E}, \hat{\mathrm{S}}$, respectively, we have

$$
(\mathrm{v})_{\mathrm{a}} \quad \mathrm{H}_{1}(\partial \mathrm{~T} ; \Pi \bar{l})=0 \text { if } \pi_{1}(\mathrm{Y} \backslash \mathrm{y})=1
$$

since $\mathrm{H}_{2}(\mathrm{Y} \backslash \mathrm{y} ; \mathbb{Z})=0$.

Proposition 5.8. $\mathrm{Y} \cong \mathbb{C}^{2}$ or $\mathbb{C} \times \mathbb{C}^{*}$.

Proof. We have only to prove the smoothness of Y (see (5.2), Lemma 5.3, Lemma 5.5). By Lemma 5.5, we have two cases (a) and (b). First, let us consider the case (a). We have then (i), (ii) ${ }_{a}$, (iii), (iv) ${ }_{a},(v)_{a}$ above. By the same argument as in Proposition 2.1, we have the dual graph $\Gamma(C)$ which looks like F. 10 (with $12 \mathrm{P}_{\mathrm{g}}(\hat{\mathrm{S}})=8(\mathrm{t}-1)$), and F. 13 (with $12 \mathrm{P}_{\mathrm{g}}(\hat{\mathrm{S}})=8 \mathrm{t}$). Looking at the order of $\mathrm{K}_{\hat{\mathrm{S}}}=\mathrm{K}_{\mathrm{S}}$ in these graphs, one can easily see that $P_{m}(\hat{S})=P_{m}(S)=0$ for $m>0$. Thus, if $\Gamma(C)$ looks like F.13, then we have $t=0$, namely, Y is smooth. If $\Gamma(C)$ looks like F.10, then we have $t=1$, namely, Sing Y consists of exactly one rational double point of E_{8}-type. Gur-jar-Shastri [p. 481-482,5] proved, in this situation, that $\pi_{1}(Y \backslash y) \neq 1$. Therefore Y must be smooth if $\pi_{1}(Y \backslash y)=1$.

Next, let us consider the case (b). We have then (i), (ii) ${ }_{b}$, (iii), (iv) ${ }_{b}$. By the same argument as in Proposition 2.2, we have the dual graph $\Gamma(\mathrm{C})$ which looks like F .2 (with $12 \mathrm{P}_{\mathrm{g}}(\hat{\mathrm{S}})=\mathrm{m}+8 \mathrm{t}$), F. 14 (with $12 \mathrm{P}_{\mathrm{g}}(\hat{\mathrm{S}})=8 \mathrm{t}$). Looking at these dual graphs (and Fig. 20), one can set that $\hat{\mathrm{S}}$ has a structure of a ruled surface over a non-singular rational curve (c.f. Suzuki [p. 459,12]). Thus we have $P_{g}(\hat{S})=0$. If $\mathrm{F}(\mathrm{C})$ looks like F.14, then $t=0$, namely Y is smooth. If $\Gamma(C)$ looks like $F .2$, then we have $\bar{\kappa}(Y)=1$ (c.f. [6]). On the other hand, since $\mathbf{g}: \mathbf{Z} \cong \mathbb{C} \times \mathbb{C}^{*} \longrightarrow \mathrm{Y}$ is proper finite morphism, we have $\bar{\kappa}(\mathrm{Y}) \leq \bar{\kappa}\left(\mathbb{C} \times \mathbb{C}^{*}\right)=-\infty$. This is a contradiction. Therefore \mathbf{Y} is smooth if $\pi_{1}(Y \backslash y) \cong \mathbb{Z}$.
q.e.d.

By Lemma 5.2, we have

Corollary 5.9. $X \cong \mathbb{C}^{2} / G_{a}$ or $\mathbb{C} \times \mathbb{C}^{*} / G_{b}$, where G_{a} (resp. G_{b}) is a small finite subgroup of $\operatorname{Aut}\left(\mathbb{C}^{*}\right)\left(\operatorname{resp} . \operatorname{Aut}\left(\mathbb{C} \times \mathbb{C}^{*}\right)\right)$.

Lemma 5.10 (Miyanishi [7], Furushima [3]). For a finite subgroup of $\operatorname{Aut}\left(\mathbb{C}^{2}\right)$, there is an automorphism $\quad \alpha=\alpha_{G} \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ such that $\alpha \circ \mathrm{G} \circ \alpha^{-1}:=\left\{\alpha \circ \mathrm{g} \circ \alpha^{-1} ; \mathrm{G} \in \mathrm{G}\right\} \mathrm{C} \mathrm{GL}(2, \mathbb{C})$.

Let $g(z, w)=\left(g_{1}(z, w), g_{2}(z, w)\right)$ be an algebraic automorphism of $\mathbb{C} \times \mathbf{C}^{*}$, where (z, w) is a coordinate system of $\mathbb{C} \times \mathbb{C}^{*}$, and $g_{j}(z, w)(j=1,2)$ is a regular rational function on $\mathbb{C} \times \mathbb{C}^{*}$.

Let $\pi: \mathbb{C} \times \mathbb{C}^{*} \longrightarrow \mathbb{C}^{*}$ be the natural projection. For a point $w \in \mathbb{C}^{*}$, the restriction $\pi \mid g\left(\pi^{-1}(w)\right): g\left(\pi^{-1}(w) \cong \mathbb{C} \longrightarrow \mathbb{C}^{*}\right.$ is a non-zero regular rational function. Hence it must be non-zero constant. Thus we have $g\left(\pi^{-1}(w)\right)=\pi^{-1}\left(w^{\prime}\right)$ for some $w^{\prime} \in \mathbb{C}^{*}$.

Therefore g induces an automorphism $\mu_{\mathrm{g}} \in \operatorname{Aut}\left(\mathbb{C}^{*}\right)$ such that $\mu_{\mathrm{g}} \circ \pi=\pi \circ \mathrm{g}$, hence, $g_{2}(\mathrm{z}, \mathrm{w})=\mu_{\mathrm{g}}(\mathrm{w})$. Since $\left|\frac{\partial\left(\mathrm{g}_{1}, \mathrm{~g}_{2}\right)}{\partial(\mathrm{z}, \mathrm{w})}\right| \neq 0$ on $\mathbb{C} \times \mathbb{C}^{*}$, we have
$g_{1}(z, w)=P_{g}(w) \cdot z+Q_{g}(w)$, where $P_{g}(w), Q_{g}(w)$ are rational functions of w.

Now, since $\mu_{\mathrm{g}}(\mathrm{w})=\mathrm{a}_{\mathrm{g}} \cdot \mathrm{w}$, or $\frac{{ }^{\mathbf{a}} \mathrm{g}}{\mathbf{w}}\left(\mathrm{a}_{\mathrm{g}} \in \mathbb{C}^{*}\right)$, the set $\mathrm{F}\left(\mu_{\mathrm{g}}\right)$ of fixed points of μ_{g} consists of two points if $\mathrm{F}\left(\mu_{\mathrm{g}}\right) \neq \phi$. Since any automorphism $\mathrm{h} \neq$ id of \mathbb{C} has at most one fixed point, the number of fixed points of g is equal to two.

Thus we have

Lemma 5.11. $G_{b} \subset \operatorname{Aut}\left(\mathbb{C} \times \mathbb{C}^{*}\right)$ has exactly two (isolated) fixed points on $\mathbb{C} \times \mathbb{C}^{*}$.

By Corollary 5.9, Lemma 5.10, Lemma 5.11, we complete the proof of Theorem.

Remark. Similarly, one can also prove that a normal affine surfaces properly dominated by $\left(\mathbb{C}^{*}\right)^{2}$ is isomorphic to either $\mathbb{C}^{2}, \mathbb{C} \times \mathbb{C}^{*},\left(\mathbb{C}^{*}\right)^{2}$ or \mathbb{C}^{2} / G_{a}, $\mathbb{C} \times \mathbb{C}^{*} / \mathrm{G}_{\mathrm{b}}, \quad\left(\mathbb{C}^{*}\right)^{2} / \mathrm{G}_{\mathrm{c}}$ for a small finite subgroup $\mathrm{G}_{\mathrm{a}}, \mathrm{G}_{\mathrm{b}}, \quad \mathrm{G}_{\mathrm{c}}$ of $\mathrm{GL}(2, \mathbb{C})$, $\operatorname{Aut}\left(\mathbb{C} \times \mathbb{C}^{*}\right), \operatorname{Aut}\left(\mathbb{C}^{*}\right)^{2}$, respectively. The details will be discussed elsewhere.

REFERENCES

[1] Fujita, T.: On the topology of non-complete algebraic surfaces. J. Fac. Sci. Univ. Tokyo Ser. 1A (Math.) 24, 503-566 (1982)
[2] Furushima, M.: Finite groups of polynomial automorphisms in the complex affine plane (I). Mem. Fac. Sci. Kyushu Univ. 36, 85-105 (1982)
[3] Furushima, M.: Finite groups of polynomial automorphisms in $\mathbb{C}^{\mathbf{n}}$. Tohoku Math. J. 35, 415-424 (1983)
[4] Furushima, M.: Complex surfaces properly dominated by \mathbb{C}^{2}. Kumamoto J. Sci. (Math.) 17, 9-25 (1986)
[5] Gurjar, R.V., Shastri, A.R.: The fundamental group at infinity of affine surfaces. Comment. Math. Helv. 59, 459-484 (1984)
[6] Iitaka, S.: Algebraic Geometry. An introduction to Birational Geometry of Algebraic Varieties. Graduate Texts in Math. 76, New York, Heidelberg, Berlin: Springer 1982
[7] Miyanishi, M.: Lectures on curves on rational and unirational surfaces. Tata Institute of Fundamental Research. Bombay, 1978. Berlin-Heidelberg-New York: Springer 1978
[8] Miyanishi, M: Normal affine subalgebras of a polynomial ring. Algebraic and Topological Theories - to the memory of Dr. Takehiko Miyata Tokyo, Kinokuniya: 37-51 (1985)
[9] Narasimhan, R.: A note on Stein spaces and their normalization. Ann. Scuola Norm. Sup. Pisa (3) 16, 327-333 (1962)
[10] Narasimhan, R.: On the homology groups of Stein spaces. Invent. math. 2, 377-385 (1966-1967)
[11] Nishino, T., Suzuki, M.: Sur les singularités essentielles et isolées des applications holomorphes à valeurs dans une surface complexe. Publ. Res. Inst. Math. Sci. Kyoto Univ. 16, 461-497 (1980)
[12] Suzuki, M.: Compactifications of $\mathbb{C} \times \mathbf{C}^{*},\left(\mathbb{C}^{*}\right)^{2}$. Tohoku Math. J. 30, 453-468 (1979)
F. 1

F. 3

F. 5

$2 \lambda+1$
F. 6

2λ

F. 13

F. 14

$\left(\lambda_{1}+\lambda_{2}=m-2\right)$
F. 15

$(k \geq 2)$

TABLE II

