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ABSTRACT. We investigate the notion of exact sequences of Hopf algebras. We as-
sociate to Hopf algebras A and B, and a data consisting of an action of B on A,
a cocycle, a coaction of A on B and a co-cocycle, a short exact sequences of Hopf
algebras 0 — A — C — B — 0. We define cleft short exact sequences of Hopf alge-
bras and prove that their isomorphy classes are in bijective correspondance with the
quotient set of datas as above such that the cocycle and the co-cocycle are invertible,
modulo a natural action of a subgroup of Reg(B, A).

§0. Introduction. This paper deals with extensions of Hopf algebras. By defini-
tion [D1] the category of quantum groups is the dual category to the category of
Hopf algebras with bijective antipode. For this reason we can work mainly in this
second category and all the results will translate to that of quantum groups in the
obvious way. (Some of the results below are true with weaker hypothesis about the
antipode). It helps our intuition, however, to keep in mind that a Hopf algebra is
the “ algebra of functions on a quantum group”.

Let us fix, for simplicity, a commutative field k and let us briefly say “Hopf
algebra” for Hopf algebra over k. We shall use the following notation: m, A (or §),
€,S mean respectively the multiplication, comultiplication, counit, antipode of a
Hopf algebra (or an algebra or a coalgebra), specified with a subscript if necessary.
The opposite multiplication or comultiplication are betokened by a superscript
“op”. We shall also use the following convention: if ¢ is an element of a tensor
product A ® B, then we write ¢ = ¢; ® ¢, omitting the summation symbol. An
exception is the case ¢ = A(x), where we use Sweedler's “sigma” notation but
dropping again the summatory. The usual transposition N @ N' - N' @ N is
denoted by T. If g : N® N - N @ N is a morphism of k-modules then ¢ :
N®™ _, N®™ has the usual meaning, for example ¢**t! = idyi-1 @¢ ® idym-i-1.
Our main reference for the general theory of Hopf algebras is [Sw].
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We consider sequences of morphisms of Hopf algebras of the following sort:
() k—A5CS Bk

We shall say that (C) is exact if

(1) ¢ is injective. Identify then A with its image.

(2) = is surjective.

(3) me=¢.

(4) kerm = CAT. (At is the augmentation ideal, i.e. the kernel of the counit).

(5) A={z e C:(n@id)A(z) =1®=z}.
A “categorical” justification for this definition can be found in Section 1. Indeed,
(4) implies that ¢ is conormal and (5), that 7 is normal (cf. Definitions 1.1.5 and
1.1.9). That is, this definition enjoys the duality inherent to the theory of Hopf
algebras. Clearly, given C and A there exists at most one B (up to isomorphisms)
making (C) commutative; and reciprocally, C and B determine A. In fact, given
a conormal injective morphism of Hopf algebras A = C, the unique possible B is
the "Hopf cokernel” C/C At. Now condition (5) above can be dropped if A — C is
faithfully flat. In such case, B completes the exact sequence. We do not know if any
inclusion of Hopf algebras is faithfully flat. A similar analysis proceeds for a normal,
surjective, morphism of Hopf algebras C - B; but the réle of the "faithfully flat”
requirement is played now by *faithfully coflat” (cf. Proposition 1.2.11).

These questions have already several antecedents in the literature. They were
study first in the setting of Hopf algebras graded by non-negative integers, such that
the 0 component is isomorphic to k. In this subcategory the case “A commutative,
B cocommutative”, was treated in [S] (see also [G]). The definition of extension
given in [S] is justified by a result from [MM]. In the general situation, a definition
of extensions of quantum groups was recently proposed in [PaW]. This definition
leds to undeterminacies, see [PaW, 6.3.3] and the Remark after Lemma 1.2.15
below. As stated above, our definition takes care of these problems. After receiving
the first version of this paper, S. Montgomery pointed out to the first author that
another definition of exact sequences is given in [Sch}, remedying the inconvenients
in [PaW)]. Essentially, the definition in [Sch] requires the axioms (1), ..., (§), but
in addition faithful flatness of ¢ (or equivalently, faithful coflatness of 7). See the
discussion after Lemma 1.2.15 below.

We wish to answer the following standard questions: given A and B, which addi-
tional data produce an exact sequence (C); reciprocally, when an exact sequence (C)
can be obtained in such way; how 1somorphisms of exact sequences are translated
in terms of such data.

Let us discuss the first question. The construction of an algebre C out from a
Hopf algebra B, an algebra A weakly acted upon by B and a “cocycle” B@ B — A
was undertaken in [BCM] and independently in [DT] (see also [Sw2]). With these
results at hand, our strategy is simple: first, to obtain a dual statement, i.e. to
show how to construct a cealgebra C out from a coalgebra B, a Hopf algebra A
weakly co-acting on B and a “co-cocycle” A — B ® B. Second, to analize whether
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the algebra and coalgebra structures on the vector space C = A @ B provided by
the Hopf algebras A, B and the four data (weak action, weak coaction, cocycle, co-
cocycle) give rise to a bialgebra, or more precisely to a Hopf algebra. We shall say
that the data is compatible, in the "bialgebra” case; we say that a compatible data is
Hopf if the corresponding bialgebra has an antipode. We obtain a complete answer
for the bialgebra question (see Theorem 2.20). These considerations are carried out
in Section 2. The existence of antipode is proved later, under additional hypothesis
(see Lemma 3.2.17).

The isomorphism problem is treated in Section 3. Again, we take profit of
what is known in the algebra case [D]; again, we obtain the coalgebra version and
then look for the Hopf algebra case. In 3.1, we define an action of the group of
invertible morphisms from B to A (with respect to the convolution product) which
preserve the unit and counit, on the sets of Hopf and compatible data. One has
an application from the quotient sets to isomorphism classes of extensions of Hopf
algebras, resp. bialgebras. We ignore if these applications are isomorphisms. In
the algebra case [D] this is so if one restricts, on one hand, to data with invertible
cocycle, and on the other to cleft extensions. An analogous result is true in the
coalgebra case. In 3.2, we define cleft extensions of Hopf algebras. In this setting,
we have complete answers to the problems stated above: any cleft extension of
Hopf algebras is isomorphic to one obtained from a data with invertible cocycle
and co-cocycle; the bialgebras constructed from data with invertible cocycle and
co-cocycle always have an antipode; and the corresponding quotient set classifies
cleft extensions up to isomorphisms.

At various key points (e.g. Lemmas 1.1.12, 1.2.6, 1.2.7), we have used solutions
of the Yang-Baxter equation found in {[W3]. Thanks to them, any Hopf algebra is
generalized commutative and generalized cocommutative. This remark, due to the
first author, is completely new and turned out to be very useful (see the Appendix).

ACKNOWLEDGEMENTS
We are grateful to A. Tiraboschi for helpful conversations, to 5. Montgomery for
several interesting remarks on the first version of this paper and to H.-J. Schneider
for kindly sending us his preprint [Sch]. The first author thanks also P. Slodowy
for encouragement.

§1. The category of quantum groups. This section is devoted to basic con-
structions in the category of quantum groups. Our aim is to give a definition of
exact sequences, and to prove that it is equivalent to the discussed in the Intro-
duction. We shall freely use the terminology and results of [McL], of common use
nowadays. To avoid confussions, all the categoric concepts we will work are thus in
the category of Hopf algebras, unless explicitly stated.

§1.1 Kernels. The first point we shall touch is the existence of Hopf kernels, or
more generally, of equalizers in the category of Hopf algebras. Let f,g : A — B
be two morphisms of Hopf algebras. Let us consider the following conditions on
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elements ¢ € A:

(1.1.0) (f @ 1d)A(z) = (¢ ® id)A(x)
(1.1.1) (1d®@fHA(z) = (id ®g)A(z)
(1.1.2) (d®f ®@id)(A ®id)A(s) = (id @9 @id)(A @ id)A(z).

If z satisfies (1.1.0), then f(z) = ¢(z). Indeed, as f is a morphism of Hopf algebras,
f(z) = (f ® €)A(z). The same is true if z satisfies (1.1.1) or (1.1.2). Clearly, the
product of elements satisfying one of these three conditions again does. Let

HEqual(f,¢) = {z € A : = satisfies (1.1.0),(1.1.1) and (1.1.2)}.
We shall also consider the algebras

LEqual(f,g) = {z € A : z satisfies (1.1.0)},
REqual(f,¢) = {z € A: z satisfies (1.1.1}}.

Lemma 1.1.3.
(1) S (LEqual(f,¢)) = REqual(f,¢) and S (REqual(f, ¢)) = LEqual(f,g).
(2) A(LEqual(f,9)) € LEqual(f,¢) ® A and A(REqual(f,g)) € A ®
REqual( f, ¢).
(3) HEqual(f,¢) is a Hopf subalgebra of A.
(4) HEqual(f, g) is the equalizer of f and g.

Proof. § and S™! are anticomultiplicative: this implies (1); (2) follows from the
coassociativity of A, cf. [Sw, Lemma 16.1.1]. (3) is easy to verify and the condition
(1.1.2) is included to guarantee that HEqual(f, g) is a subcoalgebra.

Let h : C — A be a morphism of Hopf algebras such that fh = gh; then the image
of h is contained in HEqual(f, ¢) because h is a morphism of Hopf algebras. O

The following is a generalization (and extension) of [BCM, Prop. 1.19].

Lemma 1.1.4. The following conditions are equivalent:
(1) LEqual(f,y) = HEqual(f, ¢).
(2) LEqual(f,yg) is a Hopf subalgebra of A.
(3) LEqual(f,y) = REqual(f,¢).
(4) REqual(f,g) is a Hopf subalgebra of A.
(5) REqual(f,¢) = HEqual(f,¢).

Proof. (1) == (2) is trivial; (2) = (3) and (3) = (4) follow from Lemma
1.1.3; (4) = (58) is a consequence of universality. Interchanging right by left, we
obtain the proof of (3) --- = ... (1). O

The base field k is a zero object in the category of Hopf algebras, 1. e. it is
initial (the unit 1 : k — A is the unique morphism of Hopf algebras with such
domain and codomain) and final (idem for the counit € : A — k). Thus, the zero
morphism between Hopf algebras A and B is 1ge4. As usual, the kernel HKer f of
a morphism of Hopf algebras is merely the equalizer of it and the zero morphism.
Similarly, we have the notions of RIer, LI{er.
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Remark. The notions of left and right Hopf kernels (sets of elements satisfying
(1.1.0) or (1.1.1)) appear at least in [Sw], [BCM]. The condition (1.1.2) was signaled
to the first author by B. Enriquez in the course of discussions about [L, 9.2]. The
notion of Hopf kernel also appears in [Sch], as was communicated to us by S.
Montgomery after reading the first version of this paper.

Definition 1.1.5. A morphism of Hopf algebras f : A — B is normal if the pair
f, g = 1ge 4 satisfies the equivalent conditions of Lemma 1.1.4.

Example. We extend an example from [BCM]. Let G be a finite group, H — G
a subgroup, A (resp. B) the algebra of functions on G (resp. H)and R: A — B
the restriction morphism. Then it is easy to see that

LKer(R) = {f € A : f is constant on the left coset Hz, Vz € G},
RKer(R) = {f € A: f is constant on the right coset H, Vz € G},
HKer(R) = {f € A : f is constant on the left-right coset zHy, Vz,y € G}.

It is then clear that R is a normal morphism if and only if H is a normal subgroup

of G.

The category of Hopf algebras is, not abelian but, as in the case of groups, we
still have relations between kernels and monomorplhisms.

Lemma 1.1.6. Let h: A — B be a morphismn of Hopf algebras.
(1) If h is injective, then HKer h = k and h is normal.
(i) HKer h = k if and only if h is a monomorphism of Hopf algebras.

Proof. The first claim is clear: as I is injective, (h ® id)A(z) = 1 ® z implies
A(z) = 1@ z and therefore z € k. That is, HKer h = LKer h = k.

Assume that HKer i = k and let f,g : C — A be morphisms of Hopf algebras
such that Af = hg. We want to conclude that then f = ¢g. We need for this to use
the algebra structure on homy(C, A) [Sw]; explicitly

(f * g)(c) = fleqy)gleay)-

As f is a morphism of Hopf algebras, it is invertible in this algebra and, in fact,
f7! = fSc [Sw, 4.0.4). Then h(f~! % g) = eclp and then there exists j : C —
HKer h such that f~! % ¢ = +j, where ¢ is the inclusion HKer h — A. Thus f = 4.

Conversely, if /i 1s a monomorphism, as . = he, it follows that ¢ggern,a = € and

hence HKerh =k. O

In [PaW] another definition of normality (in the category of quantum groups)
is proposed (see also [Sch]). We shall see that their definition implies our ”conor-
mality” and that both definitions agree under faithful coflatness requirements. The
next Lemma is the dual version of the first of the preceding statements.

A quotient Hopf algebra of a Hopf algebra is a quotient vector space provided
with a Hopf algebra structure such that the projection is a morphism of Hopf
algebras. We shall say that a quotient Hopf algebra is normal if the projection is.



6 NICOLAS ANDRUSKIEWITSCH & JORGE DEVOTO

Lemma 1.1.7. Let 7 : C' — B be a projection of Hopf algebras. Suppose that B is
a right C-quotient comodule for the right adjoint coaction ad(c) = ¢(2) @S (be(y))e(sy.
Then B is a normal quotient Hopf algebra of C.

Proof. The hypothesis reads: if n(c) = 0, then 7(cz)) ® S(¢ay)em)y = 0. Let
¢ € RKerm; then 7m(c(z)) ® S(cqy)ei) = e(c). Now w(c)) @ ¢zy = m(c@y) @
c(1)S(ce2))ey = 1 @ cqye(c(zy) because of Lemma 1.1.3 (2). That is, RKerm C
LKern. By Lemma 1.1.3 (1) we get the equality. O

The definitions of coequalizers and cokernels are rather easy: if f,g: A — B are
two morphisms of Hopf algebras, let J denote the set of the all the elements of the
form f(z) — g(z), * € A. Then the quotient of B by the two-sided ideal generated
by J is the corresponding coequalizer, denoted HCoeq( f,g). It is also useful to
consider also the quotients

LCoeq(f,9) = B/BJ,  RCoeu(f,y) = B/JB,

which are actually quotient coalgebras of B. Indeed, to see that BJ, JB, BJB are
actually coideals of B, one uses a standard trick:

A(f(z) —g(z)) = {f(f“(l)) - U(fﬂ(l))] ® f(-’ﬂ(z)) + 5’(37(1)) ® [f(m(z)) - 9(33(2))]-

Lemma 1.1.8. The following statements are equivalent:

(1) BJ = BJB.

(2) BJ is a two-sided ideal.
(3) BJ = JB.

(4) JB is a two-sided ideal.
(5) JB=BJB.

Proof. (1) = (2) and (3) = (4) == (5) are obvious. (2) = (3) because
JB=S8(BJ). O

Taking as ¢ the zero morphism of Hopf algebras, we have the definitions of Hopf,
left and right cokernels. Observe that the set J in the above definitions specializes
in this case to f(A"), where AT = {x € A : g(x) = 0} is the augmentation ideal of
A.

Definition 1.1.9. We shall say that a morphism f : A — B of Hopf algebras is
conormel if HCoker f = LCoker f.

Remark. The preceding definition is known; it appears e. g. in [Sch3].

Example. Let us denote k(X) the group-like coalgebra on the set X [Sw, p. 6]. Let
us consider a morphism of groups ¢ : G — H and extend it to the group algebras
A = k(G), B = k(H). In this case RCoker(¢) = k(Im(¢)\H), LCoker(¢) =
k(H/Im(¢)) and HCoker(¢) = k{Im(¢)\ B/ Im(¢)}.
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Lemma 1.1.10. Let I : A — B be a morphism of Hopf algebras.
(i) If h is surjective, then HCoker h = k and h is conormal.
(ii) HCoker h = k if and only if h is an epimorphism of Hopf algebras.

Proof. Tt 1s obvious that & surjective implies HCoker h = k. Now the following
formula:
bh(a) = byh(a)Shzybe)

implies the conormality of /.

The proof of the second statement is similar to that of 1.1.6. Indeed, if f,¢ :
B — C are Hopf algebra morphisms such that fi = gh then (f ™1 *g)h = €l¢; thus
f~! * g factorizes through HCoker h. Conversely, if k is an epimorphism then the
projection B — HCoker I equals the zero morphism and hence HCokerh = k. [

The following Lemma is the dual analogue of Lemma 1.1.7 and relates our defi-
nition of conormality with [PaW, 1.5).

We shall say that a Hopf subalgebra is conormal if the inclusion is. Let Ad be
the well-known right adjoint action of A4; one has

w Ad(v) = S(v(y)uv(g)-

Lemma 1.1.11. An Ad-stable Hopf subalgebra is conormal.
Proof. Suppose that A — B is Ad-stable. Then, for « € A*,b € B, one has
ab = byS(b(z))abey, i.e. BAT is a two-sided ideal. O

We finish this paragraph with further remarks. A variant of the following Lemma
is proved in [Sch, 1.3].

Lemma 1.1.12. (i) If . : A — B is normal, then HKerh «— A is conormal.
(ii) If h is conormal, then B — HCoker L is normal.

Proof. (i). We claim first that we always have
(1.1.13) (LKer h)t A = A(LKer 1)*.

It is not difficult to see that LKer . is Ad-stable [BCM]. Thus if z € LKer h and
a € A, we use
ax = ayrS(agey)ai) = ¢ Ad(aq) e

and e(z Ad a) = e(=)e(a) to prove (1.1.13). But now it is obvious that if A is normal,
then HKer h — A is conormal.
(i1). Let So: B® B — B ® B be the map

(1.1.14) So(b @ c) = ¢(2) ® bS(eqny)e(ay.-
We claim that there exists a map Sy making commutative the following diagram:

BeB > B®B

id@ﬂ"l ln’@id

B ® LCoker i —So LCoker h ® B.



8 NICOLAS ANDRUSKIEWITSCH & JORGE DEVOTO

For this, it suffices to check that

0= (id@m) (e ® S(eay)ey),  if ¢ = dh(a) € BJ.

But

(id ®7l') (d(g)h((l.(Q)) ® S(’L(a(l)))S((l(n)d(;;)h((l(;;)))
= deayh(a(2)) ® 7(8(d())d))e(a)yag))-

Next we claim that the following diagram commutes:

B —2 ., B@B M®, B®LCoeqh

| e

B -2 pgp =&, LCoeqh ® B.

We merely need to show that A = SyA but this is a routinary computation.
Now assume that h is conormal; and let b € LKer w, where 7 : B — HCoker h =
LCoker h is the projection. Then

(r @I)AD) =S(1RmM)AM) =S(HR1)=1Q 10
and hence B — HCoker I is normal. O

§1.2 Fzact sequences. We shall next be concerned with the "image” of a mor-
phism of Hopf algebras f : A — B. Observe first that f factorizes in the following
way:

HKer f —— A AN B —"— HCoker f

! |

HCoker(HKer f) —— HKer(HCoker f)

This is proved in two steps. First A(HKer f)T A C ker f because fi = ¢, and hence
f factorizes through HCoker(HKer f). Second, Im f C HKer(HCoker f) because
7f =¢.

Definition 1.2.0. We shall say that « morphism f: A — B has a Hopf image if
the canonical map HCoker(HKer f) — HKer(HCoker f) is an isomorphism, and in
such case we shall denote Hlm f = HKer(HCoker f) ~ HCoker(HKer f). Thus f

has a Hopf image if and only if the following two conditions hold:

(1.2.1) ker f C A(HKer f)* A
(1.2.2) HKer(HCoker f) C Im f.
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Now we are ready to define exact sequences. We shall say that the sequence of
morphisms of Hopf algebras

1s exact if

(1) f 1s conormal and has a Hopf inage,
(2) ¢ is normal and

(3) HIm f = HKerg.

As always, a sequence

fi fi+
A, — Ai+l —1> A,‘+g...

is exact if and only if each "piece” A; EiR Aiga iﬁ i+2 18,

Let us consider now a short sequence
(C) 0—-AS5C5S5B—-0
where 0 is of course the Hopf algebra k.

Proposition 1.2.3. The sequence (C) is exact if and only if the following condi-
tions hold

(1) ¢ is injective. Identify then A with its image.

(2) = is surjective.

(3) me=e¢.

(4) kerm = CAT.

5) A={zeC: (7 @id)A(z) =1Qz}.

Proof. Let us first assume that (C) is exact.

(1). The exactness of 0 — A -5 C is equivalent to "¢ is normal and HKer + = k”.

(i1). As ¢ has a Hopf image, by (1.2.1) kert = A(HKer:)*4 = 0 and hence ¢ is
injective.

(iii). The exactness of C - B — 0 is equivalent to " is surjective and kerr C
C(HKer m)*C”.

(iv). As A = HKerwn, one has m¢ = €. But moreover ¢ is conormal and this

together with (1) implies (4). Therefore C 5 B is the cokernel of ¢ and then
A = HKer(C 5 B), i.e. (5) holds.

(v). Assume now that the conditions (1), ..., (5) are true. By Lemma 1.1.6 and
(i), we have exactness at 0 — A 5 C.

(vi). As A is a Hopf algebra, (5) and Lemma 1.1.6 imply that 7 is normal. By
(2), (4) and (iii) we have also exactness at C - B — 0.

(vii). (4) also shows that « is conormal. We show now that « has a Hopf image:
(1.2.1) is clear, by the injectivity of «. Again, C - B is the cokernel of + and hence
(1.2.2) follows from (5). Therefore we have exactness alsoat A — C = B. 0O
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Remark. Note that the bridge between the Hopf- and set-theoretic conditions is the
requirement on the Hopf image. We did not deepened our understanding of this
question. But let us mentione a related fact. Let

0 »y A —— ¢ — > B » 0
ndl el ldJ«
0 A—-C ——> B 0

be a morphism of exact sequences. Let us try to prove that © is an isomorphism.
Let ¢ € LKer ©. Then (7 ® id)Ac = (70 @ id)Ac = 1 @ ¢ and therefore ¢ € A.
But then (@ ® id)Ac = ¢(1) ® ¢(z) = 1 @ ¢ and hence ¢ € k; i.e. © is normal and
HKer © = k. It is also not difficult to prove that © is conormal and HCoker © = k.
Thus © is a monomorphism and epimorphism of Hopf algebras. We do not know if
it 1s then an isomorphism. We shall prove this if the extension is cleft, see Lemma
3.2.19. We also ignore if a monomorphism (resp., epimorphism) of Hopf algebras
is injective (resp., surjective).

It seems that the conditions above are slightly redundant. Here is a result in
this sense.

Proposition 1.2.4. Assumne that A 5 C is faithfully flat. Then (C) is exact if
and only if (1) to (4) hold.

Proof. We need to prove that (5) follows from (1), ..., (4) in presence of faithful
flatness.

Assume first only (1), ..., (4). Let R be any algebra, and v : H — C a morphism
of Hopf algebras such that 7y = ¢.

Claim. Let z,y € Hom,(C, R) such that xe = ye. Then zy = y7.

Proof of the Claim. We show first that 2 * y~! factorizes through B. Indeed, by
(4), we need to check that o * y~'(ca) = 0, for c € C, a € AT. But z x y~!{ca) =
z(cya))y(Sa)Scry) = 0. Now vy * (yy)~'(h) = z *+ y~'(yh) = e(h). Thus
zy=yy. U

Let H = HKern. By (2), (4) and Lemma 1.12 (ii) (applied to A — C), H =
LKer; by (3) A C H. Apply now the claim to the incluision H - C, R=C®4C
(see below), z : c— c® 1, y :— 1 Q@ c. By faithful flatness, AD H. O

Corollary 1.2.5. Assume that A 5 C is faithfully flat and conormal. Set B =
C/CA* and 7 the natural projection. Then (C) is exact.

Remark. We do not know if any inclusion of Hopf algebras is faithfully flat. In the
commutative setting, this i1s well-known: a purely algebraic proof is contained in
[T]. More generally, it is shown in [Sch] that the inclusion of a central Hopf algebra
is faithfully flat. See also [MW]. '

As A is not central in C, one should be careful with the algebra structure of

C®aC.
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Lemma 1.2.6. Let C be a Hopf algebra. The multiplication in C @ C defined by
(1.2.7) (c®d)(x @y) = cdiyzSd) ® disyy

1s associative with unit 1 ® 1. The applications ¢ - ¢® 1 and ¢ —» 1 ® ¢ are
morphisms of algebras, with respect to (1.2.7). Assume in addition that A is an
Ad-invariant Hopf subalgebra of C; then C @ 4 C inherits an algebra structure from
(1.2.7).

Proof. We shall check that the kernel of C® C — C @4 C is a two-sided ideal and
leave the rest of the proof to the reader. From the left:

(c®d)(za®y —z @ ay) = cdyraSd)y @ diyy — cdyzSd(2y ® d(syay
= cd(1yxSd(yydyaSdygy © disyy — ed(yaSdgy @ d(3)a5(l(4)d(5)y.

From the right:

(za®y—z Q@ ay)(c @ d) = zayycSy2) ® yyd — zayyycSa2)Syz) ® a@yysyd
= za(yY)cSyz) ® Sayamymyd — zagyyyeSaz)Syz) ® ayy@)d.

a

Let us recall now that the cotensor product of a right comodule M and a left
comodule N over a coalgebra C 1s

MR N = ker (M@N C"®‘d““®°">M®C®N).

Here is the dual version of the preceding Lemma.

Lemma 1.2.8. Let C be a Hopf algebra. The comultiplication in C ® C defined
by

(1.2.9) A(C ®@d) = ¢y @ (l(g) 29 C(Q)S(I(l)d(;;) Y (l(4)

is coassociative with counit 1® 1. The applications c®d — e(c)d and c®d — ce(d)
are morphisms of coalgebras, with respect to (1.2.9). Assume in addition that
C — B is a surjective morphism of Hopf algebras satisfying the following property:
there exists ¢ : B — B @ C such that ¢(nh) = m(b3)) ® Sb1)bsy. Then C Rz C
inherits a coalgebra structure from (1.2.9).

Proof. Again we prove only the last statement. Assume for simplicity that a @ b €
CRpC,ie. that a®n(b))@be) = a()@7(a))®@b. Applying Sim* (ARyYRA)
to both sides of this equality we deduce that A(a ® b) € (C Bp C)® C. (Here S
is defined in (1.1.14), the superscript 34 indicates in which copy of C ® C Sy acts,
and m*(z®y®20u®v) = 2@ 2Qyu®u). Applying instead S}2S3H (A RidQA),
we obtain A(a @ b) € C @ (C Bp C) and we are done. O



12 NICOLAS ANDRUSKIEWITSCH & JORGE DEVOTO

Recall that to an epimorphism C — B of coalgebras one can associate an “exten-
sion of coefficients” functor — g C from B- left comodules to C-right comodules.
The next Definition and Propositions are known, see [Sch2].

Definition 1.2.10. We shall say that C is B-coflut if whenever M — N is an
epimorphism of B-comodules then M Bg C — N Bpg C is also an epimorphism of
C-comodules.

We shall be interested in a stronger property defined by the three equivalent
conditions of the following

Proposition 1.2.11. Let C — B be coflat. Then the following conditions are
equivalent:

a) MRp C — M defined by m ® ¢ — me(c) is surjective for any B comodule
M

b) M Mg C = 0 implies M = 0 for any B-comodule M,
c) M 5 N is a morphism of B-comodules and M Rg C RALNYY WgC is
an epimorphism, then also 7 Is an epimorphism.
If these conditions hold, then we say that C — B Is futthfully coflat.
Proof. a) = b)isclear. b) = «¢): Let L = coker7. Then NRgC — LRy C
is an epimorphism by the coflatness of C. The surjectivity of 7 & :d implies that
LX®g C =0 and by 2) this means L = 0.
c) == a): By c)it is enough to show that the morphism MRgCRpC 5 MR5C

defined by 1(m® c®d) = me(c) @d is surjective, but this follows from the existence
of the morphism 7 : MRy C - MRy C R C, 7(m®c) — m @ ¢y @ ¢z) which

is a right inverse of 7. O

Proposition 1.2.12. Let C — B be faithfully coflat. Then for any comodule M,

MR C L M, p(m ® c) = me(c) is the coequalizer of
MRpCRByC 3 MR C

where py(m @ c @ d) = m ® ce(d) and po(m @ ¢ ® d)m @ e(c)d.

Proof. Let M®pC = L be the coequalizer. Then there is a comodule epimorphism

L — M. Let K =ker{L — M}. Consider now
MRpCRpCRp C a3 MR CRp C.

If we can show that the new equalizer is M Rpg C then by the left exactness of the
RpC functor LR C = M ®g C and therefore I = 0. The comultiplication A¢
induces 7' : MBpCRC — MBpCRCRBC, 7' (Mm@c®d) = mBc®d)®@d(2).

fz=).m®c®d € ker{MRpC L, M} then
pr(e) =z
and
par(z) =0
so z = p17(z) — pe7(x). This shows that LRp C — M ®Bp C is injective. O

Now we present another result concerning the redundancy of the conditions in
Proposition 1.2.3.
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Proposition 1.2.13. Consider a sequence (C). Assume that C — B is faithfully
coflat. Then (C) is exact if and only if (1), (2), (3), (5) hold.

Proof. Assume first only (1), (2), (3), (5). Let R be a coalgebra, and y: C — H a
morphism of Hopf algebras such that ¢ = ¢.

Claim. Let z,y € Homcouty(R,C) such that rx = ny. Then vz = vy.

Proof of the Claimn. We show first that 2~ * y factorizes through A. Indeed, by
(5), we need to check that (7 @ id)A(z™! *y(r)) = 1@z~ *y(r), for r € R. But
the left-hand side 1s

™ (S(2(ra))@)v(r@)a)) @ SE(ray)n)v(r@ @) =
Sa(z(r) )m(y(r3))) ® S{x(ray))y(ray)) = 1 S(z(ray) ) y(r@)))-

Now (yz) ' *xyy=~oa~l+y=¢c. Thusyz=~y. O

Let H = C/CA*. By (5),C — B is normal and hence (by (1) and Lemma 1.1.12
(1)), H is a Hopf algebra. By (3) C — B factorizes through H. Apply now the
claim to the projection C — H, R = CRp C, =,y the restrictions of ¢® d — ce(d),
c®d — ¢e(c)d. (Here Lemma 1.2.8 applies because CAT = ATC). By faithful
coflatness, B ~ H, i.e. (4) holds. O

Corollary 1.2.14. Assume that C = B is faithfully coflat and normal. Set
A = HKern and ¢ the inclusion. Then (C) is exact.

From Corollaries 1.2.5 and 1.2.14 one deduces that the notion discussed in [PaW,
1.5] and our conormality agree, under faithful flatness hypothesis. (See Lemmas
1.1.7 and 1.1.11).

Lemma 1.2.15. (i) A faithfully flat conormnal Hopf subalgebra A — C is Ad-
stable.

(ii) A faithfully coflat normal quotient Hopf algebra C — B is a right C-quotient
comodule for the right adjoint coaction.

Proof. (i) Let B = C/A*C and let 7 : C — B be the canonical projection. By
Corollary 1.2.5, A = LKern. But if « € A and ¢ € C, Ad(c¢)a € LKer .
(i1) is left to the reader. O

Remark. Another definition of short exact sequences for quantum groups was given
in [PaW]. In terms of Hopf algebras, they said that the sequence

(C) k—-AS5C5B-—k

is exact if ¢ is a monomorphism and B = C/Ci«(AT)C, i.e. B is the cokernel of
¢. With this definition, two problems arise: given C and B, on one side A is not
unique, and on the other it is not proved that such A exists. As for the first, a
counterexample is provided in [PaW, 6.3.3]; here is another one. Take a group
G with a non-trivial subgroup H such that the union of all the conjugates of H
equals G. Let A (resp., C) be the group algebra of H (resp., of G), and let ¢ be

the canonical inclusion. The augmentation ideal of a group algebra is the vector
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subspace generated by the elements ey — 1 with ¢ non-trivial. Therefore B above is
the trivial Hopf algebra. This is an unpleasant situation, which is not possible in
our approach. Indeed, if (C) is exact in our sense and B is trivial, then by condition
(5) in Proposition 1.2.3 A =C.
As for the existence problem in our setting, see Corollaries 1.2.5 and 1.2.14 above.
On the other side, in [Sch] a short sequence of Hopf algebras like (C) is said to
be exact if it satisfies either of the following sets of axioms:

(1) A is a conormal faithfully flat Hopf subalgebra of C and B = HCoker ..
(2) B is a normal faithfully coflat quotient Hopf algebra of C and A = HKer .

The equivalence of the preceding requirements is proved using a result from [T3].
By Corollaries 1.2.5 and 1.2.14, the definition in [Sch] agrees with ours, in the
faithfully flat case.

If one restricts the attention to the category of finite dimensional Hopf algebras,
then the existence problems have both positive answers. Indeed, it is known that
finite dimensional Hopf algebras are free over its Hopf subalgebras [NZ] and the
dual statement is easy to deduce and well-known. Therefore, it is natural to define
a simple quantum finite group by any of the two following conditions.

Definition 1.2.16. Let H be a finite dimensional Hopf algebra. We shall say that
H is simple if it satisfies any of the following equivalent conditions.

(a) Let I be a normal Hopf quotient algebra of H. Then X = H or K = k.
(b) Let K be a conormal Hopf subalgebra of H. Then K = H or K = k.

Proof of the equivalence. (a) = (b). Let B = Hcoker¢. Then, by Lemma 1.1.12
11), the morphism H — B is normal. So by (a), B =k and K = H or B = H and
K =k.

(b) = (a). Let C = Hkerw. By Lemma 1.1.12 1), C = H and then K = k or
C=kand K=H. O

Remark. A more general statement than the equivalence between (a) and (b) above

is {Sch, Thm. 1.4].

§2. Short exact sequences. Our purpose now is to study short exact sequences.
More precisely, given Hopf algebras A and B we wish (as usual) to study extensions
of A by B, i.e. short exact sequences like (C). We recall first some important facts
from [BCM], [DT].

Definition 2.0. Let H be a Hopf algebra and A an algebra. A morphism of vector
spaces = H@® A —= A, L@ a— h — «, 1s a weak action if the following conditions
are verified, for all o, b € A, h € H:

(21) h—ab= (h(l) — (L)(h.(z) - b).,

(22) h—=1=¢(l)1,

23)1—a=a.
We shall say that a weak action is an action if in addition

(2.4) h — (@ —a)=hl—aforallaec A, I,l € H.
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Let us fix an algebra A with a weak action of a Hopf algebra H. For each bilinear
map o : H x H — A we can define a (not necessarily associative) algebra structure
on the vector space A @ H (denoted A#,H) as follows:

(2.5) ((L ® h)(b ® B) = (l(h(l) —_ b)g(h(z), 3(1)) %] h(3)5(2).

The element a ® i, when emphasis on the algebra structure is needed, is denoted

ath.
Proposition 2.6. (i). 1#1 is the identity of A#,H if and only if
(2.7) o(1,h) =o(h,1) =¢(h)1, VYheH.

(ii). Assume that o(h,1) = ()1 for all h € H. Then A#,H is associative if
and only If, for any h,l,m € H and « € A, the following conditions hold:

(1) (cocycle condition)

(2.8) [y = allay, maplo(hay, layme)) = o(hay, lay)o(hayla), m);

(2) (twisted module condition)

(2.9) (hay = () = @))o(heays lgy) = oy, 1)) ()l ey — @).

Now we pass to the dual notion of the preceding,.

Definition 2.10. Let C be a coalgebra with comultiplication é§, H a Hopf algebra.
We shall say that amap p : C — CQH is a weak coaction if the following conditions
are verified:

(2.11) (6 ®1d)p = m“(p ®p)s, where m** . CQHQ®CQ®H —- CQC® H is the
map c@@h@d@k— c@d® hk.

(2.12) (EC ® id)p =ec®1.

(2.13) (1 d®en)p = idc.

As usual, a weak coaction is a couction if in addition

(2.14) (1d@A)p = (p ®id)p.
Example. The trivial coaction is the map p: C - C Q@ H, p(c)=c® 1.

It is well-known that an extension of groups H — G — K with H abelian gives
rise in a natural way to an action of K on H. This is still the case for quantum
groups. Let

(©) 1-A5C 5B -1

be an exact sequence of Hopf algebras and assume that in addition B is cocom-
mutative. Then the adjoint action ad : € — C ® C, adc = c(g) ® S(eq1y)c(ay,
induces ady : C — B ® C by composing with (7 ® 1). As A = C is conormal,
adq(ker7) = ad.(ATC) = 0. So there is a well defined coaction y: B - B C.
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Now the hypothesis ” B cocommutative” implies that + lifts to ¢ : B — B ® A.
Indeed, by condition (5) in Proposition 1.2.3, A is the kernel of U : C — B ® C,
U=((r®id) — (e®id)) A. Therefore B ® A = ker(id U), so we need to show
that id ®U)y(c) = 0. Now

(1d @U)v(c) =7(c)) @ m(Sleqay)eqay) @ Sleqy)es)
J — m(e3)) @ e(S(c2y)ey) ® S(eqy)ecs)
=7{c@y) @ 7(S(ceay)ey) @ S(eay)esy — m(ez)) ® 1 @ S(cy)esy = 0.

Clearly, ¢ is a coaction.

Examples of extensions with B cocommutative are the cocentral extensions. One
says that C) is cocentral if the following equivalent conditions hold for any ¢ € C:

(1) 7m(eqr)) ® 2y = 7(e) @ cqy-

(2) m{e@)) @ Sleqy)e) = m(c) @ 1.

Proof of the equivalence. Let z,y: C — B @ C be the applications z(c¢) = n(c) ® 1,
y(c)1 @ c. Consider the usual multiplication in B@ C. Then (1) reads z*y = y*z
and (2), y 1 *xzxy==z. 0O

Let us fix a coalgebra C with a weak coaction p of a Hopf algebra H. For
each linear map 7 : C — H ® H we can define a comultiplication (not necessarily
coassociative) 6" : H "#C — H T#C@®H "#C (here H "#C denotes, for the sake of
differentiating from the usual product coalgebra structure, the vector space H® C)
as follows:

(2.15) §7(h® c) = hnym(cn))i ® pleg))i ® hayT(eqy) pley)’ ® ).
Proposition 2.16. (3). eyrpc :=cpy Qcc is a counit of H "#C if and only if
(2.17) (e ®@id)r(c) = ec(c)ly = (Id@en)7(c).

(i1). Assume that ec(c)ly = (ey ® id)r(c). Then the coproduct §7 is coasso-
ciative if and only if the following two conditions hold:

(1) (co-cocycle condition)
(2.18) mpyes(AR@1dET@I(T® p)d = (1d@mpyez )(1d QA ®1d@id)(7 @ 7)6;
(2) (twisted comodule condition)
(2.19) (id®@mye:)(idRA ®id®id)(p @ 1) = mie:(Id@id®p ® id)(r ® p)é,
wheremlle,  HOHQC®H®H — CQ H®H sends hek®c@hek —
c®@ hh ® kk.

The co-cocycle condition reads
¢ : ;
(7(c))i) ay 7 (Pleey)i)  ® (T(c(1))s) ) 7 (le@))i)” @ T(ey) pleqa))
= ()i ® (1(c))’) oy (e@dn ® (r(e))’) 5y T(e@)"

and the twisted comodule condition is

ple)i @ (ple)’) o, (e @ (pew))’) )y T(e@)"

¢ ‘ i
=p(p(e@)i), ® T(cy)ir (ple@)i)” ® T(en)) plee)’.
Proof. We omit the superscript 7 in the following.
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(1). It is easy to see that (Id®eyrpe)d(h ® ¢) = h(Id®e)r(cy) ® ¢(2) and
(egrgc ®id)S(h ® c) = h(e @ id)T{c(1)) @ ¢(z)- Thus (2.17) implies that ey rg¢ is

a counit. The reciprocal 1s trivial.

(it).Let us first assume that (2.18) and (2.19) are satisfied. Clearly, it suffices to
check the coassociativity in an element of the form 1 ® c¢. Hence

(6 ®id)é(c) = [r(c(n))iln ([ple@)ilny) @ p (lp(e@)ily), ® [T{e)ilea)
r (le(ec)iln) p ([p(e@)ilm)” @ lp(e@)ile © T(ey) ple)’ ® o)
= [r(cay) il (ple@)i) ® p (plew)e), @ [F(e)ilmT (ple)i)’
p (n(c3)))” ® pleg)x ® Tley) plem) plem)?pleqy) ® e
= 7(c(1)); ® p (ple)s), @ [rleyY Jy(e@)ne (pleay)e)”
® pley)k ® [T(cy) iy (e@)" plegny)? ple))® ® cgsy
= 7(c(1)); @ plez))i ® [T(e)) Jylrle) ]y (e

® ple)r ® [r(enYl@lple@) @y m(e@) " plew)® ® s
= (1d ®6)8(c)

Here the first and the last equalities follow from the definition; the second, from

[p(d)i)(1y ® [p(d)i)(2) ® [p(d)i)(z) @ p(d)’
= p(d1))i ® pld(2)); ® pldiay)i ® pdey) p(diy) p(diay)*,

which is an iteration of (2.11); the third, from the cocycle condition (2.18) and the
fourth, from the twisted comodule condition (2.19).

Conversely, suppose that the coalgebra H "#C is coassociative. Applying
(1d @€)®® (respectively, e ®id @ id @& @ id ®¢) to both sides of the equality express-
ing the coassociativity, we get the cocycle condition (resp., the twisted comodule
condition; in this case we must use the hypothesis ec(c)ly = (eg @ id)r(c)). O

We want now to consider the extension problem. First, combining Propositions
2.6 and 2.16, we show how to build extensions of Hopf algebras.

Theorem 2.20. Let A, B be two Hopf algebras, provided with a weak action
—: B A — A and a weak coaction p : B — B ® A. Let us also fix a cocycle
0:B®B — A, and a co-cocycle 1 : B —- A® A. Let C = AT#,B denote the
vector space A® B provided with the multiplication (2.5) and the comultiplication

(2.15) (denoted here A).
Then C is a bialgebra if and only if the following conditions hold:

(i) o satisfies the unitary condition (2.7), and r the co-unitary condition (2.17).

(ii) o satisfles the cocycle condition (2.8) and the twisted module condition
(2.9).

(111) T satisfies the co-cocycle condition (2.18) and the twisted comodule condi-

tion (2.19).
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(iv) (compatibility with the unit and counit) p(1)=7(1)=1Q®1,e00 =€e®¢,
e(a = b) = e(a)e(d).
(v) (compatibility between the product and the coproduct)

(2.21)
(bry = a)1)yo(bzy ® b))y T(haybz)); ® (bay = a)2)a(bz) ® bay)2)7(b(sybay)’
= 7(b))u (P(”(z))f — ayr(m)p) o (plhs)); © P(E(z))q)
® 7(bery) " p(beay ) p(biay ) (bay = a2y (b)) p(bzy) o (bisy ® biay)

(222)  p(babeay)i @ (bay = @)a(beay @ bay)a(bay b))’
= p(b(1)ir(by)k ® (b)) (bizy — ap(bny)*)o(bs) @ bez))
foralla,a € A, b b € B.

Assume further that

(vi) (compatibility with the antipode)
(2.23) e(h) = S(r(b);) T(b') = 7(b;)S (r()’)
(2.24) 5(!)) =0 (b(l) @ S(b(z))) =0 (S(b(])) & b(z))

Then AT #,B is a Hopf algebra, whose antipode is given by
(225)  S(a#h) = {(SIiw) = SI)1) ® Slohn]} S(a).

Moreover, let 14 : A — C and pg : C — B be the applications ¢ — a ® 1,

a® b e(a)h. Then

0% 4A-C 25 Boo

is an exact sequence.
Proof. Tt follows from Propositions 2.6 and 2.16 that C is an associative algebra
and coassociative coalgebra if and only if (1), (i), (iii) hold. It is clear that (iv)
means that ¢ is a morphism of algebras and that A(1) = 1® 1. Let us assume
now that (2.21) and (2.22) are true. Let c=a ® b, é=a® b € C. Then
A(cd) = aqy(bay = @)y (bz) @ b))y (b b@); ® plbayb) )i
® a()(bay = @by @ b))y 7 (b biy Y plbeaybesy)* @ bsybia)
= a7 (b)) (ﬂ(”(z))i - 5(1)T(7’<1))p) o (ﬂ(”(s))j ® P(f’(z))q)
® p(bio)h(ay)i ® ay (b)) plbezy ) p(bis) Y
(bay = gy (b)) p(bezy) o (bs) ® bay)p(bie) bay)' @ by b
= a)7(ba))n (P(”(?))i - “(1)7’(7'(1))») o (P(b(s))j ® p(ﬁ(z))q)
® p(beay)mp(besy)e ® acyT(bay)" plbey) p(biay ) p(beay)™

(bsy — gy (b)) p(bizy) p(beay) Yo (bsy ® bay) ® binybs)
= A(e)A(é).
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Here the first equality follows from the definitions, the second from (2.21), the third
from (2.22) and the last is again by definition, complemented by iteration of (2.1).
Conversely, (2.21) (resp., (2.22)) can be deduced from the equality expressing the
multiplicative character of A by taking « = 1 and applying id @ ® id ®c (resp.,
e ®id ® id ®e).

Assume now that (2.23) and (2.24) hold and let us check that the § given by
(2.25) satisfies the axioms of the antipode. One can suppose that ¢ = 1. One has

m(S @id)A(1 @ b) = {(S[p(p(b2))i)uz)) = Slelp(b2))i)']) ® Slplp(bizy)i)eny }
S{r(by)ilm (b)Y plbay) © bis)
= (Sla(p(b@y)i)ilay = Slelalbe)) 1S[r (b))l (b)) plbeay)')
o (S[p(p(b(z))i)t]('Z) ® beay) @ Slplp(bz))i)d(zyba)
= (Slp(b)ilay = SI(p(bay) )y (b)) (b Y )2y (he))*)
a (Slp(by)il@) @ besy) @ Slp(beny) il beay
= (8(biay) = Sirbay)lr(bay)") o (S(2)) @ b)) ® S(bay)bisy = e(b).

Here the first equality follows from the definitions; the second from (2.1) and (2.11);
the third from the twisted comodule condition; the fourth from condition (2.13) and
the last, from (2.23) and (2.24). In a similar way, one proves m(id ®@S)A(1® b) =

e(b).

Conditions (1) to (5) of Proposition 1.2.3 are also easy to verify and the Propo-
sition follows, O

Remark. Conditions (2.23) and (2.24) are sufficient but not necessary to have an
antipode. A more satisfactory answer s given below (Lemma 3.2.17) in the context
of cleft extensions. The general question remains however open.

Definition 2.26. Let A, B be two Hopf algebras. A data D = (—,a,p,7) is’
compatible if it satisfes conditions (i), ... (v) in the Theorem above. If in addition,
AT#,B is a Hopf algebra, then we say that D is a Hopf data.

We shall show now an example of reconstruction of a Hopf data from an exact
sequence. A more general statement will be given in the next section. Let us fix an
exact sequence

0—A-5C B0

In particular, we shall consider C as a left A-module and B-comodule in the obvious
way. We shall assume in the rest of this section the existence of a linear isomorphism
F :C — A® B (whose inverse 1s denoted G) satisfying the following conditions:

(2.27) F is a morphism of 4-modules, i.e. F(ac) = (a ® 1)F(c).
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(2.28) F is morphism of B-comodules, i.e. the following diagram commutes

C (id ®m)Aa CoB
}'l lf@id
ARB 222, 4@ B®B.

(2.29) .7:(1) =1®1.
(2.30) (4 ®ep)F =¢¢.
(2.31) g(l ® b(l))g(l & Sh(g)) = E(f)) = Q’(l @ Sb(l))g(l ® b(g)).

(2.32) (paF(e(1))S(paF(cw)) = l(c) = S(paF(cy)(paF(ce))

Here ps : A® B — A is the canonical projection, p4 = id @€, in the same vein,
ig: A — AQ® B is the canonical inclusion a — @ ® 1, and similarly for i3, pg. One
deduces easily from the first four axioms above that Fiv = 14, pgF = .

Thanks to such F, we shall obtain the exact sequence (C) as in the preceding
proposition. Let us first introduce s : BB - C,=:BRA—-C,7:C = ARA,
p:C — B ® A by the following formulas:

(b ® D) = G(1® b1))G(1 ® b1))G(1 ® Shia)Sh(zy)
=a=G(1® b(l))ag(l ® Sh(z)),
7(c) = (S]JA.FC“))(I)[JA.'FC(-Z) ® (S])Afc(l))(z)p,a.fcw),
plc) = m(c(2)) ® SpaFenypaFegay.

Lemma 2.33. These maps giverisetooc : B@ B - A, - BQA - A, 7: B —
ARA,p:B—- B®A.

Proof. 1t is straightforward. For example, let us show that the image of & is con-
tained in A:
(id®@r)As(b @ b)
= ([d®@m)AG(1 ® by)(id @T)AG(L @ b)) (id ®7)AG(1 @ Shiz)Shizy)
= (6(1® b)) @ bz)) (g(1 ® by) @ 7'(2)) (9(1 ® Sbiay)Sbiay) ® 57'(3))55&)))
= G(1® b1))G(1 ® b1))F(1 ® Sha) }Sbia)) ® biaybiayShea))Sha))
=5(bob)®1.

The rest 1s similar. O
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Proposition 2.34. F is an isomorphism of Hopf algebras from C onto A7#,B.

Proof. p(resp. —)is a weak coaction (resp. action) because of (2.32) (resp. (2.31)).
These two axioms also imply o(b@1) = 6(1@0b) = ¢(b) and (e®id)T = ¢ = (id ®¢)7.
From this, we deduce (¢ @ 11 QD) =a®b.

So let us prove that G is a morphism of algebras:

G ((aot)@ab) =6 (albu — a)ole.bn) 8 Ushe) =
g (ﬂg(l ® b(1))aG(1® Sh2))G(1 @ b2))G(1 & b3))G(1 @ Sb(z)Shiy) ® b(s)B(a))
= G(a®b1))e(b2))G(a® 11))G(1 @ Sh2)Sb(3))G(1 @ bayb(s)) = G(a® bYG(a @ b).

Here the first equality is by definition, the second follows because G is a morphism
of A-modules and the third is a consequence of (2.31).

Now we prove that F is a morphism of coalgebras:

67(F(c)) = paF (o)l m(me@y); @ plme) )i
® [paF(ca)l@yT(mew) plrem) @ mew
= [paF (i) [SpaF(e@))laypaFc)) ® mee)
® [paF (c)l@)[SpaF (c))lzypaF (ca))SpaF (c(s))paF(e(r)) @ me(s)
= paFeay ® ey ® paFemmeay = (F ® F)Alc),

taking into account the formula F(c) = paF(cy) @ m(czy). O

§3. Isomorphisis of extensions. In this section, we study whether two ex-
tensions build from compatible data (ef. Definition 2.26) are isomorphic, in terms
of the data. We obtain a complete answer in the case of cleft extensions, see 3.2.
Our methods are largely an extension of those in [D]; S. Montgomery communi-

cated us that Blattner and she obtained independently some of the results in [D]
(unpublished).

3.1 Rudimentary non-acbelian cohomology. Let A, B be two Hopf algebras and
let Reg(B, A) be the group of linear morphisms from B to A which are invertible
with respect to the convolution product [Sw]. Let also

Reg,(B, A) = {¢ € Reg(B,4) : (1) = 1},
Reg,(B, ) = {6 € Reg(B, ) : 6 = ¢},
Reg, (B, A) = Reg, (B, A) N Reg, (B, A);

these are subgroups of Reg(B, A). _

Let Weak(B ® A, A) (rvesp., Coweak(B,B ® A)) be the set of all weak actions
of the Hopf algebra B on the algebra A-cf. Definition 2.0 (resp., weak coactions of
the Hopf algebra A on the coalgebra B-cf. Definition 2.10).
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Lemma 3.1.1. (i). Let — € Weak(B® A, A), 0 € hom(B® B, A), ¢ € Reg(B, A).
The formulas

(3.1.2)
b ¢ —a= #(by) bzy — aqb"l(b(;,)),
(3.1.3)
?o(b® d) = (b)) (bay = $(d))) o(bay ® d2))™" (braydga))

provide a left action of Reg, (B, A) on Weak(B® A, A) x hom(B Q B, A), i.e. ¢.(—
,0) = (% =, ®g). (Here A needs to be only an algebra).
In addition, if o is invertible then %o also is; in fact

(?0)T b ® d) = ¢(byday)a ™ (bzy ® dizy) (bay = 67 (d())) ¢ (bay)-
(ii). Analogously, let p € Coweak(B,B ®@ A), 7 € hom(B, A @ A). The formulas
(3.1.4) p?(0) = (1@ ¢7" (b)) plbey) (1@ $(bca)))
(3.1.5) 72(b) = A7 (b)) (b2) (¢ @ id)p(bezy) (1@ $(beay))

provide a right action of Reg, (B, A) on Coweak(B,B @ A) x hom(B,A ® A), ie.
(p,7).¢ = (p®,7%). (Here B needs to be only a coalgebra).
Moreover, if T is invertible then 7% also is, and its inverse is

() 7HD) = (1® ¢ (b1))) (671 @ id)p(beay) T~ (beay) Ad(beay)-

Proof. (i) is essentially proved in [D], so we prove only the dual statement (ii). Let
us first show that p? is a weak coaction. Condition (2.12) in Definition 2.10 is
obvious and condition (2.13) follows from e€¢ = €. Let us proceed with condition
(2.11). On one side,

(A®id)p?(h) = (1@ 67 (b)) (A @id)p(biz)) (1 @ ¢(bs))) ;
on the other,
m*(p* ® p*)(01) ® bz))
= p(b2))i @ plbisy)i @ ¢ (hay)p(bzy) $(besy) 8™ (i) )p(bes)y )Y (b)),

and condition (1) for p% holds.

Let us prove now the group action axioms. Let also ¢ € Reg, (B, A). Then

(*)” (4) = (18 %7 (b)) P (he) (1@ (b))
= (1®@%7 (b)) (1@ 67 (bzy)) b)) (1@ $beay)) (1 @ p(besy)) = p(b)?*¥.

On the other hand,

(r%)” (8) = A% (bay )7 by ) @ id)p?(Bs)) (1 ® P(bay))
= A>¢ * ) (b)) (b2y ¢ @ id)p(hay) (1 ® (biay)) (1@ 67 (I(s)))
(¥ @id)p(b)) (1 @ fﬁ(b('r))) (1 ® 1,[)(1;(8))) = 7Y,

here one uses the axiom (2.11). O
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The following simple Lemma is important in what follows.

Lemma 3.1.6. (1) Let (—,0) € Weak(B®A4, A) xhom(B®B, A), ¢ € Reg,(B, A).
Then the (non necessarily associative) algebras A#,B and A#+,B are isomorphic.

(i1} Let (p,7) € Coweak(B,B® A) x hom(B,A® A), ) € Reg, (B, A). Then the

(non necessarily coassociative) coalgebras AT#DB and A T¢#B are isomorphic.
Proof. (i). Let F = Fy : A#,B — A#4,B be the application
Fa#b) = adp™ (b)) #b(2).

Clearly, F3Fy = Fpuyp. Then on one hand,

F ((a#tb)(c#td)) = F (albay — c)o(bz) ® dy)#ba)yda)

= (L(b(l) — C)O’(b(g) ® (l(l))(ﬁ"l(b(g)(l(g))#b@)d(;;);

on the other,

Fla#b)F(c#d) = ((zé_l(b(l))#b(z)) (cqb_l(d(l))#d(g))

= (Lgﬁ_l(b(l))(b(z) ¢ Cé_l(d(l))) QSO’UJ(;;) ® (1(2))#1)(4)(1(3)
= a(bay = ed ™' (d))) by — é(d(z)))o(beay @ da))d ™" (bayday #(s)dis);

we only used the definitions and (2.1).
(ii). Let G: AT#B — A " 4B be the application

G(a#b) = ap(by) @ begy-
Then

(G ®G)A(a#b) = (G @ G) (amym(b1y)j ® p(b2))i ® ayT(b1y) p(bzy)’ & beay)
a7 (b))% (p(b)in) ® plben)ice) @ ae (b)) p(b)) (b)) ® biay
= aym (b))% (P(bey )i) ® plben)n ® agym(by)’ plbezy) plbisy) " ¥(bea)) ® besy;

-and this equals

AG(a#b) = A (ap(ba)) ® b))
= ay (b)) ¥ (b2)); @ p¥(bis))i @ b))y ™ ¥ b2y Y p¥ (0(3))’ © bay

by (3.14), (3.1.5). O

Observe that, if A"#,B denotes the "bialgebra” obtained from (—,g) €
Weak(B ® A, A) x hom(B ® B, 4), (p,7) € Coweak(B,B ® A) x hom(B,A ® A)
(without associativity, coassociativity nor compatibility between the multiplication

-1
and comultiplication), and ¢ € Reg, (B, A), then A7#,B and AT #4,B are
isomorphic, as follows from the proof of the preceding Lemma.
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Let us now introduce

Z'Y(B,A) = {(—,0) € Weak(B ® A, A) x hom(B @ B, A) : o(h,1) =1,
(—, o) satisfies the cocycle condition (2.4) and the T.M.C. (2.5)},
Z%Y (B, A) = {(p,7) € Coweak(B,B ® A) x hom(B,A® A): (¢ @id)T =,
(p, T) satisfies the co-cocycle condition (2.13) and the T.C-M.C. (2.14)},
ZYB,A) = {D = (—,0,p,7) € Z"9(B, A) x Z°"(B, A) :
D is a compatible data},

Z'(B,A) = {D=(—,0,p,7) € Z"(B,A) x Z"'(B,A) : D is a Hopf data}.

We shall consider the left action of Reg, ,(B,A) on the set of datas Weak(B ®
A, A) x hom(B ® B, A) x Coweak(B, B ® A) x hom(B, A ® A) given by ¢D = ¢D,
where if D = (—,0,p,7) then ¢D = (¢— % g, pd’_l,r"s_l).

Proposition 3.1.7. (i} Z''"? is stable by the action of Reg,(B, A) defined in Lemma
3.1 (i). Let H'*(B, A) be the quotient of Z''"* by the action of Reg, (B, A). Then
(—,0) — A#,B induces an application from H"°(B, A) to the set of isomorphism
classes of B-extensions of algebras of A (see 3.2 below).

(ii) Z%! is stable by the action of Reg, (B, A) defined in Lemma 3.1 (ii). Let
H%Y(B, A) be the quotient of Z"''(B, A) by of Reg, (B, A). Then (p,7)— AT#B
gives rise to an application from H%'(B, A) to the set of isomorphism classes of
A-extensions of coalgebras of B.

(iii) Z" is stable by the action of Reg, (B, A) defined above. Let H'(B, A) be
the quotient of Z'(B, A) by of Reg, (B, A). Then (—,0,p,7) — A"#4B gives rise
to an application from H'(B, A) to the set of isomorphism classes of B-extensions

of bialgebras of A.

(iv) The statement obtained from (iii) by replacing ”compatible” by "Hopf” is
still true.
Proof. (i) follows from Lemuna 3.1.6 (i} and Proposition 2.6; in turn (ii) follows

from Lemma 3.1.6 (ii) and Proposition 2.16. (i11) follows from the preceding and

2.20, and (iv) from (i) and [Sw, 4.0]. O

8.2 Cleft exztensions. In this subsection, we first recall some facts about cleft
extensions of algebras from [D] and then state their dual analogues.

Let B be a Hopf algebra. A B-comodule algebra is an algebra C, which is
simultaneously a B-comodule and whose structural morphismy:C - C® B isa
morphism of algebras. The subalgebra of mvariants is

{ceC :y(c)=c@1}.

Let A be the subalgebra of invariants: then one says that C is a B-extension of
A (more precisely, an extension of algebras), and denotes C/A. A morphism of
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extensions preserves, by definition, the algebra and the comodule structures, and
induces the identity on the algebra of invariants. An extension is cleft if there exists

x € Reg,(B,C) such that
(3.2.0) vx = (x @1d)A;

such y is called a section. Notice that [D]

yx7HD) = x T b)) ® by

Assume that B acts weakly on an algebra A and let o be a cocycle satisfying (2.3),
(2.4), (2.5). Then C = A#,B is a B-extension of A, up to identifying the last with
the subalgebra of invariants via the map a — a#1. Here, the comodule map is

aFtb = aFtbiy @ beyy.

Moreover, the morphism y : B — C, x(I) = 14b 1s a section if ¢ belongs to
Reg(B ® B, A); the only non-trivial part follows from [BM, Prop.1.8]. Let us recall

from loc. cit. that

/Y-I(I)) = 0‘1(511(2) ® 11(3)) ® Sb(l).

Thus, in such case A#,B 1s a cleft B-extension of A. Conversely, one has the
following important fact:

Theorem 3.2.1 ({DT, Th. 11]). Let C be a cleft B-extension of A, x : B> C a
section. Define = BRQA — A, 0: B@ B — A, by

(3.2.2) b—a= ,\'(JJ(I))(L,\’_I (b2y),
(3.2.3) a(b®b) = x(bay)x(bay)x ™" (bezyheay)-

Then — is a weak action, o is inversible, the algebra A#,B is associative and the
cleft extensions C/A and A#,B/A are isomorphic via

a#th — ax(b), C c(u)x_l(C(l))#c(g).

For obvious reasons, we change now our notation. Let A be a Hopf algebra.
An A-module coalgebra is a coalgebra C, which is simultaneously an A-module
and whose structural morphism jt : A @ C — C is a morphism of coalgebras. The
coalgebra of covariants is C/ATC. If B is the coalgebra of covariants, then one says
that C is an A-extension of B (of coalgebras) and denotes C\B. We shall denote
by 7 the canonical morphism ¢ — B. Morphisms of extensions of coalgebras
preserve both the module and the coalgebra structures and induce the identity on
the coalgebra of covariants. An extension is cleft if there exists £ € Reg,(C, A)
such that

(3.2.4) E(ac) = aé(c), Va€ A,ceC,
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£ 1s then called a retraction. Notice that
£ (ac) = €71(0)S(a).

Assume now that B is a coalgebra provided with a weak coaction p: B — B A.
Let us also fix a co-cocycle 7: B — A ® A satisfying (e @ id)T = ¢, (2.13), (2.14).
Then C = AT#DB is an A-extension of B, up to identifying the last with the
coalgebra of covariants via the map a#b — e(a)b. A acts by a.(a#b) = aa#tbd.
Moreover, the morphism £ : C — A, é(a#b) = ae(d) is a retraction if 7 belongs to
Reg(B, A @ A), as follows from the following Lemma whose proof runs as that of
[BM, Prop.1.8].

Lemma 3.2.5. ¢ is invertible if and only if T is.

Proof. Assume that £ is invertible. One proves easily that
r(we) = AME7 ey)é(e)) ® Elem));
from this one finds the following expression
TN me) = €7 (cqr) @ €7 e)) Aléeq)).
Conversely, assume that 7 is invertible. Let
nadth) = 7 (S (ar ().

One proves easily that £ is the trivial morphism. The other multiplication is the
only non-trivial point of the Lemma. One has

(3.2.6) mxf(a#b) = e(a)r™! (p(bny)i), S (T(b(l))jT_l (P(h(z))i)k) 7(b1y) p(beay)*
Multiplying the co-cocycle condition on bz by (A ® id)r= (b)), one gets
(3.2.7) (r@id)p(b) = [77(bay)i] , T(be));

® 77 (bay)k] g [T ()] (1) () © 77 (bny)* [ (b2 ] ) 7(Bea))"

On the other hand, as p is a weak coaction, the inverse of the application b
(r ® id)p(b) is the application b — (77! @ id)p(b). One deduces therefore from
(3.2.7) that

(328) (T_l @ ld)p(b) = T—l(h(z))j [T(b(;;))k](])
® T-l(b(l))h [T_l(b(p_))j](l) [T(b(:{))k](z) @ T—](b(l))h [T_l(b(z))j] (2) T(l)(:;))k

Now one can proceed with (3.2.G), thanks to (3.2.8):

T (p(l2))i), S (T(b(l))j'f" (,,(;,(2)),.)“) (b)Y p(biz) )’
=77 (b)) [T(bay)a) (1) S (T(t"(l))ﬁ"(”(z))k [T (b)) ) [T(”(4))q](z))
T(ben) 77 b))t [ b)) g T(hiy)?
=77 O)e(r T (0)") = ([d@e)r T (b) = e(h).

This proves that 5 * £ 1s the trivial morphism and hence that £ is invertible. O
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Now we prove the dual version of Theorem 3.2.1.
Proposition 3.2.9. Let C be a cleft A-extension of a coalgebra B and let £ €
Reg,(C, A) be a retraction. Definep:C - B A, 7:C 5 AQA by
(3.2.10) ple) = m(cy) ® €7 (eay)Eé(ees))s
(3.2.11) 7(c) = A (e)) Eci)) ® €(cqy)-

Then p, 7 giverise top : B - B A, 7: B— AQ® A; p is a weak coaction; (p,T)
belongs to Z°3(B, A) and hence A™#DB is a cleft A-extension of B. Moreover, the
application C — AT#B given by

¢ Eemy) @ mez))

is an Isomorphism of A-extensions of B, whose inverse is induced by the map
ARC - C,
a®cr af (cny)e)-

Proof. It is straightforward; for example one proves that both sides of the co-cocycle
condition equal (A @ id)AE™! (c(1))(EP* A(cz))); and both sides of the twisted co-
module condition equal 7(c¢(2)) @ AE™ (e (E®2A(c(z))). We leave the details to
the reader. O

Let us now consider
ZM(B, A) = {(—,0) € Z"°(B, A) : 0 is invertible},
Z(B,A) ={(p,7) € 2" (B, A) : T is invertible}.
Let Ha® (vesp., HY') be the quotient of Z.°® (resp., Z3') by the action of Reg,
(resp., Reg,).

Proposition 3.2.12. The applications defined in Proposition 3.1.7 give rise to
bijections

H}(B, A) =~ {isomorphy classes of cleft extensions of algebras C/A},
HXY (B, A) ~ {isomorphy classes of cleft extensions of coalgebras C\B}.

Proof. The first is proved in [D]. As for the second, surjectivity follows from Propo-
sition 3.2.9. Let us prove injectivity. Let (p,7),(p1,7) € Z.[.”I(B,A) and let
n:C=AT#B — A" #B = C, be an isomorphism of extensions. Let £ : C — A,
£1 1 C1 — A be the retractions defined above and let £ = &y, 7 = €71 * €. Then
v factorizes through » € Reg. (B, A); indeed #(ac) = {‘1((L(l)c(l))ﬁ_(a(g)cu)) =

£~ ey)S(agy)a)yé(czy) = e(a)p(c). Now
p*(we) = (1@ v w(cy)p(me )1 © vr(e)))
= (1@ (&) (c)éle)) (meqy ® €71 (ew))Elecs))) (1 ® £ (es))eleqny)
= mcqay @ (&) (e (neg)) = pi(me).

Here one uses all the requirements to a morphisin of extensions. Similarly, 7¥ =7
and injectivity follows. 0O
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Definition 3.2.13. Let
(C) 0-A45C5B-0

be an exact sequence of Hopf algebras. We shall say that (C) is cleft, or else that
C is a cleft extension of the Hopf algebra A by the Hopf algebra B, if there exist
a section x € Reg,(B, C) of the algebra extension and a retraction £ € Reg,(C, 4)
of the coalgebra extension, satisfying the following equivalent conditions:

(1) x7'(me) = S(eny)é(ez))-
(2) x(me) = €7 (ey)e)-
(3) ¢€71(c) = x(me(y)S(ee)-
(4) &(c) = cyx"Hmeqy).
(5) Ex=€pla.

Proof of the equivalence. (1) < --- <= (4) => (5) is easy. (5) == (1): Let
n(we) = S(cay)(e@y). As x is a section one shows easily that x(me(1))S(c2)) €
A. Then x * n(mc) = x(me(1))S(ce))elea)) = € (x(me))S(e))em)) = e(c), by
hypothesis. As x is invertible, this implies that n = x~!. O

Now we are ready to present the main result of this section. Let
ZNB,A) = {(—,0,p,7) € Z'(B,A) : ¢ and 7 are invertible}.

We shall see (cf. Lemma 3.2.17 below) that the bialgebra A "#,B is actually a
Hopf algebra if (—,0,p,7) € Z1(B, A). Let H! be the quotient of Z! by the action
of Reg; . defined before Proposition 3.1.7.

Theorem 3.2.14. H}(B, A) classifies cleft extensions 0 - A - C 5 B — 0 up
to isomorphisms.

Proof. By [BM, Prop. 1.8}, Lemma 3.2.5 and condition (5) in Definition 3.2.13, the
application considered in Proposition 3.1.7 gives rise to a map from H}(B, A) to
the set of 1somorphy classes of cleft extensions of Hopf algebras. Let us prove that
it is surjective. Let (C) be a cleft exact sequence of Hopf algebras, with a section
x and a retraction € as in Definition 3.2.13. Let —, 0, p, 7 be defined by (3.2.2),
(3.2.3), (3.2.10), (3.2.11). Let F: A"#,B — C be defined by F(a#b) = ax(b);
F is an isomorphism of extensions of algebras (Theorem 3.2.1). But F(af#fnc) =
a7 (cay)ezy (by (2) in 3.1.13) and hence F is also an isomorphism of extensions
of coalgebras (Proposition 3.2.9). This implies the surjectivity.

Let us proceed then with injectivity. Let (—,0,p,7),(—1,01,01,71) € Z1(B, A).
Let

0 y A —— A"#,B ~ . B » 0
i(l‘l @l i(ll
0 » A —— AT#, B —— B y 0

be an isomorphism of (cleft) exact sequences of Hopf algebras and let x,&, x1,&1
be the corresponding sections and retractions. Let v € Reg,(B, A) such that vr =
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£ % (£,0) and let p € Reg, (B, A) such that vt = (Txy) * x~1. We know that
(—=1,01) = p.(—,0) and (p;,71) = (p,7).v ([D, Lemma 2.1] and Prop. 3.2.12). So
we only need to prove that

-~
|
-

(3.2.15) fH=v

Let ¢ = a#tb € A" #,B. Then

v(me) = €7 (aqym (b)) #0(b@))i) €10 (a@)7(bay) plbeay) #(s))
- - k . j i
=77 (p(b2))i), S (“(1)"(”(1));'7 (b)) ") agyr(bn Y p(b@) 6101 #b)
= e(a)t O(14D) = £,0(1tc).
Here the first equality is by definition, the second uses the formula in Lemma 3.2.4
and that both £; and © are morphisms of A-modules; the third follows because

(3.2.6) is equal to the trivial morphism. On the other hand, from ¢ = £(c(1))@7(¢(2))
it follows that

(3.2.16) T(140) = EX(1#b0y)#b(2)

and hence

ep(b) = T(1#tb1y )0~ (Sbeay ® bay)#S(D(2))
= ET(I#Z)(I)) (1)(2) —_ 0'_1(51)(7) ® IJ(s))) 0’(1)(3)®Sb((;))#h(4)3!)(5) = fT(l#b)#l,

where we have used the formulas in the proof of [BM, Prop. 1.8]. Applying now ©
to (3.2.16), we obtain

and hence 7 * v is the trivial morphism, i.e. (3.2.15) holds. O

Lemma 3.2.17. Let (—,0,p,7) € Z}(B,A). Then the bialgebra A7#,B is a
Hopf algebra and its antipode is defined by

(3.2.18)  S(a#h) = [(67" (Sp(bay)n ® plbay);) @ Splbiiy):]
[T_l(li(,;))ks ((Lp(b(]))t‘p(b(g))hp(b(‘g))jT_l(b(4))k) @ 1]

Proof. Let £, x be the "canonical” retraction and section of A7#,B. Then the
equality ¢ = £(c(1)) ® m(c(2y) can be rephrased as idg = (+£) * (x7) in the algebra
End(C). But we know that £ and y are invertible ([BM, Prop. 1.8] and Lemma
3.2.5). It follows that id¢ is invertible and S¢ = ide™ = (x~'x) * («£671). From
the expressions for x~! and £~! (3.2.18) follows. O

Cleft extensions have another pleasant properties.
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Lemma 3.2.19. Let us a consider a morphism of exact sequences of Hopf algebras

0 A—— C — B 0
o e
0 y A 4 ¢, —— B » 0

where the top exact sequence is cleft. Then the bottom Is also cleft and O is an
isomorphism.

Proof. Let x, £ be as in Definition 3.2.13. Let x; = Oy; clearly, x; is a retraction
of Cy. Let d € Cy; one has d = d(u)xl—l(d(l))xl((l(g)). But d(o)xl-l €EACImO
and hence © is surjective. Next we claim that & (d) = £(c) if ©(c) = d is well
defined. For, if O(c) = 0, then £(c) = cyx ™ memy) = Olcay)xy mO(cz)) = 0.
Moreover, £; 1s a section and the bottom exact sequence is cleft. Now assume
again that O(c) = 0. Then 0 = (§; @ m )(© ® ©)A(c) = (£ @ m)A(c) and hence
¢ = cayx " me))x(me@)) = Elcqy)x(mey) = 0. O

APPENDIX. BICOVARIANT BIMODULES
NICOLAS ANDRUSKIEWITSCH

The notion of bicovariant bimodule was introduced in [W], see also [W3]. A
crucial feature is that each bicovariant bimodule comes equipped with a solution of
the braided (or Yang-Baxter) equation. According to [PW, p. 411], Connes conjec-
tured in 1986 that "bicovariant bimodules over the algebra of smooth functions on
a quantum group are (in natural way) labeled by representations of another quan-
tum group”. This was solved (affirmatively) in [PW], by introducing the quantum
double, in a dual way to [D1]. In [T2], it was given an alternatively description
of the quantum double. It turns out [T2] that the representations of the quantum
double are exactly the crossed bimodules for the original algebra. (This was also
previously observed in [M] under a finiteness hypothesis.) Crossed bimodules were
introduced in [Y] and it was proved there that their category is braided.

In this appendix, we review briefly these facts and complete this circle of ideas.
We show that the space of "left invariants” is in fact a crossed bimodule and that
there is a one-to-one correspondence heteween crossed bimodules and bicovariant
bimodules. (This is merely a translation of some facts in [W] to a coordinate-
free language.}) Moreover, the category of such bimodules is quasitensorial [D2],
hence braided, and the corresponding solution of the quantum Yang-Baxter equa-
tion (found in [Y]) is the same that of [W].

Interesting examples of crossed bimodules are the right adjoint corepresentation
with the right multiplication, or (dually) the right adjoint representation with the
right comultiplication. The solutions of the QYBE they give rise were first pre-
sented in [W2], by a direct computation. (See Corollary A.3) Moreover, by means
of these solutions, any Hopf algebra is generalized commutative and generalized
cocommutative, in the sense of[GRR], [C], [Mn].
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A.1 Left covariant bimodules. We preserve the notation of the paper. The struc-
tural morphism of a comodule will be usually denoted ¢; when one space carries
two different comodule structures, we shall write ¢, (resp., ¢ or simply ¢) for the
right (resp., left) one.

A left covariant bimodule M has, by definition, a bimodule structure and a
left comodule structure, over A, both related by imposing the comodule structural
morphism ¢: M — A @ M to be a morphism of bimodules; here as always we use
the comultiplication to endow A @ M with a bimodule action of A.

Let N be a right A-module. Then M := A @ N is a left covariant bimodule via
the following formulae:

(A1) a(b®n)=ab®n; (b®n)a=ban) @napy; cb®@n)=A0)131Qn).

Moreover, any left covariant bimodule arises in this way. Indeed, let M be a left
covariant bimodule and let

Mo ={m € M :c¢(m) =18 m}.

Let also P : M — M, P(m) = S(my)m().

Proposition A.l. P is a projector whose image is M;,,, and the latter acquires
a right module structure by n.a = P(na); let us denote it by N. Then M is
isomorphic, as a left covariant bimodule, to A @ N with the structure explained
above.

Sketch of Proof. (See (W, Lemma 2.2, Theorem 2.1].) One shows first easily that
c(P(m)) = 1® P(in) and then, that Im P = M;,,,, P? = P. It is also obvious that
P{am) = e(a)P(m) and m = m,P(my). In particular, the restriction of the
multiplication is an epimorphism ¢ : AQ N — M. Suppose that there exist a; € A,
m; € N such that 0 = 5~ @;m;. Applying (id @P)c, we get 0 = ) a;@m; and hence
@ is a linear isomorphism. N is a right module with the action defined above, as
follows immediately from the formula P(na) = S(a(yy)nae), n € N. Consider N as
a left covariant bimodule via (A.1); obviously, ¢ preserves the left action of A and
the comodule structure. It is also easy to show that ¢ preserves the right action:

e((1 @ n)b) = by P(nbey) = byS(higynbgy =nd. O

Remark. Compare the preceding with [Sw, 4.1].

A.2 Bicovariant bimodules. The notion of "left covariant bimodule” has an im-
mediate translation to "right covariant bimodule”. Now let us recall the definition
of a bicovariant bimodule. This 1s a bimodule M, which i1s in addition left co-
variant, with structural morphism ¢, : M — A ® M, and right covariant, via
¢t M — M @ A; moreover, the following diagram must commute:

M A@M

CFJ, li(] ®c,

Mod =% JeoMeA.
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Let now N be a rigth A-module and a right A-comodule, such that
(A.2) (1® aqy)e{napy) =c{n)A(a), n€N,a€ A

(That is, N is a "right crossed bimodule”, in the terminology of [Y].)
Let M = A® N provided with the left covariant bimodule structure explained
in A.1 and extend ¢, to M in the following way:

(A.3) c{a @ n) = Afa)e{n) = agy ® ny @ a@ynq)-

It is easy to see that M becomes in this way a bicovariant bimodule. In fact, (A.2)
guarantees that ¢, is a morphism of right modules. Moreover, any bicovariant
bimodule is obtained in this guise. Finally, it is obvious that a morphism of rigth
modules and right comodules f : N — N' gives rise to a morphism of bicovariant
bimodules id®f : M — M', and that any such morphism has this form.

Example A.1. Consider 4 as a right module via the right multiplication and
as a right comodule via the adjoint; recall that ad : A — A @ A is defined by
a.d(b) = 6(2) & S(b(l))b(;;).

We claim that the preceding data satisfies (A.2). Indeed,

(1 ® (L(l)) ad(ha(z)) = (1)(1.(2))(2) ® (l.(l)S((b(t.(z) )(n)(b(l.(z))(;;)
= 1)(2)(1(3) @(1(1)5((1(2))5(1)(1))’)(3)(.’.(4) = ad(b)A(a)

Observe also that kere is a right subcomodule for the adjoint. In fact, one has

(e ®@id)ad = ¢, and also (id®e) ad = id.

Example A.2. Consider now A as a right comodule via the comultiplication and
as a right module via the Adjoint, that is, via the following formula: v Ad(v) =

S(v(1))uv(z). Again (A.2) is fulfilled:

(]. ® (l(]))A(l‘)Ad(a(g))) = (S(l.(z)b(l.(;,))(l) @ (L(l)(S(L(Z)b(l(a))(2) =
S(L(3)1)(1)(L(4) ® (L(I)S(l(z)b(g)(t(g,) - S(a(l))b(l)a(z) ® b(g)a(;;).

Remark. Let us now assume that U 1s a Hopf algebra dual to A. The left U-module
structures on A provided respectively by (u.a,v) = (a,v. Ad(u)) and (A.16) below
applied to (A, ad) coincide. In fact, one has (v ® u,ada) = (v Ad(u), a).

Example A.3. Consider a right comodule N as a trivial A-module, i.e. na =
g(a)n. Then the compatibility condition (A.2) reads ny) @ angyy = nw) @ na)a,
which is fulfilled if A is comunutative.

A.8 The quantumn Yang-Bazter cquation. Let Bicov (Bicouyu if necessary) be
the category of all rigth modules and right comodules satisfying the compatibility
condition (A.2); the morphisms must of course preserve both structures. Let N, N’
be objects of Bicov and let Ry n+ be defined by the commutativity of the following
diagram:
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NeN 2N NgN
(A4a) . id @Cl ‘[,@id
NON®A T NRA® N,
let SN v : N@N' — N'® N be defined by
(A4 D) Snn =TRn N

(We shall omit the subscripts whenever no danger of confusion is present.)

Proposition A.2. (i) Bicov is a quasitensor category (cf. [D2]), whose associa-
tivity constraint is the usual one and whose "commutativity coustraint” is Sy n:.

(ii) S satisfies the quantum Yang-Baxter equation (QYBE for short); that is, if
N,N' N" are objects of Bicov, then

(A.5)
(Sne ne @1A)(Id @Sy v )(Sn v @ 1d) = (Id @SN v )( Sy, v ® 1d)(id @SNy Nn).

(iii) S is invertible and its inverse is given by

NeN S, NeN

(A.6) c@;idl T‘T

id @pug—
—

N@A®N N@N'

Here pg-1 : AQ N' — N' is the left module structure given by pg-1(a @ n') =
n'S7(a), using that S™' is an antihomomorphism of algebras.

In other words, Sy n» is a morphism in Bicov, in fact a natural transformation,
and the following diagrams must commute:

(A.7a)
(Ni@N2)®@Ny —— N3 QN @Ny) —— (N3 QN )Q® N,

| Tsai

N ® (N2 @ Ny) 225, Ny @ (Ns @ Ny) —=— (N, @ N3) @ N,

(A.Tb)
Ni@(Ny @N3) —— (N @N)QN, —— Na® (N3 @ Ny)

| =

(Ni@N)® Ny =24, (M@ N)@N; —— N, ® (N; ® Ns).
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Proof. (i) Let us first prove that Sy n+ 1s a morphism of A-modules. Let a € A,
ne N, n € N'. Then

S((n ®@n')a) = S(nan) @ n'agy)
= (n'agz))0y ® naqy(n'a@))ay = nigyea) @ nn' (1))
= S(n®@n')a,
thanks to (A.2).

Now let us show that it is a morphism of comodules. Using the compatibility
condition (A.2) and the first axiom of comodules, we have:

(S®id)e(n@n') =(S® id)(n ) ® “Eu) ® n(l)nzl)) = n;o) ® n(o)n'(l) @ "(l)”iz)
= '”‘iu) ® (T?-‘”-Eg))(u) ® nh)(nnzz))(]) =¢(S(n@n')).

The commutativity of (A.7 a) (vesp., (A.7 b)) follows from the coassociativity in
the definition of comodule (resp., the definition of tensor product of comodules).

If f: N> P(resp.,g: N — P'}is a morphism of modules (resp., of comodules)
then Spp (f ® ¢) = (f ® ¢)Sn n+ In particular, S is a natural transformation.

(i) follows from (i), see [D2, Remark 4 before Prop. 3.1]. (A direct proof is
straightforward.)

(ﬁli): use that S~! is the antipode for the opposite comultiplication and the same
multiplication. O

Remark. Proposition A.2 is a generalization of [W, Prop. 3.1]. Indeed, our formula
(A.4), in the case N = N' = N"| coincides with [W, (3.5)]; this follows from [W,
(3.15), (2.35) and (2.13)]. On the other hand, Proposition A.2 (ii), (iii} were first
proved in [Y].

Corollary A.3. (i) Let Sy : A®@ A — A® A be defined by
(AS) SU((L ® b) = {’(2) ® (13(11(1))11(3).

Then Sy satisfies the quantiumn Yang-Baxter equation. Moreover, Sp(a @ b A(c)) =
SU(G' ® b)A(C) and (SU [o30] l(l) (’.1.(1®2 = a,d®2 SU-

(ii) Let 51 : AQ A — A® A be defined by
(A.9) S1{a @) = by @ S(bay )by .

Then S, is also a solution of the QYBE.

Proof. Apply the Proposition to A within the setting of Example A.1 (resp. A.2)
above. Note that if U is as in the Remark following Example A.2, then

(S$1{(u®v),a®@b) =(L®@v,Sp(c®@D)), «,be A wyveU.
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Now let us consider the quantum double £ of 4, as defined in [T2]: as a vector
space, £ = End(A4); the multiplication is given by (T1T2)(e) = Ti(a))T2(a(s)); the
comultiplica(;tion, by

AT)(z @ y) = (1© w(1))A(T(y2(2))(1 @ S(z()));
cf loc cit for the remaining definitions.
Proposition A.4. (i) Let V be a right £-comodule, with structural morphism cg.
Then V is an object of Bicova, with action and coaction defined by
v.a = vyle,vey(a)), c(v) =va) @ vey(l).

Conversely, any object V of Bicov, is an £-comodule via the applicationcg : V —
VQ®E ~ Hom(A,V®A) defined by cg(v)(a) = c(va). These assignements are inverse
of each other and hence the categories Bicovs and Comodg are equivalent.

(i1) Let B : £ x £ — k be the bilinear form defined by

(A.10) B(F,G) = (e, FG(1))

Let V, V' be two £-comodules, let Ry vy be defined by the commutativity of the
following diagram:

, Ry v ,
Vev _— VeV

(A.1la) c,,@;cv.l Tid@B

VRERV ®E s VRV QERE:

and let Sy y: be given by
(Allb) SV’\/a = TRV‘I’/J.

Then Comods is a quasitensor category whose commutativity constraint is Sy y»
and the equivalence stated in (1) preserves this additional structure.

Proof. (i) See [T2]. (ii) is left to the reader.

Part (ii) of the Proposition above is a particular case of the following fact, a
slight generalization of [Ly, Th. 2.3.3]:

Proposition A.5. Let p: A®@ A — k be a non-degenerate bilinear form satisfying

f(l)ﬂ(l)/’(fi(z),f('z)) = P(!I(]),f(l))ﬂ(z)f(z)a
p(fg, 1) = p(f, hiny) (e, Tyzy)
[)(h-,fjf) = P(h(]),f)ﬂ(h(Q),f})

for any f,g,h € A. Then the category of right A-comodules is quasitensorial and
the commutativity constraint Sy ny: M QN — N ® M is given by

SM,N("” ® 'n) = (1) ® 1?1(1)[)(771(2), 71(2)).

The data (A4, p) is the dual version of a quasitriangular Hopf algebra, see below.
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A.4 Quasstriangular Hopf algebras.

Let us assume the existence of a Hopf algebra U such that A — U* is a Hopf
algebra dual to U. Let us suppose first that U is quasitriangular [D1}, i.e. there
exists R € U @ U invertible satisfying
(A.12) A'(u) = RA(WR™', uel,

(A.13) (A ®id)(R) = R¥R**, (id®A)R)= R"“R'",
where A' is the opposite comultiplication. (A.13) implies that the application A —

U given by a — id ®@(a, )(R) (vesp., a v {a,-) ® id(R)) is an antihomomorphism
(resp., a homomorphism) of algebras. ‘Notice that:

(A.14) If U°°? denotes U as Hopf algebra with the opposite comultiplication, then
(Ue°P  R™1) is also a quasitriangular Hopf algebra, as well as (U°?, R™1).

(A.15) If (V,T) is another quasitriangular Hopf algebra, then (U ® V,72*(R @ S))
is also one.

Let now N be a right A-comodule, hence a left U-module with the action defined
by the commutativity of the following diagram:

UON — N
(A.16) rl Tid@(.)
NQU —— NRQARU.

We shall consider N as a right A-module by composing the preceding with the
antihomomorphism a — id @{«, -)(R). In concrete terms,

(A17) na=n{ng ®a,R), neEN,a€ A

To insure the pertenence of N to Bicowv, we need to check the compatibility condi-
tion (A.2). Notice first that (A.12) hmplies, for any u« € U, a,b € A, the equality
((l(]) & b(l) ® a(2) ® ’)(2), A'(u) ® R) = (a“) [o%s] ()(1) & 2) & 1)(2), R® A(u)) and thus

(A.]-S) ((1(2) ® !)(2), R)b(])(l(l) = ((l(]) ® b(]), R)(l(z)b(z).
Taking into account (A.17), the left hand side of (A.2) is
(n(2) @ a2y, Byngo) @ aynqy;

the right one is

{101y ® aqy, R)ynwy @ nezyee)

and the equality follows from (A.18) (that is, from (A.12)).
On the other hand, let N’ be another A-comodule, n € N, n’ € N'. Then the
application (A.4) gives in this case, thanks to (A.17),

n@n' — (ng)Qn'y, R)ne @ nEU)

which is the same as the action of R on the U ® U-module N @ N'. We have
therefore proved the following fact, essentially due to Rosso [R}:
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Proposition A.6. If U is quasitriangular, then any A-comodule belongs to Bicov.
in a "canonical” way; moreover, the solutions of the quantum Yang-Baxter equation
provided by (A.4) and R coincide.

Let us consider 4 as A @ A°”’-comodule via a — q3) @ a@z) @ a(yy. It follows
from (A.14) and (A.15) that the application S;: AQ A — A® A given by

(Alg) Sa{a®b) = ((L(g) ® a1y, R) (b(S) @ b(l): R_l)b(g) ® a(z)

satisfies the Yang-Baxter equation.

Let us now recall that a generalized comnutative algebra is a pair (B, S), where
B is an algebra with multiplication m and S : B® B — B ® B is a solution of the
QYBE such that

(A.20a) mS =m,
(A.20b) S(b@ 1)=1®0, S(1®b) =b®1,
(A.20c) S(m ®@id) = (id@m)S'*S8**,  S(id@m) = (m ®id)S**S'%.

The following fact is well-known.

Proposition A.7. (A, S;) is a generalized commutative algebra.

Proof. We already showed that S, satisfies the quantum Yang-Baxter equation.
(A.202 and c) are direct consequences of (A.12 and 13), respectively, whereas to
prove (A.20b) one uses the following equalities (cf. [D3, Prop. 3.1]):

(A.21) (e ®id)(R) = 1 = (id @¢)(R).

Now we show that any Hopf algebra is generalized commutative.
Proposition A.8. (A,S5)) is a generalized commutative algebra.

Proof. Tt is straightforward. For example,

mS1(a @ b) = b)S(ba) )by = ab;
(id@m)S"S*¥a®b®c) = ey ® S(e(zy)acsS(cia))bces)
=c1) ® S(c(g)j)abcw) =S1(m®id) (e« @b c);

and the rest is similar. O

In the same vein, one defines generalized cocommutative coalgebras and proves
that, if A is any Hopf algebra, then (A4, Sy) is generalized cocommutative.
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[BCM]
[(BM]
[€]

(D]
[DT]

[D1]
[D2]

(D3]
[G]

[GRR]
1
(Ly]
[MeL]
(M]

(Mn]

[MW]
[MM]

(NZ)

{PaW]
[PW]

[R]

[S]
(Sch)
[Sch2]
[Schi]

[Sw)
[Sw2]

(T]
[T2]
(T3]

(W]
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