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Geometric adeles and
the Riemann–Roch theorem for 1-cycles on surfaces

Ivan Fesenko

Adelic proofs of the Riemann–Roch theorem for smooth proper irreducible curves over finite
fields are well known, e.g. [I1], [T, 4.2]. There only characteristic zero case is treated, but it is
easy to develop a similar proof in positive characteristic. That proof uses the translation invariant
measure and integration, Fourier transform and harmonic analysis on adeles and their subquotients.
However, adelic duality on its own is already sufficient to derive the Riemann–Roch theorem over an
arbitrary field, as described in 1950/51 Artin’s lectures in Princeton [A, Ch.XIV] for function fields
over finite fields, [I2] for smooth proper irreducible curves over any field, [G] for proper irreducible
curves over any field. There is also an essentially measure and integration free proof in [W, Ch.VI],
which is however less lucid than the previous proofs.

Unlike dimension one, there are two different adelic structures in dimension two, one of more
geometric nature, closely related to 1-cycles, and another of more analytic nature, so that one has
measure, integration and zeta integral theory on them, this second structure is closely related to
0-cycles, [F3, Ch.2], [F4, Ch.1]. The former adelic structure on surfaces over finite fields was
introduced yet in [P2], and it had been a long expectation that the geometric adeles would lead to
a proof of the Riemann–Roch theorem for divisors on surfaces. An adelic proof of the Riemann–
Roch theorem for smooth irreducible projective surfaces over finite fields was recently announced
in [OP3]. The proof relies, in addition to foundational papers [P1], [B], [P2], on several technical
developments in recent papers [O], [OP1], [OP2] whose full length is a three digital number of pages.

For further developments of adelic geometry, including an adelic interpretation of the intersection
pairing and other applications in higher algebraic geometry, as well as applications of the two-
dimensional zeta integral study to the study of the zeta function including the full BSD conjecture,
concise and lucid proofs are needed.

The aim of this paper is to offer a new adelic interpretation of the intersection index on surfaces
in terms of adelic Euler characteristic, without using K-theoretical constructions. The proof uses
only foundational aspects of duality of geometric adeles A, from parts of [P1], [B], [P2], and further
develops their theories. The proof uses adelic self-duality and its corollaries, and can be viewed as
another evidence of powerful applications of adelic geometry. The proof is very short and essentially
easy. The main result implies the Riemann–Roch theorem on surfaces as soon as one uses the known
relation between Zariski cohomologies and adelic complex cohomologies.

We also prove various aspects of self-duality of A, which were stated without proof in several
previous publications including [F4,§28] and [OP3], and establish a number of new properties in a
form well suitable to several future generalizations.

We work with smooth proper irreducible surfaces over finite fields, but the proof is written in a
such way that, similarly to [I2] and [G], it can be easily generalized to the case of proper irreducible
surfaces over arbitrary fields.

An extension of the theory of this work to the case of arithmetic surfaces is expected, with an
adelic interpretation of the Arakelov intersection, see Remarks at the end of the paper.

June 2012
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In the introduction of [I2] Iwasawa wrote, "it has become clearer and clearer that the topological
properties of [adeles] and of its related structures ..., have essential relations to the arithmetic of the
[global field]". This text illustrates in a concise way a similar phenomenon in relation to algebraic
geometry on surfaces.

I am grateful to A. Beilinson for discussions of adelic geometry and importance of the moving
lemma. This work combines the two and the universal property of the intersection pairing. I am
also grateful to A. Yekutieli, M. Kapranov and M. Morrow for a number of useful comments, and to
D. Osipov for explaining some features of the very different approach in [OP3].

This work was partially done during my stay in mathematics department of University of Chicago,
in Bogomolov’s Laboratory of algebraic geometry and its applications at the Faculty of Mathemat-
ics of Higher School of Economics, Moscow, and at MPIM at Bonn, their support is gratefully
acknowledged.

0. Here is how the classical one-dimensional proof can be conducted. Let k be a global field and
let Ak be the adelic ring of k. Suppose k is of positive characteristic, i.e. the function field of a
smooth proper irreducible curve C over a finite field F, and assume that the latter is algebraically
closed in k. For a divisor d on the curve we have an adelic complex

Ak(d) : k⊕ Ak(d) −→ Ak, (a, b) 7→ a− b

where Ak(d) = {(αv) : v(αv) > −v(d)}, where v runs through all discrete valuations on k, i.e. all
closed points of the curve, and d =

∑
v(d)dv where dv is the class of the valuation/closed point

in the divisor group. This complex is quasi-isomorphic to the complexes Ak(d) −→ Ak/k and
k −→ Ak/Ak(d). We have H0(Ak(d)) = k ∩ Ak(D), H1(Ak(d)) = Ak/(k ∩ Ak(D)).

Take any non-zero differential form ω ∈ Ω1
k/F. We use an associated pairing

Ak × Ak −→ F, (α, β) 7→
∑
v

Trk(v)/F resv(αvβvω),

where k(v) is the residue field of the local ring at v. Denote by c the divisor of ω. Alternatively, take
any nontrivial differential map (the terminology of [A, Ch.XIII §4]), i.e. continuous F-linear map
from Ak to F (endowed with the discrete topology) which vanishes on k, and compose it with the
multiplication Ak × Ak −→ Ak, then the complement of Ak(0)⊥ of Ak(0) can be written as Ak(c)
for an appropriate c.

Using (non-canonical) self-duality of the additive group of a local field it is easy to prove
(non-canonical) self-duality of the additive group of Ak. It is also algebraically and topologically
isomorphic to the group of continuous F-linear maps from the adeles to F. For a subgroup H of the
adeles denote H⊥ = {β ∈ Ak : (H,β) = 0}. If C is a projective line, it is easy to see that one can
find an open subgroup R (actually in the form Ak(d)) of Ak such that the latter is the direct sum of
R and k, hence k is a discrete subset of Ak, and the quotient Ak/k is compact, since R is compact.
This property extends to the general case using the trace map from k down to F(t). The complement
k⊥ is a k-space which contains k; k⊥/k is a closed subgroup of Ak/k, hence compact. On the other
hand, k⊥ is the group of continuous F-linear maps from the compact Ak/k to F, hence it is discrete.
Then k⊥/k is discrete and compact, hence finite. Since k is an infinite field, we deduce k⊥ = k.
Hence every differential map corresponds to a differential form ω.

Working with the pairing of the adeles with themselves, we get Ak(d)⊥ = Ak(c − d), hence
the group of continuous F-linear maps from H0(Ak(d)) to F is isomorphic to Ak/H

0(Ak(d))⊥ =
H1(Ak(c − d)). Now Ak(d) is compact, so its intersection with k is discrete in the compact group,
hence H0(Ak(d)) is finite and so is H1(Ak(d)), and we get dimFH

0(Ak(d)) = dimFH
1(Ak(c− d)).

So for the Euler characteristic we obtain χAk (d) = dimFH
0(Ak(d))−dimFH

1(Ak(d)) = χAk (c−d).
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Working with the virtual dimension of twoF-commensurable spacesG,H (which meansG∩H is
of finite F-finite codimension in each of them), dimF(G : H) = dimFG/(G∩H)−dimF(H/(G∩H),
and noting it is additive on short exact sequences related to 0 → k → Ak → Ak/k → 0, we obtain
− deg d = dimF(Ak(0) : Ak(d)) = χAk (0)− χAk (d).

The two formulas for curves

deg d = χAk (d)− χAk (0), χAk (d) = χAk (c− d)

are the ones from which everything else follows.
In particular, using them we get

− deg d = dimFH
0(Ak(0))− dimFH

0(Ak(c))− dimFH
0(Ak(d)) + dimFH

0(Ak(c− d)).

Since dimFH
0(Ak(0)) = 1, we derive dimFH

0(Ak(c)) = dimFH
0(Ak(c − d)) + deg d + 1 − g,

where g = dimFH
0(Ak(c)). This is the adelic Riemann–Roch theorem. It is not difficult to deduce

that the adelic cohomology groups Hi(Ak(d)) are isomorphic to the Zariski cohomology groups
Hi(C,OC(d)) and then the previous equality gives the classical Riemann–Roch theorem.

This proof is presented in such a way that it immediately extends to smooth proper irreducible
and even proper irreducible curves over any field F . In this more general proof one works with
F -linear topology on the adeles for a function field of the curve over F and replaces compactness
by F -linear compactness (see, e.g. [L,§6]), for more details see [I2], [G].

1. Let S be a smooth irreducible proper surface over a finite field F, hence projective. Denote by
K its function field and assume that no nontrivial finite extension of F is contained in K. For an
irreducible proper curve y (we will call them just curves) on S let Dy be the divisor of y in Div(S)
and let Ky be the fraction field of the completion Oy of the local ring of S at y. For a closed point
x ∈ y let Kx,y be the product of all Kx,z where z runs through all minimal prime ideals of Ox

corresponding to y, i.e. through all formal branches y(x) of y at x, and Kx,z is the fraction field of
the completion Ox,z of the localization of Ox at z. For a closed point x of S let Kx be the minimal
subring of Kx,y which contains Ox and K.

Put Ox,y =
∏

z∈y(x) Ox,z . Denote by Ox,z the ring of integers of the two-dimensional local field
Kx,z with respect to any of its discrete valuations of rank 2. The residue field of Kx,z with respect
to its discrete valuation of rank 1 is one-dimensional local field Ex,z , its residue is finite field kz(x).
See e.g. [F4, §24] and references therein for more information. In positive characteristic we can
identify Ex,z with a unique subfield of Kx,z and then choosing a local parameter t of Kx,z with
respect to its discrete valuation of rank 1, for example a local parameter ty of y on S, the field Ex,z

can be viewed as the formal power series field Ex,z((t)).
For every curve y on S similarly to [F4, §28] and [F3] define the two-dimensional geometric

adelic space Ay = ∪Ar
y as in [F4, §25]. The ring Ay is the two-dimensional adelic ring associated to

the curve y on the surface S. It is a subring of
∏

x∈yKx,y and can be thought of as Ak(y)((ty)), the
formal power series in ty, a local parameter of y on S, over the adelic ring of the one-dimensional
function field of y. It has a subring OAy = A0

y = Ay ∩
∏

x∈y Ox,y, which can be viewed as the
subring of integral power series in ty.

Similarly to [F4, §28] define the geometric adelic ring AS as the restricted product of Ay with
respect to OAy. Equivalently, A = AS is the subring of all {(αx,z), αx,z ∈ Kx,z)} such that the
following two restricted conditions are satisfied: for almost every y the element αx,z ∈ Ox,z for all
x ∈ y and there is r such that (αx,y)x∈y ∈ tryAy for all y. The adelic ring AS equalsA012 defined in
[P2, §2.1]. The ring AS is the union of subring AS(D) whereD runs through all 1-cycles (divisors)
of S and AS(D) = {(αx,y)x∈y ∈ t

ry
y Ay for all y} where ry = −vy(D), D =

∑
−ry[y]. The reason
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why we use the bold font for these (geometric) adelic objects is that the Bbb-notation is employed
for analytic adelic objects A,B on relative surfaces in [F4].

Denote

B =
∏

Ky ∩AS ,C =
∏

Kx∩AS ,OA =
∏

Ox,y ∩A,OB =
∏

Oy ∩AS ,OC =
∏

Ox∩AS .

In line with [P1] (the complex there is the intersection of the following one with the product of
copies of K), [B] and [P2] (there is a misprint in the definition of A02 there), in dimension two the
(geometric) adelic complex is

AS = AS(0) : K ⊕OB⊕OC→ B⊕C⊕OA→ A,

or in more compatible with the underlying symplectic structure on flags of scheme points of S and
more convenient for computations notation

AS = AS(0) : A0 ⊕A1 ⊕A2 −→ A01 ⊕A02 ⊕A12 −→ A012

and the adelic complexes for 1-cycles D

AS(D) : A0 ⊕A1(D)⊕A2(D) −→ A01 ⊕A02 ⊕A12(D) −→ A012

where A∗(D) = A0∗ ∩ AS(D). The maps are (a0, a1, a2) 7→ (a0 − a1, a2 − a0, a1 − a2) and
(a01, a02, a12) 7→ a01 + a02 + a12.

For a more general approach to geometric adeles see [B], [Y].

In dimension two, the best topologies to work with are sequentially saturated topologies, [F1],
[C]. However, for the purposes of this paper we do not need them, since a subgroup is open in the
topology we consider on A if and only if it is open in its sequential saturation. As appropriate for
this paper, we will have more open subgroups of A than in [F4, Ch.1].

Define a translation invariant topology on Ar
y ' tryAk(y)[[ty]] which is isomorphic, looking at

the coefficients of powers of ty, to
∏∞

i=r Ak(y), as the product topology on the latter, where the
topology on the one-dimensional adeles is the usual one. This topology does not depend on any of
the related choices in positive characteristic. Moreover, in the general case it does not depend on the
choices provided the ring embeddings and local parameters agree with the geometric structure. This
topology coincides with the translation invariant topology in which try(

∏
x∈y

∏
z∈y(x) Wx,z +tmy Ay),

m > 1, form an open base of 0, where Wx,z are open subgroups of Ox,z and almost every Wx,z is
equal to

∑i=m−1
i=0 tiyO(Ex,z) + tmy Ox,z , O(Ex,z) = the residue image ofOx,z , i.e. the ring of integers

of Ex,z . Define a translation invariant topology on Ay as the inductive limit of the topologies on
Ar

y.

As usual, the topology of the restricted product
∏′

Gi of topological groups Gi with respect to
their closed subgroups (Hi) is the translation invariant topology in which an open base of the identity
element is formed by subsets

∏
i∈J Vi ×

∏
i6∈J Hi of GJ , where J runs through finite subsets of

I and Vi are in an open base of the identity element in Gi. Thus we get a translation invariant
topology on A in which it is not a locally compact group. Each of F-subspaces of AS(D), including
A∗, A∗(D), is endowed with the induced topology. It is easy to see that the induced topology on F
is discrete.

2. The group of characters of a topological group is a topological group with respect to the
corresponding well known (compact to open) topology. Recall that every two-dimensional local
field F is (non-canonically) self-dual, its groups of characters is {β 7→ χ0(αβ) : α ∈ F} where χ0
is a fixed nontrivial character, see e.g. [F2, Lemma 3].
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There are two general constructions which extend the class of self-dual topological groups
occurring in geometry. If the additive group of a ring R is endowed with a translation invariant
topology with respect to which it is self-dual, then the additive group of the formal power series ring
R((t)), endowed with the inductive limit topology of the direct product topology on tiR[[t]] '

∏
R,

is self-dual. If topological groupsGi are self-dual, then for a certain choice of their closed subgroups
Hi satisfying natural conditions, the restricted product of Gi with respect to Hi is self-dual. In
particular, the additive group of Ay is (non-canonically) self-dual, and as the next proposition
shows, the additive group of A is self-dual.

Similarly to [A, Ch.XIII §4] we can call an F-linear continuous homomorphism from A to F
which vanishes on A01 + A02 a differential map (this notion is related to a more general notion of
locally differential operator in [Y, Def 3.1.8]). The following proposition includes a description of
differential maps, each of which is of the form

dω:A −→ F, (αx,z) 7→
∑
x∈y

∑
z∈y(x)

Trx,z resx,z(αx,zω)

where ω ∈ Ω2
K/F, y runs through all curves on S, x runs through all closed points of y, and

resx,z:Kx,z → kz(x) is the two-dimensional local residue which is the composite of the residue to
the first residue fieldEx,z and then the residue to the second residue field kz(x), Trx,z: kz(x)→ k(x)
is the trace to the residue field k(x) of Ox. See [P1], [P2], [Y], [M1], [M2] for more detail about dω.

Let ω be a non-zero form. Denote by C the divisor of ω, its class in Pic(S) is uniquely determined.
The composite of the multiplication A×A −→ A and dω gives the pairing

A×A −→ A −→ F, (α, β) 7→ dω(αβ).

As usual, for a closed subgroup B of A denote by B⊥ = {γ ∈ A : dω(Bγ) = 0} the subgroup
which complements B with respect to dω.

There are two two-dimensional properties generalizing the familiar one-dimensional property
k⊥ = k: A⊥01 = A01, A⊥02 = A02, see [P1,§2 Prop. 1] for repartitions argument which uses a strong
approximation property in the second case and reduces to the one-dimensional case in the first case.
The adelic argument runs similarly, replacing an analog fm,H ∈ Km,H of f,m,H of [P1, p. 710] by
a sufficiently close element of K, and using an analog of [P1, §1 Prop. 5].

Proposition.

(1) This pairing is symmetric, continuous and non-degenerate.
(2) Every character of the additive group of A has its image in Fp and is equal to β 7→

TrF/Fp
dω(αβ) for an appropriate adele α ∈ A. The additive group of A is (non-canonically) self-

dual. For every closed subgroup B of A we have (B⊥)⊥ = B and B is isomorphic to the group of
continuous F-linear maps from A/B⊥ to F.

(3) We have A12(D)⊥ = A12(C−D), A⊥01 = A01, A⊥02 = A02.
(4) Ai = Aij ∩ Aik for every 0 6 i 6 2, where i, j, k is a permutation of 0, 1, 2 and we set

Aij = Aji.
(5) Each of A∗, A∗(D) and any of their sums is closed in A.
(6) A⊥0 = A01 +A02, A1(D)⊥ = A01 +A12(C−D), A2(D)⊥ = A01 +A12(C−D).

(7) Differential maps on A form a 1-dimensional space {dω : ω ∈ Ω2
K/F} over K.

Proof. Continuity and non-degenerate property follow immediately from the definitions. To con-
struct α in (2), restrict the character on y, find an appropriate αy and then show that α = (αy) does
the job.
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(3) the first property follows from the definitions. For the other two properties see the paragraph
preceding the statement of this propostion.

(4) The property for i = 1, 2 follows from the definitions. To prove the property for i = 0 note that
elements (αx,y) of A01 do not depend on x, and elements of A02 do not depend on y, so elements of
the intersectionA01 ∩A02 consist of (a)x,y with a ∈ Ky for all y and a ∈ Kx for all x. Now take an
affine subschemeR of S with the ring of regular function k[R] and use the property that it coincides
with the intersection (in an appropriately large ring) of all of its completions of its localizations with
respect to its prime ideals of height 1.

(5) follows from the definitions that if | ∗ | = 2 then A∗, A∗(D) are closed. For two closed
subgroups B,C their sum B + C is the complement of B⊥ ∩ C⊥, hence closed.

(6) follows from the previous and (B ∩ C)⊥ = B⊥ + C⊥.
(7) using (6), the action of K on differential maps d is k ∗ d : α 7→ d(kα). The property follows

from (2) and (6).

Remark. Parts (3), (4), (6) of this proposition were stated in [OP3, Prop.2] without proof.

3. Let Hi(AS(D)) be the cohomology groups of the complex AS(D). We have

H0(AS(D)) = A0 ∩A12(D), H2(AS(D)) = A012/(A12(D) +A01 +A02),

H1(AS(D)) = (A12(D) ∩ (A01 +A02))/(A1(D) +A2(D)).

Using the previous proposition it is easy to see that there are natural maps from the complex
AS(D) to the following complexes, each of which is quasi-isomorphic to AS(D)

A0 −→ A01/A1(D) −→ A012/(A12(D) +A02),

A2(D) −→ A12(D)/A1(D) −→ A012/(A01 +A02),

A2(D) +A0 −→ A02 −→ A012/(A12(D) +A01).

In particular, there are natural isomorphisms

H1(AS(D)) ' (A02 ∩ (A12(D) +A01))/(A2(D) +A0) ' (A01 ∩ (A12(D) +A02))/(A1(D) +A0).

For two topological spaces X,Y over F denote by Homc
F(X,Y ) the F-space of continuous

F-linear maps endowed with the corresponding topology.

Proposition. (1) There are isomorphisms

Homc
F(H0(AS(D)),F) ' H2(AS(C−D)),

Homc
F(H1(AS(D)),F) ' H1(AS(C−D)),

Homc
F(H2(AS(D)),F) ' H0(AS(C−D)).

(2) Each dimFH
i(AS(D)) is finite and an invariant of the class of D in Pic(S).

(3) Denote by χA(D) =
∑

(−1)i dimF |Hi(AS(D))| the Euler characteristic of AS(D). Then
χA(D) = χA(C−D).

Proof. By the previous propositionH0(AS(D))⊥ = (A0 ∩A12(D))⊥ = A01 +A02 +A12(C−D), so
the space of continuous F-linear maps fromH0(AS(D)) to F is isomorphic toA012/H

0(AS(D))⊥ =
H2(AS(C−D)) and the space of continuous F-linear maps from H2(AS(D))to F is isomorphic to
H0(AS(C−D)).
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The space of continuousF-linear maps fromH1(AS(D)) ' (A01∩(A12(D)+A02))/(A1(D)+A0)
to F is isomorphic to (A1(D)⊥ ∩ A⊥0 )/(A⊥01 + (A12(D)⊥ ∩ A⊥02)) = (A01 + A12(C − D)) ∩ (A01 +
A02))/(A01+A02∩A12(C−D)) which is equal to (A01+A12(C−D))∩(A01+A02))/(A01+A2(C−D))
by the previous proposition. We have a natural map from (A12(C−D)∩ (A01 +A02))/(A1(C−D) +
A2(C − D)) to the latter and it is easy to see it is an isomorphism. Thus, the space of continuous
F-linear maps from H1(AS(D)) to F is isomorphic to H1(AS(C−D)).

H0(AS(0)) = K∩OA = F. For every divisorD and curve y the quotient (K∩A12(D+Dy))/(K+
A12(D)) is finite, since k(y)∩Ak(y)(d) is finite for every divisor d on y. HenceH0(AS(D)) is finite.
Due to the first isomorphism so is H2(AS(D)).

H1(AS(D)) is isomorphic to a closed subspace of a quotient ofA12(D)/A1(D) which is isomor-
phic to the direct product of compact Ak(y)/k(y) and hence compact, so H1(AS(D)) is compact.
Since A12(D)/A1(D) is compact and H2(AS(D)) is finite, A012/(A01 + A02) is compact. It is
isomorphic to the space of continuous F-linear maps from A0 to F, hence A0 is discrete. Next,
H1(AS(D)) is isomorphic to (A02 ∩ (A12(D) + A01))/(A2(D) + A0) which is a subquotient of
A02/A2(D), homeomorphic to A0/(A0 ∩ A2(D)), hence it is discrete. Therefore, H1(AS(D)) is
finite.

To prove (2), useA∗(Div(f )+D)+A0∗ = A∗(D)−f+A0∗ = A∗(D)+A0∗, |A0∩A12(Div(f )+D)| =
|A0 ∩A12(D)| for any f ∈ K×.

Remarks. 1. The discreteness of K as a topological subspace of AS reproduces the well known
similar fact in dimension one: the discreteness of a global field k as a topological subspace of the
one-dimensional adeles Ak. Unlike the compactness of the quotient Ak/k, the quotient A/K is not
compact but the quotient AS/K

⊥ = AS/(A01 +A02) is.
2. Finiteness of the cohomologies of the adelic complex has not been given a direct adelic proof

in any of the previous papers, instead an isomorphism of Hi with the cohomologies of OS(D) was
used and then their finiteness, as established in algebraic geometry, was applied.

4. In view of theorems of the cube, it is natural to define for two divisors E,D on S

[E,D] := χA(0)− χA(−D)− χA(−E) + χA(−D − E).

Proposition.

(1) The pairing [ , ]: Div(S)× Div(S)→ Z is a bilinear symmetric form.
(2) It is invariant with respect to translation by principal divisors.
(3) If D is a divisor whose support does not contain a smooth curve y, then [Dy, D] is equal to

degy(D|y). In particular, if y, z are smooth curves onS with transversal intersection then [Dy, Dz] =∑
x∈y∩z |k(x) : F|.
(4) The pairing [ , ] coincides with the intersection pairing (E,D), in particular,

(E,D) = χA(0)− χA(D)− χA(E) + χA(D + E).

Proof. The second property follows from invariance of χA with respect to translation by principal
divisors.

To show the third property we use a relation of AS(D) and the one-dimensional adelic complex
Ak(y) of the curve y on S. Namely, for a smooth curve y and a divisor D whose support does not
contain y, we use the following complex Ak(y)(D|y) −→ Ak(y)/k(y) as a one-dimensional adelic
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complex Ay(D|y) quasi-isomorphic to the complex k(y)⊕Ak(y)(D|y) −→ Ak(y). We have a natural
commutative diagram

A2(D) //

��

A12(D)/A1(D) //

��

A012/(A01 +A02)

��
Ak(y)(D|y) // Ak(y)/k(y) // 0

The two vertical maps are defined using A2(D) −→ A12(D) −→ Ak(y)(D|y) and A12(D) −→
A012 −→ Ak(y), the latter is defined using the residue map from Kx,z to its first residue field Ex,z .
The kernels of the vertical maps form a complex AS(D −Dy)

A2(D −Dy) −→ A12(D −Dy)/A1(D −Dy) −→ A012/(A01 +A02).

Thus, we have an exact sequence of complexes

0 −→ AS(D −Dy) −→ AS(D) −→ Ay(D|y) −→ 0.

Hence [Dy, D] = χ(Ay(0))−χ(Ay(−D|y)). The latter is equal to virtual dimension dimF(Ak(y)(0) :
Ak(y)(−D|y)), i.e. to degy(D|y). In particular, we obtain [Dy, Dz] =

∑
x∈y∩z |k(x) : F| if y and z

are smooth curves intersecting transversally. The third property is proved.
For divisors E1, E2, the moving lemma allows to find linearly equivalent divisors E′1, E′2

such that their support does not contain y. Therefore, by the previous material [Dy, E1 + E2] =
[Dy, E

′
1 + E′2] = [Dy, E

′
1] + [Dy, E

′
2] = [Dy, E1] + [Dy, E2]. For three divisors D1, D2, D3, the

difference [D1 + D2, D3]− [D1, D3]− [D2, D3] is symmetric in Di. Since it is 0 when D3 = Dy,
[D1, D3] = [D1 + D2, D3] − [D2, D3] if D2 is the divisor of a smooth curve, for arbitrary D1 and
D3. Now represent a divisor D as Dy1 − Dy2 modulo a principal divisor, where yi are smooth
curves, see e.g. [Ha, Ch.V, p. 359]. We get [D,E] = [Dy1 , E]− [Dy2 , E] and each of the terms on
the right hand side is linear in E, hence so is [D,E].

It is well known ( e.g. [Ha, Ch.V, Thm 1.1] that the first two properties and the last sentence of
the third property uniquely characterize the intersection pairing. Finally [E,D] = [−E,−D].

Thus, we can compute the intersection number of two divisors entirely in terms of adelic objects
associated to the adelic complexes for the divisors.

The formulas

(E,D) = χA(0)− χA(D)− χA(E) + χA(D + E), χA(D) = χA(C−D)

are the key formulas for surfaces.

As a corollary of the previous two key formulas, we deduce the adelic Riemann–Roch theorem
for S:

(D,C−D) = χA(0)− χA(D)− χA(C−D) + χA(C) = 2(χA(0)− χA(D)).

Using the isomorphimsHi(AS(D)) ' Hi(S,OS(D)), see [P1, Thm1], [B], [Hu], [Y], we obtain
the Riemann–Roch theorem for 1-cycles on S:

2
(
χ(S,OS(0))− χ(S,OS(D))

)
= (D,C−D).

Remarks. 1. The argument in this proof is immediately extendable to an adelic proof of the
Riemann–Roch theorem for smooth projective and even irreducible projective surfaces over an
arbitrary field F working with F -linear topology on adeles of the surface over F and using the
notion of F -linear compactness, similar to the one-dimensional approaches in [I2, §4] (despite
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mentioning in the introduction that the proofs use Haar measures, they do not use it for the included
proof of the Riemann–Roch theorem), [G].

2. The argument in this proof extends to the case of a quasi-coherent sheaf F on S and the
associated adelic complex AS(F), defined in [B1] and [Hu].

3. For another adelic description of the intersection pairing see [P2, §2]; there are also some
adelic aspects of intersection theory in [HY].

4. Iwasawa emphasized the importance of the theta-formula as an analytic expression for the
self-duality of the adeles, [I1,p.449]. Unlike the adelic proofs of the Riemann–Roch theorems for
1-cocyles on curves and surfaces over fields, which do not actually require more than adelic duality,
the Riemann–Roch theorem for number fields and for 0-cycles on surfaces require such an analytic
theory (at least we do not currently know proofs which do not use translation invariant measure and
integration). See [F4,§3.6] for the theory of analytic adeles A, measure, integration and harmonic
analysis on associated objects, and a theta-formula on elliptic surfaces. The latter is closely related
to the Riemann–Roch theorem for zero cycles on elliptic surfaces [F4,§56, Rk 3].

5. In the arithmetic case where S → SpecOk is a regular proper scheme of relative dimension
one, k a number field, the objects A,B,C were already defined in [F4,§28]. It is useful to find an
analogue AS of the adelic complex in the arithmetic case so that the Arakelov intersection index
[E,D] equals χA(0) − χA(D) − χA(E) + χA(D + E). To achieve that it is natural to pursue the
following approach: for a number field, reinterpret the Euler–Minkowski characteristic of a replete
(Arakelov) divisor [N, Ch. III, §3] in terms of the Euler characteristic of the one-dimensional adelic
complex. In particular, this gives an analog of the formula from section 0 in the number field case:
deg d = χAk (d) − χAk (0) for a replete ideal d. Then lift to dimension two with a modified residue
map from AS to Ak, using in particular [M1] and [M2].

6. For another adelic Riemann–Roch theorem, whose proof uses K-delic structures, for certain
finite group bundles on arithmetic surfaces flat over Z, see [CPT].
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