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Formal Differential Graded Algebras and Homomorphisms

Martin Arkowitz

1. Introduction

As a result of the S~llivan approach to rational

homotopy theory, a new and interesting class of spaces

has emerged. These are the formal spaces whose very definition

rcquires the theory of minimal models of differential graded

algebras. Although not all spaces are formal, the list is

large and includes spheres (more generally, suspensions),

classifying spaces, Lie groups, Eilenberg-MacLane spaces

(more generally, H-spaces), locally symmetrie spaces, compact

Kähler manifolds, and many homogeneous spaces (including

projective spaces) (see [Fe] and [Su 2]). In addition, wedges

and products of formal spaces are formal. We take the point

cf view that formal spaces are a reasonable class cf spaces

for which to do certain aspects of rational homotopy theory­

large enough to include many important examples yet restricted

enough to yield concrete results. We are particularly interested

in the relationship between the homotopy classes cf maps of one

formal space into another and the homomorphisms cf their

rational cohornol~gy algebras (§§ 3,4,and 5) and in the

relationship between the group of homotopy classes of homotopy

equivalences of a formal space and the automol~phisms of its

rational cohomology algebra (§ 6). In considering these
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questions, the formal maps of one formal space to another

playa crucial role.

Although the motivation for this paper is "topologieal,

it is possible and even advantageous to cariy out the

investigation in the category. of differential graded algebras

(DGAs) since rational homotopy theory has shown this

category to be closely related to the category of rational

topological spaces. We begin in § 2 with several equivalent

definitions of formal DGAs. In § 3 we consider homotopy

classes of DGA maps of aminimal. DGA M into a DGA B.

When M and B are formal we define formal homotopy classes

of DGA maps from M Lo Band prove that these are in

one-one correspondence with Hom(H*(M) ,H*(B)) (Proposition 3.2).

This has several consequences. It shows that any cohomology

homomorphism H*(M) ~ H*(B) can be realized as a DGA map

M~ B when M and B are formal . It also enables us

in § 4 to give a new proof of a theorem of vigue-poi~rier

which asserts that any cohornology hornomorphism is realizable

under suitable connectivity conditions on M and dimension

conditions on B. An obstruction theory for forrnality of rnaps

is then developed in § 5. We give conditions for all the

obstructions to vanish, and hence conditions for all maps from

one formal space into another to be formal. In § 6 we consider

the group E(M} of homotopy classes of homotopy equivalences

of a minimal DGA M. When M is formal we apply Proposition 3.2.

to express E(M} as a semi-direct product of Aut H*(M} and

E*(M} , the subgroup of E(M} whose elements induce the identity
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on cohomology. We next use a result of Baues in § 7

to translate results on the function

I:[X,Y] ~ Hom(H*(YiW) ,H*(XiW» obtained in earlier sections

into results on the suspension function E:[X,Y] --4-[l.:x,EY] Hco-

where the latter is the set of homotopy classes of co-H-maps

from EX to EY. We prove several diverse results about E.

In § 8 there are same J?rief remarks on topological implicati9ns,

generalizations, and duality. The paper concludes with an

appendix. Here we sketch an inductive proced~re for obtaining

information on E#(M) the subgroup of E(M)

consisting of elements which induce the identity on homotopy

groups, for any minimal DGA M.

Throughout this paper the term rational space refers

to a l-connected topological space· X of the homotopy

type of a simplicialcomplex such that TI (X)
n

is a vector

space over the rationals <0 for every n ~ 1. A differential

graded algebra A (DGA) is a graded commutative algebra

over W with a differential d:A~ A of degree 1 such that

A is 1-connected (HO(A) = <0, H1 (A) = 0). A minimal DGA M

is a DGA which is free as a graded (comrnutative) algebra and

whose differential d is decomposable, i.e., for every

positive -dimensional element x, dx is a SUffi of positive-'

dimensional elements. Our basic reference for rational hornotopy

theory and DGAs i s [GM].
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2. 1

2. Formal Differential Graded Algebra

It is well-known that for every DGA A there is an

associated minimal DGA denoted MA and a homomorphism

of DGAs such that the induced eohomology

homomorphism p*:H*(MA) ~ H*(A) is an isomorphism

[GM,p. 116]. Then M
A

is determined up to isomorphism

and p is determined up to homotopy of DGA maps. For

DGAs A and B, a DGA map ~:A ~ B is ealled a weak

eguivalenee i f ~*': H* (A) ~ H* (B) i s an isomorphi sm. Two

DGAs A and Bare saLd to have the same homotopy type,

wri tten A 5! B, i f there is a fini te sequenee. of DGAs

AO,A 1 ' ••• ,An such that A::= AO' B = An and for each

i ::= O,1, ••• ,n-1 there exists a weak equivalence A. -;.... A. 1
1 1+

or a weak equivalence Ai +1 --;.. Ai. We write AZB if A

is isomorphie to B. We note that the eohomology H*(A)

of a DGA A can be regarded as a DGA with trivial

differential. Finally, let z*(A) denote the' DGA of

cocycles of A and n:Z*(A) ~ H*(A) the natural pro-

jection.

Proposition 2.1 The following statements are equivalent for

a DGA A and its minimal model MA with canonical map

p:MA~ A

(i) There exists a DGA map J..:M A
~ H*(A) such that J..*= p*.

(ii) There exists a DGA map 'i': MA
----;... H*(MA): such that

'i'* ::= 1 , the identity homomorphism.
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There exists a weak equiva1ence ~:MA ~ H*(A).

(iv) MA ~ MH* (A)

(v) A 9 H*(A)

(vi) The projection n:Z*(MA) ~ H*(MA) can be extended ta

a DGA map ~:MA ~ H*(MA).

(see [GM, p. 128]). Thus (iii) q (iv) and

Praaf. (i) ~ (11) is clear. We note that A 2 B ~ MA ~ MB

(iv) <===> (v).

But (i) - (iii) and (iv) ~ (iii) are both obvious. Now

we show (iii) ~ (i). Define A to be the composition

* -1
M -'=---- H (Al) ) + H*M) e* > H* (A) •

This establishes the equivalence of statements (i) .through

(v). It is also easily shown that (vi) and (ii) are

equivalent. This completes the proof.

Definition 2.2 A DGA A ·which satisfies any of the six

equivalent conditions of Proposition 2.1 is called formal.

Propositiop 2.1 collects several definitions of formality

that have been used by various authors.(iii) and (iv) appear

in [LS, p. 111], (ii) is in [DGMS, p. 260], (iii) is in

[Su2, p. 315], (iv) is in [FH, p. 5781', and (v) i8 in

[H8, p. 236].

Another definition which appear8 in [Ru~ p. 98] turns

out not to be equivalent:
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Lemma 2.3 If there 1s a weak equivalence ~:H*(A) ~ A ,

then A is formal. The converse does not hold.

Proof. Clearly the weak equivalence ~ induces a map

MH*(A) ~ MA which is a weak equivalence and hence an

isomorphisrn [GM, p. 128]. Thus A 1s formal. For a

counterexainple to the converse consider A = M = A (x2 ,x3) ,

the free cornrnutative algebra on two generators, of

is a~:H* (A) ~, A

is the ideal generated

of degree 3, with dX2 = 0 and dX 3
2

H*(M) = A(Y2)/{Y2)

degree 2 and

(M is the minimal model of 8
2

.)

2
where Y2 has ~egree 2 and (Y2)

2
by Y2. C~early A is formal. If

weak equivalenc~, then ~Y2 = qX 2 for some non-zero rational

q. Therefore

Thus which is a contradiction.

As is well-known, Definition 2.2 leads to adefinition

of formality of spaces. A 1-connected space X (af the

homo~opy type of a simplicißl complex) 1s called formal if

ApL(X), the PL-DeRham algebra over W [GM, chap. VIII] is

formal in the sense of Definition 2.2. This notion of formality

of spaces has several equivalent formulations in terms of

other rational algebraic invariants of X, such as, for

exarnple, the Quillen minimal model LX :(see [F],[NM],[LS]).

In this paper we concentrate on formality within the DGA .

category.
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3. Formal Differential Graded Algebra Homomorphisms

Let A and B be formal DGAs with DGA maps

~:MA ~ H*(MA) and ~':MB ~ H*(M B) which induce

the identity on cohomology. Let a:A -+ B be a DGA
1\

map and a:M A~ MB the corresponding DGA map of

associated minima~ algebras.

Definition 3.1: a:A ~ B is called a formal map if

the following diagram commutes up to homotopy

"
MA

a
) M

B

1~ 1\
1~1

a*
H*(M A) )- H* (MB)

(see [GM, Chapter xl for homotopy of DGA maps). T~is

definition depends on the choice of maps ~ and ~I and

it would be more precise to call a [~]~[~']-formal , where

[~] and [~I] denote the homotopy class of ~ and ~I

respectively. We can call a:A ~ B formalizable if a

is [~]_[~I ]-formal for some maps ~ and ~I. We shall deal

with formal maps with the understanding that this definition

is relative to a fixed choice of ~ and ~I.·

If a, ß: A ---+- Bare homotopic, . a ~ ß , and a is

formal, then ß is formal. Also notice that a is formal

if ,and only if ap is formal, where p:MA~ A i5 thc

canonical homomorphism. Thus, instead of considering formality
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of DGA maps A -+ B , we will consider formality
\
\

of DGA maps MA -+ B or rather DGA maps M -+ B,

where M is a minimal DGA . Let [M , B] denote the homotopy

cla5ses of DGA maps M -+B and let Horn (H * (M) , H* (B) )
\

denote the algebra hornomorphisrns H*(M) ~ H*(B). There

i5 a function

I : [M , B] ----;... Hom (H * (M) , H* (B) )

defined by l[a] = a*, where [al denotes the homotopy class

of a:M -* 8. Assume now that M and 8 are formal and let

[M,8l f :: [M,8l be the subset of hornotopy classes of formal

maps. Although we shall not do so, it would be more precise

to write [M,8l [qtl-[qt'l instead of [M,8l f to indicate the

dependence of [M,8l
f

on the choice of maps ~. and ~'. Set

r' = rl [M,BJ
f

: [M,BJ f -+ Hom(H*(M) ,H*(B)).

Proposition 3.2

bijection.

II: [M,B]f --+ Horn(H*(M) ,H*(8)) i5 a

Proof. I I is one-one: Given formal rnaps a, ß : M~ 8

a* = ß·* . Consider the diagrarn

M
S,~

MB>

l~ A A l~'
a*,6*

H* (M) ) H* (MB)

such that

A A A A
Then 'P'a ii IfIIß since a* = ß*. But the function 'Pli: [M,MBl

~ [M,H*(M S) l induced by 'PI is a bijection since \}I' i5
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a weak equivalence [GM,Theorem 10.8]. Thus ~ - ~. Since

Apet ;;;; et and pS;;;; ß, it follows that Ci Ci ß.

I' is onto: Given ~:H*(M) ~ H*(B) and consider

A;;;; p*~':MB ~ H*(B). Since A is a weak equivalence,

[M ,H* (B) ] is a bijection [GM,Theorem 10.8].

Therefore there exists a:M ~ MB

and so Aet;; ~~. Let ß:M ~B be ß ;;;; pa. Then 8*;;;; p*et* ;;;;

p*'i"*et*;;;; A*et* ;;;; tp*~* ;;;; t.V. Thus 1[8] = tp. 1t remains only to

show that ß is formal, i.e., that the following diagram

corruuutes

M
t;;;;et

~ f'I~ 1\

ß*=o.*
H~ (An ) H* (MB) •

But p* (o.*'i') ;;;; ß*'i';;;; tp~ ;:; AU;;;; p* ('i' '.0.), and so o.*.'i' <:; ~'et.

We next reformulate Proposition 3.2 in the topological

category for later use. Let X and Y be rational spaces

which are formal (i.e., ApL(X) and ~L(Y) are formal

DGAs). A map f:X~ y is called formal if

i5 a formal DGA map. This

definition clearly depends on a choice of maps ~:ApL(Y) ~

and
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Let [X'Y]f be the collection of homotopy classes of

formal maps X --T Y and let [x,y] be the collection

of hornotopy classes of all rnaps X~ Y. Then

I:[X,Y] ~ Hom(H*(YiW), H*(XiW)) assigns to a homotopy

class its induc~d hornomorphism of cohomology algebras. The

reformulation of Proposi tion 3.2. is

Proposition 3.3. If X and Y are formal spaces, then

~[X'Y]f:[X'Y]f~ Horn(H*(YiW), H*(X,W)) is a bijection.

Example 3.4 As a simple, illustrative example of

Proposition 3.3, let X be the rationalization of the

n-sphere Sn and let Y be a formal, rationalspace of
W

finite type. Then IITIn(Y~f:TIn(Y)f~ Hom(H*(YiW) ,H*(S~iW))

is a bijection, where TIn{Y)f consists of hornotopy classes

of formal maps jn TI (Y). By applying vector space duality we
n

obtain Horn(H*(YiW) ,H*(S~iW)) ~ Horn 1 (H*(S~) ,H*(Y)), where
IM ' coa g ~

the subscript "coalg" denotes coalgebra hornomorphisms. But

n
Horn 1 (H*(Sm) ,H*(Y)) ~ P (Y), the vector space of primitivecoa g w' n

elements in H (y). Thus we obtain a bijection
n

1':TIn(Y)f ~ Pn(Y). 1t is easily seen that 1 1 is the

restrietion of the Hurewicz homomorphism h :TI (y) --+ H (Y).
n n- n

In particular, h is onto the subspace' of primitive elements
n

(see [NM, Proposition 3.4] and [FR]).

vJe now turn to a few consequences of Propos i tion 3. 2 .
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3.5

If M and B are formal, then

I: [M,B]--;'" Horn (H* (Ai) ,H* (B))

i5 onto.

Corollary 3.6 If M 1s a minimal algebra with d = 0

and B is formal, then

I: [M, B] -* Horn (H * (M) ,H* ( B)) = Horn (M, H* (B) )

is a bijection.

Proof. One easily shows that M i5 formal and [M,BJ f = [M,BJ.

A more general result for spaces has been proved by

Scheerer [Sc, Proposition 1].

A simple application of Corollary 3.5 yields a

characterization of formal DGAs in terms of the function I.

is onto for every formal DGA

Corollary 3.7 A is formal <=> I: [M A ' B] ---;.. Horn (H* (M A) , H* (B) )

B.

Proof. ~ :Follows from Corollary 3.5.

~ : Let B = H*(M A) with d = O. Then B is formal and so

I is onto. Let 1 E Horn (H* (M A) ,H* (M A)) be .the identity

hornornorphism. Then there is a map ~:MA ~ H*(MA) such that

'* = 1. Thus MA is formal by Proposition 2.1. Therefore

A is formal.
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Next we present some examples to show that it i5

not p05sible to weaken the hypothesis or strengthen the

conclusion of Corollary 3 .. 5 in an obvious way ..

Example5 3 .. 8 a) M and B formal, but

I: [JA, B] --+ Horn (H* (M) ,H* (B) ) not one-one: Set M = A (X 2 ' x 3 )

2with dX 3 = x
2

and B = A (y3)' where the subs.cripts denote

the degree of the element .. Then ~:M ~B defined· by

O(x 3 ) = Y3 1s not homotopic to 0 but 1[0] = 0 ..

the DGA analogue of the Hopf map S3 ~ 8 2 .)

b) M is formal, B i5 not formal, and

(0: is

I:[M,BJ ~ Hom(H*(M) ,H*(B)) i5 not onto: Let M be the

minimal model of 8 3 v 8 5 so M= A(x 3 ,xs ,x7 ,xg , ...... ) with

dX 3 = 0 = dx5 , dx7 =x 3x S ' dXg = x 3x 7 ' etc .. and

B = A(Y3'YS'Y7) with dY3 = 0 = dyS and dY"7 ..= Y3YS·

Then tP:H* (M) ----;... H* (B) defined by tP{x 3 } = {Y3}' tP{xS} :::: {yS}

i5 a homomorphism not realizable by a DGA map M~B .

c) M 15 not formal, B is formal, and

I: [M, B] ~ Hom:(.H* (M) , H* (B)) is not onto: Apply Corollary 3 .. 7 ..
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4. Realizability of Cohomology Hornomorphisms

In this section we consider the realizability of

cohomology homomorphisms by maps of DGAs. We begin with

a simple lerruna.

Lemma 4. 1 (a) Given a minimal DGA M and an integer

n ~ 1, there exists a minimal DGA 1;( and a DGA map TI: M~M

such that TI*:Hi(M) ~ Hi(M)

and Hi
(M) = 0 for i > n.

is an isomorphisrn for i;::;; n

b) Given a DGA A and an integer n ~ 1, there exists a
1\

DGA A and a DGA map
1\

X:A ----;... A such that
i 1\ i

X*:H (A) -~ H (A)

is an isomorphism for i ~ n and Hi (~) = 0 for i < n.

Proof. These eonstructions ean be earried out in the

category of DGAs~ However, the quiekest way to prove the

lemma is to perform the construetions in the eategory of

rational spaees where they are well-known, and then take the

minimal models of the resulting spae~s. For (a) one uses the

homotopy decomposition of a spaee and for (b) the method of

.killing homology groups (see [Hi, p. 90]).

We next use this lemma and Corollary 3.5 to give a new

prüof of the following theorem of Vigue-Poirrier [Vi 2].

Proposition 4.2 If M 1s a minimal DGA with Hi(M) = 0 for

1 :;;; i ~ 9.. and B .is a DGA wi th Hi (B) = 0 for i > 39.. + 1,

then I :is:·onto. That is, every homomorphism H* (M) -~ H* (B) is

realizable by a DGA map M~ B.
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,In thi~ proof we shall use the following result

of Halperin-Stash~ff [HS,Corollary 5.16]:

If A is a DGA with Hi(A) :;;: 0 for i<m +1 and i> 3m+ 1,

then A is formal.

We apply Lemma 4 . 1 (a) to M with n :;;: 3~ + 1 to obtain

n:M -;..M with 'n* an isomorphism in dimensions :;;; 3~ + 1

and Hi (M) :;;: 0 ,for i > 3~ "+ 1 . Thus Hi
(M) :;;: 0 for

i < ~ + 1 and i> 3~+ 1. By the Halperin-Stasheff result,

M is formal. Next apply Lemma 4. 1 (b) to B with n :;;: ~ + 1

to obtain x:fi ~B with x* an isomorphism in dimensions G

~ + 1 and Hi(~) = 0 for i< ~ + 1 . Thus Hi (B) = 0 for i< ~ + 1
A

and i > 3~ + 1 . By the Halperin-Stasheff result, B is formal.

Now consider the commutative diagram

[M,BJ I Horn (H* (M) ,H* (8)):-

j1l il ~ i Horn (11* , 1 )

['iJ', B] Horn (H * (M) ,H* ( B) )

jXil
I

'" 1Horn(1,x*J

1\ 1\

[M,B]. > Hom (H * (~1') , H* ( 8) )

Since M and
1\ 1\ 1\
B are formal, I:[~,B] ~ Hom(H*(M) ,H*(B))

1s onto by Corollary 3.5. Therefore I:[M,B] ~ Hom(H*(M),

H*(B)) is onto. This concludes the proof.
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5. Obstructions to Formality of a Map

Here we develop a simple obstruction theory for

formality of a map. This is completely different from the

obstruction theory which occurs in [Vi 1]. Let M be a

minimal DGA and let M(n) denote the minimal 'sub DGA of

M generated by generators of degree S n. Then M= UM(n).

Furthermore I M(n + 1) = M(n) C!il A (V) n+ 1 I where A (V) n+ 1

is the free comrnutative graded algebra generated by the

vector space V concentrated in dimension n+ 1. The

inclusion l:M(n) ~ M(n+ 1) is called a Hirsch extension

[GM I p. 11 3] .

Now recall Definition 3.1: a:A ~ B

the following diagram cornrnutes up to homotopy

"a
MA

--)- MB

J ~
"*

J~'
a

H*(MA) i> H* (MB)

is formal if

where ~ and ~I are fixed maps inducing the identity

in cohomology. We" write M= MA= uM (n) and denote by

1 : M(n) ~ M(n + 1) the Hirsch extension and by

V n : M(n) ~ M= MA the inclusion map.

A 1\
We assurne a*lf'vn ;;; If" avn : M(n) -+ H* (MB) , and deterrnine

the obstruction to ~*~vn+1 being homotopic to If't&vn + 1 .

1\ A A "Note that (a*If')* = a* = (~Ia)*, so that the maps a*~vn+1
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induce the same cohomology homomorphism.

To simplify notation we set
A

ß = a*'t'v. n+1 and
I\.

y=\{'I()V a

n+1

Then ß,y:M(n+ 1) ----+- H*(M B) with ß* = y* and

ß1 ;::; Y1:M (n) --->- H* (MB)' and we determine the obstruction to

ß ;; Ya For this we use the following resul t in [GM, pp. 1 77-78 ] :

There is an exact sequence

and an operation of n+1
Hom(V,H (MB» on [M(n + 1) ,H*(M

S
)]

such that two elements are in the same orbit if and only if

they have the same image under t
H• Thus there exists

8:V ~ Hn + 1
(Ms) such that [y] = 8-[ß] = [8 -,ßJ. The operation

8·ß i5 defined by 8·ßIM(n) = ß!M(n) and (8·8) (x) = ß(x) + 8(x)

f 0 r x E V. Now 8* = y * , so t h Ei t i f x E V c M(n +1 ) isa

cocycle,

y*{x}= (8·8)*{x} = (8·8) (x) = ß(x) + 8(x) ..... ß*{x} + 8(x)

where {xl denotes the cohomology class of x in Hn + 1 (M(n+l)) a

Thus 8 (x) = 0 for every cocycle x.E V c M(n + 1). Let Z (V)

be the subspace of V consisting of all x with dx = o. Then

einduces a homomorphism 8:V/Z{V) --;. Hn + 1 (M
B
). We call

- n+1
e E Horn (V/ z (V) , H (M B» the obstruction to ß and y being

homotopic. Note that if 8 = 0 , then e = 0,. and so 8 = Ya

We now interpret this in the category of rational spaces.

Here A = ApL(Y) and S = ApL(X) for rationalspaces X and

Y. We assume that X and Y are cf finite type. Then
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If

and

h 1: TT 1(Y) ~n+ n+

5.3

and V 1=::1 Hom(TI n +1 (Y) ,0}) = (TT n +1 (Y» *.

Hn +1 (Y) is the Hurewicz homomorphisrn

~ (TI n +1 (Y»* is the dual of hn +1 ,

as a homomorphisrn Hn + 1
(YiO}) ~ V.

Then z (V) can be identified with image h*n+1
(see [Su 1, P • 33] ) •

Thus by duality we obtain

Proposition 5.4. If f:X ~ Y is a map of rational, formal

spaces of finite type, then the successive obstructions to

~formality of f lie in the vector spaces Hom(Hi(X), kernel h i ),

i = 2,3 ... , where h. :TT. (y) ~ H. (Y) is the Hurewicz
1. 1. ~

hornornorphism. In particular, Hom(H. (X), kernel"h.) = 0 for
1. . 1.

all i implies that every map f:X ~ Y is formal.

As a consequence we obtain a result which is a generalization

of two theorems in [Vi 1, Theorems 4 and 5].

Corollary 5.5 If X and Y are formal, rationalspaces of.

finite type such that H. (X) = 0
1.

for i ~ 2n + 1 and Y

is n-connecte~, then every map f:X --+ Y 1s formal.

Proof. For the n-connected space Y, the Hurewicz homomorphism

h. :TI. (Y) ~ Hi(Y) is known to be a monomorphism for
1. 1-

i ~ 2n [AC, p. 546]. Thus all obstructions to formality

vanish, and so every rnap f:X ~ Y is formal by Proposition

5.4.

The rationalization of the Hopf map S3 ~ S2 is not

formal, and this shows that the nurnerical hypotheses of

Corollary 5.5 cannot be weakened.
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6. The Group of Homotopy Equivalences.

In this section we examine the group E (Af) of homotopy

classes of homotopy equivalences of a minimal DGA M. An ele­

ment of E(M) i5 the homotopy class [0.] of a DGA map

0. : M --~ M which is a homotopy equivalence. 'rhe group opera-

tion in E(M) i9 composition of homotopy classes and the

unit of the group is the homotopy class of the identity map.

We note that a: M---> M 15 a homo~opy equivalence if and

only if 0.*: H* (M)' ---> H* (M) is an automorphisrn. Let

I : E (M) ---> Aut H* (M) denote the function defined by

1[0.] = a*. Then' r 15 a homomorphism of groups. If we now as­

surne that M is formal, we can.define a subset E(M)f of E(M)

by [Cl] E E(M) f <=> a : M --> M 15 formal and a homotopy equiva­

lence. As before, formality of maps a is defined with respect

to a fix ed DGA map 1JJ: M --? H* ( M) w1 th 1JJ * = 1, i . e . , ais

[lP] -[lP] -formal in the sense of Definition 3.1. I.t is easily

seen that E(M) f is a subgroup of E (M). The first sentence

of the following proposition appears in [NM, Corollary 5.5]

and elsewhere.

Proposition 6.1. If A is a formal DGA, then I: E(MA) --->

Au t H* (M A) i s an ep imorph i sm. I-ioreover, there isa homomorph i sm

] : Aut H* (M k ) --> E(MA ) such that IJ = 1 and ] is an iso­

morphism of Aut H* (MA) onto E(M A) f .

Proof. GiYen an automorphism q,: H* (MA) --> H* (M A) •

position 3.2, there exists a DGA formal homomor~hisrn

By Pro-
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a MA ---> MA unique up to hornotopy such that a* = ~. Then

a is a hornotopy equivalence since ~ is an automorphism. De-

fine J(tP) = [al Clearly ] has the desired properties.

Thus if E*(MA) denotes the subgroup of E(MA) eonsis­

ting of all homotopy classes of homotopy equivalences which

induce the identity in cohomology, then there is the following

split short exact sequence of groups for a formal DGA A,

(6 .2)

J
1 ~ E*(MA) ~ E(MA) ~ AutH*(MA)~ 1 .<-----..-

]

Corollary 6.3.· If A 1s formal, then E(M A) 1s isomorphie

to the semi-direct product of E*(M A) and Aut H*(M A) ,

The proof is analogous to the famil1ar situation in

which the subgroup 1s abelian. One defines an action of

E(MA) on E*(M A) by eonjugat1on. By cornposing this action

with ] an action of Aut H*(M A) on E*(M A) 1s obtained

which enables one to define the serni-direct product. The prüof

that there 1s an isomorphism proceeds as in the abelian case

[Br, pp.87-88] .

Thus for formal DGAs A adetermination of the group

E(M A) would require knowing (1) the group E*(~~) , (2) the

group Aut H*(MA ) , (3) the serni-direet product of the
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groups in (1) and (2). Note that (2) and (3) are purely alge­

braie. In the Appendix we indieate how to obtain information

on E*(M) and· its dual for any minimal DGA M.
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7. Suspensions and Co-H-rnaps.

Most of the results in previous sections dealt with

the function which assigns to a homotopy class the induced

hornornorphism of cohomology. By using a theorem of Baues we

are able to translate these into results concerning suspen-

sions and co-H-maps. In this section we work in the category

of spaces.

Let X and Y denote rational spaces of f~nite type and let

LX and EY be the suspensions of X and Y, respectively.

Let [LX,EY] H denote the hornotopy classes of co-H-mapsco-

LX ~ EY. Then it is shown in [Ba, p.132] that there

exists a bijection P : [EX, EY] H~ Han(H* (Yi(Q), H* (Xi aB)co-

By unraveling the defin~tion of P one establishes the fol-

lowing lemma.

Lemma 7.1. The diagram

[X, y] ------> [EX, EY] H
co-

~ 1p

.Horn ( H* (Y i W), H* (X i W»

is comrnutative, where L 1s the suspension function, P i5

the Baues bijection, and I is the function which assigns

the induced cohomology hornornorphism to a homotopy class.

We note in passing that Lemma 7.1 provides an immediate

proof of the following resul t of Lemaire-Sigrist [LS,pp.114-116]:
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(7 . 2) For a map f: X --> Y, Lf öl 0 if and only if

f * = 0 : H* (Y , CD) --> H* (X; W)

Proposition 7.3. If X and Y are formal spaces, then the

suspension map

L [X'Y]f -> [LX, EY] Hco-

is a bijection. Consequently, any co-H-map LX --> LY is

homotopic to a suspension.

Proof. The proof i5 an immediate consequence of Proposition 3.3

and Lenuna 7.1.

The following result is also a consequence of Proposition.

3.3. and Lemma 7.1.

Corollary 7.4. If X and Y are formal and f: X --> Y is

any map, then there exists a formal map g: X --> Y such

that Lf ~ Lg .

Next we note that Proposition 4.2 and Lemma 7.1 yield a

rational version of a theorem of Berstein and Hilton [BH, Theo-

rem B].

Corollary 7.5. If X and Y are rational spaces such that

Hi (Y; <D) = 0 for 1;$ i ;:;i R, and Hi (X; (0) = 0 for i > 3t + 1 ,

then every co-H-map EX ---> EY is homotopic to the suspen-

sion of some map X ---> Y .
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Proof. We consider the commutative diagrarn of Lemma 7.1 and

ob 5 erve tha t I: [X, y] --> Horn (H* (Y; CO) , H* (X; CO) ) is onto

by Proposition 4.2. Thus

This concludes the proof.

L : [X, y] --> [LX, LY] Hco- i5 onto.

We next apply Lemma 7.1 to § 6 • Consider the diagrarn of

Lemma 7. 1 in the case X = Y

L
[ X , X ] > [LX, LX] H

~ ~lpCO-

Horn (H * (X; an , H * (X; W) )

Frorn the definition of P it can be shown that (a) if

1 : LX --> LX is the identity map then P[1] is the identity

au tornorphisrn of H* (X; (0) ; (b) if g,h LX ---> LX are two

co-H-maps, then P([g].o[h]) ~ P[h] ° p[g]. Now let E(X) S[X,x] de-

note the group of homotopy classes of hornotopy equivalences

X --> X and E (EX) H ~ [LX, LX] H denote the group ofco- co-

homotopy class'es of homotopy equivalences LX --> EX which

are co-H-rnaps. The suspension function E : E(X) -> E( EX ) Hco-

is then a hornornorphisrn of groups. The function

I : E (X) --> Aut (H* (Xi (0)) which assigns the induced cohorno-

logy automorphism to a hornotopy class is an anti-hornomorphisrn,

i.e., I: E(X) --> Aut H*(Xi W)oPP 1s a hornornorphisrn, where

l~ut H* (Xi <C) opp denotes Aut H* (Xi W) with the opposite

multiplication. The observations (a) and (b) above show that

P induces a function P: E(I:X)CO_H ---> Aut H*(Xi (0) which

is an anti-isornorphisrn of groups. Consequently we have the
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following results.

Corollary 7.6. The group E(EX)eo_H is isomorphie to thc

group Aut H* (Xi 02) °PP

Corollary 7.7. The following diagram of groups and homo-

morphisms is eommutative

____E > E(EX)eo_H

~ I p
v

Aut H*(Xi W)opp.

E(X)

~

The analogue of'( 7 . 2) is

(7.8) If f: X --> X, .rf~ 1 if and only if

f* = 1 H* (X i W) -> H* (X i an .

Finally we note that the hemomorphism

I E (X) -->-Aut 'H* (Xi W) opp eorresponds to the homomorphism

1 E (M
A

) --> Aut H* (,~A) discus$ed in § 6. Thus we obtain the

following eorollary from Proposition 6.1.

Corollary 7.9. If X is a formal space, then

E : E(X) ---> E(EX) H is an epirnorphism. Moreover, thereco-

exists a homomorphism A: E(EX) co-H --> E (X) such that EA =1 •

Thus we are able to express E(X) as the semi-direct

product of the subgroup of E(X) consisting ef these homotopy'

classes which suspend to the identity with E(EX) Hco- (see

(A.1) of the Appendix».
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8. Concluding Remarks.

First of.all, we wish to emphasize that, although we

have worked within the category of DGAs, our results can be re­

formulated for the category of rational topological spaces. In

several cases such as Proposition 3.3, Proposition 5.4,and § 7,

we have done this explicitly. However, all of our results can

be restated an~ yield information about rational topological

spaces. For example, the reformulation_of Corollary 3.5 -is that

for formal, rational spaces X and Y, the function

I : [X, y] --> Hom(H* (Y; aH , H* (X; (In) is onto. This implies

that [X,y] is an infinite set if there i5 a non-trivial ho­

momorphism of algebras H* (Y; W) --> H* (X; (0) •

Secondly, we have assumed for simplicity that all

DGAs are 1-connected. It i5 possible to relax this restrie­

tion and deal with connected DGAs which are nilpotent. This

leads to a larger class of rational topological spaces, the

nilpotent spaces.

Finally, all of Dur considerations can be dualized.

Instead of DGAs, formality, and cohomology homomorphisms, it

i5 possible to work with differential graded Lie algebras, co­

formality, and homotopy homomorphisms (see [Ta] and [NM] for the

relevant definitions) . Our results are then valid in the

dual situation.
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Appendix. 'Ihe Group of Horrotopy Fquivalences which Induce the Identity.

In § 6 we determined the group E(M) of homotopy classes

of homotopy eguivaleDces of a formal, minimal,DGA M in terms

of "Aut H* (M, and E* (M) , the subgroup of E(M) consisting

of homotopy equivalences which induce the ident1ty homomorphism

H*(M) ---> H*(M) . In this appendix we sketch a method for ob­

taining,information about E*(M) and its dual group E#(M) for

any minimal DGA M. We first express Corollary 6.3 in the

category of ,rational topologieal. 5paces.

If X 1s a formal, rational space and E(X) is the

group of homotopy classes of homotopy equivalences of X and

E*(X) i5 the subgroup of those homotopy classes which induce

the identity in cohomology with rational coefficients, then

there is the semi-direct product pecomposition

(A. 1 ) E(X) ~ E* (X) )OAut H* (Xi (0) opp '.

Now for any rational space X, E(X, can also be described as

E(L
X

) where Lx 1s the differential graded Lie algebra (DGL)

over W [Ta, pp.14-17J which is the Quillen minimal model of

X [Ta, Chapter IIr] and E(L) is the group of homotopy classes
X

of homotopy eguivalences of DGL maps LX --,> LX. Then·

E*(X) is isomorphie to the subgroup of E(LX) consisting of

those homotopy equivalences which induce the identity on the

-1
indecomposables Q(LX) = s H*(X; W), where s is the suspen-

sion isomorphism [Ta, p.83] . We can present an inductive

procedure for expressing E*(L (n)'
X

in terms of
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where LX (n) is the minimal DGL of the nth section of the ra­

tional homology decomposition of X. This would then give in-

formation about E*(LX)' and hence E*(X). Rather than do this,

we stay within the category of DGAs and describe the dual pro-

cedure.

Thus we consider for a minimal DGA M the subgroup

E#(M) of E(M) consisting of homotopy classes [al such that

Q(a) = 1 : Q(M) ---> Q(M) , where Q(M) denotes the graded vec-

tor space of indecomposables of M. We wr i te M = u M (n) where

M(n) 1s the minimal sub DGA of M generated by generators of

degree :iil n. Then

1: M(n) ---> M(n+1)

M(n+ 1) = M(n) 0 A (V) l' and the inclusionn+

is a Hirsch extension (see § 5) . We will

apply the following lemma 'to 1.

Lemma A.2. Let a: A ---> B be a DGA map such that

a*: H,r(A) ---> Hr(B) 1s an isomorphism for r~n and a mono-

morphism for r = n+ 1 and let M be a minimal DGA wi th nü

generators in dimensions > n (i. e., Qr (M) = 0 for r > n) ,

then the induced rnap

a# [M,A] ----> [M,B]

is a bijection.

Proof. The proof is analogous to the prüof of Theorem 10.8 in

[G-M] and hence omitted.
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For the Hirsch extension \: M(n) --> M(n+1) we have .

. # \#
[ M(n +1) , M(n +1)l _\_> [M (n) , M(n +1)l <-- [M (n) , M(n)l

with \# an isomorphism by Lemma A.2. Thus there is a function

r : [M (n +1), M(n +1) l --> [M (n), M(n)] d e f ine d bY r:;;; \ #- 1 \ #

Clearly r carries E#(M(n+1» into EH(M(n» and gives rise

to a homomorphisrn

r EH(M(n+1» --> EH(M(n» •

We next consider the kerne~ and image of this homornorphism.

Recall from [GM, pp.177-178] that there i5 an exact

sequence

(A.3) Hn +1 (AiV*) ---> [M(n+1) ,Al

11

Hom(V,Hn + 1 (A»

#
\--> [M(n) ,Al o

--> Hn + 2 (AiV*)

11

n+2Horn (V , H ( A) )

where 0 assigns to a homotopy class the obstruction to exten-

on .[M(n+1) ,Al such that two elements in

ding it over

Hn + 1 (A,V*)

M(n+1) . Furthermore, there is ~n operation of

[M(n+1) ,Al are in the same orbit if and only they have the

same #\ -image.

We ,c0 nsider (A. 3) wi th A:;;; M(n+ 1) • 'rhen if

n+1
Cl € H (M (n+ 1) i V*) and [y l. e [M (n+ r) , . M(n+ 1 )J, the operation

i5 defined by 0. • [ y l :;;; [cl·y l where Cl ,. Y IM(n) .:;;; y IM(n) and

(a· y) (x) == y (x) + Ci (x) for x E' V, for any lifting
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n+ln: V ---> Z (M(n+l)) of n. We now define

n+ 1 .
s : H ( M(n+ 1 ) j V*) -> [M (n + 1 ) , M(n+ 1 ) ] by

s(a) ::::: [n·1] ::::: a-[1]

where 1 is the identity map of M(n+1). Let

A : Hn +1 (M (n+1)) --> an + 1 (M (n+1)) be induced by the projection

and A*: Hn + 1 (M(n+1) jV*) ::::: Hom(V,Hn + 1 (M(n+1)) -->

Hom(V,Qn+1 (M(n+1))) ::::: Hom(V,V) be the homomorphism induced by

n+l n+l·
A. Set T (M(n+1) jV*) <; H (M(n+1) jV*) equal to kernel A*.

Then it is easily seen that a E H
n + 1 (M(n+1) jV*) is in

Tn + 1 (M(n+1) jV*) if and only if s(ell E [M(n+1)',M(n+1)] is in

E#(M(n+1)) • Thus s induces a function

S : Tn + 1 (M (n+ 1 ) j V *) -> Eil (M (n+ 1 )) •

Now we consider the function 0 in (A.3) with A:::::M(n).

Then OIE#(M(n)) is a function t fram E#(M(n)) to

HI1 +2 (M (n) jV*)

--> Hl1+ 2 (M (n) j V *) •

We choose a distinguished element in Hn +2 (M(n)jv*) as follows.

The homomorphism Hn +2 (M (n) , M(n+ 1) ) --> Hn +2 (M (n) ) in the

exact cohomology sequence of the inclusion 1: M(n) --> M(n+ 1)

induces a homomorphism T: Hn +2 (M (n) , M(n+ 1) j V*) -> w+2 (M (n) jV*) •

n+2 n+2Then H (M(n), M(n+l)jV*)::::: Hom(V,H (M(n), M(n+1)))=

Hom(V,V) [GM, p .• 118], and we let bE nn+2(M(n), M(n+1) jV*)
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correspond to the identity map in Hom(V,V). Then T(b) = k

is called the (n+1) st Postnikov invariant and is the chosen

distinguished element of the set Hn +2 (M(n);V*}. The function

t : E# (M (n» --> H
n +2 (M (n) ; V*} carries the distinguished ele­

ment [1] of E# (M (n) ) (the group unit) to the distinguished

n+2element k of H (M(n);V*).

Proposition A. 3. For any Hirsch extension t: M(n) --> M(n+1) ,

the sequence of sets and functions

~s exact in the following sense:

(a) rand s are homomorphisms of groups and image s

= kernel r,

(b) t is a function of sets with d1stinguished element

and image r = kernel t = t- 1 (k) .

Proof. We show that s is a homomorphism (fram an additive

to a rnultiplicative group). Note that if ß E Tn +1 (M(n+1) iV*) C

Horn(V,Hn +1 (M(n+1») and x E V, then ß(x) E M(n) . For

ß(x) E zn+1 (M(n+1)") and Aß(X) = 0 in Qn+1 (M(n+1» . Thus

ß(X) 1s an element of degree n+1 which 1s decornposable, i.e.,

in (M+ (n +1) · M+ (n+1) ) n +1, and so ß (x) E M(n) • Now

s (Cl +ß ) = [( Cl +ß) • 1] and s (a) 0 s ( ß ) = [( Cl ~ 1 ) 0 ( ß • 1 ) ]

and for x E V
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~

«a+ß) -1) (x) = x + a+ß (x) = x+;' (x) +ß (x)

and

(a-1)o(ß-1)Jx) = (a-1)(x+ß(x» = (a-1)(x) + (a-1)(ß(x»

= x +~(x) +ß(x)

Thu5 5 i5 a homomorphi5m_ The proof that image 5 = kernel r

is now any easy consequence of the definitions of sand r

and properties of the operation of Hn
+ 1 (M(n+1);V*) on

[M(n+1), M(n+1)] mentioned,earlier_

Finally, the proof that image r = kernel t is a con-

5equence of the following lemma whose proof' we omit (Cf. [GM,

pp. 113-114]) •

Lemma A_4_ Given Hirsch extensions M(n+1) = M(n) @ A(V)n+1

and N(n+1) = N(n) 0 A(W) 1
n+

and" .homomQrphisrrs a : M(n) ~ N(n)

and p: V -->. W _ Then there i8 a homomorphism

ß : M(n+1) --> N(n+1) such that the following diagrams commute

M(n) incl.> M(n+1) an+ 1 (M (n + 1 ) ) = V

a ß and Qn+ 1 (ß) p

v V
'i/

'i/ .

N(n) incl_> N(n+1) Qn + 1 (N (n+ 1 ) ) = w

if and only if the following diagram commutes.
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p a*

v v

W d > Hn + 2 (N(n))

This concludes the proof of Proposition A.3.

We remark that Proposition A.3 does provide an inductive

procedure for ob~aining information on E,lM). Sinee

E#(M(l»= 1,

Tn + 1 (M (n+ 1 ) i V* )

the induction can always be started. The group

n+1
is isomorphie to the group T (Xi TI 1 (X)) ,n+

where M= Mx ' obtained in the category of ra tional spaces

as foliows. Tn +1 (Xi TI (X)) 15 the kernel of the homornorphism
n+1

which is the eornposition of the universal eoefficient iso-

n+1morphism H (Xi TI n +1 (X)) --> Hom(Hn +1 (X), 1T n +
1

(X» and the

homomorphism Hom(Hn +1 (X) , TT n +1 (X)) --> Hom(TI n +
1

(X) , TT n +1 (X))

indueed by the Hurewicz map.

Finally we note that Proposition A.3 1s a generaliza-

tion and an adaptation for DGAs of a result which was joint

work with C.R. Curjel and whose proof was sketehed in [AC 2,

Lemma 5.2] •
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