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Formal Differential Graded Algebras and Homomorphisms

Martin Arkowitz

1. Introduction

As a result of the Sullivan approach to rational
homotopy theory, a new and interesting class of spaces
has emerged. These are the formal spaces whose very definition ‘
requires the theory of minimal models of differential graded
algebras. Although not all spaces are formal, the list is
large and includes spheres (more generally, suspensions),
classifying spaces, Lie groups, Eilenberg-MacLlane spaces
{(more generally, H-spaces), locally symmetric.spaces, compact
Kihler manifolds, and many homogeneous spaces (including
projective spaces) (see [Fe] and [Su 2]). In addition, wedges
and products of formal spaces are formal. We take the point
of view that formal spaces are a reasonable class of spaces
for which to do certain aspects of rational hombtopy theory-
large enough to include many important examples_yet restricted
enough to yield concrete results. We are particularly interested
in the relationship between the homotopy classes of maps of one
formal space into another and the homomorphisms of their
rational cohomoldgy algebras (§§ 3,4,and 5) and in the
relationship between the group of homotopy classes of homotopy
equivalences of a formal space and the automorphisms of its

rational cohomology algebra (§ 6). In considering these
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guestions, the formal maps of one formal space to another

play a crucial role.

Although the motivation for this paper is topological,
it is possible and even advantageous to carry out the
investigation in the category of differential graded algebras
(DGAs} since rational homotopy theory has shown this |
category to be closely related to the categéry of rational
topological spaces. We begin in § 2 with several equivalent
definitions of formal DGAs. In § 3 we cons?der homotopy
classes of DGA maps of a minimal DGA M into a DGA B.
When M and B are formal we define formal homotopy classes
of DGA maps from M to B and prove that these are in
one-one correspondence with Hom(H* (M) H*(B)) (Proposition 3.2).
This has several consequences. It shows that any cohomology
homomorphism H* (M) —> H*(B) can be realized as a DGA map
M — B when M and B are formal . It also enables us
in § 4 to give a new proof of a theorem of Vigué-Poirrier
which asserts that any cohomology homomorphism is realizable
under suitable connectivity conditions on M and dimension
conditions on B. An obstruction theory for formality of maps
is then developed in § 5. We give conditions for all the
obstructions to vanish, and hence conditions for all maps from
one formal space into another to be formal. In § 6 we consider
the group E(M) of homotopy classes of homotopy eguivalences
of a minimal DGA M. When M is formal we apply Proposition 3.2.
to express E{(M) as a semi-direct product of Aut H*(M) and

E,(M) , the subgroup of E(M) whose elements induce the identity



on cohomology. We next use a result of Baues in § 7
to translate results on the function
I:[X,Y] — Hom(H*(Y;Q) ,H*(X;®)) obtained in earlier sections

r

into results on the suspension function I:(X,¥] —[ZX,IY]___ .
where the latter is the set of homotopy classes of co-H-maps
from IX to LY. We prove several diverse results about I.

In § 8 there are some brief remarks on topolbgical implications,
generalizations, and duaiity. The paper concludes with an
appendix. Here we sketch an inductive procedure for obtaining
information on E#(M) the subgroup of E(M)

consisting of elements which induce the identity on homotopy

groups, for any minimal DGA M.

Throughout this paper the term rational space refers

to a 1-connected topological space - X of the homotopy
type of a simplicial complex such that nn(X) is a vector

space over the rationals { for every nz 1. A differential

graded algebra A (DGA) is a graded commutative algebra

over @ with a differential d:A— A of degree 1 such that

A is 1-connected (H'(A) = @, H (A) = 0). A minimal DGA M
is a DGA which is free as a graded (commutative) algebra and
whose differential d is decomposable, i.e., for every
positive - dimensional element x, dx is a sum of positive- .
dimensional elements. Our basic reference for rational homotcpy

theory and DGAs is [GM].
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2. Formal Differential Graded Algebra

It is well-known that for every DGA A there is an
associated minimal DGA denoted My and a homomorphism
P My —> A of DGAs such that the induced cohomology
homomorphism p*:H*(M,) —> H*(A) is an isomorphism
[GM,p. 116]). Then MA is determined up to isomorphism
and p is determined up to homotopy of DGA maps. For
DGAs A and B , a DGAmap ¢:A —> B is called a weak

equivalence if o*:H*(A) —> H*(B) 1is an isomorphism. Two

DGAs A and B are said to have the same homotopy type,

written A=B, if there is a finite sequence of DGAs

AsA e A such that A=A B=A and for each
0" n n

0!
i=20,7,...,n—-1 there exists a weak equivalence Ai — Ai+1
or a weak equivalence Ai+1 — Ai . We write ASB if A

is isomorphic to B. We note that the cohomology H*(A)
of a DGA A can be regarded as a DGA with trivial
differential. Finally, let 2*(A) denote the DGA of
cocycles of A and w:Z*(A) —> H*(A) the natural pro-

jection.

Proposition 2.1 The following statements are equivalent for

a DGA A and its minimal model MA with canonical map

(1) There exists a DGA map A:MA —» H*(A) ' such that A*=p¥*,
(ii) There exists a DGA map Y:My —> H*(M,) such that

¥* =1, the identity homomorphism.
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(iii) There exists a weak equivalence p:M

e H* (A) .
(iv) MAzMH*(A)
(v) A = H*(A)
(vi) The projection w:2* (M) —> H*(M,) can be extended to

a DGA map Y:My —> H*(M;).

Proof. (1) = (ii) 1is clear. We note that A=B < MA ~ MB
(see [GM, p. 128]). Thus (iii) = (iv) and (iv) < (v).
But (i) = (iii) and (iv) = (iii) are both 6bvious. Now

we show (iii) =» (i). Define X to be the composition

*
MA B 5 p*(A) LE_L> H*‘MA) _E:_> H* (A) .

This establishes the equivalence of statements (i) through
(v). It is also easily shown that (vi) and (ii) are

equivalent. This completes the proof.

Definition 2.2 A DGA A -which satisfies any of the six

equivalent conditions of Proposition 2.1 is called formal.

Proposition 2.1 collects several definitions of formality
that have been used by various authors,(iii) and (iv) appear
in {LS, p. 111]), (ii) is in [DGMS, p. 260], (iii) is in
[Su2, p. 315}, (iv) is in [FH, p. 5781, and (v) is in

{HS, p. 236].

Another definition which appears in [Ru, p. 98] tvurns

out not to be equivalent:



Lemma 2.3 If there is a weak equivalence :H*(A) —> A ,

then A is formal. The converse does not hold.

Proof. Clearly the weak equivalence ¢ induces a map

M —> My which is a weak equivalence and hence an

H* (A)
isomorphism [GM, p. 128]. Thus A 1is formal. For a
counterexample to the converse consider A=M-= A(xz,x3),
the free commutative algebra on two generators, X, of
degree 2 and X3 of degree 3, with dx2 = 0 and dx3 = x%
(M is the minimal model of S2.) H*(M) = Aly,)/(y2)

where y, has degree 2 and (yg) is the ideal generated
by yg. C;early A 1is formal. If @:H*(A) — A is a

weak equivalence, then Yy, = 4%, for some non-zero rational

g. Therefore

2 A
0 = 0lyy) = (oy,) xg.

u
te}

Thus xg =0 which is a contradiction.

As is well-known, Definition 2.2 leads to a definition
of formality of Spaces. A 1-connected space X (of the
homotopy type of a simplicial complex) is called formal if
APL(X), the PL-DeRham algebra over @ [GM, chap. VIII] is
formal in the sense of Definition 2.2. This notion of formality
of spaces has several equivalent formulations in terms of
other rational algebraic invariants of X, such as, for
example, the Quillen minimal model Ly (see [F],[NM]},[LS]).
In this paper we concentrate on formality within the DGA

category.



3. Formal Differential Graded Algebra Homomorphisms

Let A and B be formal DGAs with DGA maps
?:MA —— H*(MA) and W':MB — H*(MB) which induce
the identity on cohomology. Let o:A-—>B be a DGA
map and Q:MA — MB the corresponding DGA map of

associated minimal algebras.

Definition 3.1: a:A — B is called a formal map if

the following diagram commutes up to homotopy

t

A
B
|¥ |
A
a*

H*(M,) ———> H*(Mp)

(see [GM, Chapter X] for homotopy of DGA maps). This
definition depends on the choice of maps Y and ¥' and

it would be more precise to call o [Y1-[¥']l-formal , where

[¥] and [¥'] denote the homotopy class of ¥ and V'

respectively. We can call a:A — B formalizable Aif o
is [Y¥]-[Y']-formal for some maps ¥ and V¥'. We shall deal
with formal maps with the understanding that this definition

is relative to a fixed choice of ¥ and VY'.

If o,B:A - B are homotopic, a=f , and o 1is
formal, then B 1is formal. Also notice that ¢« 1is formal
if and only if «op is formal, where p:MA —> A is the

cancnical homomorphism. Thus, instead of considering formality



of DGA maps A — B , we will consider formality

of DGA maps MA — B or rather DGA maps M — B,

where M is a minimal DGA . Let [M,B] denote the homotopy
classes of DGA‘ maps M —> B and let Hom(H*(M) H*(B))
denote the algebra homomorphisms H* (M) — H*(B). There

is a function
I:[M,B) —> Hom(H* (M) ,H*(B))

defined by Ilal]=oa*, where [a] denotes the homotopy class
of o:M — B. Assume now that M and B are formal and let
[M,B]fg [M,B] bé the subset of homotopy classes of formal
maps . Although we shall not do so, it would be more preéise
to write [M’B][¥]-[?ﬂ instead of [M,B]f to indicate the
dependence of [M,B]f on the choice of maps ¥ and VY¥'. Set

I' = 1‘|[M'B}f : [M,B]_ —> Hom (H* (M) ,H*(B)) .

Proposition 3.2 I': [M,B]f —> Hom(H* (M) ,H*(B)) 1is a

bijection.

Proof. I' 1is one-one: Given formal maps a,B:M — B such that

a* = 8* | Consider the diagram

B
jw lw'
A A
a*’B*
H* (H) ————> H* (Mg)

A

A
Then W'&= T'ﬁ since a* = B8*, But the function W# B]

—> [M,H*(MB)] induced by Y¥' 1is a bijection since V¥' is

(M, M



a weak equivalence [GM,Theorem 10.8]. Thus 3 = @. Since

p&: o and p§= B, it follows that o = 8.

I is onto: Given ¢:H*(M) —> H*(B) and consider
A= p*?':MB —> H*(B). Since X 1is a weak equivalence,

A# (M, M

Therefore there exists a:M — MB such that X#[a]=[ww] ,

and so Aa = ¢¥. Let PB:M —B be B=pa. Then B*-= p*a* =

B] -—> [M,H*(B)] is a bijection [GM,Theorem 10.8].

prY ')k = xkgk = *y* = ¢, Thus I[R)=¢. It remains only to
show that £ 1is formal, i.e., that the following diagram

commutes

M -.%;‘E—> Mg
Yy g
A
B¥=qg*

H* (Af) ——> H*(Mp) .

But p*(a*¥) =R*¥Y=0@¥Y = da=p*(¥'a), and so o*¥Y = ¥Y'q.

We next reformulate Proposition 3.2 in the topological
category for later use. Let X and Y be rational spaces
which are formal (i.e., APL(X) and APL(Y) :are formal

DGAs) . A map f:X—S Y is called formal if

APL(f):APL(Y) —_— APL(X) is a formal DGA map. This

definition clearly depends on a choice of maps W:APL(Y) —

M M and W':APL(X) — M = M

APL(Y) "My ~ Ay (X) X"



Let [X,Y]f be the collection of homotopy classes of
formal maps X —> Y and let [X,Y] be the collection

of homotopy classes of all maps X —> Y. Then

I:{X,Y] — Hom(H*(Y;@), H*(X;Q)) assigns to a homotopy
class its induced homomorphism of cohomology algebras. The

reformulation of Proposition 3.2. is

Proposition 3.3. If X and Y are formal spaces, then

H[X Y] :[X,Y]f-——> Hom (H* (Y;@), H*(X,®)) is a bijection.
reaf

Example 3.4 As a simple, illustrative example of

Proposition 3.3, let X be the rationalization of the

n-sphere Sa and let Y be a formal, rational space of

finite type. Then I|ﬂn(Y)f:ﬂn(Y) — Hom(H*(Y;m),H*(Sg;@))

f

is a bijection, where ﬂn(Y)f consists of homotopy classes

of formal maps in ﬂn(Y). By applying vector space duality we

n

{0

the subscript "coalg" denotes coalgebra homomorphisms. But

obtain Hom(H*(y;m),H*(sg;m)) ~ Ho

’ mcoalg(ﬂ*(S

) ,H,(Y)), where

Ho (H*(Sa),H*(Y)) ~ P _(Y), the vector space of primitive

m
coalg

elements in Hn(Y). Thus we obtain a bijection

I':nn(Y)f — Pn(Y). It is easily seen that I' 1is the

restriction of the Hurewicz homomorphism hn:ﬂn}Y) — Hn(Y).

In particular, hn is onto the subspace of primitive elements

(see [NM, Propoéition 3.4] and [FH]).

We now turn to a few consequences of Proposition 3.2.



Corollary 3.5 If M and B are formal, then
I:[M,B}—> Hom(H* (M) H*(B))

is onto.

Corollary 3.6 If M 1is a minimal algebra with 4 = 0

and B 1is formal, then
I:(M,B] —> Hom(H* (M) ,H*(B)) = Hom(M,H*(B))
is a bijection.

Proof. One easily shows that M is formal and [M,B]f= {M,BI1.

A more general result for spaces has been proved by

Scheerer [Sc, Proposition 11].

A simple application of Corollary 3.5 yields a

cha:acterization of formal DGAs in terms of the function I.

Corollary 3.7 A 1is formal <= I:[MA,B] —_— Hom(H*(MA),H*(B))

is onto for every formal DGA B.

Proof. = :Follows from Corollary 3.5.

< : Let B = H*(MA) with d = 0. Then B 1is formal and so
I is onto. Let 1€ Hom (H*(MA),H*(MA)) be the identity
homomorphism. Then there is a map \P:MA — H*(MA) such that
¥Y* = 1. Thus MA is formal by Proposition 2.1. Therefore

A is formal.



Next we present some examples to show that it is
not possible to weaken the hypothesis or strengthen the

conclusion of Corollary 3.5 in an obvious way.

Examples 3.8 a) M and B formal, but

I;W,B] —> Hom (H* (M) ,H*(B)) not one-one: Set M= A(xz,x3)
with dx3 = xg and B==A(y3), where the subscripts denote
the degree of the element. Then oa:M ~—>8 defined by
a(x3) = Y3 is not homotopic to 0 but I{a] = 0. (o 1is

the DGA analogue of the Hopf map S3 —_— Sz.)

b}) M 4is formal, B is not formal, and

I:{M,B)] = Hom(H* (M) ,H*(B)) is not onto: Let M be the
minimal model of S3v S5 so M= A(x3,x5,x7,x9,...) with

dx3 =0 = dx5, dx7=x3x5, dx9 = X3Xoy etc. and

B = Alys,¥g,y,) with dyy = 0 = dy; and dyjzf Yq¥s-

Then ¢:H* (M) — H*(B) defined by w{x3}=={y3}, o{xg} = {yS}

is a homomorphism not realizable by a DGA map M — B

c) M is not fofmal, B 1is formal, and

I:[{M,B] —> Homi(H* (M) ,H*(B)) is not onto: Apply Corollary 3.7.



4. Realizability of Cohomology Homomorphisms

In this section we consider the realizability of
cohomology homomorphisms by maps of DGAs. We begin with

a simple lemma,

Lemma 4.1 (a) Given a minimal DGA M and an integer

nz 1, there exists a minimal DGA M and a DGA map m:M —>M
such that n*:Hi(M) — Hi(ﬂ) is an isomorphism for i sn
and Hi(ﬂ)_= 0 for i>n.

b) Given a DGA A and an integer nz2 1, there exists a

DGA ﬁ and a DGA map x:2 —> A such that x*:Hi(ﬁ) —9—Hi(A)

1 A
is an isomorphism for i2n and H'(A) = 0 for i<n.

Proof. These constructions‘can be carried out in the
category of DGAs. However, the quickest way to prove the
lemma is to perform the constructions in the category of
rational spaces where they are well-known, and then take the
minimal models 6f the resulting spaces. For (a) one uses the
homotopy decomposition of a space and for (b) the method of

killing homology groups (see {Hi, p. 901]).

We next use this lemma and Corollary 3.5 to give a new

proof of the following theorem of Vigué-Poirrier [Vi 2].

Proposition 4.2 If M is a minimal DGA with H'(M) = 0 for

15is% and B is a DGA with HY(B) = 0 for i>3% + 1,

then Ilisonto. That is, every homomorphism H*{(M) -—> H*(B) is

realizable by a DGA map M — B.



Proof. .In this proof we shall use the following result
of Halperin-Stasheff [HS,Corollary 5.161]:
If A is a DGA with HY(A) = 0 for i<m +1 and i>3m+1,

then A is formal.

We apply Lemma 4.1(a) to M with n = 32+ 1 to obtain
M — N with 71* an isomorphism in dimensions £ 3% + 1
and Hi(ﬁ) =0  for i>3%2 + 1. Thus Hi(ﬂ) = 0 for
i< f&+1 and 1i> 32+ 1. By the Halperin-Stasheff result,
M is formal. Next apply Lemma 4.1(b) to B with n =2+ 1
to obtain X:@ ;—>B with x* an isomorphism in dimensions 2

gy = . AN ,
2+1 and H™(B) = 0 for i< 2+ 1. Thus H (B) = for i< 2+ 1

0
A
and i >3% + 1. By the Halperin-Stasheff result, B is formal.

Now consider the commutative diagram

I

[M,B] ———=——>  Hom(H*{M) , H*(B))

Aﬂ# ) ; T Hom{m*,1)
(M,8] Hom (H* (}) ,H* (B) )

TX# I ~ T HOT(1'X*)

A
[M,B] ———>  Hom(H* (M) ,H*(B))
. A A A
Since M ‘and B are formal, I:(M,8] ——> Hom(H* (M) ,H*(B))
is onto by Corollary 3.5. Therefore 1I:[M,B] — Hom{(H* (M),

H*{(B)) 1is onto. This concludes the proof.



5. Obstructions to Formality of a Map

Here we develop a simple obstruction theory for
formality of a map. This is completely different from the
obstruction theory which occurs in [vi 1}. Let M be a
minimal DGA and let M(n) denote the minimal 'sub DGA of
M generated by generators of degree £ n. Then M=UM(n).
Furthermore, M(n+ 1) = M(n) o A(V)n+1, where 1‘\(V)n+1
is the free commﬁtative graded algebra generated by the

vector space V concentrated in dimension n+ 1. The

inclusion 1:M{n) — M{(n+ 1) is called a Hirsch extension

[GM, p. 1131].

Now recall Definition 3.1: oa:A — B is formal if

the following diagram commutes up to homotopy

&
MA > MB
A *

H*(MA) e H*(MB)

where Y and Y¥' are fixed maps inducing the identity
in cohomology. We write M= MA= UM(n) and denote by
1:M(n} — M(n+ 1) the Hirsch extension and by

vn:M(n) —> M= MA the inclusion map.

A
We assume O*Yy = ¥'gv M(n) —> H*(MB), and determine

the obstruction to a*¥Yv being homotopic to Yrav

n+1’

A
Note that (&*W)* = 4* = (W'a)*, so that the maps a*?vn+1



and W'avn+1 induce the same cohomology homomorphism.

A
To simplify notation we set B==q*an+1 and vy = T'avn

+1

Then RB,y:M(n+ 1) —— H*(MB) with B* = y* and
B1 & y1:M(n) — H*(MB), and we determine the obstruction to
B= y. For this we use the following result in [GM,pp. 177-78]:

There is an exact sequence

#
Hom (v, H™ 1 (b)) = B™ T (m (Mg sv*) > (M (n e 1) % (M) Ls [ (n) H¥ (]
and an operation of Hom(V,Hn+1(MB)) on [M(n+—1),H*(MB)]

such that two elements are in the same orbit if and only if

#

they have the same image under 1. Thus there exists

n+1

9:v — H (Mg)  such that [yl= 6-{Bl =106 " R]. The operation

8:8 is defined by 8-8|M(n) = B|M(n) and (6:8)(x) = B(x) + O(x)
for x€ V. Now B*=Y*., so that if x€VcM{n+tl) is a |

cocycle,

y*{x}= (8-B)*{x} = (8-B) (x) = B(x) + 68(x) = B*{x} + 68(x)

where {x} denotes the cohomology class of x in Hn+1(M(n+1)).

Thus 6(x) = 0 for every cocycle x€VvV<c M(n+1). Let Z(V)

be the subspace of V consisting of all =x with dx = 0. Then

n+1

8 induces a homomorphism 6:V/Z(V) -—— H (Mg) . We call

n+1

6 € Hom(V/2(V) ,H (Mg)) the obstruction to B8 and 'y being

homotopic. Note that if © = 0 , then 6 = 0,. and so 8 = vy.

We now interpret this in the category of rational spaces.

Here A = APL(Y) and B = APL(X) for rational spaces X and

Y, We assume that X and Y are of finite type. Then



n+1 n+1 -
H (MB)sUH (X;® and V==Hom(nn+1(Y),Q) = (nn+1(Y))*.
If hn+1:ﬂn+1(Y) — Hn+1(Y) is the Hurew1cz.homomorphlsm
and h;+1:(Hn41(Y))* — (wn+1(Y))* is the dual of hn+1,

we can regard h;+1 as a homomorphism Hn+1(Y;Q) — V.
Then Z{(V) can be identified with image h;+1 (see [Su 1,p.331]).

Thus by duality we obtain

Proposition 5.4. If f:X — Y 1is a map of rational, formal

spaces of finite type, then the successive obstructions to
‘formality of f 1lie in the vector spaces Hom(Hi(X), kernel hi),
i=2,3..., where ﬁi:ni(Y) — Hi(Y) is the Hurewicz
homomorphism. In particular, Hom(H, (X), keﬁnel'hi) = 0 for

all i 4implies that every map f:X —» Y is formal.

As a consequence we obtain a result which is a generalization

of two theorems in [Vi 1, Theorems 4 énd 5].

Corollary 5.5 If X ‘and Y are formal, rational spaces of.

finite type such that Hi(X) =0 for iz22n+1 and Y

is n-connected, then every map f:X —s Y is formal.

Proof. For the n-connected space Y, the Hurewicz homomorphism
hy:m, (Y) —> Hi(Y) is known to be a monomorphism for
is2n [AC, p. 546]. Thus all obstructions to formality

vanish, and so.every map f£:X — Y 1is formal by Proposition

5.4.

The rationalization of the Hopf map 83 — 52 is not
formal, and this shows that the numerical hypotheses of

Corollary 5.5 cannot be weakened.
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6. The Group of Homotopy Equivalences.

In this section we examine the group E(M) of homotopy
classes of homotopy equivalences of a minimal DGA M. An ele-
ment of E(M) is the homotopy class [a] of a DGA map

a: M

> M  which is a homotopy equivalence. The group opera-

*

tion in E (M) is composition of homotopy classes and the

unit of the group is the homotopy class of the identity map.

We note that -a : M > M 1is a homotopy equivalence if and

> H*(M) 1is an automorphism. Let

only if a* : H* (M)

1 : E(M) > Aut H* (M) denote the function defined by
I{lal = a* . Then I is a homomorphism of groups. If we now as-

sume that M is formal, we can.define a subset E(M)f of E(M)

by [a] € E(M)f @ a: M > M is formal and a homotopy equiva-
lence. As before, formality of maps o is defined with respect
to a fixed DGA map Yyt M — H*¥(M) with y¢*=1, i.e., a is
[v] - [¢y] - formal in the sense of Definition 3.1. It is easily
seen that E(M)f is a subgroup of E(M) . The first sentence
of the following proposition appears in ([NM, Corollary 5.5]

and elsewhere.

Proposition 6.1. If A is a formal DGA, then 1T : E(My) —>

Aut:H*(MA) is an epimorphism. Moreover, there is a homomorphism
J: AutH*(MA)——-> E(MA) such that I1J=1, and J 1is an iso-

morphism of AutH*(MA) onto E(MA)f‘

Proof. Given an automorphism ¢ : H*(MA) _ H*(MA) . By Pro-

position 3.2, there exists a DGA formal homomorphism



o :MA —_> MA unique up to homotopy such that ao* = ¢ . Then
a 1is a homotopy equivalence since ¢ is an automorphism. De-

fine J(¢) = [al . Clearly J has the desired properties.

Thus if E, (Mg} denotes the subgroup of E(MA) consis-
ting of all homotopy classes of homotopy equivalences which
induce the identity in cohomology, then there is the following

split short exact sequence of groups for a formal DGA A,

1
—
.
J

(6.2) 1 ~——> E,(Mg) —> E(M4A) Aut H¥ (Mg ) — 1

Corollary 6.3.. If A 1is formal, then E(MA) is isomorphic

to the semi-direct product of E*(MA) and Aut H*(MA) '

E(M ) ™ E,(Mg) >0 Aut H* (My)

The proof is analogous to the familiar situation in
which the subgroup is abelian. One defines an action of
E(My) on E,(My) by conjugation. By composing this action
with J an action of Aut H*(MA) on E*(MA) 1s obtained
which enables one to define the‘semi—direct product. The proof
that there is an isomorphism proceeds as in the abelian case

[Br, pp.87-88] .

Thus for formal DGAs A a determination of the group
E(My) would require knowing (1) the group E,(My) , (2) the

group Aut H*(MA) + (3} the semi~-direct product of the



6.3

groups in (1) and (2). Note that (2) and (3) are purely alge-
braic. In the Appendix we indicate how to obtain information

on E,(M) and its dual for any minimal DGA M.



7. Suspensions and Co-H-maps.

Most of the results in previous sections dealt with
the function which assigns to a homotopy class the induced
homomorphism of cohomology. By using a theorem of Baues we
are able to translate these into results concerning suspen-
sions and co-H-maps. In this section we work in the category
of spaces.

Let Xand Y denote rational spaces of finite type and let
X and IY be the suspensions of X and Y respectively.
Let [zx,2¥] _

H
IX —» IY . Then it is shown in ([Ba, p.132] that there

denote the homotopy classes of co-H-maps

exists a bijection P : [2X, z¥] __,, — Hom(H*(Y;Q), H*(X; @) .
By unraveling the definition of P one establishes the fol-

lowing lemma.

Lemma 7.1. The diagram

[X, Y] . > [zx, 2] _y

I o~ P
\'

“Hom (H* (Y; @), H*(X;®))

is commutative, where I 1is the suspension function, P is
the Baues bijection, and I is the function which assigns

the induced cohomology homomorPhism to a homotopy class.

We note in passing that Lemma 7.1 provides an immediate

proof of the following result of Lemaire-Sigrist [LS,pp.114-116]:



(7.2) For amap f£:X —> Y, Ifx«0 4if and only if

£% =0 1 HY(Y,Q) —> H*(X;Q) .

Proposition 7.3. If X and Y are formal spaces, then the

suspension map

o XYl —> [2X, ZY]CO_H

is a bijection. Consequently, any co-H-map X —> XY 1is

homotopic to a suspension.

Proof. The prdof is an immediate consequence of Proposition 3.3

and Lemma 7.1.

The following result is also a consequence of Proposition

3.3. and Lemma 7.1.

Corollary 7.4. If X and Y are formal and f:X —> Y 1is

any map, then there exists a formal map g : X —> Y such

that IfoXg .

Next we note that Proposition 4.2 and Lemma 7.1 yield a

rational version of a theorem of Berstein and Hilton [BH, Theo-

rem B].

Corollary 7.5. If X and Y are rational spaces such that

Hl(Y; @ = 0 for 1sise and HY(X; @ =0 for i>32+1,
then every co-H-map XX —> XY 1is homotopic to the suspen-

sion of some map X —> Y .



Proof. We consider the commutative diagram of Lemma 7.1 and
observe that I : [X,Y] ——> Hom(H*(Y; Q) , H*(X; @Q)) is onto
by Proposition 4.2. Thus I : [X,Y] —> [ZX, ZY]CO_H is onto.
This concludes the proof.

We next apply Lemma 7.1 to § 6 . Consider the diagram of

Lemma 7.1 in the case X =Y :

{x,x1 —> (X, 2X]1__ _.

I ~ p
v

Hom(H* (X; @), H* (X; @)) .

From the definition of P it can be shown that (a) if
1 : ZIX —> X 1is the identity map then P[1] is the identity

automorphism of H*(X; @) ; (b) if g,h : ZX

> X are two
co-H-maps, then P{[gle[h]) = P[h]eP[g]l. tNow let E(X) clX,X] de-
note the group of homotopy classes of homotopy egquivalences

X ——> X and E(ZX)CO_H c [IX, ZX]CO_H denote the group of

homotopy classes of homotopy equivalences XX > X which

are co-H-maps. The suspension function I:E(X) — E(ZX)CO_H
is then a homomorphism of groups. The function

I:E(X) —> Aut(H*(X; @)) which assigns the induced cohomo-
logy automorphism to a homotopy class is an anti-homomorphism,
i.e., I: E(X) —> Aut H*(X;Q)Opp is a homomorphism, where
nut H*(X; @) °FPP  denotes Aut H*(X; @) with the opposite

multiplication. The observations (a} and (b) above show that

P induces a function P : E(ZX)c > Aut H*(X; @) which

o-H

is an anti-isomorphism of groups. Consequently we have the



following results.

is isomorphic to the

Corollary 7.6. The group E(ZX)CO_H

group Aut H* (X; @) °pPP

Corollary 7.7. The following diagram of groups and homo-

morphisms is commutative

E (X) > E(IX) _

H
I z. P
v

Aut H* (X: @) °PP.

The analogueé of {7.2) is

(7.8) If f:X —> X, IZfx1 if and only if

f* = 1 : H*(X; Q) —> H*(X; @) .

Finally we note that the homomorphism
1: E(X) —s-Aut H*(X; Q) °PP corresponds to the homomorphism
1 :E(MA)-———>Aut H*(MA) discussed in § 6 . Thus we obtain the

following corollary from Proposition 6.1.

t

Corollary 7.9. If X 1is a formal space, then

I:E(X) —> E(ZX) is an epimorphism. Moreover, there

co-H

exists a homomorphism A : E(Zx)co_

gy > E(X) such that ZA=1,

Thus we are able to express E(X) as the semi-direct
product of the subgroup of E{(X) consisting of those homotopy-

classes which suspend to the identity with E(}ZX)CO_H (see

(A.1) of the Appendix}).
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8. Concluding Remarks.

First of all, we wish to emphasize that, although we
have worked within the category of DGAs, our results can be re-
formulated for the category of rational topological spaces. In
several cases such as Proposition 3.3, Proposition 5.4,and § 7,
we have done this explicitly. However, all of our results can
be restated and yield information about rational topological
spaces. For example, the reformulation. of Corollary 3.5 .is that
for formal, rational spaces X and Y, the function
I:[X,Y] —> Hom(H*(Y; @) , H*(X; @)) is onto. This implies
that ([X,Y¥] is an infinite set if there is a non-trivial ho-

momorphism of algebras H*(Y; @) —> H*(X; @) .

Secondly, we have assumed for simplicity that all
DGAs are 1-connected. It is possible to relax this restric-
tion and deal with connected DGAs which are nilpotent. This
leads to a larger class of rational topological spaces, the

nilpotent 5pacés.

Finally, all of our considerations can be dualized.
Instead of DGAs, formality, and cochomology homomorphisms,.it
is possible to work with differential graded Lie algébras, co-
formality, and homotopy homomorphisms (see [Ta)] and [NM] for the
relevant definitions). Our results are then valid in the

dual situation.



Appendix. The Group of Homotopy Equivalences which Induce the Identity.

In § 6 we determined the group E(M) of homotopy classes
of homotopy equivalences of a formal, minimal DGA M in terms
of . Aut H* (M) and E_(M) , the subgroup of E(M) consisting

of homotopy equivalences which induce the identity homomorphism

H* (M) ——> H*(M) . In this appendix we sketch a method for ob-
taining information about E*(M) and its dual group E#(M) for
any minimal DGA M. We first express Cofollary 6.3 in the

category of rational topological. spaces.

If X 1is a formal, rational space and E(X) is the
group of homotopy classes of homotopy equivalences of X and
E,(X) 1is the subgroup of thoée homotopy classes which induce
the identity in cohomology with raticnal coefficients, then

there is the semi-direct product decomposition
(A.1) E(X) ~ E,(X)XAut H*(X; Q) PP

Now for any rational space X , E(X) can also be described as

X
over @ [Ta, pp.14-17]) which is the Quillen minimal model of

E(LY) where L is the differential graded Lie algebra (DGL)

X [Ta, Chapter III] and E(LX) is the group of homotopy classes

—> L

of homotopy equivalences of DGL maps L Then

X X"
Ey(X) 1is isomorphic to the subgroup of E(Ly) consisting of
those homotopy equivalences which induce the identity on the
indecomposables Q(Lx) = s-1H*(X; ¢) , where s is the suspen-
sion isomorphism [Ta, p.83] . We can present an inductive

procedure for expressing E*(Lx(n)) in terms of E*(Lx(n-1)),



where Lx(n) is the minimal DGL of the nth section of the ra-
tional homology decomposition of X . This would then give in-
formation about £,(Ly), and hence E,(X). Rather than do this,

we stay within the category of DGAs and describe the dual pro-

cedure.

Thus we consider for a minimal DGA M the subgroup
E#(M) of E(M) consisting of homotopy classes‘ [a«a] such that
Q(a) = 1 :Q(M) —> Q(M) , where Q(M) denotes the graded vec-
tor space of indecomposables of M. We write M=UM(n) where
M(n) is the minimal sub DGA of M generated by generators of

degree sn . Then M(n+1) = M(n) & A(V) and the inclusion

) n+1 '
1 : M(n) —> M(n+1) is a Hirsch extension (see §5) . We will

apply the following lemma to 1.

Lemma A.2. Let o :A ——> B be a DGA map such that

a* : HY(A) —> HY(B) is an isomorphism for rsn and a mono-
morphism for =n+1 and let M be a minimal DGA with no
generators in dimensions >n (i.e., Qr(M) = 0. for r>n) ,

then the induced map

0.# H [MIA] > [MrB]

is a bijection.

‘Proof. The proof is analogous to the proof of Theorem 10.8 in

[G-M] and hence omitted.
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For the Hirsch extension . : M(n) ——> M{n+1) we have

#
[M(n+1), M(n+1}]

1
> [M(n), M(n+1)] <—"— [M(n), M(n)]

with 1y an isomorphism by Lemma A.2. Thus there is a function
r: [M(n+1), M(n+1)] ——> [M(n), M(n)] defined by r =1#"1 .
Clearly r carries E#(M(n+1)) into E#(M(n)) and gives rise

to a homomorphism

r :E#(M(n+1)) > E#(M(n)) .

We next consider the kernel and image of this homomorphism.

Recall from [GM, pp.177-178] that there is an exact

sequence
n+i 1# O n+2
(A.3) H (A;v*) —> [M(n+1),A] —> [M(n) ,A] ——> H (A;V¥)
1] . ]
Hom (v, H™ 1 (4) ) ' Hom (V, 5™ 2 (A))

where (0 assigns to a homotopy class the obstruction to exten-
ding it over M(n+1) . Furthermore, there is an operation of
Hn+1(A,V*) on J[M(n+1),A] such that two elements in

(M{n+1),A] are in the same orbit if and only they have the

same 1#-image.

We consider (A.3) with A =M(n+1) . ‘Then if
aEIqu(M(n+1);V*) and [y] €{M(n+1), M(n+1)] , the operation
is defined by a-:[y) = [a+y] where a-y[M(n).= y|M(n) and

(ay)(x) = vi(x) +'E(x) for x€V , for any lifting



v —> 2™V (M(n+1)) of « . We now define
s : BV (M(n+1) V%) —> [M(n+1), M(n+1)] by
s{a) = [a*1] = a-[1]
where 1 is the identity map of M(n+1) . Let
A eV (Mn+1)) —> @™V (M(n+1)) be induced by the projection
and A, : BT (M(n+1);v*) = Hom(v,H™ T (M (n+1)) —>

Hom(V,Qn+1(M(n+1)))= Hom(V,V) be tﬂe homomorphism induced by

A . Set Tn+1(M(n+1);V*) 1= Hn+1(M(n+1);V*) equal to kernel a,.
Then it is easily oeen that a EHn+1(M(n+1);V*) is in

™V (M(n+1);V*) 1if and only if s(a) € [M(n+1), M(n+1)] is in

E#(M(n+1)) . Thus s induces a function

s :Tn+1

(M(n+1) ;V¥*) —> E#(M(n+1))
Now we consider the function ¢ in (A.3) with A = M(n).
Then OIE#(M(n)) is a function t from E#(M(n)) to

H™2 (M (n) ; V*)

n+2

t=:0|E_(M(n)): E#(M(n)) —> H (M(n);v*)

#
We choose a distinguished element in Hn+2(M(n);V*) as follows.
The homomorphism Hn+2(M(n), M(n+1)) —> Hn+2(M(n}) in the

exact cohomology sequence of the inclusion 1 : M(n)

> M(n+1)

H 2 (M (n), M(n+1);V*) —> E2 (M (n) ;v)

induces a homomorphism 1 :
Then H™2(M(n), M(n+1);Vv*) = Hom(V,H™ 2 (M(n), M(n+1))) =

Hom(V,V) [GM, p.118] , and we let b(EHn+2(M(n), M{n+1);v*)



correspond to the identity map in Hom(V,V). Then =1t(b) = k

is called the (n+1) st Postnikov invariant and is the chosen

distinguished element of the set Hn+2(M(n);V*) . The function

t:Ey(M(n)) —> yh+2

(M(n);V*) carries the distinguished ele-
ment [1] of E#(M(n)) {(the group unit) to the distinguished

element k of Hn+2(M(n);V*)

Proposition A.3. For any Hirsch extension 1 : M(n) —> M(n+1),

the sequence of sets and functions

™™ (M (n+1) ;v*) S E,(M(n+1)) E£> E (M(n)) L5 w2 (M(n);v*)

is exact in the following sense:

{a) r and s are homomorphisms of groups and image s
= kernel r , |

(b) t is a function of sets with distinguished element

and image r = kernel t = t (k)

Proof. We show that s 1is a homomorphism (from an additive

to a multiplicative group). Note that if BEJTn+1(M(n+1);V*) <
Hom(V,H™* 1 (M(n+1))) and x€v, then F(x) €M(n) . For

Fox) €2™  (Mn+1))  and ag(x) =0 in o™ (M(n+1)) . Thus
B(x) is an element of degree n+t1 which is decomposable, i.e.,

in  (MY(n+1) - M*(n+1) ™', and so  Bix) €M(n) . Now
s{a+B) = [(a+B) - 1] and s(a)°s(B) = [(as1)o(g-1)]

and for xE€EV
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((a+B) 1) (x) = x +a+B(x) = x+3(x)+F (x)

and

(a+1)o(B+1) (x) (as1) (+B(X)) = (a+1)(x) + (a-1) (B(x))

X +a{x) + B(x)

Thus s is a{homomorphism. The proof that image s = kernel r
is now any easy consequence of the definitions of s and r

n+1

and properties of the Operation of H (M(n+1);V*} on

[M(n+1), M(n+1)] mentioned .earlier.

Finally, the proof that image r = kernel t 1is a con-~
sequence of the following lemma whose proof we omit (Cf. [GM,

pp. 113-1141)

Lemma A.4. Given Hirsch extensions M(n+1) = M(n) & AlV)n+1
and N(n+1) = N(n) @ I\(W)n+1 and homomerpnisms a : M(n) — N(n)

and p:V —> W. Then there is a homomorphism

B : M(n+1) > N(n+1) such that the following diagrams commute

M{n) —20CL.y yin+1) ™V (Min+1)) = v
a B and Qn+1(8) P
v v v oo v

N (n) __iﬂgl;> N{(n+1) Qn+1(N(ﬁ+1)) =W

if and only if the following diagram commutes



<
<

———g~—> Hn+2(N(n)) .

This concludes the proof of Proposition A.3.

We remark that Proposition A.3 does provide an inductive

procedure for obtaining information on E#(M) . Since

E#(M(l))= 1, the induction can always be started. The group

Tn+1(M(n+1);V*) is isomorphic to the group Tn+1(x;nn+1(xn '

where M==Mx + ~ obtained in the category of rational spaces

n+1(

as follows. T X; L (X)) is the kernel of the homomorphism

which is the composition of the universal coefficient iso-

morphism Hn+1(x;nn+1(x)) > Hom(Hn+1(x),nn+1(xn and the :
homomorphism Hom(Hn+1(X),nn+1(x))———> Hom(nn+1(x),nn+1(X))

induced by the Hurewicz map.

Finally we note that Proposition A.3 is a generaliza-
tion and an adaptation for DGAs of a result which was joint
work with C.R. Curjel and whose proof was sketched in [AC 2,

Lemma 5.2] .
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