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ABSTRACT. We present a new approach, based on polynomial arithmctic, to
fast algorithms for the expansion of a function in orthogonal polynomial se
quences. Such algorit.hms were recently constructed by Driscoll and Healy.
Gur treatment. provides a cJear formulation of the propert.ies required by their
algorit.hm, thus allowing variants of their algorithm t.o be developcd in a more
general context. and undcr weakened conditions.

1. INTRODUCTION

Let {Pn } be an orthogonal polynornial sequenee, allel let Xo, ... ,xN-1 be cl ist,j ud
real numbers. Then the orthogonal polynomial transform for this sequenee is the
map from function values, f(xoL ,f(XN-l) of a polynomial of degree strictly
less than N to the eoeffieients Go, ,aN_ 1 of the ex pansion of f in the orthogonal
polynomial seq uenee. Th HS (10, ,aN_ 1 are definecl through (,he equatiolls

N-I

f = L a;.P;.
k=O

where f is determined by the funetion values f(xoL ... ,f(xN-d. Such transform
oeeur frequently in applied seienees, partieularly in spectral methods for the solut.ion
of partial differential equations [2].

A elosely related eomputation is the ealculation of the sums

N-l

a;. = L f(xj )Pk (Xj)
j=O

for 0 :::; k < N. This is the inverse transpose of thc orthogonal polynomial transform
anel when {Xj} are the raots of PN it is equivalcnt to the orthogonal polynomial
transform after taking seal ar multiples of the f (xj) ancl the corrcsponding äk . For
more general sets of distinct points the polynomial transform may be calculated
by means of an inverse transpose transform of twice the size. The main object
of this paper is an algorithm, the Driseoll Healey algorithm, for the inverse trans
pose transform, though the orthogonal polynomial transform will feature in the
clerivations. \Ve detail the relat,ionship between the transform in section 2.
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2 DAVID K. MASLEN

The nai ve approach to these transforms vi a straightforward matrix mu Itiplieat,ion
takes N 2 scalar operations, where one operation eounis for one multiplieation plus
one addition. There have been several attempts to find a more effieient algorit.hm 1

including [12] and [1] who derivcd approximate methods. In their seminal papers 1

Driseoll and Healey [5] together with Rockmore [6] proposed an exad O(N(log N)2)
algorithm for these transforms.

In the eil rrent paper we present a general deri vation of their algori t.hm in the 1an
guage of polynomial transforms. This clarifies the propcrties the algorithm depends
on and rcmoves some unneeessary hypotheses, in partieular the hypothesis that an
auxiliary sequenee of polynomials they use has a eonstant eoefHcient, recurrence
relation.

For thc purposes of this paper we ignore questions of stability ami assurne 311 op
erations are carried out in exaet arithmetic. the stability of the algorithm depends
strongly in the polynomial sequence and the points chosen to define the transform.
The original algorithms of Driscoll and Healey have been implemellted stably, with
some modifications, in the important cases of Legelldre and Gegenbauer polynorni
als. For a cl iscussion anel analysis of stabi Iization methods see [10].

An important example of an orthogonal polynomial trallsform occurs when ihe
polynomial sequence is the sequenee of Chebyshev polynomials. In ihis special case
the transform of size N rnay be c.:omputed for any set of points in 0 (N (Jog N f)
operations using classical fast Fourier transform techniques. \Vhen the points are
the Chebyshev poin ts 1 i.e. the roots of the N - th Chebyshev polynomial, these cl as

sical tech niques give a transform of complexi ty 0 (N log N) . Recently, Steid land
Tasche [I~{] gave an cxtremely cfncient dircct algorithm for this computation.

Loosely speaking, all the resliits in this paper are based on the idea of relat,ing the
polynomial transforms for two different sequences of orthogonal polynomials, show
ing that one may reducc the calclliation of such a transform to the ealculation of
polynornial transforrns at any other given orthogonal polynomial scqllencc. Hence
an efficient algorithm for one class of orthogonal polynomial transforms yields alge
rithms for the polynomial transfofllls with respect to any other orthogonal polyne
mial sequence. The transforms for Chebyshev polynomials then provide a start,ing
point for all other transforms.

In section 2 we introduce the properties of orthogonal polynomials, use thern to
relate orthogonal polynomial transforms at different sets of points 1 and 1,0 relate
transforms and their inverse transposes. We introduce operators on the space of all
polynomials and prove properties required for the developmeni of ollr algorit,hms
in an abstract setting. In sediOll 3, we derive the basic algorit.hm and prove a
complexity result relating the complexity of Lransforms with respect Lo two different.
sequences of orthogonal polynomials. In sediOll 4 we give an example and an upper
bound on t.he complexity of any inverse transpose transform. Thcn we generalize
the properties we neecl for our algorithm in order to relate our reslIlts to those of [6].
F'inally in sedion 5 we give an efficient algorithm for computing the precomputed
data required for the polynomial transform algorithms.

Acknowledgemellts. Thanks to Persi Diaconis for involving me with this problem
and his encouragement and adviee. Thanks to Dennis Healey and Dan Rockmore
for many conversations and explanations. Finally thanks to the Harvard math
department and the Max-Planck-Institut für Mathemat.ik for thcir cfUcial support..
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2. BACKGROUND

3

Let P denote the space of all polynomials with real coefficients amI PN denote
the space of all such polynomials of degree strictly lcss than N. The definition
of orthogonal polynomial sequence we shall use is that of [3J, p. 7. Hence {Pn}
is an orthogonal polynomial sequcnce provided each Pn is a polynomial of degree
n, [[PmPn] = 0 if m 1= n, and .c[P~] 1= 0, where .c is a linear functional on the
space of polynomials called the moment funetianal. \Ve restriet ollrselves to real
polynomials and the case where the moment funetional is positive definite. In this
situation the moment functional is given by Stielt,jes integration with respect to a
nondecreasi ng i 11 tegrator.

There are many different ways of rcpresenting polynomials, each lIseful for differ
ent operations. For multiplication the most convenient representation is the point
value representation . If Xo I ••• I X N -1 is a sequence of N dis tind poi nts on the
real line and f is a polynomial of c1egree strictly less than N, then the sequence of
function values, f (xo), ... f (x n _ d, is called the poi nt val ue representation of f at
the points {x j }, Thc coefficient representation of J with respect to a seq uence of
orthogonal polynomials I {Pn } I is thc sequence of coefficients ao I ... ,aN-ll where

N-l

f = L akPk

k=O

Evidently thc orthogonal polynomial transform is the map from the point value
representation of f to its coefficient representation.

This gives HS a way to relate polynomial transfarms at different sets of points.
Suppose {Tn } is an orthogonal polynomial sequence , and we have algorithms for
ca1culating the polynomial transform for {Tn } at the points Xo, ... ,XN-l and the
inverse transform at the points Yo" .. ,YN-l. Then composing these t.wo maps
gives us a map from the point. value representation of f at the Xj to the point
value representation of f at thc Yj. Thus we lllay relate the polynomial transforms
for a second set of polynomials , {Pn } I at the Xj I t.o the transform for {Po} at the
points Yj. This is only a useful technique when we do have algorithms for thc
{Tn } transforms. Fortunately when the Tn are Chebyshev polynomials we may
use classical techniques to corn pu te the transforms in 0 (N (log N) 2 ) • The paper
[6] contains an exposition of the technique and [10] [lI] develop techniques for the
stabilization of these algorithms.

One of the important properties of orthogonal polynornials wo will use is the
Gauss quaclraturc rule. For a proof of the following lemma see [3].

Lenuua 2.1 (Ganss Quadl'atul'e). Assume {Pn} is an orthogonal polynomial
sequence Jor the positive definite moment Junetional, L, and x~, ' .. 1 xZ -1 are
the roots oJ PN. Then there are numbersJ wb', ... I w};; -1 > 0 such that JOI' any
polynomial, fJ oJ degree at most 2N - 1, we have

N-l

L:[J) = L wf f(xf)
j=O

The numbers wf are unique and am called the Gaussian weights Jor the sequence
{Pn }.
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The Gaussian quadrature lemma immediately gives the eonnection between an
orthogo!lai polynornial transform for {Pn} at t hc roots of PN , ancl the inverse
transpose transform. In the notation of the introduetion,

\Vhen the points Xo, . .. ,XN-1 are not the roots of PN we need a different teeh
nique to relate the polynomial transform to its i Ilverse t,ranspose. In this ease wa
usa the trallsforms far the Chebyshcv polynomials to cvaluate the polYllomial, f, at
2N distinct points, Yo I' •• Y2N -1. Then we find real numbers Wo, ... 1 w2N-1 such
that

2N-l

L Wj PdVj) = .c[PO]c50,k
j=O

for 0 ~ k < 2N. Clearly the functional L}~o-1 Wj f (Yj) agrees wi th [. on 'P2N I so
in the notation of the introductioll ,

2N-1

GI-; = L Wjf(Yj)Pk(Yj)
j=O

for 0 ~ k < 2N. Sy this teehnique we may relate an orthogonal polynomial
transform to an inverse transpose transform of twiee the size at an arbitrary set of
2N distinct points.

The preeeding argumentjustifLes restricting our attention to the following special
ease. \Ve assume from now on that {Tn } and {Pn } are orthogonal polynomi,d
sequenees, that x~, ... ,xZ-1 are the roots of TN, and we shall restriet our attention
to finding an algorithm for the inverse transpose transform for {Pn } at the points,
xf, gi ven that we havc algorithms for the polynomi al transform für the {To } at

the xf and its inverse.
To fully relate our stated problem to polynomial transforms we need a methocl

für finding numbers WO , ... ,WN-l satisfying

(1)
N-1

L Wj Pdxf) = [,(POJOO,k
j=O

for 0 ~ k < N. One method WOll Id be to solve the linear equatiolls (1) di reetly
though this eould be time eonsuming. The following theorem gives a formula for
these numbers in many situations.

Theorelll 2.2. Assume i.p, 1/J ar-e illfirlitely supported Borel measUf'eS supported 011

a compaet interval, und {Po L {To} m'e real orthonormal polynomiul sequences with
respect to i.p and 1/J 1'espeetively. Assurne r.p is absollJtely contin uous with respeet 1.0
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1/;. Let TN denote the projection fmm L1(l/J) onlo PN given uy lnmCCllion of the
formal expansion in the {Tn }, so

for h in LI (1/;). Lel xr:, ... ,X~_l be the roots 0/ TN I let ur:, ... ,U~_l be the
corresponding Gaussian weights and let Wo, ... ,WN-l be defined by (1), where
[(Po] = JPodl{). Then

Wj = ur [TN(~~)] (xfJ

where ~ is the Radon Nikodym def'ivalivc.

Proof.

for 0 ~ k < N. D

Recurrellce relations and trllIlcatioll operators. Any orLhogollal polynomial
sequence satisfies a three term recurrence relation

where An '# 0 and Cn '# O. A similar property which may be obtained by iterating
the recurrence is the Clebsch Gordan property! which is that

Pn.Q E span{Pn _ m , ... ,Pn+m}

when deg Q :5 m. lterating the recurrence relation also shows that there are poly
nomials Ql,m, RI,m with deg QI,m = 111 and deg Rl,m :S; m - 1 such that

These recurrence related properties together with the Gaussian quadrature formula
form the basis of the algorithm.

To formulate our algorithm in its most general form we introduce the following
operators, called truncation operators. These depend on the auxiliary orthogonal
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polynomial sequence, {TN}. Por any polynomial, f = Lk>O bkTk , define TN f to
be tbe projection onto PN given by -

N-l

TNf = 2: bkTk
k=ü

Let S = ~\-1lTo)A1 wbere M is the moment functional for {Tn}. Tbe important
properties of TN and S are as folIows.

Lemma 2.3. (i) Ti; =TN
(ii) ImTN =PN
(iii) 7i. = S

(iv) /f Al ~ N then T,.,tTN =~f.

(v) /1 deg Q ~ m :5 N then TN-m(f.Q) =TN-m [(TN f) .Q].

Proof. (i), (ii), (iii) and (iv) are trivial. For (v) assume that f = Lk>O bkTk ,
and that deg Q :5 m. Sy the Clebsch Gordan property we know that Tk -:Q is in
the linear span of Tk-m, .. ' ,Tk+m, and hence thai TN-m(Tk.Q) = 0 for k 2: N.
Therefore

N-l

TN-m L bkTk.Q
k=O

= TN-m [(TN!) .Q]

o
\Ve shall also use operators SN and SN defined as folIows. Let

N-l
I "N N

sNf= M(·~) ~ u j f(x j )
o j=O

where Uf are thc G aussian weights for {Tn } 1 and let SNf denote the remai nder of
f modulo TN, so SN f is t,he unique polynomial of dcgree strictly less that N which
agrees with f at the points x{;', ... 1x~ -1' Here are t he properties of SN and SN
we will use.

Lenuua 2.4. (i) S'iv =SN
(ii) ImSN =PN

(iii) SN(f.g) = SN ((SN!)' (SNg))
(iv) /f deg 1 ::; N + m tllen TN-m1 = TN-mSN 1
(v) /1 deg f < 2N then SN f = sf·

(vi) SN = SNSN

Proof. (i), (ii), (iii) and (vi) are easy, and (v) follows from t.he Ganss quadrature
formula. To prove (iv) assurne deg f ::; N + m. ßy long division, there is a
polynomial, P, of degree at most m such that

By the Clebsch Gordan property we know TN.P is in the span of TN-m"" 1 TN+ml
alld hence that TN-m(TN.p) = O. Therefore TN-mf =TN-mSNf. 0
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We may phrase the problem of finding the inverse transpose transform of a
polynomial, f of degree strictly less than N in terms of the opcrators SN and s. It
is equivalent to finding thc nllmbers

for 0 :S I < N.

3. TUE BASIC ALOORITHM

\Ve have reduced the computation of orthogonal polynomial transforms and their
inverse transposes to the following problem. Given a linear operator, s, on P, an
orthogonal polynomial seqllence {Pn } and a polynomial, f, of degree strietly less
than N, eompute the numbers S(f.PI) for 0 :S I < N.

First we shall assume only that we know how to apply operators, ~, for 0 :S 11 <
N such that the TN and s satisfy the properties of lemma 2.3. \Vc give an algorithm
that only requires polynomial multiplieation, addition, and application of thc op
erators 70. When the ~ are defined as in section 2 using a.n auxiliary polynomial
sequence, {Tn } we relate the eomplexity of the algorithm to thc complcxity of the
orthogonal polynomial transforrn for {Tn } assuming that thc polynomial 1 f is given
in point value representation at the Gaussian points of rr,l}' In this situation we
also use the operators 1 Sn 1 to limit the degrees of the polynomials to whieh we
apply 70.

Assume 70, 0 :S Tl < N, alld s satisfy the propert ies of lern ma 2.3, that f
is a polynomial and {PI} is an orthogonal polynomial sequence. Thc algorithm
proeeeds by computing polynomials ZIK =TK (f.Pd for variolls values of land J(;

when f has degree strictly less t,han N we have f = Zr:, whereas s(f.Pd = Zl for
o:S l < N. Using property iv. of lemma 2.3 together with the recurrence relation

PI+m =QI,m.PI + Rl ,m. PI-1

olle immediately obtains recurrellces between the Z{.

(2)

(3)

Z K-m
JI+m

ZK-m-t
I+m

At this point it is cOllvenient, though not strictly necessary, 1.0 rcquire that N is a
power of 2

\Ve start by using the form ld as Zr: =TN fand Zf' =TN (f. Pd to fi nd zr: and
zf'; this is stage 0 of the algorithm. At stage k of t,he algorithm, with k "2: I,

N/2" N/2". .
\Ve find the Zj ,ZI_1 for l = p(N/2k

) + 1,0 :S p < 2k
. \Vhcn p = 2q + 1 lS

odd we use the recurrence (2) with f{ = N /2 k - 1 , l = q(N/2k - 1) + I, m = N /2k

and the recurrence (3) with f{ = N/2 k
-

1
, 1= g(N/2k

- 1) + I, m = N/2k
- 1 - 1

N/21< N/21<
to find ZI ,ZI_1 from the da.ta at stage k - 1. \Vhen pis even we simply use

. N/2" N/2,.-1 N/2" N/21<-1
the relatIOns Zl = TN /2* ZI and ZI_l = TN /2" ZI_1 . Onee we have
found these polynomials we no langer need the data form the prcvious stages. The
algorithm terminates immccliately after stage k = log2 N - 1, at, whieh point t.he
numbers Zl ror 0 :S l < N have all been computed .
. Now we assume thc operators 7;1' sand Sn are defined as in seetion 2 llsing an

auxiliary polynomial seqlIence, {Tn }. In this situation we may usc the operators 1



8 DAVID K. MASLEN

TK-m [SK (ZlK,QI,m) +SK (Z/~I,RI,m)]

TK-m-l [SK (ZIK .Q',rn) + SK (Z/~I·Rc/,rn)]

Sn, Lo rccluce {,he complexity of t.hc multiplication stages.
2.4, we see t.hat

ZK-m
l+m

ZK-rn-l
I+rn

By property iii. of lemma

and we may use these recurrences in place of (2) and (3) in tlle algorithm. The
advantage of this is thaI. multiplication of a degree f{ - 1 polynomial, Z, by a
degree m polynomial, Q, takes at least m + K scalar multiplicat,ions, whereas the
com putation SK (Z. Q) takes only J( 111 UItiplications in the appropri ate point valu e
representat ion.

In praetice the truncation operators, Tr., are best appl ied in I. he coefficient rep
resentation with respect 1.0 {Tn } where they require no arithmetic operations. On
the other hand, multiplications are best pcrformed in point value representatio!l.
\Ve !lOW givc the algorithm with the transformations between these representations
explicitly illclnded.

Assume f is a polynomial of degree strictly less than N given in point value
representation at x[;', ... x%_I' thc roots of Tn . At stage 0 we apply a polynomial
transform 1.0 f 1.0 gel. Zr: = f in the cocfficient repre-qentation for {Tn }. From
now on 8.11 the polynomials Zr will bc given in this representation. To find zf we
use the Clebsch Gordan relation for Pl.Tk 1.0 relate the coefficient representation
of Z{'" 1.0 the coefficient representation of Z~ in 3N - 2 scalar multiplications anel
2N - 2 scalar additions. At stage k we use 2k inverse polynomial transforms of
.. N/2/C-l N/2/C-l. . . N/2/C-l

Slze N /2 k - 1 1.0 fi nd ZI 1 Zl_ 1 III pomt val ue form at the pomts x j for

I = q(N/2k
-

1
) + 1, 0 ::; q < 2k

-
l

. The computations of the form SN/2k-1 (Z.Q)'
SN/2" - I (Z. R) then take a total of 4N scalar multiplications iTI poi nt value repre

sentation. Next we apply 2k polynomial transforms of size N/2k anel truncate the

result.ing sequences 1.0 obtain tlle Z{'/2/c required for the next stage of computation.
Cou nt ing all these operations gi ves the followi ng theorem,

TheorClll 3.1. Assume CN is abound for fhe number 0/ opernfions required to
compute an orthogonal polynomial trons/orm 01' inverse tmns/orm 0/ a degree N
polynomial with respect to fhe orthogonal polynomial sequence {Tn } at the roots 0/
TN. Let {Pn } be an orthogonal polynomial sequence. Then the inverse tronspose
trons/arm 0/ a degree N polynomial with respect to the sequence {Pn } at the roots
0/ TN may be camputed in less than

CN + 3 ('Ogt-22kC{l-) + 4Nlog2N + (~C2 -1) - 2
k=l

operations.

4. EXAMPLES AND GENERALIZATIONS

Asslllne the orthogonal polynomials, Tn , are the Chebyshev polynomials and

the corresponding moment funetional has total mass 1. Thcn xf = cos (2
j
2X'p:If

and uf = -Iv, Steidl and Tasche [13] gi ve an algori thm for the inverse orthogonal
polynomial transform with respect to the Chebyshev polynomials in no more than
CN = ~N log2 N - N + 1 scalar operations when N is apower of two (we count
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one operations as a multiplication plus an addition and in this case the lllimber of
addi tions dominates). I t is elementary to transpose thei r algori th m and 0 btai n an
algorithm for the forward orthogonal transform in the same number of operations.
Thus we get an immediate corollary to theorem 3.1.

Corollary 4.1. Assume {Pn } is an o1,thogonal polynomial sequence. Theu the
inverse transpose transform of a degree N polynomial wilh respect to the sequence
{Pn} al the points cos (2~V )1r I 0 ~ j < N may be computed in less than

9 2 1 94N (log2 N) +:iN log2 N + 2N - 7

scalar operations.

The basic algorilhlll also works) with tninor modificatiolls) in the following gCII
eral situation. \Ve are given operators Tlf for 1 :S M ::; ]( :S N such that

. K 2 K(I) (TM) ~ TM
(ii) ImTlf ~ PM

(iii) 7;N ~ s

(iv) If M ~ K ::; N then T/,fTI( = TC.
(v) If deg Q ::; m ::; J( ~ N then T/!_m (f.Q) =Tff_m [(TI! f) .Q].

The new algori th muses the quanti ties ZIK ~ T: (f. PI), and t he recurrences in t.h is
context are

ZK-m
l+m

ZK-m-l
I+m

K [K K]TK-m Zl .QI,m + ZI_1· RI,m

T/!-m-1 [Zr .QI,m + Z{_l·RI,m]

\Ve may use this generalization to recover the original Driscoll Healey a.Igorit.hm
[5] as folIows. For any power of two, N) c1cfine operators CN tImt map a polynomial,
f onto a finite sequence) CN 1(0), ... )CN f(N - 1), of length N) where

~ jrr jk~
CNf(k) =~ f(cos fi) cos PI

;=0

Let Tn denote the operator that truneates a sequenee to length J(, define Tlf
C-;/TMCKJ and let sJ = Lf=~1 f(eos ~).

Leulllla 4.2. The operators TlL s just dejined satisfy properlies (i)-(v).

Proof Properties (i), (ii), (iii), and (iv) are easy. For (v) note that if fand Q
are polynomials and deg Q ::; m then the Clebsch Gordan property of Cheby
shev polynom ials shows tImt CK (f. Q)(k) is a linear eombi nation of CK (f)( k 
171), ... ,CK (f)( k + m). The coeffieient.s of the eornbin atioll c1epend on Q bu t, do
not depend on f or J(. Hence CK ((TI( 1).Q) is a linear combination of TKCN J(k 
m), ... l TKCN(k + m) and the coeffieients of this linear combinat.ion are thc same
as those relating CN(f.Q)(k) to Cf(k - m), ... 1 CK f(k + m). Ir k < K - 171 then
TKCN f(l) :=: CN f(l) for k - m :S k ::; k + m. Therefore

TK-mCN(f.Q) =TK-mCK [(T% f) ,Q]

Applying CK -m ta both sides gives the desired result. '0
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5. PRECOMPUTATION

The algorithms described above assurne we have found polynom{als QI,m, Rl,m
such that

(4)

and that these are given in point vaille representation. For the algorithm described
in section 3 t,his amounts to finding the values QI,m (x,fL RI,m(Xf) far I = pN/2k

I

m = N/2 k+1 or m = N/2k +1 _1, f{ = N/2k and 0 ~ k ~ log2 N, 0 ~ j < X, where
xf are t,hc roots of the auxiliary polynomial TK . The polynornials QI,m I RI,m are
not uniquely c1efined for all valucs of 1 anel m but we may still lISC recurrenees to
find polynomials with the right properties.

Leuuua 5.1. Assu me we ha ve defined polynomials Q I +k ,m- k J RI +k ,m - k J Q1,k !

Rt,k J QI,k-l! R~,k-l with k ~ m! so that Pr+t = Qr,t .Pr + Rr,t. Pr - 1 for the COITe

sponding values of rand t. lf we now define

,
(5) = Ql+k,m-kQI,k + Rl+kjm-hQlJ.:-l

= Ql+k~fn-kJli.k + Rl+k,m-kRl,k-l

then QI,m, RI,m satisfy (4).

One eOll ld use the relations (5) wi th k = 1, together wi th the initial values

Ql,O = 1, R~,o = 0, QI,1 = A,x + BI, HI,1 = GI, to finel Ql,m, RI,m for any
I, m. However we only need these polynomials for partieular vailles of 1 anel m so
this would be llnnecessarily expensive in both time and memory. Fortunately the
reeu rsion (5) restriets to a smaller set, of l, m values; by sn bsti t, uti ng l, 2m,m or
I, 2m - 1, m for l, m, k in (5) we obt,ain

(6) QI,2m

Rt,2m

QI,2m-l

RI,2m-l

= Ql+Jn)mQl,m + Rl+m,mQI,m-l

Ql+m,mRI,m + RI+m,mRl,m-l

Ql+m,m-l QI,m + Rt+m,m-l QI,m-1

= QI+m,fJl-1 Rt,m + Rl+m,m-l R~,m-l

\Ve use these reeurrenees to eompute all the required QI,m, RI,m in log2 N + 1
stages. At stage 0 we are given the initial data Ql,O, HI,o I Ql,l, RI,I' At stage

k 2: 1 we eompute the values of QI,IIl' RI,m at the points {xJ"} far I = p2 k + 1 anel

m =2k , 2k - 1, 0 ~ p < N/2k
. '.1'0 obtain the data at stage k + 1 from the data at

stage k, first find the values of Ql,m, Rl,m for stage k at the points {XJ"+l} using

orthogonal polynomial transforms of size 2k and inverse transforms of size 2k +1

with respeet to the {Tn }. Next use the reeurrenee (6) wi th m = 2k
, l = p2k +1 + 1,

o~ p < N /2k +1 to find the Ql,m I Rl,m of stage k + 1 at the points {XJ"+I}. Stage
o requires BO eomputation as the results for m = 0 are part of t.he initial data. At
the end of this we have in fact ealculated twiee as mueh data as we need; the results
required are those for whieh ]J is even. We get the followillg eomplexity estimate
for the preeomputation.
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Theorem 5.2. Let all the notation be as in theorem 3.1. Then fhe precomputed
data for the alg07'ithm of that theorem may be compuled in less than

(
IOg~N-l )

4CN + 6N {; c;: + 8N log2 N

scalar ope1'Otions.

\Vhen we use the Chebyshev polynomials as our auxiliary sequence we obtain

Corollary 5.3. Let allthe notation be as in theorem 3.1 and assume the sequence
{Tn } is the Chebyshev polynomials. Then fhe precomputed data may be computed
in less than

scalar opemtio71s.
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