A polynomial approach to
orthogonal polynomial transforms

David K. Maslen

Max-Planck-Institut fiir Mathematik
Gottfried-Claren-Str. 26
53225 Bonn

Germany

MPI / 95-9






A POLYNOMIAL APPROACH TO ORTHOGONAL
POLYNOMIAL TRANSFORMS

DAVID K. MASLEN

June 29, 1994

ABSTRACT. We present a new approach, based on polynomial arithmetic, to
fast algorithms for the expansion of a function in orthogonal polynomial se-
quences. Such algorithms were recently constructed by Driscoll and Healy.
QOur treatment provides a clear formulation of the properties required by their
algorithm, thus allowing variants of their algorithim to be developed in a more
general context and under weakened conditions.

1. INTRODUCTION

Let { P, } be an orthogonal polynoimialsequence, and let zg, ... , zy_1 be distinct
real numbers. Then the orthogonal polynomial transform for this sequence is the
map from function values, f(zg),..., f(zn—1) of a polynomial of degree strictly
less than N to the coeflicients ag, ... ,an—_; of the expansion of f in the orthogonal
polynomial sequence. Thus ag,...,an—1 are defined through the equations

N-1
f= Z a Py
k=0
where f is determined by the function values f(zo),..., f(zny-1). Such transform

occur frequently in applied sciences, particularly in spectral methods for the solution
of partial differential equations [2].
A closely related computation is the calculation of the sums
N-1
@ =y f(z;)Pu(a;)

j=0
for0 < k < N. This is the inverse transpose of the orthogonal polynomial transform
and when {z;} are the roots of Py it is equivalent to the orthogonal polynomial
transform after taking scalar multiples of the f(z;) and the corresponding . For
more general sets of distinct points the polynomial transform may be calculated
by means of an inverse transpose transform of twice the size. The main object
of this paper is an algorithm, the Driscoll Healey algorithm, for the inverse trans-
pose transform, though the orthogonal polynomial transform will feature in the
derivations. We detall the relationship between the transform in section 2.

1991 Mathematics Subject Classification. 42C10.

1



2 DAVID K. MASLEN

The naive approach to these transforms via straightforward matrix muléiplication
takes N? scalar operations, where one operation counts for one multiplication plus
one addition. There have been several attempts to find a more efficient algorithm,
including [12] and [1] who derived approximate methods. In their seminal papers,
Driscoll and Healey [5) together with Rockmore [6] proposed an exact O(N (log N)?)
algorithm for these transforms.

In the current paper we present a general derivation of their algorithm in the lan-
guage of polynomial transforms. This clarifies the properties the algorithm depends
on and removes some unnecessary hypotheses, in particular the hypothesis that an
auxiliary sequence of polynomials they use has a constant coeflicient recurrence
relation.

For the purposes of this paper we ignore questions of stability and assume all op-
erations are carried out in exact arithmetic. the stability of the algorithm depends
strongly in the polynomial sequence and the points chosen to define the transform.
The original algorithms of Driscoll and Healey have been implemented stably, with
some modifications, in the important cases of Legendre and Gegenbauer polynomi-
als. For a discussion and analysis of stabilization methods see [10].

An important example of an orthogonal polynomial transform occurs when the
polynomial sequence is the sequence of Chebyshev polynomials. In this special case
the transform of size N may be computed for any sel of points in O(N(log N)?)
operations using classical fast Fourier transform techniques. When the points are
the Chebyshev points, i.e. the roots of the N-th Chebyshev polynomial, these clas-
sical techniques give a transform of complexity O(N log N). Recently, Steidl and
Tasche [13] gave an extremely cfficient direct algorithm for this computation.

Loosely speaking, all the results in this paper ate based on the idea of relating the
polynomial transforms for two different sequences of orthogonal polynomials, show-
ing that one may reduce the calculation of such a transform to the calculation of
polynomial transforms at any other given orthogonal polynomial scquence. Hence
an efficient algorithm for one class of orthogonal polynomial transforms yields algo-
rithms for the polynomial transforms with respect to any other orthogonal polyno-
mial sequence. The transforms for Chebyshev polynomials then provide a starting
point for all other transforms.

In section 2 we introduce the properties of orthogonal polynomials, use them to
relate orthogonal polynomial transforms at different sets of points, and to relate
transforms and their inverse transposes. We introduce operators on the space of all
polynomials and prove properties required for the development of our algorithms
in an abstract setting. In section 3, we derive the basic algorithm and prove a
complexity result relating the complexity of transforms with respect to two different
sequences of orthogonal polynomials. In section 4 we give an example and an upper
bound on the complexity of any inverse transpose transform. Then we generalize
the properties we need for our algorithm in order to relate our results to those of [6].
Finally in section 5 we give an efficient algorithm for computing the precomputed
data required for the polynomial transform algorithms.

Acknowledgements. Thanks to Persi Diaconis for involving me with this problem
and his encouragement and advice. Thanks to Dennis lHealey and Dan Rockmore
for many conversations and explanations. Finally thanks to the Harvard math
department and the Max-Planck-Institut fir Mathematik for their crucial support.



ORTHOGONAL POLYNOMIAL TRANSFORMS 3

2. BACKGROUND

Let P denote the space of all polynomials with real coefficients and Py denote
the space of all such polynomials of degree strictly lecss than N. The definition
of orthogonal polynomial sequence we shall use is that of [3], p. 7. HHence {P,)
is an orthogonal polynomial sequence provided each P, is a polynomial of degree
n, L[PnPy) = 0if m # n, and L[PZ? # 0, where £ is a linear functional on the
space of polynomials called the moment functional. We restrict ourselves to real
polynomials and the case where the moment functional is positive definite. In this
situation the moment functional is given by Stieltjes integration with respect to a
nondecreasing integrator.

There are many different ways of representing polynomials, each useful for differ-
ent operations. I'or multiplication the most convenient representation is the point
value representation. If zg,...,zy-1 15 a sequence of N distinct points on the
real line and f is a polynomial of degree strictly less than N, then the sequence of
function values, f(zo),...f(2n-1), is called the point value representation of f at
the points {z;}. The coefficient representation of [ with respect to a sequence of
orthogonal polynomials, {P,}, is the sequence of coefficients ag, ... ,ay_1, where

N-1
f= Z ag Py
k=0

Evidently the orthogonal polynomial transform is the map from the point value
representation of f to its coeflicient representation.

This gives us a way to relate polynomial translorms at different sets of points.
Suppose {T,} is an orthogonal polynomial sequence, and we have algorithms for
calculating the polynomial transform for {T,,} at the points xq,... ,zn_1 and the
inverse transform at the points yp,...,y~v—1. Then composing these two maps
gives us a map from the point value representation of f at the z; to the point
value representation of f at the y;. Thus we may relate the polynomial transforms
for a second sct of polynomials, {P,}, at the z;, to the transform for {P,} at the
points y;. This is only a useful technique when we do have algorithms for the
{T,} transforms. Fortunately when the T, are Chebyshev polynomials we may
use classical techniques to compute the transforms in O(N (log N)?). The paper
[6] contains an exposition of the technique and [10] [11] develop techniques for the
stabilization of these algorithms.

One of the important properties of orthogonal polynomials we will use is the
Gauss quadrature rule. For a proof of the following lemma see [3].

Lemma 2.1 (Gauss Quadrature). Assume {P,} is an orthogonal polynomial
sequence for the positive definite moment functional, £, and =¥ ,... =8 _, are
the roots of Pn. Then there are numbers, wl,... , wh_, > 0 such that for any
polynomial, f, of degree at most 2N — 1, we have

N=1

L= Z wl (=)

The numbers w! are unique and are called the Gaussian weights for the sequence
q

(P}, !



4 DAVID K. MASLEN

The Gaussian quadrature lemma immediately gives the conneciion between an
orthogonal polynomial transform for {P.} at the roots of Py, and the inverse
transpose transform. In the notation of the introduction,

ar = E[PZ]C[IPA]

= E[PQ] Z wa ( )

When the points &p,...,zx_1 are not the roots of Py we need a different tech-
nique to relate the polynomial transform to its inverse transpose. In this case we
use the transforms for the Chebyshev polynomials Lo evaluate the polynomial, f, at

2N distinct points, yg,...yan—1. Then we find real numbers wyq, ..., wany_) such
that

2N-1

Y wiPu(ys) = L[Poldo s

=0

for 0 < & < 2N. Clearly the functional Efzo_) w; f(y;) agrees with £ on Pay, so
in the notation of the introduction,

2N-1

ae =Y wif(y;) Pelys)

j=0

for 0 < k < 2N. By this technique we may relate an orthogonal polynomial
transform to an inverse transpose transform of twice the size at an arbitrary set of
2N distinct points.

The preceding argument justifies restricting our attention to tlhe following special
case. We assume from now on that {7} and {P,} are orthogonal polynomial
sequences, that z{,v, ey :cﬁ_l are the roots of Ty, and we shall restrict our attention
to finding an algorithm for the inverse transpose transform for {P,} at the points,
z-‘;y, given that we have algorithms for the polynomial transform for the {T,,} at
the .r_‘;" and its inverse.

To fully relate our stated problem to polynomial transforms we need a method

for finding numbers wy, ..., wy_; satisfying
N-1

(1) w; Pe(z') = L[Po}do
i=0

for 0 € & < N. One method would be to solve the linear equations (1) directly
though this could be time consuming. The following theorem gives a formula for
these numbers 1n many situations.

Theorem 2.2. Assume p, ¥ are infinitely supported Borel measures supported on
a compact interval, and {P,}, {T,} are real orthonormal polynomial sequences with
respecl to p and P respectively. Assume ¢ s absolutely continuous with respect to



ORTHOGONAL POLYNOMIAL TRANSFORMS 5

Y. Let Tn denole the projection from L'(3) onto Py given by truncation of the
Jormal expansion in the {T,}, so

h) = i\g U h.dew] T

for hin L'(y). Let z{f,... aR_, be the roots of T, let ull,... ,ul_, be the
corresponding Gaussian weights and let wo,... ,wy_1 be defined by (1), where
E[Po] = fP(]dQD Then
dyp ]
wj = T
=l [Tt §0)] )

where ——ﬁ 1s the Radon Nikodym derivative.
Proof.

N-1 dip

ol [TN(E)] (&) Pe(=})

i=0

- [ TN(— ) Py

f{: (f o ﬂdw) Tj. Pedp
S5 (Jnnas) e

= /Pkdso = L[Po)do,x

forO0<k < N. O

Recurrence relations and truncation operators. Any orthogonal polynomial
sequence salisfies a three term recurrence relation

Pn+1 (Anm'*' Bn) Pﬂ+Cﬂ'PH—1

where A, # 0 and C,; # 0. A similar property which may be obtained by iterating
the recurrence is the Clebsch Gordan property, which is that

P,.Q €span{Pn_m,. .., Paym}

when deg @ < m. lterating the recurrence relation also shows that there are poly-
nomials Qi m, Ri,m with deg Qi,;m = m and deg Ry m < m — 1 such that

f’l+m s Ql,m-PI + Ri,m-PI—l

These recurrence related properties together with the Gaussian quadrature formula
form the basis of the algorithm.

To formulate our algorithm in its most general form we introduce the following
operators, called truncation operators. These depend on the auxiliary orthogonal



6 DAVID K. MASLEN

polynomial sequence, {Tw}. For any polynomial, f = ka b Ty, define Ty f to
be the projection onto Py given by
N=-1

Tnf= Z by T,

k=0

Let s = Jv(lm.r\/l where M is the moment functional for {7,,}. The important
properties of Tx and s are as follows.

Lemma 2.3. (1) Tﬁ, =TNn
(i) ImTy =Pn
(i) 1 =s
(iv) If M < N then TuTn = Tas.
(v} Ifdeg Q@ <m < N then Tnem(f.Q) = Tn-m [(Tw f) .Q].

Proof. (i), (ii), (iii) and (iv} are trivial. For (v) assume that f = > .7k,
and that deg @ < m. By the Clebsch Gordan property we know that 7;.Q is in

the linear span of Tk_m,... ,Tkqm, and hence that Ty_, (Tx.Q) = 0 for k > N.
Therefore
N-1
TN-mfQ) = Tnem Z b Th.Q
k=D

TN—m [(TNf) Q]

ad
We shall also use operators sy and Sy defined as follows. Let
| N-1
N N
snf = e D uy fe])
M(To) 3=0
where ¥ are the Gaussian weights for {7}, }, and let Sy f denote the remainder of

f modulo T, so Sy f is the unique polynomial of degree strictly less that N which

agrees with f at the points z¥',...,z¥_,. Here arc the properties of sy and Sy
we will use.
Lemma 2.4, (i) 8% = Sy

(ii) ImSy = PN

(i) Sw([.9) = Sn ((Snf) - (Sng))

)
(iv) Ifdegf<N+m then Tn_mf = To—mSn f
(v) Ifdeg f < 2N then sy f = sf.

(vi)

SN = SNSN
Proof. (i), (ii), (iii) and (vi} are easy, and (v) follows from the Gauss quadrature
formula. To prove (iv) assume deg f < N 4+ m. DBy long division, there is a
polynomial, p, of degree at most m such that

f=8nf+Tnp

By the Clebsch Gordan property we know T .pisin the span of Tv_m, ..., TNgm,
and hence that Ty_m(Tn.p) = 0. Therefore Tn_mf = Tv_mSnSf. O



ORTHOGONAL POLYNOMIAL TRANSFORMS 7

We may phrase the problem of finding the inverse transpose transform of a
polynomial, f of degree strictly less than N in terms of the operators sy and s. It
1s equivalent to finding the numbers

M(To).sn(f.P) = M(Ty).5(f.P)
for0 <1< N.

3. THE BASIC ALGORITHM

We have reduced the computation of orthogonal polynomial transforms and their
inverse transposes to the following problem. Given a linear operator, s, on P, an
orthogonal polynomial sequence {P,} and a polynomial, f, of degree strictly less
than N, compute the numbers s(f.F) for 0 <! < N.

First we shall assume only that we know how to apply operators, T, for0 < n <
N such that the Ty and s satisfy the properties of lemma 2.3. We give an algorithm
that only requires polynomial multiplication, addition, and application of the op-
erators T,. When the 7, are defined as in section 2 using an auxiliary polynomial
sequence, {T,,} we relate the complexity of the algorithm to the complexity of the
orthogonal polynomial transforin for {7}, } assuming that the polynomial, f is given
in point value representation at the Gaussian points of {73,}. In this situation we
also use the operators, &,, to limit the degrees of the polynomials to which we
apply Tn.

Assume 7,, 0 < n < N, and s satisfy the properties of lemma 2.3, that f
is a polynomial and {#} is an orthogonal polynomial sequence. The algorithm
proceeds by computing polynomials Zf = Tx (f.P) for various values of { and K;
when f has degree strictly less than N we have f = Z}', whereas s(f.P) = Z} for
0 <! < N. Using property fv. of lemma 2.3 together with the recurrence relation

Pl-{-m = Ql,m-PI + Rl,m-ﬂ-l
one immediately obtains recurrences between the Z,K.

(2) JI}-{}-;:H = Tkem [Z.!K -Ql,m + Z[El .R[)m]
(3) Zt}-f-;m_l = TK—m—l [ZJK'Q‘,TH + Zlfﬁ] -Rf,rn]

At this point it is convenient, though not strictly necessary, to require that N is a
power of 2

We start by using the formulas Z' = Ty f and Z{¥ = T (f.P1) to find Z{¥ and
Z{; this is stage 0 of the algorithm. At stage k of the algorithm, with & > 1,

we find the Z/% | ZN* for I = p(N/2)+1,0 < p < 2*. When p = 2¢ + 1 is

odd we use the recurrence (2) with K = N/28"1 [ = ¢(N/2*"1) 41, m = N/2*

and the recurrence (3) with K = N/2%=1 [ = ¢(N/2*"1) 41, m = Nj2*-1 1
k k

to find Z[N/2 ZM% from the data at stage £ — 1. When p is even we simply use

» Hi1
k k=1 k k—1
the relations Z,N/2 = TNy Z',N'I2 and Zﬁ‘llz = TN/Q;‘Z;EIIZ . Once we have

found these polynomials we no longer need the data form the previous stages. The
algorithm terminates immediately after stage & = log, N — 1, at which point the
numbers Z! for 0 <! < N have all been computed.

* Now we assume the operators 7y, s and &, are defined as in section 2 using an
auxiliary polynomial sequence, {T,}. In this situation we may use Lhe operators,



8 DAVID K. MASLEN

Sn, lo reduce the complexity of the multiplication stages. By property iii. of lemma
2.4, we see that

5 = Tkom [Sk (25 .Qum) + Sk (25, Rim)]
Z,}i;m_l = Tk-m-1[Sk (2K .Qum) + Sk (25, Rim)]

and we may use these recurrences in place of (2) and (3) in the algorithm. The
advantage of this is that multiplication of a degree K — | polynomial, Z, by a
degree m polynomial, @), takes at least m 4+ K scalar multiplications, whereas the
computation Sk (Z.@) takes only K multiplications in the appropriate point value
representation.

In practice the truncation operators, 7T,, are best applied in the coefficient rep-
resentation with respect to {75,} where they require no arithmetic operations. On
the other hand, multiplications are best performed in point value representation.
We now give the algorithm with the transformations between these representations
explicitly included.

Assume f is a polynomial of degree strictly less than N given in point value
representation at zf,...zN_,, the roots of T,. At stage 0 we apply a polynomial
transform to f to get Z&¥ = [ in the coefficient representation for {7,}. From
now on all the polynomials Z& will be given in this representation. To find Z{¥ we
use the Clebsch Gordan relation for £,. T} to relate the coeflicient representation
of ZN to the coefficient representation of Z{' in 3N —~ 2 scalar multiplications and
2N — 2 scalar additions. At stage & we use 2¥ inverse polynomial transforms of

. k-1 Njak-1 Nf2e=1 . . . Njok-1
size N/2°~! to find Z , Z;Zy  in point value form at the points z; for
I'=q(N/2*"1)+1,0 < ¢ < 257!, The computations of the form Sy/2x-1(Z.Q),
Snyax-1(Z.R) then take a total of 4N scalar multiplications in point value repre-
sentation. Next we apply 2% polynomial transforms of size N/2* and truncate the

k
resulting sequences to obtain the Z;N” required for the next stage of computation.
Counting all these operations gives the following theorem.

Theorem 3.1. Assume cy 1s a bound for the number of operations required to
compule an orthogonal polynomial transform or inverse iransform of a degree N
polynomial with respect to the orthogonal polynomial sequence {T,,} at the roots of
Tn. Let {Pn} be an orthogonal polynomial sequence. Then the inverse transpose
transform of a degree N polynomial with respect to the sequence {FP,} at the roots
of Ty may be computed in less than

log, N2 1
eN +3 Z QkCﬂ__ + 4N10g2N+(;Z-C2—I}—2
k=1

operations.

4. EXAMPLES AND GENERALIZATIONS

Assume the orthogonal polynomials, 7},, are the Chebyshev polynomials and

the corresponding moment functional has total mass 1. Then :z:_{-"r = cos Q%UI

and uf’ = —,{; Steidl and Tasche [13] give an algorithm for the inverse orthogonal
polynomial transform with respect to the Chebyshev polynomials in no more than
CN = %N]og2 N — N + 1 scalar operations when N is a power of two (we count



ORTHOGONAL POLYNOMIAL TRANSFORMS 9

one operations as a multiplication plus an addition and in this case the number of
additions dominates). It is elementary to transpose their algorithm and obtain an
algorithm for the forward orthogonal transform in the same number of operations.
Thus we get an immediate corollary to theorem 3.1.

Corollary 4.1. Assume {P,} is an orthogonal polynomial sequence. Then the
inverse transpose transform of a degree N polynomial with respect to the sequence
{Pn} at the points cos Q%)l, 0 < j < N may be computed in less than

1
%N(logz N2+ ENlogz N + %N -7
scalar operations.

The basic algorithim also works, with minor modifications, in the following gen-
eral situation. We are given operators 73§ for | < M < K < N such that
() ()2 =TH
(ii) Im7§ = Par
(i) TN = s
(iv) f M < K < N then TETY = T4 .
(v) I deg@ <m < K <N then T (£.Q) =TI, [(Ti 1) Q).
The new algorithm uses the quantities ZX = T2 (f.A), and the recurrences in this
context are

ZE5 = T (25 .Qum + 25 Rim]
Z[I_\}_;‘m—l - Tf?(—m—l [Z{{'Ql,m+Z£EX-RI,m]

We may use this generalization to recover the original Driscoll Healey algorithm
[5] as follows. For any power of two, N, define operators Cx that map a polynomial,
f onto a finite sequence, Cnx f(0),... ,CnJ{N — 1), of length N, where

Cnf(k) = jg_o flcos %)cos '-?%T

Let 7, denote the operator that truncates a sequence to length K, define TH =
Cap TwCrc, and let sf = N3 F(cos 2%).
Lemma 4.2. The operators T{f , s just defined satisfy properties (i)-(v).

Proof. Properties (i), (ii), (iii), and (iv) are easy. For (v) note that if f and @
are polynomials and deg@ < m then the Clebsch Gordan property of Cheby-
shev polynomials shows that Cx(f.Q)(k) is a linear combination of Cx (f}(k —

m),...,Cx(f)(k +m). The coefficients of the combination depend on @ but do
not depend on f or K. Hence Cx (T f).Q) is a linear combination of TxCn f(k —
m), ... ,')FKCN(k 4 m) and the coefficients of this linear combination are the same

as those relating Cn(f.Q)(k) to Cf(k —m),... ,Ckf(k+m). If £ < K —m then
TeCn f(1) = Cn f(1) for k —m < k < k4 m. Therefore

Tk -mCn{f.Q) = Tr-mCx [(TR 1) Q]
Applying Cx _m to both sides gives the desired result. [0



10 DAVID K. MASLEN

5. PRECOMPUTATION

The algorithms described above assume we have found polynomials CGim, Rim
such that

(4) Piim = Qim-Pi+ Rim Py

and that these are given in point value representation. For the algorithm described
in section 3 this amounts to finding the values Qi m (), Rim () for { = pN/2¥,
m= N/ orm = Nf2*t' -1, K = N/2* and 0 < k < log, N, 0 < j < K, where
a:J’-{ are the roots of the auxiliary polynomial Tx . The polynomials Qi m, Rim are
not uniquely defined for all values of { and m but we may still use recurrences to
find polynomials with the right properties.

Lemma 5.1. Assume we have defined polynomials Quix m—r, Rigkm-k, Quk,
Rig, Qi~1, Rig—1 with k <m, so that Pryy = Qr . Pr + Ryt .Pr_y for the corre-
sponding values of r and t. If we now define

(5) Qim = Quikm-kQur + Riprem—r Qi
Rim = Qitkm-sRix+ Riprm_iflir_

then Qim, Rim satisfy (4).

One could use the relations (5) with & = 1, together with the initial values
Qo =1, Riop=0, Q1= Az+ B, Ry = C, to find Qi mm, Ri,m for any
I,m. However we only need these polynomials for particular values of I and m so
this would be unnecessarily expensive in both time and memory. Fortunately the
recursion (5) restricts to a smaller set of {, m values; by subsiituting {,2m,m or
1,2m — 1,m for I;m, k in (5) we obtain

(6) Ql.Em = Qi+m,m Ql,m + Ri+m,le,m-l
Riom = Quimmfim+ RiymmBim-1

Qiam—1 = Qiemm-1@im + Ritmm-1Qim-1

Riom-1 = Qupmm-1Rim + Ritmm—1fm-1

We use these recurrences to compute all the required @ m, Rim in logy N + 1
stages. At stage 0 we are given the initial data Qio, Ry, @11, Ri1. At stage
k > 1 we compute the values of @y, i m at the points {.Ejk] for I = p2% + 1 and
m=2%2%~1,0<p< N/2* Toobtain the data at stage k£ + | from the data at
stage k, first find the values of Q4 ;m, Fim for stage k at the poinis {:nf-”l} using
orthogonal polynomial transforms of size 2¥ and inverse transforms of size 254!
with respect to the {7},}. Next use the recurrence (6) with m = 2% 1 = p2¥+1 41,
0 < p < N/24! to find the Qi m, Rim of stage k + 1 at the points {m;'-'kﬂ}. Stage
0 requires no computation as the results for m = 0 are part of the initial data. At
the end of this we have in fact calculated twice as much data as we need; the results
required are those for which p is even. We get the following complexity estimate
for the precomputation.



ORTHOGONAL POLYNOMIAL TRANSFORMS t

Theorem 5.2. Let all the notation be as in theorem 3.1. Then the precompuled
data for the algorithm of that theorem may be compuled in less than

log,N-—lC

*

den +6N | D 22—,, +8Nlogy N
k=0

scalar operations.

When we use the Chebyshev polynomials as our auxiliary sequence we obtain

Corollary 5.3. Let all the notation be as in theorem 3.1 and assume the sequence
{Tn} is the Chebyshev polynomials. Then the precomputed data may be computed

in

SC

-1

11.

12.

13.

less than 9 7
-Q-N(logz N)? + 5N logy N + 8N +4

alar operalions.

REFERENCES

. B. Alpert and V. Rokhlin, 4 fast algorithm for the evaluation of Legendre tranaforms, SIAM
-J -Sci. -Statist. -Comput., 12, No. 1, pp. 158-179 (1991).

. G.L. Browning, J.J. Hack and P.N. Swarztrauber, A comparison of three numerical methods
Jor solving differential equations on the sphere, Monthly Weather Review, 117, pp. 1058-75,
May (1989).

. T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York
(1978).

. P. Diaconisand D. Rockmore, Efficient computation of the Fourier transform on finite groups,
Journal of the A.M.8. Vol. 3, No. 2, April (1990).

. J.R. Driscoll and D.M. Healy Jr., Computing Fourier Transforms and Convolulions on the
2-Sphere, Report, Dept. of Math. and Com. Sci., Dartmouth College, NH (1992).

. J.R. Driscoll, D.M. Healy Jr., and D. Rockmore, Fast Spherical Transforms on Distance
Transitive Graphs, Report, Dept. of Math. and Com. Sci., Dartmouth College, NH (1992).

. D.K. Maslen, Fast Transforms and Sampling for Compact Groups, Ph.D. Thesis, Harvard
University, MA {1993).

. D.K. Maslen, Sampling of Functions and Sections for Compact Groups, Preprint, Max-
Planck-Institut-fir-Mathematik, Bonn, Germany (1994).

. A. Ghizetti and A. Ossicini, Quedrature Formulae, Birkenhauser Verlag, Basel (1970).

. S.5.B. Moore, Ffficient Stabilization Methods for Fast Polynomial Transforms, Ph.D. Thesis,

Dartmouth College, NH (1994).

S.S.B. Moore, D.M. Healey Jr. and D.N. Rockmore, Symmetry Stabilization for IFast Discrete

Monomial Transforms and Polynomial Evaluation, Linear algebra and its applications, 192,

pp. 249-299 (1993).

S.A. Orszag, Fast eigenfunction tranforms, in Science and Computers, ed. G.C. Rota, Aca-

demic Press, NY, pp. 23-30 (1986).

G. Steidl and M. Tasche, A polynomial approach to fast algorithms for discrete Fourier-cosine

and Fourier-sine lransforms, Mathematics of Computation, 58, No. 193, pp. 281-296, January

(1991).

MAX-PLANCK-INSTITUT FUR MATHEMATIK, 53226 BONN, GERMANY
E-mail address: maslen@mpim-bonn.mpg.de



