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AUTOMORPHISM GROUPS OF COMPACT COMPLEX SURFACES

YURI PROKHOROV AND CONSTANTIN SHRAMOV

Abstract. We study automorphism groups and birational automorphism groups of
compact complex surfaces. We show that the automorphism group of such surface X is
always Jordan, and the birational automorphism group is Jordan unless X is birational
to a product of an elliptic and a rational curve.
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1. Introduction

It often happens that some infinite subgroups exhibit a nice and simple behavior on
the level of their finite subgroups. An amazing example of such situation is given by the
following result due to C. Jordan (see [CR62, Theorem 36.13]).

Theorem 1.1. There is a constant J = J(n) such that for every finite sub-
group G ⊂ GLn(C) there exists a normal abelian subgroup A ⊂ G of index at most J .

This motivates the following definition.

Definition 1.2 (see [Pop11, Definition 2.1]). A group Γ is called Jordan (alternatively,
we say that Γ has Jordan property) if there is a constant J such that for every finite
subgroup G ⊂ Γ there exists a normal abelian subgroup A ⊂ G of index at most J .

In other words, Theorem 1.1 says that the group GLn(C) is Jordan. The same applies
to any linear algebraic group, since it can be realized as a subgroup of a general linear
group.

The authors were partially supported by the Russian Academic Excellence Project “5-100”, by RFBR
grants 15-01-02164 and 15-01-02158, and by the Program of Presidium of RAS “Fundamental mathematics
and its applications”. Constantin Shramov was also supported by Young Russian Mathematics award.
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It was noticed by J.-P. Serre that Jordan property sometimes holds for groups of bira-
tional automorphisms.

Theorem 1.3 ([Ser09, Theorem 5.3], [Ser10, Théorème 3.1]). The group of birational
automorphisms of P2 over the field C (or any other field of characteristic 0) is Jordan.

Yu. Zarhin pointed out in [Zar14] that there are projective complex surfaces whose
birational automorphism groups are not Jordan; they are birational to products E × P1,
where E is an elliptic curve. The following result of V. Popov classifies projective surfaces
with non-Jordan birational automorphism groups.

Theorem 1.4 ([Pop11, Theorem 2.32]). Let X be a projective surface over C. Then
the group of birational automorphisms of X is not Jordan if and only if X is birational
to E × P1, where E is an elliptic curve.

Automorphism groups having Jordan property were studied recently in many different
contexts. Yu. Prokhorov and C. Shramov in [PS16b, Theorem 1.8] and [PS14, Theo-
rem 1.8] proved that this property holds for groups of birational selfmaps of rationally
connected algebraic varieties, and some other algebraic varieties of arbitrary dimension.
Actually, their results were initially obtained modulo a conjectural boundedness of ter-
minal Fano varieties (see e. g. [PS16b, Conjecture 1.7]), which was recently proved by
C. Birkar in [Bir16, Theorem 1.1]. Also Yu. Prokhorov and C. Shramov classified Jordan
birational automorphism groups of algebraic threefolds in [PS16d]. Some results about
birational automorphisms of conic bundles were obtained by T. Bandman and Yu. Zarhin
in [BZ17a]. For other results on Jordan birational automorphism groups see [PS16a],
[PS16c], and [Yas16].

S. Meng and D.-Q. Zhang proved in [MZ15b] that an automorphism group of any pro-
jective variety is Jordan. T. Bandman and Yu. Zarhin proved a similar result for automor-
phism groups of quasi-projective surfaces in [BZ15], and also in some particular cases in
arbitrary dimension in [BZ17b]. For a survey of some other relevant results see [Pop14].

É. Ghys asked (following a more particular question posed earlier by W. Feit) whether a
diffeomorphism group of a smooth compact manifold is always Jordan. Recently B. Csikós,
L. Pyber, and E. Szabó in [CPS14] provided a counterexample following the method
of [Zar14]; see also [Mun17b] for a further development of this method, and [Pop16,
Corollary 2] for a non-compact counterexample. However, Jordan property holds for dif-
feomorphism groups in many cases; see [Mun16a], [Mun14], [MT15], [Mun13], [GZ13],
[Zim12], [Zim14a], [Zim14b], [MZ15a], and references therein. Also there are results for
groups of symplectomorphisms, see [Mun17a] and [Mun16b].

The goal of this paper is to generalize Theorem 1.4, and to some extent the result
of [MZ15b], to a different setting, namely, to the case of compact complex surfaces (see §3
below for basic definitions and background). We prove the following.

Theorem 1.5. Let X be a connected compact complex surface. Then the automorphism
group of X is Jordan.

One can also show (see [Mun13, Theorem 1.3] or Theorem 2.9 below) that the number
of generators of any finite subgroup of an automorphism group of a compact complex
surface X, and actually of a diffeomorphism group of an arbitrary compact manifold, is
bounded by a constant that depends only on X.

The main result of this paper is as follows.
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Theorem 1.6. Let X be a connected compact complex surface. Then the group of bira-
tional automorphisms of X is not Jordan if and only if X is birational to E × P1, where E
is an elliptic curve. Moreover, there always exists a constant R = R(X) such that every
finite subgroup of the birational automorphism group of X is generated by at most R
elements.

The plan of the paper is as follows. In §2 we collect some elementary facts about Jordan
property, and other boundedness properties for subgroups. In §3 we recall the basic facts
from the theory of compact complex surfaces, most importantly their Enriques–Kodaira
classification. In §4 we recall some important general facts concerning automorphisms
of complex spaces. In §5 we study automorphism groups of non-projective surfaces with
non-zero topological Euler characteristic; an important subclass of such surfaces is formed
by minimal surfaces of class VII with non-zero second Betti number (which are still not
completely classified). In §6 and §7 we study automorphism groups of Hopf and Inoue
surfaces, respectively; these are all possible minimal surfaces of class VII with trivial
second Betti number. In §8 we study automorphism groups of Kodaira surfaces. In §9 we
study automorphism groups of other minimal surfaces of non-negative Kodaira dimension,
and prove Theorems 1.5 and 1.6. Finally, in Appendix A we collect some auxiliary group-
theoretic results about infinite discrete groups and their automorphisms that we use in §7
and §8.

Our general strategy is to consider the compact complex surfaces according to Enriques–
Kodaira classification. One feature of our proof that we find interesting to mention is that
Inoue and Kodaira surfaces are treated by literally the same method which is based on
the fact that they are (diffeomorphic to) solvmanifolds (cf. [Has05, Theorem 1]), and for
which we never met a proper analog in the projective situation. It is possible that one
can generalize this approach to higher dimensional solvmanifolds. Note also that some
of our theorems follow from more general results of I. Mundet i Riera, cf. Theorems 5.1
and 5.12 (and also the discussion in the end of §5).

We are grateful to M. Brion, M. Finkelberg, S. Gorchinskiy, S. Nemirovski, D. Osipov,
and M. Verbitsky for useful discussions. The final version of the paper was prepared during
the authors’ stay in the Max Planck Institute for Mathematics, Bonn. The authors thank
this institute for hospitality and support.

2. Jordan property

In this section we recall some group-theoretic properties related to the Jordan property,
and prove a couple of auxiliary results about them.

Definition 2.1. We say that a group Γ has bounded finite subgroups if there exists a
constant B = B(Γ) such that for any finite subgroup G ⊂ Γ one has |G| 6 B.

The following result is due to H. Minkowski (see e. g. [Ser07, Theorem 5]
and [Ser07, §4.3]).

Theorem 2.2. For every n the group GLn(Q) has bounded finite subgroups.

Definition 2.3. We say that a group Γ is strongly Jordan if it is Jordan, and there exists
a constant R = R(Γ) such that every finite subgroup in Γ is generated by at most R
elements.
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Note that Definition 2.3 is equivalent to a similar definition in [BZ15]. An example
of a strongly Jordan group is given by GLn(C). This follows from the fact that every
abelian subgroup of GLn(C) is conjugate to a group that consists of diagonal matrices.
Note however that even the group C∗ contains infinite abelian subgroups of arbitrarily
large rank.

The following elementary result will be useful to study Jordan property.

Lemma 2.4. Let

1 −→ Γ′ −→ Γ −→ Γ′′

be an exact sequence of groups. Then the following assertions hold.

(i) If Γ′ is Jordan (respectively, strongly Jordan) and Γ′′ has bounded finite subgroups,
then Γ is Jordan (respectively, strongly Jordan).

(ii) If Γ′ has bounded finite subgroups and Γ′′ is strongly Jordan, then Γ is strongly
Jordan.

Proof. Assertion (i) is obvious. For assertion (ii) see [PS14, Lemma 2.8] or [BZ15,
Lemma 2.2]. �

It is easy to see that if Γ1 is a subgroup of finite index in Γ2, then Γ2 is Jordan
(respectively, strongly Jordan) if and only so is Γ1. At the same time Jordan property, as
well as strong Jordan property, does not behave well with respect to quotients by infinite
groups. Namely, a quotient of a strongly Jordan group by its subgroup may fail to be
Jordan or to have all of its finite subgroups generated by a bounded number of elements.
In spite of this we will be able to control the properties of some quotients by infinite
groups that will be important for us.

Lemma 2.5. Let A be an abelian group whose torsion subgroup At is isomorphic
to (Q/Z)n, and let Λ ⊂ A be a subgroup isomorphic to Zm. Then the quotient
group Γ = A/Λ is strongly Jordan.

Proof. The group Γ is abelian and thus Jordan. Let V ⊂ Γ be a finite subgroup and
let Ṽ ⊂ A be its preimage. Clearly, Ṽ is finitely generated and can be decomposed into a
direct product Ṽ = Ṽt × Ṽf of its torsion and torsion free parts. In particular, Ṽf is a free
abelian group. Since Ṽf/(Ṽf ∩ Λ) is a finite group, one has

rk Ṽf = rk(Ṽf ∩ Λ) 6 rk Λ = m.

The group Ṽt is contained in At
∼= (Q/Z)n and so it can be generated by n elements.

Thus Ṽ can be generated by n + m elements, and the images of these elements in Γ
generate the subgroup V . �

Lemma 2.6. Let

(2.7) 1 −→ Γ′ −→ Γ −→ Γ′′

be an exact sequence of groups. Suppose that Γ′ is central in Γ (so that in particular Γ′ is
abelian) and there exists a constant R such that every finite subgroup of Γ′ is generated
by at most R elements. Suppose also that there exists a constant J such that for every
finite subgroup G ⊂ Γ′′ there is a cyclic subgroup C ⊂ G of index at most J (so that in
particular Γ′′ is strongly Jordan). Then the group Γ is strongly Jordan.
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Proof. LetG ⊂ Γ be a finite subgroup. The exact sequence (2.7) induces an exact sequence
of groups

1 −→ G′ −→ G −→ G′′,

where G′ is a subgroup of Γ′ (in particular, G′ is abelian), while G′′ is a subgroup of Γ′′.
There is a subgroup Ḡ ⊂ G of index at most J such that Ḡ contains G′, and the quo-
tient Ḡ/G′ is a cyclic group. To prove that the group Γ is Jordan it is enough to check
that Ḡ is an abelian group. The latter follows from the fact that G′ is a central subgroup
of Ḡ.

The assertion about the bounded number of generators is obvious. �

Lemma 2.8. Let Λ be a finitely generated central subgroup of GL2(C). Then the quotient
group Γ = GL2(C)/Λ is strongly Jordan.

Proof. We have an exact sequence of groups

1 −→ C∗/Λ −→ Γ −→ PGL2(C) −→ 1.

The group C∗/Λ is a central subgroup of Γ. Also, the group C∗/Λ is strongly Jordan by
Lemma 2.5.

On the other hand, we know from the classification of finite subgroups of PGL2(C) that
every finite subgroup therein contains a cyclic subgroup of bounded index. Therefore, the
assertion follows from Lemma 2.6. �

Most of the groups we will be working with in the remaining part of the paper will be
strongly Jordan. However, we will only need to check Jordan property for them due to
the following result.

Theorem 2.9 ([Mun13, Theorem 1.3]). For any compact manifold X there is a constant R
such that every finite group acting effectively by diffeomorphisms of X can be generated
by at most R elements.

3. Minimal surfaces

In this section we recall the basic properties of compact complex surfaces. Everything
here (as well as in §4 below) is well known to experts, but in some important cases we
provide proofs for the reader’s convenience. Starting from this point we will always assume
that our complex surfaces are connected.

Throughout this paper KX denotes the canonical line bundle of a complex manifold X.
One has c1(KX) = −c1(X). Given a divisor D on X, we will denote by [D] the corre-
sponding class in H2(X,Z).

Definition 3.1. Let X and Y be compact complex surfaces. A proper holomorphic
map f : X → Y is said to be a proper modification if there are analytic subsets Z1 ( X
and Z2 ( Y such that the restriction fX\Z1 : X \ Z1 → Y \ Z2 is biholomorphic. A
birational (or bimeromorphic) map X 99K Y is an equivalence class of diagrams

Z
g

��

f

~~
X // Y

where f and g are proper modifications, modulo natural equivalence relation.
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Birational maps from a given compact complex surface X to itself form a group, which
we will denote by Bir(X). As usual, we say that two complex surfaces are birationally
equivalent, or just birational, if there exists a birational map between them.

Remark 3.2. If X and Y are birationally equivalent compact complex surfaces, then the
fields of meromorphic functions on X and Y are isomorphic. The converse is not true if
the algebraic dimension of X (and thus also of Y ) is less than 2.

A (−1)-curve on a compact complex surface is a smooth rational curve with self-
intersection equal to −1. A compact complex surface is minimal if it does not contain
(−1)-curves.

Lemma 3.3 (see [BHPVdV04, § IV.6]). Let X be a compact complex surface. Suppose
that there is a line bundle L on X such that L2 > 0. Then X is projective.

Proposition 3.4. Let X be a minimal surface. Suppose that X is neither rational nor
ruled. Then every birational map from an arbitrary compact complex surface X ′ to X
is a proper modification. In particular, X is the unique minimal model in its class of
birational equivalence, and Bir(X) = Aut(X).

Proof. We may assume that X is not projective, since otherwise the assertion is well
known. Suppose that

Z
f

  

g

~~
X ′ // X

is a birational map that is not a proper modification. Then there exists a (−1)-curve
C contracted by g but not contracted by f . Thus C meets a fiber f−1(x) for some
point x ∈ X, since otherwise X would contain a (−1)-curve. Contracting (−1)-curves
in f−1(x) consecutively, we get a surface S with a proper modification h : Z → S, and
a proper modification t : S → X such that C1 = h(C) is a (−1)-curve and there exists
another (−1)-curve C2 meeting C1 and contracted by t. If C1 ·C2 > 1, then (C1 +C2)2 > 0
and the surface S is projective by Lemma 3.3. Assume that C1 ·C2 = 1. Then for n� 0
we have

c1 (KS ⊗ OS(−nC1 − nC2))2 = c1(S)2 + 4n > 0,

so that the surface S is again projective by Lemma 3.3. The obtained contradiction
completes the proof. �

Given a compact complex surface X, we can consider its pluricanonical map, which is
the rational map given by a linear system |K ⊗m

X | for m� 0. The dimension of its image
is called the Kodaira dimension of X and is denoted by κ(X); if the linear system |K ⊗m

X |
is empty for all m > 0, we put κ(X) = −∞. By bi(X) we denote the i-th Betti number
of X. By a(X) we denote the algebraic dimension of X, i.e. the transcendence degree of
the field of meromorphic functions on X.

Theorem 3.5 (see [BHPVdV04, Corollary IV.6.5]). A compact complex surface X is
projective if and only if a(X) = 2.

The following is the famous Enriques–Kodaira classification of compact complex sur-
faces, see e.g. [BHPVdV04, Chapter VI].
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Theorem 3.6. Let X be a minimal compact complex surface. Then X is of one of the
following types.

κ(X) type a(X) b1(X) χtop(X)

−∞
rational surfaces 2 0 3, 4

ruled surfaces of genus g > 0 2 2g 4(1− g)

surfaces of class VII 0, 1 1 > 0

0

complex tori 0, 1, 2 4 0

K3 surfaces 0, 1, 2 0 24

Enriques surfaces 2 0 12

bielliptic surfaces 2 2 0

primary Kodaira surfaces 1 3 0

secondary Kodaira surfaces 1 1 0

1 properly elliptic surfaces 1, 2 > 0

2 surfaces of general type 2 ≡ 0 mod 2 > 0

4. Automorphisms

In this section we recall some important general facts about automorphisms of complex
spaces.

Let U be a reduced complex space, see e.g. [Ser56] or [Mal68] for a definition and basic
properties. Recall that a complex space is called irreducible if it cannot be represented
as a union of two proper closed analytic subsets. We denote by TP,U the Zariski tangent
space (see [Mal68, §2]) to U at a point P ∈ U .

Proposition 4.1 (cf. [BB73, Lemma 2.4], [Pop14, Lemma 4]). Let U be an irreducible
Hausdorff reduced complex space, and Γ ⊂ Aut(U) be a finite group. Suppose that Γ has
a fixed point P on U . Then the natural representation

Γ −→ GL
(
TP,U

)
is faithful.

Proof. Assume the contrary. Let m = mP,U be the maximal ideal of the local ring OP,U .
We claim that the exact sequence

0 −→ m2 ν−→ m
ς−→ m/m2 −→ 0

of Γ-modules splits. Indeed, take elements f1, . . . , fn ∈ m such that their images ς(fi)
generate m/m2 and consider the vector space W ⊂ m generated by all g · fi, g ∈ Γ. This
space is finite-dimensional and Γ-invariant. Hence m2 ∩W is a direct summand, i.e.

W = V ⊕
(
m2 ∩W

)
as a Γ-module for some V . Thus the restriction ς|V : V → m/m2 is an isomorphism.
Therefore, one has

(4.2) m = V ⊕m2.
7



It is clear that TP,U ∼= V ∨, and so the action of Γ on V is not faithful. Let Γ0 ⊂ Γ be
the kernel of this action, and let V d ⊂ m be the subspace generated by all products of at
most d elements of V . We claim that

(4.3) md = V d + md+1.

We prove this claim by induction on d. For d = 1 it coincides with (4.2). Assume that
this claim holds for some d. Take any element f ∈ md+1. It can be written in the form

f =
∑

fiwi, fi ∈ md, wi ∈ m.

According to (4.2) and (4.3) we have

fi = si + hi, si ∈ V d, hi ∈ md+1,

wi = ui + vi, ui ∈ V, vi ∈ m2.

Therefore,

f =
∑

(si + hi)(ui + vi) =
∑

siui +
∑

(sivi + hiui + hivi) ∈ V d+1 + md+2.

This proves (4.3) for d+ 1.
Therefore the restriction to V d of the natural map

md −→ md/md+1

is surjective. Hence Γ0 acts trivially on md/md+1 for any d.
Take any element f ∈ m. By the above we have

f − g · f ∈ md+1

for every g ∈ Γ0 and every d > 0. On the other hand, one has ∩md = 0 (see e.g. [AM69,
Corollary 10.18]). This implies that f = g ·f , i.e. f is Γ0-invariant. Thus Γ0 acts trivially
on m and also on OP,U

∼= C ⊕ m. This means that the action of Γ0 on the germs of
holomorphic functions at P is trivial.

Let U ′ be a sufficiently small Γ0-invariant irreducible neighborhood of P . By definition
of a reduced complex space, U ′ is isomorphic to a subset in CN , and thus its points are
separated by holomorphic functions. We claim that the action of Γ0 on U ′ is trivial.
Indeed, choose a non-trivial element g ∈ Γ0, and suppose that there is a point P1 ∈ U ′
such that P2 = g(P1) is different from P1. Let f be a holomorphic function on U ′ such
that f(P1) 6= f(P2). Then g · f 6= f . However, the germs of f and g · f at P should be
the same. Since U ′ is irreducible, this gives a contradiction.

Now let U0 be the maximal open subset of U such that U0 contains P , and the action
of Γ0 on U0 is trivial; the above argument guarantees that U0 is not empty. By assumption
one has U0 6= U . Since U is irreducible, this implies that there is a point Q that is
contained in the closure of U0, but not in U0 itself. If Q is Γ0-invariant, one can choose
a Γ0-invariant irreducible neighborhood U ′0 of Q that is isomorphic to a subset of CN .
This neighborhood contains an open subset of Γ0-invariant points, means that the action
of Γ0 on the whole U ′0 is trivial. The latter is impossible by construction of U0. Thus for
some element g ∈ Γ0 one has g(Q) 6= Q. This is impossible because U is Hausdorff. The
obtained contradiction completes the proof. �

Remark 4.4. One cannot drop the assumption that U is irreducible in Proposition 4.1.
Indeed, the assertion fails for the variety given by equation xy = 0 in A2 with coordinates x
and y, the point P with coordinates x = 1 and y = 0, and the group Γ ∼= Z/2Z whose
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generator acts by (x, y) 7→ (x,−y). Similarly, the assertion fails for the simplest example
of a non-Hausdorff reduced complex space, namely, for two copies of A1 glued along the
common open subset A1 \ {0}, and the natural involution acting on this space.

Remark 4.5. The following observation was pointed out to us by M. Brion. A crucial
step in the proof of Proposition 4.1 is the fact that the Γ-orbit of a function from mP,U

generates a finite-dimensional subspace in mP,U . If U is an algebraic variety, this holds
under a weaker assumption that Γ is a reductive group. However, in the holomorphic
setting this is not true any more. Indeed, let U = A1, and let the group Γ ∼= C∗ act on U
by scaling, so that the point P = 0 is fixed by Γ. Let f be a holomorphic function. Then
the subspace of OP,U generated by the Γ-orbit of f is finite dimensional if and only if f is
a polynomial. We do not know if the assertion of Proposition 4.1 can be generalized to
the case of reductive groups.

Proposition 4.1 easily implies the following result.

Corollary 4.6. Let U be an irreducible Hausdorff reduced complex space, and ∆ ⊂ Aut(U)
be a subgroup. Suppose that ∆ has a fixed point P on U , and let

ς : ∆ −→ GL
(
TP,U

)
be the natural representation. Suppose that there is a subgroup Γ ⊂ ∆ of finite index such
that the restriction ς|Γ is an embedding. Then ς is an embedding as well.

Proof. Let ∆0 ⊂ ∆ be the kernel of ς. Since [∆ : Γ] < ∞, we see that ∆0 is finite.
Thus ∆0 is trivial by Proposition 4.1. �

Another application of Proposition 4.1 is as follows.

Lemma 4.7. Let X be a compact complex surface. Suppose that there is a finite non-
empty Aut(X)-invariant set S of curves on X such that S does not contain smooth elliptic
curves. Then the group Aut(X) is Jordan.

Proof. Let C be one of the curves from S. Then the group AutC(X) of automorphisms
of X that preserve the curve C has finite index in Aut(X). Since C is not a smooth elliptic
curve, there is a constant B = B(C) such that every finite subgroup of AutC(X) contains
a subgroup of index at most B that fixes some point on C. Indeed, if C is singular,
this is obvious; if C is a smooth rational curve, this follows from the classification of
finite subgroups of Aut(C) ∼= PGL2(C); if C is a smooth curve of genus at least 2, this
follows from the Hurwitz bound. Now Proposition 4.1 implies that every finite subgroup
of AutC(X) contains a subgroup of index at most B that is embedded into GL2(C).
Therefore, the group AutC(X) is Jordan by Theorem 1.1, and hence the group Aut(X)
is Jordan as well. �

5. Non-projective surfaces with χtop(X) 6= 0

In this section we will (mostly) work with non-projective compact complex surfaces X
with χtop(X) 6= 0. In this case, by the Enriques–Kodaira classification (see Theorem 3.6)
one has χtop(X) > 0. The main purpose of this section is to prove the following result.

Theorem 5.1. Let X be a non-projective compact complex surface with χtop(X) 6= 0.
Then the group Aut(X) is Jordan.

9



Recall that an algebraic reduction of a compact complex surface X with a(X) = 1 is
the morphism π : X → B given by the Stein factorization of the map X → P1 defined by
a non-constant meromorphic function. One can check that π is an elliptic fibration, see
[BHPVdV04, Proposition VI.5.1].

Lemma 5.2. Let X be a non-projective compact complex surface. If X contains an
irreducible curve C which is not a smooth elliptic curve, then the group Aut(X) is Jordan.

Proof. We claim that the surface X contains at most a finite number of such curves.
Indeed, if a(X) = 0, then X contains at most a finite number of curves at all [BHPVdV04,
Theorem IV.8.2]. If a(X) = 1, then all curves on X are contained in the fibers of
the algebraic reduction by Lemma 3.3. The latter fibration is elliptic, so every non-
elliptic curve is contained in one of its degenerate fibers. Now the assertion follows from
Lemma 4.7. �

Lemma 5.3. Let X be a compact complex surface with χtop(X) 6= 0. If a(X) = 1, then
the group Aut(X) is Jordan.

Proof. Let π : X → B the algebraic reduction, so that B is a smooth curve and π is
an elliptic fibration. Since χtop(X) 6= 0, the fibration π has at least one fiber Xb such
that F = (Xb)red is not a smooth elliptic curve. So the group Aut(X) is Jordan by
Lemma 5.2. �

For every compact complex surface X, we denote by Aut(X) the subgroup of Aut(X)
that consists of all elements acting trivially on H∗(X,Z). This is a normal subgroup
of Aut(X), and the quotient group Aut(X)/Aut(X) has bounded finite subgroups by
Theorem 2.2. Thus Lemma 2.4(i) implies that the group Aut(X) is Jordan if and only
if Aut(X) is Jordan.

Lemma 5.4. Let X be a compact complex surface. Suppose that every irreducible curve
contained in X is a smooth elliptic curve. Let g ∈ Aut(X) be an element of finite order,
and Ξ0(g) be the set of all isolated fixed points of g. Then

|Ξ0(g)| = χtop(X).

Proof. The fixed locus Ξ(g) of g is a disjoint union Ξ0(g) t Ξ1(g), where Ξ1(g) is of pure
dimension 1. Proposition 4.1 implies that every irreducible component of Ξ1(g) is its
connected component. Thus every connected component of Ξ1(g) is a smooth elliptic
curve, so that χtop(Ξ1(g)) = 0. On the other hand, one has

χtop(Ξ(g)) = χtop(X)

by the topological Lefschetz fixed point formula, and the assertion follows. �

Lemma 5.5. Let X be a compact complex surface with χtop(X) 6= 0. Suppose that every
irreducible curve contained in X is a smooth elliptic curve. Let G ⊂ Aut(X) be a finite
subgroup. If G contains a non-trivial cyclic normal subgroup, then G contains an abelian
subgroup of index at most 12χtop(X).

Proof. Let N ⊂ G be a non-trivial cyclic normal subgroup. By Lemma 5.4 the group N
has exactly χtop(X) > 0 isolated fixed points on X (and maybe also several curves that
consist of fixed points). Since N is normal in G, the group G permutes these points. Thus
there exists a subgroup of index at most χtop(X) in G acting on X with a fixed point.
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Now the assertion follows from Proposition 4.1 and the classification of finite subgroups
of GL2(C) (cf. [PS16a, Corollary 2.2.2]). �

Lemma 5.6. Let X be a compact complex surface with a(X) = 0 and χtop(X) 6= 0. If X
contains at least one curve, then Aut(X) is Jordan.

Proof. It is enough to prove that the group Aut(X) is Jordan. The surface X contains
at most a finite number of curves by [BHPVdV04, Theorem IV.8.2]. By Lemma 5.2 we
may assume that all these curves are smooth and elliptic. Let C1, . . . , Cm be all curves
on X, and let Aut](X) ⊂ Aut(X) be the stabilizer of C1. Clearly, the subgroup Aut](X)
has index at most m in Aut(X), so it is sufficient to prove that Aut](X) is Jordan. For
any finite subgroup G ⊂ Aut](X) we have an exact sequence

1 −→ Γ −→ G −→ Aut(C1),

where Γ is a finite cyclic group. If Γ = {1}, then G is contained in Aut(C1). Since C1 is
an elliptic curve, the group G has an abelian subgroup of index at most 6. If Γ 6= {1},
then G has an abelian subgroup of index at most 12χtop(X) by Lemma 5.5. Therefore,
in both cases G also has a normal abelian subgroup of bounded index. �

In the following lemmas we will deal with compact complex surfaces X that contain no
curves. In particular, this implies that a(X) = 0, and the action of any finite subgroup
of Aut(X) is free in codimension one.

Lemma 5.7. Let X be a compact complex surface with χtop(X) 6= 0. Suppose that X
contains no curves. Then the group Aut(X) has no elements of even order.

Proof. Let g ∈ Aut(X) be an element of order 2 (such elements always exist provided
that there are elements of even order).

First assume that κ(X) = −∞. We have b1(X) = 1 and b2(X) = χtop(X) > 0
(see Theorem 3.6). Moreover, we know that h2,0(X) = 0 because κ(X) = −∞. Hodge
relations (see e.g. [BHPVdV04, § IV.2]) give us

h0,1(X) = 1, h1,0(X) = 0, and h2,0(X) = h0,2(X) = 0.

Therefore, one has χ(OX) = 0. Since g acts trivially on H∗(X,Z), the holomorphic Lef-
schetz fixed point formula shows that g has no fixed points. This contradicts Lemma 5.4.

Now assume that κ(X) > 0. Since a(X) = 0, this implies that κ(X) = 0 and X is a K3
surface (see Theorem 3.6). Therefore, one has χtop(X) = 24 and χ(OX) = 2. As above
the holomorphic Lefschetz fixed point formula shows that g has exactly 8 fixed points.
This contradicts Lemma 5.4. �

Lemma 5.8. Let X be a compact complex surface with χtop(X) 6= 0. Suppose that X
contains no curves. Let G ⊂ Aut(X) be a finite subgroup. Suppose that G has a fixed
point. Then G is cyclic.

Proof. Let x ∈ X be a fixed point of G. By Proposition 4.1 we have an embedding

G ⊂ GL(Tx,X) ∼= GL2(C).

Since the order of G is odd by Lemma 5.7, it must be abelian. Since the action is free in
codimension one, the group G is cyclic. �
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Lemma 5.9. Let X be a compact complex surface with χtop(X) 6= 0. Suppose that X
contains no curves. Let G ⊂ Aut(X) be a finite cyclic subgroup, and g ∈ G be a non-trivial
element. Then g has the same set of fixed points as G.

Proof. For an arbitrary element h ∈ G denote by Fix(h) the fixed locus of h. By
Lemma 5.4 one has

|Fix(h)| = χtop(X)

for every non-trivial element h.
Let f be a generator of G. Then for some positive integer n one has fn = g, so that

Fix(f) ⊂ Fix(g).

Therefore, one has Fix(f) = Fix(g), which means that every non-trivial element of G has
one and the same set of fixed points. �

Lemma 5.10. Let X be a compact complex surface with χtop(X) 6= 0. Suppose that X
contains no curves. Then every finite subgroup G ⊂ Aut(X) is a union G =

⋃m
i=1Gi of

cyclic subgroups such that Gi ∩Gj = {1} for i 6= j.

Proof. Choose some representation of G as a union G =
⋃m
i=1Gi, where Gi are cyclic

groups that possibly have non-trivial intersections. Let G1 and G2 be subgroups such
that G1 ∩ G2 6= {1}. Let g ∈ G1 ∩ G2 be a non-trivial element. By Lemma 5.4 it has a
fixed point, say x. By Lemma 5.8 the stabilizer Gx is a cyclic group. By Lemma 5.9 the
groups G1 and G2 fix the point x, so that G1, G2 ⊂ Gx. Replacing G1 and G2 by Gx, we
proceed to construct the required system of subgroups by induction. �

Lemma 5.11. Let X be a compact complex surface with χtop(X) 6= 0. Suppose that X
contains no curves. Then the group Aut(X) is Jordan.

Proof. It is enough to prove that the group Aut(X) is Jordan. Let G ⊂ Aut(X) be a
finite subgroup. Let Ξ ⊂ X be the set of points with non-trivial stabilizers in G.

By Lemma 5.10 the group G is a union G =
⋃m
i=1Gi of cyclic subgroups such

that Gi ∩Gj = {1} for i 6= j. We claim that the stabilizer of any point x ∈ Ξ is one
of the groups G1, . . . , Gm. Indeed, choose a point x ∈ Ξ, and let Gx be its stabilizer.
Let gx be a generator of Gx, and let 1 6 r 6 m be the index such that the group Gr

contains gx. Then Gx ⊂ Gr. Now Lemma 5.9 implies that Gx = Gr.
By Lemma 5.4 every element of G has exactly b2(X) fixed points. The set Ξ is a disjoint

union of orbits of the group G. Therefore, for some positive integers ki one has

|Ξ| = mb2(X) =
m∑
i=1

ki[G : Gi].

Hence, for some i we have [G : Gi] 6 b2(X), i.e. G contains a cyclic subgroup Gi of index
at most b2(X). This implies that G contains a normal abelian subgroup of bounded
index. �

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. If a(X) = 1, then the assertion follows from Lemma 5.3.
If a(X) = 0 and X contains at least one curve, then the assertion follows from Lemma 5.6.
Finally, if X contains no curves, then the assertion follows from Lemma 5.11. �
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An alternative way to prove Theorem 5.1 is provided by the following more general
result due to I. Mundet i Riera. Our proof of Theorem 5.1 is a simplified version of the
proof of this result given in [Mun16a].

Theorem 5.12 ([Mun16a, Theorem 1.1]). Let X be a compact, orientable, connected
four-dimensional smooth manifold with χtop(X) 6= 0. Then the group of diffeomorphisms
of X is Jordan. In particular, if X is a compact complex surface with non-vanishing
topological Euler characteristic, then the group Aut(X) is Jordan.

Note however that our proof of Theorem 5.1 implies that for a compact complex sur-
face X with χtop(X) 6= 0 and containing no curves, there exists a constant J such that
for every finite subgroup G ⊂ Aut(X) there exists a normal cyclic subgroup of index at
most J , while the results of [Mun16a] provide only a normal abelian subgroup of bounded
index generated by at most 2 elements.

6. Hopf surfaces

In this section we study automorphism groups of Hopf surfaces.
Recall that a Hopf surface X is compact complex surface whose universal cover is

(analytically) isomorphic to C2 \ {0}. Thus X ∼= (C2 \ {0}) /Γ, where Γ ∼= π1(X) is a
group acting freely on C2 \ {0}. A Hopf surface X is said to be primary if π1(X) ∼= Z.
One can show that a primary Hopf surface is isomorphic to a quotient

X(α, β, λ, n) =
(
C2 \ {0}

)
/Λ,

where Λ ∼= Z is a group generated by the transformation

(6.1) (x, y) 7→ (αx+ λyn, βy).

Here n is a positive integer, and α and β are complex numbers satisfying

0 < |α| 6 |β| < 1;

moreover, one has λ = 0, or α = βn [Kod66, §10]. A secondary Hopf surface is a quotient
of a primary Hopf surface by a free action of a finite group [Kod66, §10]. Every Hopf
surface contains a curve, see [Kod66, Theorem 32]. Automorphisms of Hopf surfaces were
studied in details in [Kat75], [Kat89], [Nam74], and [MN00]. Our approach does not use
these results.

We will need the following easy observation.

Lemma 6.2. Let

M =

(
α λ

0 β

)
∈ GL2(C)

be an upper triangular matrix, and Z ⊂ GL2(C) be the centralizer of M . The following
assertions hold.

(i) If α = β and λ = 0, then Z = GL2(C).
(ii) If α 6= β and λ = 0, then Z ∼= (C∗)2.

(iii) If α = β and λ 6= 0, then Z ∼= C∗ × C+.

Proof. Simple linear algebra. �

Lemma 6.3. Let X be a Hopf surface. Then the group Aut(X) is Jordan.
13



Proof. The non-compact surface C2 \ {0} is the universal cover of X; moreover, X is
obtained from C2 \ {0} as a quotient by a free action of some group Γ that contains a
normal subgroup Λ ∼= Z of finite index. We may shrink Λ if necessary and suppose that Λ
is a characteristic subgroup of Γ; in fact, it is enough to replace Λ by its subgroup of
index |Γ/Λ|. A generator of Λ is given by formula (6.1). There is an exact sequence of
groups

1 −→ Γ −→ Ãut(X) −→ Aut(X) −→ 1,

where Ãut(X) acts by automorphisms of C2 \ {0}. By Hartogs theorem the action

of Ãut(X) extends to C2 so that Ãut(X) fixes the origin 0 ∈ C2. The image of the
generator of Λ is mapped by the natural homomorphism

ς : Ãut(X) −→ GL
(
T0,C2

) ∼= GL2(C)

to the matrix

M =

(
α λδn1

0 β

)
where δ is the Kroneker symbol.

Let G ⊂ Aut(X) be a finite subgroup, and G̃ be its preimage in Ãut(X). Thus,
one has G ∼= G̃/Γ. By Corollary 4.6 we know that ς|G̃ is an embedding. Let Ω be the

normalizer of ς(Λ) in GL2(C). By construction ς(G̃) is contained in the normalizer of
ς(Γ) in GL2(C), which in turn is contained in Ω because Λ is a characteristic subgroup
of Γ. We see that every finite subgroup of Aut(X) is contained in the group Ω/ς(Λ).
Since ς(Λ) ∼= Z, the group Ω has a (normal) subgroup Ω′ of index at most 2 that coincides
with the centralizer of the matrix M .

It remains to check that the group Ω′/ς(Λ) is Jordan. If λ = 0 and α = β, then this
follows from Lemmas 6.2(i) and 2.8. If either λ = 0 and α 6= β, or λ 6= 0 and n > 2,
then this follows from Lemmas 6.2(ii) and 2.5. If λ 6= 0 and n = 1, then this follows from
Lemmas 6.2(iii) and 2.5. �

Remark 6.4. Suppose that for a primary Hopf surface X ∼= X(α, β, λ, n) one has λ = 0
and αk = βl for some k, l ∈ Z. Then there is an elliptic fibration

X ∼=
(
C2 \ {0}

)
/Λ→ P1 ∼=

(
C2 \ {0}

)
/C∗,

and one has an exact sequence of groups

1 −→ E −→ Aut(X) −→ PGL2(C),

where E is the group of points of the elliptic curve C∗/Z.

7. Inoue surfaces

In this section we study automorphism groups of Inoue surfaces, and make some general
conclusions about automorphisms of surfaces of class VII.

Inoue surfaces are quotients of C×H, where H is the upper half-plane, by certain infinite
discrete groups. They were introduced by M. Inoue [Ino74]. These surfaces contain no
curves and their invariants are as follows:

a(X) = 0, b1(X) = 1, b2(X) = 0, h1,0(X) = 0, h0,1(X) = 1.

The following result shows the significance of Hopf and Inoue surfaces from the point
of view of Enriques–Kodaira classification.
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Theorem 7.1 (see [Bog77] and [Tel94]). Every minimal surface of class VII with van-
ishing second Betti number is either a Hopf surface or an Inoue surface.

Lemma 7.2. Let X be an Inoue surface, and G ⊂ Aut(X) be a finite subgroup. Then

the action of G on X is free, and the quotient X̂ = X/G is again an Inoue surface.

Proof. Assume that the action of G on X is not free. To get a contradiction we may
assume that G is a cyclic group of prime order. Let δ be its generator. Since X contains
no curves, the fixed point locus of G consists of a finite number of points P1, . . . , Pn. On
the other hand, by the topological Lefschetz fixed point formula, one has

n = Lef(δ) = 2− 2 trH1(X,R) δ
∗ > 0.

Hence the action of δ∗ on H1(X,R) ∼= R is not trivial. This is possible only if δ is of

order 2 and n = 4. Then X̂ has exactly 4 singular points which are Du Val of type A1.
Let Y → X̂ be the minimal resolution of singularities. Then

c1(Y )2 = c1(KX̂)2 =
1

2
c1(X)2 = 0,

and χtop(Y ) = 4 + χtop(X̂) = 6. This contradicts the Noether’s formula, see
e.g. [BHPVdV04, § I.5].

ThusX → X̂ is an unramified finite cover. This implies that χtop(X̂) = 0. Furthermore,
one has

b2(X̂) = rkH2(X,Z)G = 0,

and so b1(X̂) = 1. Therefore, X̂ is a minimal surface of class VII (see Theorem 3.6).

Clearly, X̂ contains no curves. Thus by Theorem 7.1 the surface X̂ is either a Hopf
surface or an Inoue surface. Since Hopf surfaces contain curves, we conclude that X̂ is an
Inoue surface. �

There are three types of Inoue surfaces: SM, S(+) and S(−). They are distinguished by
the type of their fundamental group Γ = π1(X), see [Ino74]:

type generators relations

SM δ1, δ2, δ3,γ [δi, δj] = 1, γδiγ
−1 = δ

m1,i

1 δ
m2,i

2 δ
m3,i

3 , (mj,i) ∈ SL3(Z)

S(±) δ1, δ2, δ3,γ [δi, δ3] = 1, [δ1, δ2] = δr3, γδiγ
−1 = δ

m1,i

1 δ
m2,i

2 δpi3 for i = 1, 2,
γδ3γ

−1 = δ±1
3 , (mj,i) ∈ GL2(Z), det(mj,i) = ±1

In the notation of Appendix A one has Γ ∼= Γ0 o Γ1, where Γ1
∼= Z, while Γ0

∼= Z3

for Inoue surfaces of type SM, and Γ0
∼= H (r) for Inoue surfaces of types S(±) (see §A.5

and §A.14 for more details). In the former case the matrix M ∈ SL3(Z) that defines the
semi-direct product has eigenvalues α, β, and β̄, where α ∈ R, α > 1, and β /∈ R. In the
latter case the matrix M ∈ GL2(Z) that defines the action of Z on H (r)/ z(H (r)) ∼= Z2

has real eigenvalues α and β, where αβ = ±1 (depending on whether Γ is of type S(+)

or S(−)), and both α and β are different from 1, see [Ino74, §§2–4].

Lemma 7.3. Let Γ be a group of one of the types SM, S(+), or S(−). Then

(i) Γ is of type SM if and only if Γ contains a characteristic subgroup isomorphic
to Z3;
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(ii) Γ is of type S(+) if and only if Γ contains no subgroups isomorphic to Z3

and z(Γ) 6= {1};
(iii) Γ is of type S(−) if and only if Γ contains no subgroups isomorphic to Z3

and z(Γ) = {1}.

Proof. This follows from Lemmas A.6(ii),(iii) and A.15(ii) and Remark A.17. �

Corollary 7.4. Let X be an Inoue surface, and G ⊂ Aut(X) be a finite subgroup. Then
the action of G on X is free, and the following assertions hold.

(i) If X is of type SM, then so is X/G;
(ii) If X is of type S(−), then so is X/G;

(iii) If X is of type S(+), then X/G is of type S(+) or S(−).

Proof. Put X̂ = X/G. Then the action of G on X is free, and X is an Inoue surface

by Lemma 7.2. Put Γ̂ = π1(X̂). Then Γ̂ is a group of one of the types SM, S(+),

or S(−), and Γ ⊂ Γ̂ is a normal subgroup of finite index. Now everything follows from
Lemma 7.3. �

Lemma 7.5. Let X be an Inoue surface of type SM. Then the group Aut(X) is Jordan.

Proof. Let G ⊂ Aut(X) be a finite subgroup, and put X̂ = X/G. By Corollary 7.4 the

action of G on X is free, and X̂ is also an Inoue surface of type SM. Put Γ = π1(X)

and Γ̂ = π1(X̂). Then Γ is a normal subgroup of Γ̂, and Γ̂/Γ ∼= G; moreover, both Γ

and Γ̂ are semi-direct products as in §A.5. Now it follows from Lemma A.8 that there
is a constant ν that depends only on Γ (that is, only on X), such that G has a normal
abelian subgroup of index at most ν. �

Lemma 7.6. Let X be an Inoue surface of type S(+) or S(−). Then the group Aut(X) is
Jordan.

Proof. Let G ⊂ Aut(X) be a finite subgroup, and put X̂ = X/G. By Corollary 7.4 the

action of G on X is free, and X̂ is also an Inoue surface of type S(+) or S(−). Put Γ = π1(X)

and Γ̂ = π1(X̂). Then Γ is a normal subgroup of Γ̂, and Γ̂/Γ ∼= G; moreover, both Γ

and Γ̂ are semi-direct products as in §A.14. Now it follows from Lemma A.18 that there
is a constant ν that depends only on Γ (that is, only on X), such that G has a normal
abelian subgroup of index at most ν. �

We summarize the results of Lemmas 7.5 and 7.6 as follows.

Corollary 7.7. Let X be an Inoue surface. Then the group Aut(X) is Jordan.

Finally, we put together the information about automorphisms of surfaces of class VII.

Corollary 7.8. Let X be a minimal surface of class VII. Then the group Aut(X) is
Jordan.

Proof. If the second Betti number b2(X) vanishes, then X is either a Hopf surface or an In-
oue surface by Theorem 7.1. Thus the assertion follows from Lemma 6.3 and Corollary 7.7
in this case. If b2(X) does not vanish, then the assertion follows from Theorem 5.1. �

Remark 7.9. Except for Hopf surfaces, there are some other classes of minimal compact
complex surfaces of class VII whose automorphism groups are studied in details. For
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instance, this is the case for so called hyperbolic and parabolic Inoue surfaces, see [Pin84]
and [Fuj09], respectively. Note that surfaces of both of these types have positive second
Betti numbers (and thus they are not to be confused with Inoue surfaces studied in this
section).

8. Kodaira surfaces

In this section we study automorphism groups of Kodaira surfaces. Our approach here
is similar to what happens in §7.

Recall (see e.g. [BHPVdV04, §V.5]) that a Kodaira surface is a compact complex
surface of Kodaira dimension 0 with odd first Betti number. There are two types of
Kodaira surfaces: primary and secondary ones. A primary Kodaira surface is a compact
complex surface with the following invariants [Kod64, §6]:

KX ∼ 0, a(X) = 1, b1(X) = 3, b2(X) = 4, χtop(X) = 0, h1(X,OX) = 2, h2(X,OX) = 1.

Let X be a primary Kodaira surface and let φ : X → B be its algebraic reduction. Then B
is an elliptic curve and φ is a principal elliptic fibration [Kod64, §6], [BHPVdV04, §V.5].
The universal cover of X is isomorphic to C2, and the fundamental group Γ = π1(X) has
the following presentation:

(8.1) Γ = 〈δ1, δ2, δ3,γ | [δ1, δ2] = δr3, [δi, δ3] = [δi,γ] = 1〉,
where r is a positive integer [Kod64, §6]. In the notation of Appendix A one
has Γ ∼= H (r)× Z.

A secondary Kodaira surface is a quotient of a primary Kodaira surface by a free action
of a finite cyclic group. The invariants of a secondary Kodaira surface are [Kod66, §9]:

a(X) = 1, b1(X) = 1, b2(X) = 0, χtop(X) = 0, h1(X,OX) = 1, h2(X,OX) = 0.

For both types of Kodaira surfaces the algebraic reduction φ : X → B is an Aut(X)-
equivariant elliptic fibration, so that in particular the group Aut(X) acts on the curve B.
Denote by Aut(X) ⊂ Aut(X) the subgroup that consists of all elements acting trivially
on H∗(X,Z) and H∗(B,Z).

Lemma 8.2 (cf. Lemma 7.2). Let X be a primary Kodaira surface, and G ⊂ Aut(X) be

a finite subgroup. Then the action of G on X is free, and the quotient X̂ = X/G is again
a primary Kodaira surface.

Proof. The curve B is elliptic; thus the group G acts on B without fixed points. This
means that there are no fibers of φ that consist of points fixed by G. On the other hand,
every curve on X is a fiber of φ : X → B by Lemma 3.3. Hence there are no curves that
consist of points fixed by G on X at all. Now the topological Lefschetz fixed point formula
implies that G has no fixed points on B and on X. Therefore, X̂ is a smooth surface, and
the quotient morphism X → X̂ is unramified. Hence κ(X̂) = κ(X) = 0. Moreover, we
have

c1(X̂)2 = c1(X)2 = 0.

This means that the surface X̂ is minimal. Since G ⊂ Aut(X), we have

b1(X̂) = b1(X) = 3.

Therefore, X̂ is a primary Kodaira surface by Theorem 3.6. �
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Lemma 8.3. Let X be a primary Kodaira surface. Then the group Aut(X) is Jordan.

Proof. Let G ⊂ Aut(X) be a finite subgroup. By Theorem 2.2 we can assume

that G ⊂ Aut(X). Put X̂ = X/G. It follows from Lemma 8.2 that G acts freely on X,

and X̂ is a primary Kodaira surface. Put Γ = π1(X) and Γ̂ = π1(X̂). Then Γ is a normal

subgroup of Γ̂, and Γ̂/Γ ∼= G; moreover, both Γ and Γ̂ are as in §A.19. Now it follows
from Lemma A.21 that there is a constant r that depends only on Γ (that is, only on X),
such that G has a normal abelian subgroup of index at most r. �

Lemma 8.4. Let X be a secondary Kodaira surface. Then the group Aut(X) is Jordan.

Proof. Since a(X) = 1, the algebraic reduction is an Aut(X)-equivariant elliptic fibra-
tion π : X → B. Thus there is an exact sequence of groups

1 −→ Aut(X)π −→ Aut(X) −→ Γ −→ 1,

where the action of Aut(X)π is fiberwise with respect to π, and Γ is a subgroup of Aut(B).
We claim that the group Aut(X)π is Jordan. Indeed, if H is a finite subgroup

of Aut(X)π, then H acts faithfully on a typical fiber of π, which is a smooth elliptic
curve. This implies that H has a normal abelian subgroup of index at most 6.

Since
h0(X,ΩX) = b1(X)− h1(X,OX) = 0,

the base curve B is rational. Furthermore, one has

χ(OX) = h0(X,OX)− h1(X,OX) + h2(X,OX) = 1− 1 + 0 = 0.

By the canonical bundle formula (see e.g. [BHPVdV04, Theorem V.12.1]) we have

KX ∼ π∗ (KB ⊗ L)⊗ OX

(∑
(mi − 1)Fi

)
,

where Fi are all (reduced) multiple fibers of π, the fiber Fi has multiplicity mi, and L is
a line bundle of degree χ(OX) = 0. Since X has Kodaira dimension 0, we see that∑

(1− 1/mi) = 2.

In particular, the number of multiple fibers equals either 3 or 4. This means that Γ has
a finite non-empty invariant subset in B that consists of 3 or 4 points. Hence Γ is finite,
so that the assertion follows by Lemma 2.4(i). �

We summarize the results of Lemmas 8.3 and 8.4 as follows.

Corollary 8.5. Let X be a Kodaira surface. Then the group Aut(X) is Jordan.

An alternative way to prove the Jordan property for the automorphism group of a
secondary Kodaira surface is to use the fact that its canonical cover is a primary Kodaira
surface together with Lemma 2.4(ii) and Theorem 2.9.

9. Non-negative Kodaira dimension

In this section we study automorphism groups of surfaces of non-negative Kodaira
dimension, and prove Theorems 1.5 and 1.6.

The case of Kodaira dimension 2 is well known.

Theorem 9.1. Let X be a (minimal) surface of general type. Then the group Aut(X) is
finite.
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Proof. The surface X is projective, see Theorem 3.6. Thus the group Aut(X) is finite,
see for instance [HMX13] where a much more general result is established for varieties of
general type of arbitrary dimension. �

Now we consider the case of Kodaira dimension 1.

Lemma 9.2 (cf. [PS16d, Lemma 3.3]). Let X be a minimal surface of Kodaira dimen-
sion 1. Then the group Aut(X) is Jordan.

Proof. Let φ : X → B be the pluricanonical fibration, where B is some (smooth) curve.
It is equivariant with respect to the action of Aut(X). Thus there is an exact sequence
of groups

1 −→ Aut(X)φ −→ Aut(X) −→ Γ −→ 1,

where the action of Aut(X)φ is fiberwise with respect to φ, and Γ is a subgroup of Aut(B).
As in the proof of Lemma 8.4, we see that the group Aut(X)φ is Jordan. Hence by
Lemma 2.4(i) it is enough to check that Γ has bounded finite subgroups. In particular,
this holds if the genus of B is at least 2, since the group Aut(B) is finite in this case.
Thus we will assume that the genus of B is at most 1.

Suppose that φ has a fiber F such that Fred is not a smooth elliptic curve. Then
every irreducible component of F is a rational curve, see e.g. [BHPVdV04, §V.7]. Hence
Lemma 4.7 applied to the set of irreducible components of fibers of the morphism φ shows
that the group Aut(X) is Jordan.

Therefore, we will assume that all (set-theoretic) fibers of φ are smooth elliptic curves.
Then the topological Euler characteristic χtop(X) equals 0. By the Noether’s formula one
has

χ(OX) =
1

12

(
c1(X)2 + χtop(X)

)
= 0.

By the canonical bundle formula we have

KX ∼ φ∗ (KB ⊗ L)⊗ OX

(∑
(mi − 1)Fi

)
,

where Fi are all (reduced) multiple fibers of φ, the fiber Fi has multiplicity mi, and L is
a line bundle of degree χ(OX) = 0. Since X has Kodaira dimension 1, we see that

(9.3) 2g(B)− 2 +
∑

(1− 1/mi) = deg (KB ⊗ L) +
∑

(1− 1/mi) > 0.

Suppose that B is an elliptic curve, so that g(B) = 1. Then (9.3) implies that φ has at
least one multiple fiber. This means that Γ has a finite non-empty invariant subset in B,
so that Γ is finite.

Now suppose that B is a rational curve, so that g(B) = 0. Then (9.3) implies that φ
has at least three multiple fibers, cf. the proof of Lemma 8.4. This means that Γ has a
finite non-empty invariant subset in B that consists of at least three points. Therefore, Γ
is finite in this case as well. �

Finally, we consider the case of Kodaira dimension 0. The following result is well known.

Theorem 9.4. Let X = Cn/Λ be a complex torus. Then

(9.5) Aut(X) ∼= (Cn/Λ) o Γ,

where Γ is isomorphic to the stabilizer of the lattice Λ in GLn(C).
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Proof. The proof is standard, but we include it for the readers convenience. Let Γ be
the stabilizer of the point 0 ∈ X. Then the decomposition (9.5) holds, and it remains to
prove that Γ is isomorphic to the stabilizer of the lattice Λ in GLn(C).

Since Cn is the universal cover of X, there is an embedding Γ ↪→ Aut(Cn), and there
is a point in Λ that is invariant with respect to Γ. We may assume that this is the origin
in Cn.

Let g be an element of Γ. One has g(Λ) = Λ. We claim that g ∈ GLn(C). Indeed, let λ
be an arbitrary element of the lattice Λ. Consider a holomorphic map

fλ : Cn → Cn, fλ(z) = g(z + λ)− g(z).

One has fλ(z) ∈ Λ for every z ∈ Cn. This means that fλ(z) is constant, so that all partial
derivatives of fλ vanish. Hence the partial derivatives of g(z) are periodic with respect
to the lattice Λ. This in turn means that these partial derivatives are bounded and thus
constant, so that g(z) is a linear function in z. �

Remark 9.6. A complete classification of finite groups that can act by automorphisms of
a two-dimensional complex torus (preserving a point therein) was obtained in [Fuj88].

Theorem 9.4 immediately implies the following result.

Corollary 9.7. Let X be a complex torus. Then the group Aut(X) is Jordan.

Proof. By Lemma 2.4(i) it is enough to check that in the notation of Theorem 9.4 the
group Γ has bounded finite subgroups. Since Γ is a subgroup in the automorphism group
of Λ, the latter follows from Theorem 2.2. �

Lemma 9.8. Let X be either a K3 surface, or an Enriques surface. Then the
group Aut(X) has bounded finite subgroups.

Proof. Suppose that X is a K3 surface. If X is projective, then the assertion follows
from [PS14, Theorem 1.8(i)]. If X is non-projective, then the assertion follows from
Theorem 5.1, or from a stronger result of [Ogu08, Theorem 1.5].

Now suppose that X is an Enriques surface. Then it is projective (see Theorem 3.6),
so that the assertion again follows from [PS14, Theorem 1.8(i)]. �

Note that in the assumptions of Lemma 9.8, the (weaker) assertion that the
group Aut(X) is Jordan follows directly from Theorem 5.12.

Lemma 9.9. Let X be a bielliptic surface. Then the group Aut(X) is Jordan.

Proof. The surface X is projective (see Theorem 3.6). Thus the assertion follows from
Theorem 1.4 (or [BZ15], or [MZ15b], or [PS14, Theorem 1.8(ii)]). �

Corollary 9.10. Let X be a minimal surface of Kodaira dimension 0. Then the
group Aut(X) is Jordan.

Proof. We know from Theorem 3.6 that X is either a complex torus, or a K3 surface, or
an Enriques surface, or a bielliptic surface, or a Kodaira surface.

If X is a complex torus, then the assertion holds by Corollary 9.7. If X is a K3 surface
or an Enriques surface, then the assertion is implied by Lemma 9.8. If X is a bielliptic
surface, then the assertion holds by Lemma 9.9. If X is a Kodaira surface, then the
assertion holds by Corollary 8.5. �

Proposition 9.11. Let X be a minimal surface. Then the group Aut(X) is Jordan.
20



Proof. We check the possibilities for the birational type of X listed in Theorem 3.6 case by
case. If X is rational or ruled, then X is projective (see Theorem 3.6), and thus the group
Aut(X) is Jordan by [Zar15, Corollary 1.6] or [MZ15b]. If X is a surface of class VII,
then the group Aut(X) is Jordan by Corollary 7.8. If the Kodaira dimension of X is 0,
then the group Aut(X) is Jordan by Corollary 9.10. If the Kodaira dimension of X is 1,
then the group Aut(X) is Jordan by Lemma 9.2. Finally, if the Kodaira dimension of X
is 2, then the group Aut(X) is finite by Theorem 9.1. �

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. If X is rational or ruled, then X is projective (see Theorem 3.6),
and thus the group Aut(X) is Jordan by [BZ15] or [MZ15b]. Otherwise Proposition 3.4
implies that there is a unique minimal surface X ′ birational to X, and

Aut(X) ⊂ Bir(X) ∼= Bir(X ′) = Aut(X ′).

Now the assertion follows from Proposition 9.11. �

Finally, we are going to prove Theorem 1.6.

Proof of Theorem 1.6. There always exists a minimal surface birational to a given one, so
we may assume that X is a minimal surface itself.

If X is rational, then the group Bir(X) is Jordan by Theorem 1.3. Also, by [PS16b,
Theorem 4.2] and Proposition 4.1 every finite subgroup of Bir(X) contains a subgroup of
bounded index that can be embedded into GL2(C). Hence every finite subgroup of Bir(X)
can be generated by a bounded number of elements.

If X is ruled and non-rational, let φ : X → B be the P1-fibration over a (smooth) curve.
Since X is projective (see Theorem 3.6), the group Bir(X) is Jordan if and only if B is
not an elliptic curve by Theorem 1.4. Moreover, we always have an exact sequence of
groups

1→ Bir(X)φ → Bir(X)→ Aut(B),

where the action of the subgroup Bir(X)φ is fiberwise with respect to φ. In particular,
the group Bir(X)φ acts faithfully on the schematic general fiber of φ, which is a conic over
the field C(B). This implies that finite subgroups of Bir(X)φ are generated by a bounded
number of elements. Also, finite subgroups of Aut(B) are generated by a bounded number
of elements. Therefore, the same holds for finite subgroups of Bir(X) as well.

In the remaining cases we have Bir(X) = Aut(X) by Proposition 3.4, so the assertion
follows from Proposition 9.11 and Theorem 2.9. �

Appendix A. Discrete groups

In this section we prove some auxiliary results about discrete infinite groups and their
finite quotient groups. Our main goal will be so called Wang groups (see [Has05]) which
include in particular fundamental groups of Inoue and Kodaira surfaces. For every group Γ
we denote by z(Γ) the center of Γ, and for a subgroup Γ′ ⊂ Γ we denote by z(Γ′,Γ) the
centralizer of Γ′ in Γ.

A.1. Integer matrices. The following facts from number theory are well known to
experts; we include them for the reader’s convenience.

Lemma A.2. The following assertions hold.
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(i) Let α be an algebraic integer such that for every Galois conjugate α′ of α one
has |α′| = 1. Then α is a root of unity.

(ii) Let n be a positive integer. Then there exists a constant ε = ε(n) with the follow-
ing property: if an algebraic integer α of degree n is such that for every Galois
conjugate α′ of α one has 1− ε < |α′| < 1 + ε, then α is a root of unity.

Proof. To prove assertion (i), fix an embedding Q(α) ⊂ C. Then ᾱ is a root of the
minimal polynomial of α over Q. Hence ᾱ is an algebraic integer. On the other hand,
one has ᾱ = α−1. Since both α and α−1 are algebraic integers, we conclude that all
non-archimedean valuations of α equal 1. At the same time all archimedean valuations
of α equal 1 by assumption. Therefore, assertion (i) follows from [Cas67, Lemma II.18.2].

Now consider an algebraic integer α of degree n such that all its Galois conjugates have
absolute values less than, say, 2. The absolute values of the coefficients of its minimal
polynomial are bounded by some constant C = C(n). Consider the set of polynomials
with integer coefficients

Q =
{
Q = xn + an−1x

n−1 + . . .+ a0

∣∣ |ai| 6 C, and Q is irreducible
}
.

The set Q is finite. Put

Π =
{

(x1, . . . , xn)
∣∣x1, . . . , xn are different roots of some polynomial Q ∈ Q

}
⊂ Cn.

Then Π is a finite subset of Cn; furthermore, all algebraic integers of degree n such that
all their Galois conjugates have absolute values at most 2 appear as coordinates of the
points of Π. There is a number µ = µ(n) such that for every point P = (α1, . . . , αn) ∈ Π
the inequalities 1 − µ < |αi| < 1 + µ for all i imply that |αi| = 1 for all i. In the latter
case αi are roots of unity by assertion (i). Thus it remains to put ε = min(µ, 1) to prove
assertion (ii). �

Lemma A.3. Let M ∈ GLn(Z) be a matrix. Suppose that for every C there is an
integer k > C such that there exists a matrix Rk ∈ GLn(Z) with R k

k = M . Then all
eigen-values of M are roots of unity.

Proof. Let λk be an eigen-value of Rk. Then λk is an algebraic integer of degree at most n,
because it is a root of the characteristic polynomial of the matrix Rk. Moreover, λ kk is an
eigen-value of M . This means that

(A.4) k
√
lmin 6 |λk| 6 k

√
lmax,

where lmin and lmax are the minimal and the maximal absolute values of the eigen-values
of the matrix M , respectively. Both of the above bounds converge to 1 when k goes to
infinity. All Galois conjugates of λk are also eigen-values of Rk, hence the inequality (A.4)
holds for them as well. Therefore, for k large enough all eigen-values of Rk are roots of
unity by Lemma A.2(ii), and thus so are the eigen-values of M . �

A.5. Lattices and semi-direct products. Consider the groups Γ0
∼= Z3 and Γ1

∼= Z.
Let γ be a generator of Γ1. Fix a basis {δ1, δ2, δ3} in Γ0. Then End(Γ0) can be identified
with Mat3×3(Z), and so for any integral 3× 3-matrix M = (mj,i) one can define its action
on Γ0 via

M(δi) = δ
m1,i

1 δ
m2,i

2 δ
m3,i

3 .

If M ∈ GL3(Z), this defines a semi-direct product Γ = Γ0 o Γ1.

The following facts are easy exercises in group theory.
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Lemma A.6. Suppose that the matrix M does not have eigen-values equal to 1. Then
the following assertions hold:

(i) [Γ,Γ] = Im(M − Id) ⊂ Γ0 is a free abelian subgroup of rank 3;
(ii) one has Γ0 = z([Γ,Γ],Γ); in particular, Γ0 is a characteristic subgroup of Γ;

(iii) the center z(Γ) is trivial.

It also appears that one can easily describe all normal subgroups of finite index in Γ
(and actually do it in a slightly more general setting).

Lemma A.7. Let ∆0 be an arbitrary group (and Γ1
∼= Z as before be a cyclic group

generated by an element γ). Consider a semi-direct product ∆ = ∆0 oΓ1. Let ∆′ ⊂ ∆ be
a normal subgroup of finite index. Then

(i) ∆′ = ∆′0 o Γ′1, where ∆′0 = ∆′ ∩ ∆0, and Γ′1
∼= Z is generated by γkδ′ for some

positive integer k and δ′ ∈ ∆0;
(ii) ∆/∆′ has a normal subgroup of index k isomorphic to ∆0/∆

′
0.

Lemma A.8. Let Γ = Γ0 o Γ1 be a semi-direct product defined by a matrix M as above.
Suppose that the matrix M does not have eigen-values equal to 1, and at least one of its
eigen-values is not a root of unity. Then there exists a constant ν = ν(Γ) with the following

property. Let Γ̂ = Γ̂0 o Γ̂1, where Γ̂0
∼= Z3 and Γ̂1

∼= Z. Suppose that Γ̂ contains Γ as a
normal subgroup. Then the group G = Γ̂/Γ is finite and has a normal abelian subgroup
of index at most ν.

Proof. The group G is finite for obvious reasons. By Lemma A.6(ii) we have Γ0 = Γ∩ Γ̂0.
Thus by Lemma A.7 there is a positive integer k with the following properties: the
subgroup Γ1 ⊂ Γ is generated by an element γ̂kδ̂, where γ̂ is a generator of Γ̂1, and δ̂ is
an element of Γ̂0; and the group G contains a normal abelian subgroup of index k. Note
that the subgroup Γ0 is normal in Γ̂, because Γ is normal in Γ̂, while Γ0 is a characteristic
subgroup of Γ by Lemma A.6(ii). Let R ∈ GL3(Z) be the matrix that defines the semi-

direct product Γ̂ = Γ̂0oΓ̂1. Considering the action of the element γ̂ on the lattice Γ̂0
∼= Z3

and its sublattice Γ0
∼= Z3, we see that Rk is conjugate to M . Thus k is bounded by some

constant ν that depends only on M (that is, only on Γ) by Lemma A.3. �

A.9. Heisenberg groups. Let r be a positive integer. Consider a group

(A.10) H (r) = 〈δ1, δ2, δ3 | [δi, δ3] = 1, [δ1, δ2] = δr3〉.
One can think about H (r) as the group of all matrices 1 a c

r

0 1 b

0 0 1

 ∈ GL3(Q),

where a, b, and c are integers. One can choose the generators so that the element δ1

corresponds to a = 1, b = c = 0, the element δ2 corresponds to a = 0, b = 1, c = 0,
and the element δ3 corresponds to a = b = 0, c = 1. The group H (1) is known as the
discrete Heisenberg group. The center z(H (r)) ∼= Z is generated by δ3, while the commu-
tator [H (r),H (r)] is generated by δr3. For the quotient group H̄ (r) = H (r)/ z(H (r))
one has H̄ (r) ∼= Z2.

The following properties are easy to establish.
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Lemma A.11. Every subgroup of finite index in H (r) is isomorphic to H (r′) for some
positive integer r′. Every subgroup of infinite index in H (r) is abelian.

Note that a subgroup in H (r) generated by δa1, δ2, and δc3 is isomorphic to H
(
ar
c

)
.

Hence any group H (r′) is realized as a subgroup of H (r). We will be interested in
properties of normal subgroups of H (r).

Lemma A.12. Let Γ0 ⊂ H (r) be a normal subgroup of finite index, and
put G0 = H (r)/Γ0. Then there are integers a1, a2, a3, b1, b2, b3 with a1b2 − a2b1 6= 0,
and c > 0 such that

Γ0 = 〈δa11 δa22 δa33 , δb11 δb22 δb33 , δc3〉.
Moreover, c divides r gcd(a1, a2, b1, b2), one has

Γ0
∼= H

(
r|a1b2 − a2b1|

c

)
,

and the group G0 contains a normal abelian subgroup of index at most gcd(a1, b1).

Proof. Since G0 is finite, the image Γ̄0 of Γ0 in H̄ (r) is isomorphic to Z2. Choose the
vectors (a1, a2) and (b1, b2) in H̄ (r) ∼= Z2 generating Γ̄0. The group Γ0 contains the
elements ζ = δa11 δa22 δa33 and ξ = δb11 δb22 δb33 for some integers a3 and b3. The subgroup
of Γ0 generated by ζ and ξ maps surjectively to Γ̄0. Hence Γ0 is generated by ζ, ξ, and
the intersection Γ0 ∩ z(H (r)). The latter is a subgroup of z(H (r)) ∼= Z, and thus is
generated by some element of the form δc3.

Since the subgroup Γ0 is normal, we have δrb13 = [δ1, ζ] ∈ Γ0, so that c divides ra2.
Similarly, we see that c divides ra1, rb1, and rb2, and thus also divides r gcd(a1, a2, b1, b2).

It is easy to compute that [ζ, ξ] = δ
r(a1b2−a2b1)
3 . Therefore, one has

Γ0
∼= H

(
r|a1b2 − a2b1|

c

)
.

Let F be a subgroup of H (r) generated by the elements δ2 and δ3, and F̆ be its image

in G0. The subgroup F is a normal abelian subgroup of H (r), hence F̆ is a normal

abelian subgroup of G0. Let f : H (r) → G0/F̆ be the natural projection. Then the

group G0/F̆ is generated by f(δ1), and one has

f(δa11 ) = f(ζ) = 1 = f(ξ) = f(δb11 ).

Hence [G0 : F̆ ] = |G0/F̆ | is bounded from above by (and actually equals) the num-
ber gcd(a1, b1). �

An immediate consequence of Lemma A.12 is the following boundedness result.

Corollary A.13. Let Γ0 ⊂ Γ̂0 be a normal subgroup, where Γ0
∼= H (r1) and Γ̂0

∼= H (r2).

Then the quotient group G0 = Γ̂0/Γ0 is finite, and G0 contains a normal abelian subgroup
of index at most r1.

Proof. The group G0 is finite for obvious reasons. By Lemma A.12 there are integers
a1, a2, b1, b2 with a1b2 − a2b1 6= 0, and c > 0 such that c divides r gcd(a1, a2, b1, b2), one
has

r1 =
r2|a1b2 − a2b1|

c
,
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and G0 contains a normal abelian subgroup of index at most gcd(a1, b1). On the other
hand, one has

r2|a1b2 − a2b1|
c

>
r2 gcd(a1, b1) gcd(a2, b2)

c
>
r2 gcd(a1, a2, b1, b2)

c
gcd(a1, b1) > gcd(a1, b1).

�

A.14. Heisenberg groups and semi-direct products. Consider the
groups Γ0

∼= H (r) and Γ1
∼= Z. Let γ be a generator of Γ1. Consider a semi-direct

product Γ = Γ0 o Γ1. The action of γ on Γ0 gives rise to its action on

Γ̄0 = Γ0/ z(Γ0) ∼= Z2,

which is given by a matrix M ∈ GL2(Z) if we fix a basis in Γ̄0 (cf. [Osi15] for a detailed
description of the automorphism group of the discrete Heisenberg group).

Lemma A.15. The following assertions hold.

(i) One has γδ3γ
−1 = δdetM

3 .
(ii) The center z(Γ) is trivial if and only if detM = −1.

Proof. For i = 1, 2 one has

γδiγ
−1 = δ

m1,i

1 δ
m2,i

2 δpi1 ,

where M = (mi,j), and pi are some integers. Obviously, we have γδ3γ
−1 = δt3 for some

integer t. Therefore

δrt3 = γδr3γ
−1 = γδ1δ2δ

−1
1 δ−1

2 γ−1 = δ
m1,1

1 δ
m2,1

2 δ
m1,2

1 δ
m2,2

2 δ
−m2,1

2 δ
−m1,1

1 δ
−m2,2

2 δ
−m1,2

1 =

= δ
r(m1,1m2,2−m1,2m2,1)
3 = δr detM

3 ,

which implies assertion (i). Assertion (ii) easily follows from assertion (i). �

We will need the following notation. Let Υ be a group, and ∆ be its subset. Denote

rad(∆,Υ) = {g ∈ Υ | gk ∈ ∆ for some positive integer k }.

If ∆ is invariant with respect to some automorphism of Υ, then rad(∆,Υ) is invariant
with respect to this automorphism as well. If a group Υ has no torsion and ∆ ⊂ ∆′ is a
pair of subgroups in Υ such that the index [∆′ : ∆] is finite, then ∆′ ⊂ rad(∆,Υ).

Using Lemma A.11, one can easily check the following.

Lemma A.16. Suppose that the matrix M does not have eigen-values equal to 1. Then
the following assertions hold:

(i) [Γ,Γ] ⊂ Γ0, and

[Γ,Γ]/ z([Γ,Γ]) = Im(M − Id) ⊂ Γ0

is a free abelian group of rank 2;
(ii) [Γ,Γ] ∼= H (r′) for some r′, and [Γ,Γ] is a subgroup of finite index in Γ0;

(iii) Γ0 = rad([Γ,Γ],Γ); in particular, Γ0 is a characteristic subgroup of Γ.

Remark A.17. If the matrix M does not have eigen-values equal to ±1, then the group Γ
does not contain subgroups isomorphic to Z3.
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Lemma A.18. Suppose that the eigen-values of the matrix M are not roots of unity.
Then there exists a constant ν = ν(Γ) with the following property. Let Γ̂ = Γ̂0 o Γ̂1,

where Γ̂0
∼= H (r̂) and Γ̂1

∼= Z, and suppose that Γ ⊂ Γ̂ is a normal subgroup. Then the

group G = Γ̂/Γ is finite and has a normal abelian subgroup of index at most ν.

Proof. The group G is finite for obvious reasons (cf. Lemma A.11). By Lemma A.16(iii)

we have Γ0 = Γ∩ Γ̂0. Thus by Lemma A.7 there is a positive integer k with the following
properties: the subgroup Γ1 ⊂ Γ is generated by an element γ̂kδ̂, where γ̂ is a generator
of Γ̂1, and δ̂ is an element of Γ̂0; and the group G contains a normal subgroup G0

∼= Γ̂0/Γ0

of index k. Note that the subgroup Γ0 is normal in Γ̂, because Γ is normal in Γ̂, while Γ0

is a characteristic subgroup of Γ by Lemma A.16(iii). Let R ∈ GL2(Z) be the matrix that

defines the semi-direct product Γ̂ = Γ̂0 o Γ̂1. Considering the action of the element γ̂ on
the lattice Γ̂0/ z(Γ̂0) ∼= Z2 and its sublattice Γ0/ z(Γ0) ∼= Z2, we see that Rk is conjugate
to M . Thus k is bounded by some constant that depends only on M (that is, only on Γ)
by Lemma A.3. On the other hand, the group G0 contains a normal abelian subgroup of
index at most r by Corollary A.13, and the assertion easily follows. �

A.19. Heisenberg groups and direct products. Consider the groups Γ0
∼= H (r)

and Γ1
∼= Z, and put Γ = Γ0 × Γ1. One has z(Γ) = 〈δ3,γ〉 ∼= Z2, and Γ̄ = Γ/ z(Γ) ∼= Z2.

Unlike the situation in §A.5 and §A.14, the subgroup Γ0 is not characteristic in Γ.
Indeed, let δ1, δ2, and δ3 be the generators of Γ0 as in (A.10), and γ be a generator of Γ1.
Define an automorphism ψ of Γ by

ψ(δ1) = δ1γ, ψ(δ2) = δ2, ψ(δ3) = δ3, ψ(γ) = γ,

cf. [Osi15]. Then ψ does not preserve Γ0. However, the following weaker uniqueness result
holds.

Lemma A.20. Let Γ′0 ⊂ Γ be a normal subgroup isomorphic to H (r′) for some positive
integer r′. Suppose that ς : Γ/Γ′0

∼= Z. Then the natural projection Γ′0 → Γ0 is an
isomorphism. In particular, one has r = r′.

Proof. Put Υ1 = Γ1/Γ
′
0 ∩ Γ1 and Υ0 = Γ0/ς(Γ

′
0). Then Γ/Γ′0

∼= Υ0 × Υ1. Therefore,
either Υ0 is trivial and Υ1

∼= Z, or Υ0
∼= Z and Υ1 is trivial. In the former case ς provides

an isomorphism from Γ′0 to Γ0. In the latter case Γ1 ⊂ Γ′0 and the group ς(Γ′0) ∼= Γ′0/Γ1 is
abelian by Lemma A.11. Thus the group Γ′0 is abelian as well, which is a contradiction. �

Lemma A.21. Suppose that Γ is a normal subgroup in a group Γ̂ = Γ̂0 × Γ̂1,
where Γ̂0

∼= H (r̂) and Γ̂1
∼= Z. Then the group G = Γ̂/Γ is finite and has a normal

abelian subgroup of index at most r.

Proof. The group G is finite for obvious reasons. Put Γ′0 = Γ ∩ Γ̂0 and G0 = Γ̂0/Γ
′
0. By

Lemma A.7 one has Γ = Γ′0 o Γ′1, where Γ′1
∼= Z is generated by γ̂kδ̂ for some positive

integer k, a generator γ̂ of Γ̂1, and an element δ̂ ∈ Γ̂0. Thus Γ/Γ′0
∼= Z. Since Γ′0 is

a subgroup of finite index in Γ̂0, by Lemma A.11 one has Γ′0
∼= H (r′) for some r′. By

Lemma A.20 we know that r′ = r. Thus G0 contains a normal abelian subgroup N of
index at most r by Corollary A.13. On the other hand, G is generated by G0 and the
image γ̄ of γ̂. Since γ̄ is a central element in G, the group generated by N and γ̄ is a
normal abelian subgroup of index at most r in G. �
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