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1. Introduction and statement of theorem. The period polynomial of a cusp form
f(r) =32 as(I)e?™™ (r € H = upper half-plane) of weight k on T' = PSL,(Z) is the
polynomial of degree k — 2 defined by

)= [ ") - X dr 1)

or equivalently by

k-2

n=0

where L( f,s) denotes the L-series of f (= analytic continuation of 3 oo, as({)I7*). The
Eichler-Shimura-Manin theory tells us that the map f +— r; is an injection from the space
Sk of cusp forms of weight & on T to the space of polynomials of degree < k — 2 and that
the product of the nth and mth coefficients of v 1s an algebraic multiple of the Petersson
scalar product (f, f) if n and m have opposite parity. More precisely, for each [ > 1 the
polynomial in two variables

(r(X)rs(¥)
2 @ ®

has rational coefficients; here (rp(X)rp(Y)) = 3(rs(X)rs(Y) —rp(=X)rp(=Y)) is the
odd part of rf(X)rs(Y) and the sum is taken over a basis of Hecke eigenforms of Si. A
rather complicated expression for the coeflicients of these polynomials was found in [3].

In this paper we will give a much more attractive formula for the expressions (3)
by means of a gencrating function. First we multiply each expression (3) by ¢! and sum
over I, i.e., we replace as(I) in (3) by the cusp form f(7) itself. Secondly, we extend the
definition of r; (and of (f, f)) to non-cusp forms, the function r;(X) now being 1/X
times a polynomial of degree k in X, and include the Eisenstein series in the sum (3).
Thus we define for even £ > 0

N (rs(X)rs(¥)~
er(X,Y;7) = erM,, @Rk = (7, 1)

eigenform

f(r), (4)



where the sum is now over all Hecke eigenforms in the space M of modular forms of
weight k on T'. The function cx(X,Y;7) belongs to M8 ®@ X 'Y 1Q[X,Y], e.g.

C2(X: Yi T) = 03
1 1 1
(X, Yir) = -3 [(X? —1)(¥® +5Y + 7+ (X3 +5X + Y)(Y2 ~1)] G4(r),
where Gi(1) = -3¢ + i(z d*~1)e?™!"  (k even) is the normalized Eisenstein series of
=1 d|!

weight k& on I'. We also set

(XY = 1)(X +Y)
X2Y? :

co(X,Y;17)=c(X,Y) = er(X,Y;7) =0 for &k odd,

and combine all the ¢i into a single generating function

C(X,Y;m,T) = ZCL(X Y;7)TF e Q[X, Y’X’ ][[q,T]] (g = €2™7).
k=0

Then the result we will prove is

THEOREM. The generating function C(X,Y;r;T) is given by

(XY - )T)8((X +Y)T) 6'(0)* T*

C&Y5mT) = AXYT)OXT)o(YT)O(T) )
where
1Y% % sinh(™
O(u) =0,(u)=2 Z g ® sinh( 5 ) (6)
n odd
ne 2
denotes the classical Jacobi theta function, 6'(0) = Bﬂé(u) = Z(—l)_’_lnan
U u=0 n
From the Jacobi triple product formula
o) = g*(e* —e7H) H(l g")(1 = g"e")(1 = g"e™)
one easily finds
O(u) u*
iy =2 20 ), ™
so (5) can be rewritten in the form
C(X,Y;7;T) (8)
N - : , ' T*
= co(X,Y) exp(ZkZ [(X*+1)(Y*F+1) = (XY - 1)* - (X + V)] Gk(r)—k!—)
=4



(the term k = 2 drops out because (X? + 1)(Y2 + 1) = (XY —1)? + (X + Y)?).

This formula is surprisingly simple: the coefficient of T* in the exponent on the right
involves only the Eisenstein series G(7), multiplied by an exceedingly simple polynomial
of degree k in X and Y. Yet either it or the equivalent formula given in the theorem
contain complete information about all modular forms on I' and their periods, for by
expanding the right-hand side of either formula as a power series in T (which can be
done with any symbolic algebra package) we obtain automatically for each weight k the
canonical basis of Hecke eigenforms of M} and the corresponding period polynomials.

The contents of the paper are as follows. In §2 we define the period functions ry
for f ¢ Si and prove the basic properties of the extended period mapping. Section 3,
which does not use the theory of periods and may be of independent interest, contains
the construction of a certain function of three variables 7 € 9, v,v € C which has nice
transformation properties (modular in 7, elliptic in « and v) and nice expansions with
respect to the variables ¢, u and v. In §4 we use this function to prove the main identity
(5); the proof will be short. Finally, §5 contains some discussion and numerical examples.

2. Periods of cusp forms and non-cusp forms. We begin by reviewing the classical
theory of periods for cusp forms on I' = PSLy(Z) (for more details, see [4], Chapter 5).
Let k£ denote a positive even integer, Sy and My the spaces of cusp forms and modular
forms of weight £ on I', and V}. the space of polynomials of degree < k — 2. The periods
of f € S; are the k — 1 numbers .

rn(f)=/0wof(1')7'"dr (0€n<k—2)

and equal "t L*(f,n + 1), where

()= [ S0y dy = (<DL k= 9

is the L-series of f multiplied by its gamma-factor (27)7°I'(s). They can be assembled
into the polynomial r¢(X) = Eﬁ;g(-l)” (kgz)rn(f)Xk‘z—" € Vi asin (1). The group -
T acts on the space V}, by

(B = Ba-en)(X) = (X + Q80 (pevi, 7= (1)) eD).

One checks easily that rs|y is given by the same integral as in (1) but taken from y~1(0)
to ¥~ 1(c0). In particular,

100 0 100 1 0
T‘f+1‘f|S=/ +/ =0, Tf+Tf‘U+Tf|U2=f —|—f -{-/. =0,
0 100 0 o) 1

where 5 = ((1} —01 ), U= (1 -01) are the standard generators of I' of order 2 and 3,

respectively. Therefore 7y belongs to the space
Wi=¢€eVi: ¢(1+8)=¢[(1+U+U*)=0
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where we have extended the action of the group I' to one of the group ring Z[I'] in the
obvious way. If V;' (resp. V;”) denotes the space of even (resp. odd) polynomials in Vi,
then r; can be written as r}" + r; with T}E € W,?: =W, N Vk:t. The map r~ : f — r}' 1s
an isomorphism from Sy to W, while r* is an isomorphism from S} to a codimension
1 subspace of W:’ which was determined in [3], 4.2. Finally, if f is a normalized Hecke
eigenform, then there are non-zero numbers w}*’ € iR, w} € R such that the coefficients of
T}E(X)/wf and the number w}"wf‘ /i(f, f) belong to the number field Q¢ generated by the
Fourier coefficients of f (and in fact transform by ¢ if f is replaced by f7 = ¥ as(1)7¢',

o € Gal(Q/Q)). For instance, for k = 12, f = A = q — 24¢% 4+ 252¢® — ... we have
36 36
+rvy — ~10 8 6 x4 2 +
A (X) (691)\ - X°4+3X°"-3X"+ X 691)

ra(X) = (4X° —25X7 +42X° - 25X° +4X)wy,  where

+ —
wi =0.114379...4, w; = 0.00926927. .., ,‘E’g—“’g) =2cQ=Q,.
? 7

Now suppose that f is a modular form of weight k but not a cusp form, say f =
S oo as(Dg' with ag(0) # 0. The function L*(f, s) is now defined for Re(s) > 0 by

oo

L*(f,s)= Aw(f(iy) —as(0)) y*! ay = (2n)7'T(s)L(f,s), L(f,s)= Z as(DI™*

=1

it still has a meromorphic continuation to all s and satisfies the functional equation
L*(f,s) = (=1)*2L*(f,k — s), but now has (as its only singularities) simple poles of
residue —ay(0) and (——l)kﬁaf(O) at s = 0 and s = k, respectively. On the other hand,
the binomial coefficient (k;Z), interpreted as e +§\)(;(_k1_21_n), has a simple zero at all
nel,n¢{0,1,...,k—2}, the values of its derivatives at n = —1 and n = k — 1 being
1/(k = 1) and —1/(k — 1), respectively. Hence the natural way to interpret the formula

ri(X) = %:z = (*THL*(f,n 4+ 1)X 52" (valid for cusp forms) is to define ry by

() = 0 (oot o +Z (A g nx )

This is no longer in Vi but instead in the bigger space

Vi = @ CX" = X' {polynomials of degree <k in X}.
=1<n<k~1

Using the standard formula

()= [ (i - ae [ (160 - Eoh e a
kf2ik—s
—a (0)[ %] (to > O arbitrary),
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we can give an alternative formulation of the definition as

r(X) :frm(f(q-) —af(O)) (r —X)k_2dr+ /:o(f(.,-)_ af(O)) (r _X)k—z dy

0 Tk
0 o~ 1 X k- )
+ 2(0) (X - 1'0)JL gt =(1-= o (r0 € $ arbitrary) (10)

k-1 X To
(that the right-hand side does not depend on 7y can be checked easily by differentiation).
Note that we do not have to write 7'y for our new element of Vi, since when f is a cusp
form the new definition agrees with the old one. As before, we denote by Vk+ and V= the
even and odd parts of Vi and by r? the component of rf in Vki'.

THEOREM. The function r(X) belongs to the subspace
Wi={¢€V: dlaor(14+5)=¢la-r(1 + U +U?) =0}

of V. This space is the direct sum of the two subspaces ﬁ/:f =Win I’;'ki; 1117;" equals
T'V:' , while W~ contains W,~ with codimension 1 unless k = 2, when WE =W, ft = {0}.
The maps r¥ : My — Wf‘ are both isomorphisms.

Remarks. Note that the result here is simpler than the corresponding result for cusp
.5 = W',:E was an isomorphism and the
determination of the image of the other was a difficult problem. This simplification on
passing from Sj to M is a main theme of this paper. We should also remark that Vi
is not a I'- or Z[I']-module since ¢|z_ry for ¢ € 17& and v € I' is not in general in I7L.;

nevertheless, ¢|v is a well-defined rational function and the definition of Wk makes sense.
To prove the relations rf[(14+5) = rf|(1+ U +U?) = O for f € Mg we could proceed
as before, writing r¢|y as an integral from y~*(0) to v7'(c0) via y~'(7) and worrying
about the contribution from a;(0). However, since My = St @ (G) and we will need the
period polynomials of the Eisenstein series anyway, it is more convenient to simply check
the assertions of the theorem directly for Gx. Thus we will deduce the theorem from

forms, where only one of the two maps r

PROPOSITION. (i) For k > 2 the functions

B B
+/ v k—2 - n+1 k=—n-1 n
k ’ k -19%-1 (n+1)! (k—n-1)
— . n odd

belong to W,:+ and W7, respectively.

1 e period polynomial of the Eisenstein series G, is given

(ii) Th iod pol ial of the Ei 1 ies Gy 1s gI by

(k- 2)! + _C(k—l) -

' W + .+ - _
TGk(‘X)—wG,,pk +wg, Py, Where wg, = — i G, = ri) wg, -

PRrOOF: For (i) we must check that pf € Wk, since pf,: € 17,?: is obvious. The condition
pf|(1 + S) = 0 just says that the coefficients of X™ and X*~2=" in pf differ by a factor

)



(=1)"*!, which is clear. Hence we need only check pE|(1 4+ U + U?) = 0. For p} this
is immediate, since pf|U = (X — 1)¥2 - X*=2 pFU? = 1 — (X -~ 1)¥~2. For py it is
convenient to introduce the generating function

P(X,T)= o + 3. pi(X)TH? (12)

k even

(o o] o0
— B" n—1 Bm m—1 . 1 XT T
= ( néo H(XT) )( mg_:o — T ) =1 coth coth2

n even m even

The addition law for the hyperbolic cotangent function, which can be written in the form
a+B+v=0 = coth a coth 4+ coth 8 coth v+ coth v coth & = —1,
now tells us that

P(X,T)+ P(1—- Y’ XT) + P(5— (
and comparing the coefficients of T*~2 (k # 2) on both sides gives the desired conclusion.
Note that for p; (X) = %Z(X + XY we have p; [o(1 + U + U?) = —%. Thus py =0
and p, ¢ W{; for k = 0, on the other hand, both functions py (X) = X2 — 1 and
py (X) = X~ do satisfy the period relations.

For (ii) we use the definition (9) of ry, observing that ag,(0) = —Bx/2k and
L(Gk,s) = ((s){(s — k + 1). The assertions follow after a short calculation using the
values {(1—n) = —By/n, ((n) = —(271)"B,/2n! (n > 0 even), {(1—n) =0 (n > 1 odd).

X-1T) = -3

b

The proof of the theorem is now immediate: r¢ € ﬁ;'k for any f € My because My is
the direct sum of Sy and (Gy), ﬁf;;" = W because ff',j' = V¥, W, has codimension 1 in
ﬁ; for £ > 2 because p; ¢ Vi and because the codimension of Wy in Wk is <1 (since
#|(1 + S) = 0 implies that the coefficients of X~} and X*~! in any ¢ € W are equal),
and r : My — Wf is an isomorphism because r* : §;, — W+/(PL) and r~ : Sy = W~
are isomorphisms.

We have now extended the definition of rjf to all f € My. In [7], §5, we defined the
Petersson scalar product of arbitrary modular forms in M} by Rankin’s method, i.e.,

EECES ) I PNV (TR )
(5.0 = 5 G Reoome [ L0 (o ey

For the Petersson norm of the Eisenstein series this gives

o (1. 1)1 C(s)C(s — b+ 1)2¢(s — 2k + 2)
(Gkak) Q (4 )k RGS,=k[ (:(23 — 2k +2)

k—1)!

- 2‘2(k——1—7.r1k)+1 C(k)C'(2 - k)
k— (k- 2)!

- é3k-2732$-—1ik—)2 C(k)C(k—1)

- E:w“)f_)l! .{ii (k- 1). | (13)




(The formula given on p. 435 of [7] contains a misprint: 2*#~% should be 23¥~2) Com-
paring this with part (ii) of the proposition, we see that we have the same assertion
w}'w;/i(f, f) € Qy for G as for Hecke eigenforms f € Si.

It follows from (13) and part (ii) of the proposition that, if we decompose the

expression (4) into a cuspidal part ¢}(X,Y;7) and an Eisenstein part ¢Z(X,Y;7), then
the latter is given by

F(X,¥57) = 5= (5T (XpE(¥) + L O (V).

Splitting up the generating function C(X,Y;7;T) as a sum C®+ C¥F in the corresponding
way, we find for the value at the cusp 7 = i00, ¢ = 0, the value

C(X,Y;i100;T) = CE(X,Y;i00; T)

_(xy —Xlz)}(/)z( +Y) S OXA 2 =1 (V) + (Y2 = 1)py (X)) T*
k=2

=T?(P(X,T)+ P(Y,T) - P(Y,XT) - P(X,YT))

(with P(X,T) defined as in (12))

T2 XT YT T XYT
= x (coth 5 <+ coth -—é-—) (coth 7~ coth 5 )
T2 sinh & +2y )T in & Yz" LT

4 sinh % sinh E sinh XI sinh AYT

O(u)

LU
5(0) = 2sinh —.

2

This proves (5) in the limit as 7 — 700, since

g=0
3. A meromorphic Jacobi form. In this section we study the function of three vari-
ables 7 € §, u,v € € defined (for —X(u) < I(7) and S(v) < (7)) by

oo

Ff(uav) Z —ﬂf Z 4 6':17’ (q = ezmlfa §=c¢e", n= ev)'

We write G (1) for the Eisenstein series defined in §1 if £ > 0 is even and set G = 0 for
k odd.

ProrosITION. The function F.(u,v) has the following properties:

(i) (Symmetry) Fr(u,v) = F.(v,u) = —F;(-u,—v) .

(if) (Analytic continuation) Fy(u,v) extends meromorphically to all values of u, v.
It has a simple pole in u of residue n~" at 2ni(nt + s) (n, s € L) and a simple pole in v
of residue £~™ at 2mi(mT +71) (m, r € 1), and is holomorphic for u,v ¢ A = 27i(Zr + 7).

7



(iii) (Fourier expansion) The coefficients of F; as a power series in ¢ are elementary
hyperbolic functions of v and v:

u

F,(u,v) = % (coth 5 -+ coth %) ~2 i (Z sinh(du + %v)) . (14)

n=1 “d|n
(iv) (Laurent expansion) The Taylor coefficients of Fr(u,v) — + — 1 are derivatives
of Eisenstein series:

Fo(uv)= = +2—2 f:( L dymintrilgy (22 (15)
r(u,0) = u v o 27s dr [r=sl+1 rl st

(v) (Elliptic property) Fr(u+2ni(nt+s),v+2xi(mr+7)) = ¢ ™" "y "Fr(v,u)
form,n,r, s € £.

(vi) (Modular property) Fﬁ?}(%—w’ 53) = (e7 + d)e=+2 Fr(u,v) for (¢ 3) eTl.
(vii) (Relation to theta functions) Let 6(u) = 6,(u) be as in (6). Then

_0'(0)8(u +v)
Frlu,v) = W

(viii) (Logarithm) F,(u,v) = u;—)v exp (E % [uf + 0% ~ (u +v)F] Gk(f)).
k>0

PROOF: By expanding the fractions in the terms n £ 0, m # 0 in the definition of F as
geometric series, we can express F' as a double series

-1 — -m_—n\_mn
Fr(u,v)=(§_E¥)(n_1)—mzn;l(€mn"—f 7 ")¢™

this makes the symmetry properties (i) obvious and also gives the Fourier expansion (iii).
The double series converges if |3(u)| and |3(v)| are less than 27|3(7)|. To get the analytic
continuation in u and v, we choose a positive integer N, break up the double series into
the terms with n < N and those with n > N, and sum over m in the former and n in the
latter terms. This gives

1 & g nThT N L,
Fr(u,v) =m - Z (1 ey 1 q”{‘l)q

n=1
LT _i 3/ A S N
=1 =\l-¢™n 1-¢mn7" '

The infinite sum converges for |S(u)| < 27N|S(7)], since then ¢V and £71¢N are less
than 1 in absolute value. Taking N large enough thus gives the meromorphic continuation
to all values of u and v, the positions and residues of the poles being as stated in (ii)

8



of the proposition. The elliptic property (v) is also easily deduced: taking N = 1 and
replacing n by ¢n, we find

' g QE oo £m+1 m+],q o0 £—m+1qm—ln—l
F. 2 = I S
E ('U,,'U+ TTZT) 6_1 + qn_l Zl 1_qm+177 + Z 1_qm—1n—l

me==1

et f—m m —1

£ 1 -
=——+—- —F
g Zl_m +Zl e 1 = F,(u,v),

m=1 m=1

which proves (v) for m = 1, n = 0; the general case follows by interchanging u and v and
by induction on m and n.

Inserting the Taylor expansions

oo

1 U B u + v} u” v?
—coth= = E —u", sinh{u + v) E —l- = E —_—,
2 2 n! r! s!
n=0 d=1 ra>0
t odd r+sodd

into (14), we find

F(u U)—‘ _+__2 Z ( lBr+153,0_lSBa+l6r,0+ Z ann.sqmn) ’t;_‘t)_

r,s>0 mn2>1
r-l-s odd

and the expressions in brackets is clearly (27:)™" Gi”)(r) where v = min{r,s} and k =
|r — s| + 1. This proves formula (15). We can rewrite (15) as

v) = —22 ék(T, wv)(u*1 vk_l)

k>2

with
~ S (A2 Suz
Gxlm2) = ZO A+ k-1 (1)~ 5y

A result of H. Cohen and N. Kuznetsov (cf. [2], p. 35) implies the transformation law
Gk(ﬁ, ;’h) = (et +d)FeM T+ DG (7, 2) for (3 ¢) € T. The modular transformation
property (vi) follows. :

The closed formula (vii) is an easy consequence of the elliptic transformation prop-
erties of Fr. Indeed, it is well-known (and elementary) that 6(u) has simple zeros at all
points of the lattice A and no other poles. Since F(u,v) has simple poles for u or v in
A, is otherwise holomorphic, and vanishes for u + v € A (because of the antisymmetry
property Fr(u,—v) = —Fy(v,—u)), the quotient §(u)6(v)F;(u,v)/8(u + v) is holomor-
phic in © and v. Now using (v) and the transformation properties 8(u + 277) = 8(u),
8(w + 2miT) = —e~ ™" *8(u), both of which are obvious from the definition of 8 as either
a sum or a product, one finds that the quotient in question is invariant under v — v +w
or v = v+w for all w € A. It must therefore be a constant (for 7 fixed); taking the

9



limit as u — 0, we find that this constant equals §'(0). This proves (vii) and also—in
view of the known modularity properties of 8(u)—leads to another proof of (vi). Finally,
the identity given in (viii) follows from the formula (7). This identity again makes the
modular transformation properties of Fy clear, since (¢r + d)*Gr(y7) is equal to Gy(7)
for k > 2 but to G(r) + 4mic(er +d) for k = 2.

REMARK: Parts (v) and (vi) of the proposition say that the function F,(2mizy,2mizy)
(r € 9, 21,2, € C) is a two-variable meromorphic Jacobi form of weight 1 and index
1

m= ( 1 g) (for the theory of Jacobi forms, see [2], where, however, only Jacobi forms

2

of one variable were considered). Equation (14) says that this Jacobi form is singular in
the sense that for each term ¢"£"' 5" occurring in its Fourier development the matrix
(3? 7;) (r = (r17y)) has determinant zero.

4. Proof of the main identity. In view of part (vii) of the proposition of the last
section, the theorem stated in §1 is equivalent to the identity

C(X,Y;r;T) = T* F(T,-XYT) F(XT,YT). (16)

Denote the right-hand side of (16) by B(X,Y;7;T) and the coefficient of T* in it by
be(X,Y; 7). We must show that by = ¢ for every k > 0, the case k = 0 being obvious.
Because the term k£ = 2 dropped out in (8), and the functions Gy for k > 2 are
ar + b
er +d’
T+ (cr +d)T for every (Z 3) € I'. This is equivalent to the assertion that b;(X,Y;7) is

a modular form of weight k (with coefficients in C[X, X~ Y, Y 1)) for every k > 0. But
we already checked the correctness of (16) in the limit 7 — too at the end of §2, so the
Eisenstein parts of the modular forms bi(X,Y;7) and cx(X,Y; ) agree. We therefore
need only check the cuspidal parts, i.e., the assertion that b; and c; have the same
Petersson scalar product with each cusp form f € Si. In view of the definition of ¢g, this
is equivalent to proving that

modular forms, the right-hand side of (5) (or of (16)) is invariant under 7 —

(X, Y30, 1()) = sy (o m () ()

for each normalized Hecke eigenform f € Sk.
For brevity of notation, write the Taylor expansion (15) as
F,.(u,v) = Z gh,l("') (ulvl+h—1 n ul+h—1,01)
R1>0
with
1 (h=1=0),

-2(2r)~ )
“([—l——h—l)!Gh (T) (h >0 CVCH),

0 (h odd or I > h =0).

ght =

10



Then

(X, Y;7) = > g (T)gn v (T) (18)
Lt R >0
hh 20147 )=k

% [(_Xy)H-h—l + (_Xy)l][Xl'Yl'-Hl'—l +Xl'+h'—1yl'].

The coefficients of X™Y ™ with m or n equal to —1 or to k¥ — 1 involve only the Eisenstein
series G and have already been taken care of. Also, it is clear that the coefficient of
X™Y™ on the right of (18) is invariant under m « n and (—1)™*!-invariant under
m < k—2—m, so we may assume 0 < m < n < %(k — 2). (The middle relation is
< rather than < because m and n always have opposite parity.) For such m, n, the
coefficient of X™Y™ on the right hand side of (18) equals

Z gk—n—m—l,I(T)gn—m+l,l‘(7') + 6m,n—1 ((1 + 26n'%k_1)gk—2n,n(7')
1LI'>0
+t'=m

1

- 4m!n!(k -1 - 2)[ Fm(Gk—'n—m—l) Gn—m-H ),

where Fy,(Gh,Gp) for h, h' > 2 is defined by

1 met (MY (m+h—1(m+h"-1) m—1
G, O0) = oy g(‘l) (1) (l(+h—1)!(3n(—l+h’ - i)! G )

m! 6}11)2 m 5};,2 (m+1)
+2(2m.)m+l(h K24 (1) h,+m)c;2 (7).

If m = 0 and h and A’ are both greater than or equal to 4, then F,,(Gp, Gy ) is simply the
product of the Eisenstein series G and G}/, and it was shown by Rankin ([R], Theorem
4) that (at least for h # h') this product satisfies

(GG, 1) = gy real ) rwn ()

- for all normalized Hecke eigenforms in Si, k = A+ &'.  m > 0 and h and A’ are both
> 4, then Fp,,(Gh,Gy) is the result of applying to the Eisenstein series Gy and Gy the
operator introduced by H. Cohen in [1] and is a cusp form of weight £ = h + &' + 2m;
here it was shown in [6] (Proposition 6, Corollary) that the scalar product of Fir, (G, Gpr)
with a normalized Hecke eigenform f € Sy is given by

(Pn(Gr,G1) ) = s gy o) Phma (1)

The case when h or h' equals 2 is not mentioned explicitly in [1] or [6], but the above
assertions remain true then also, as one proves by the same method as in the general case
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but using “Hecke’s trick” to define G, as lirr(l) 5°(++-)7%|+++|7*. Putting all this together
’—
gives the desired result (17).

The calculation we have given and the result we have proved are essentially restate-
ments of Theorem 3 of [3] and its proof. The difference is that there we insisted on
obtaining cusp forms and therefore had to modify Fi,,(G, Grr) by subtracting a multiple
of Gy when m = 0, with the consequence that the final formulas obtained were much
more complicated and could not be combined conveniently into a generating function.

5. Properties of C(X,Y;7;T) and examples. In this section we take the main
theorem in the form (5) or (8) and discuss what consequences can be drawn from it.

In the first place, since 8,(u) and G(7) have rational coefficients as power series in
, it folllows immediately from either version of the identity that all of the
coefficients of X™Y ™ in (3) are rational for all m and n lying between 0 and k — 2, i.e.,
that the numbers r,(f)ra(f)/i(f, f) belong to @ for all Hecke eigenforms f and for all
m and n of opposite parity. We also get integrality statements, e.g., that the coeflicients
of (4) with respect to X, Y and ¢ are p-integral for all primes p > k. Moreover, as
already mentioned in the introduction, either (5) or (8) gives a completely algorithmic
way of obtaining a basis of Hecke eigenforms for Sy and their period polynomials for any
k. Numerical examples will be given at the end of this section.

u and g = ¢2™7

Secondly, as already mentioned in §4, the fact that the non-modular form Gy drops
out in substituting equation (7) into (5) implies that the right-hand side of (5) is invariant

b
ariz’ T — (¢t + )T for every (ad) € I' and hence that the coeflicient
c
cx(X,Y;7) of TF is a modular form of weight k in 7 for every k. (One must also check
that this coefficient contains no negative powers of g, but this is clear from (8).)

Thirdly, one sees directly from (8) that C(X,Y;7;T) is the product of ¢o(X,Y)
and a power series in T, XT, and YT which is invariant under (X,Y) — (-X,-Y) or
(X;Y)— (Y, X) and is congruent to 1 modulo X or Y. This shows that each coeflicient
c(X,Y;7) (k> 0) is symmetric in X and Y and contains only monomials X™Y ™" with
m#n (mod 2) and -1 < m < k-1, -1 < n < k—1. Moreover, by looking at the
extreme coefficients in the exponent in (8), we easily find the coefficients of all monomials
with m or n equal to —1 or k — 1; these coeflicients are multiples of G as calculated in
§2. For instance, expanding (8) to the first two terms in Y gives

under 7 —

C(X,Y;n;T) =

_(1—XY)(1+X']Y) i

177 _X(Xk 2 —1)YT* + O(Y?)]

and hence that the coefficient of Y =! in ¢x(X,Y;7) (k > 0) equals C L(;))' (Xk‘2 - 1).

Fourthly, one can ask whether one can “see” the period relations rf|(1 4+ §) =
rel(14+ U 4+ U?) =0 (f € My) directly from equation (5). These relations are equivalent
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to the identities

C(X Y,T,T)—}-C( Y,T,XT)=0,

C(X,Y;mT)+C(1- Y,T,XT)+C( Y;(1-X)T) =0.

Xﬁ X:

The first of these is immediately obvious from (5) or (8) (using 6(—u) = —8(u) in the
former case). The second, after multiplying through by a common denominator which is
a product of six theta functions, is the special case

Ct'o:T, (¢ 3] =(X—1)T, O'QZ—XT, ,3,'=Y0',‘ (1=0,1,2)
of the following theta series identity:

PROPOSITION. Let «;, B (1 € Z/31) be six numbers satisfying 3 a; =Y 8; = 0. Then
Z 0(a;) 0(Bi) 8(ai-1 + Bit1) O(aizy — Pi—1) =

PROOF: One of Riemann’s theta formulae (cf. [5], formula (Rs), p. 18) says

1

26011(z1)611(v1)bh1(©1)011(v1) = Z (—1)i+j9ij($)9ij(y)9ij(u)9ij(v)a (19)

§,7=0

where , y, u and v are arbitrary and
1 1 1 1
T, = §(:c+y+u+v), Yy = E(z—i-y—u—v), U = 5(w—y+u-—v), v = —2—(a:—~y—u+v).

The 8; ; are Jacobi theta functions whose definition is irrelevant here except that 8;;(u) =
f(u) and that the other three 6;; are even functions of their arguments. Therefore
replacing v by —v in (19), subtracting, and dividing by 2, we get

0(21)0(y1)8(u1)8(v1) — 6(22)8(y2)8(uz)8(v2) = 6(2)8(y)8(w)8(v),

where z3,...,vg are defined like 1,...,v; but with v replaced by —v. Up to renaming
the variables, this identity is the same as the one in the proposition.

Finally, in support of the claim made in the introduction that the identity (5)
contains all information about Hecke theory for PSLy(Z), we mention that it is possible to
derive the Eichler-Selberg trace formula for the traces of Hecke operators on Sy from (5).
The formula that comes out is rather different from the standard one and in some ways
more elementary (for instance, no class numbers appear explicitly), and the calculation
that relates it to the classical formula is rather amusing. Since the derivation is somewhat
intricate, we postpone it to a later paper.
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We end with a few numerical examples in weights & < 18. Since dim My < 2 in this
range, we need only expand (5) up to terms in ¢!, and the calculation of ¢x(X,Y;7) up
to this order is obtained immediately from the expansions given in §4. Subtracting the
Eisenstein part ¢ as given in §2, we find the values

k rF (X7 (V) (2053 (k = 2)U(f, f)
12 =2 [&& pHh(X) = ¢F(X)][¢~ (V)]
16 5[ pis X)~( 2X* — X% 4 2) ¢ (O))[(9Y* - 5Y? +9) ¢~ (V)]
18| 4 [ ;f — (8X* - 9X? +8) ¢f (X)][(6Y* = TY2 +6) g5 (Y)]

for the unique normalized cusp form f of weights 12, 16 and 18 (we have given only
r}"(X)r;(Y), since (rp(X)rg(Y))™ is the sum of this polynomial and the one obtained
by permuting X and Y'). Here p',:'(X) denotes the polynomial X¥~2 — 1 as in §2 and the
polynomials ¢F, ¢& are defined by

) = XA -1, (X)) = X(XP - DX - 44X - 1)

and gy (X) = (X2+1)¢*(X). The fact that r} (X) modulo pf (X) and 77 (X) are divisible
by ¢t(X) and by ¢~ (X), respectively, and also by X% + 1 if k/2 is odd, is an exercise in
the use of the period relations r¢|(1 + ) = rf|(1 + U + U?) = 0 and is left to the reader.
These properties can be translated using (5) into identities for theta series which can of
course also be proved directly; for instance, the fact that (X) is divisible by X — 1 for
all cusp forms f says that the function

8(XT — T)B(XT + T)6'(0)2T?

C(L,Y;nT)= 6(T)?6(XT)?

has no cuspidal part, which is true because the elliptic function 8(u—v)8(u+v)/6(u)*8(v)?
equals p(v) — p(u) (compare poles and zeros!) and because the Weierstrass p-function
has a Laurent expansion involving only Eisenstein series. Notice also that the only large
denominators occurring in the table are the numerators 691, 3617 and 43867 of By which
occur as denominators in the coefficient of pf(X) in T}‘-(A) These are cancelled by
the Eisenstein part % (pk (X)pp (Y) + pp (X)p}(Y)), in accordance with the integrality
properties mentioned at the beginning of the section.
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