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SUMMARY

Qur main object here is to analyze the process of induction of (twe-
sided) ideals in enveloping algebras, in particular the behaviour of their

associated varieties, by means of the new concept of relative enveloping

aloebras. For any algsbraic group H, and any H principal fibration x-:;>v
we define the rselative snveloping algebra as the sheaf of algebras W on Y
made up by all H dinvariant differential operators on X. If the principal
fibration is trivial, then U identifies with the enveloping algebre uch)
of the Lie algebra h of H, tensored by the sheaf DY of differential
operators on the base Y. One of our main constructions is the following:
For an ideal 3 of U(h) we construct an sheaf of idsals 3 in U, which
is DYQJ in a local t;ivialization. In a special case (H a torus, J maxi-
mal), the sheaf ’U/f]u is known as "twisted differential operators™ in the
literature [BBBBJ.

For our present main purpose, we apply this new concept to the principal
fibration G —> G/H of an algebraic group G by a closed subgroup H.
Let g = Lie G. The left G action gives rise to am algebra homomorphism
u(g) —>T(G/HWL ),y and so an ideal 3 of U(h) gives rise to a homomor-
phism U{(g) -—-)F(G/H, W /3). Now the kernel of this homomorphism turns out
to be the ideal 1 induced from J in U(g), up to a certain "twist"
(corollary of proposition '2).

OQur main fesult (theorem 2) gives then the precise relation bstwesn

the associated varieties of J resp, I in h resp. g, in the case H

parabolic. The behaviour of associated varieties of ideals is analogous to

that of wave front sets of representations, as studied by Barbasch and VYogan [BU].

We define the. characteristic varisty of a coherent ’LL—modul"e M -as a subva-
riety ChM) in (T*X)/H, and we prove that i ts imagé under the momentum map
contains the associated varisty of the U(g)-module r'(G/H, M), assuming H
parabolic. Application to M = 11./3" then yields our maim result. This gensra-
lizes some of the results in [BB]I and [E!B]III.

We also use this cpportunity to report on recent work of V.Ginsburg and
B.Kostant concerning shifted cotangent bundles and polarizations, and to relate
it to our present context. Finally, some applications to Dixmier sheets and

to a conjecturs of Gelfand and Kirillov are madea.



INTRODUCTION

Qur present article is the second in a series of three about differential
operators on homogeneous spaces. We note that the first and the third have al-
ready appeared in print as [BBII resp. [BBIIII, but that all three may be read
separately, because they are essentially logically independent, though closely
related. The relation is given not only by the common central object, that is
a systematic study of rings and sheaves of differential operators on a homo-
geneous space, but also by a common motivating problem, which is the computation
of associated varieties of ideals in enveloping algebras. In each of the three
articles, we first develop some new ideas and results for a systematic theory.
of differential operators on homogeneous spaces, and then apply them to the

determination of associated varieties, as a kind of "test problem".

The theoretical effort made to develop our new methods is justified by such
applications, in view of the progress made in each part on open questions raised
in the previous literature. For detailed reviews of the contents of parts I and
111, we refer to the individual introductions in [BBI] resp. [BBIII]. Before we
now turn to a specific report of the contents of the present part II , let us

first make our general terminology a little: more precise.

By a "homogeneous space" Y, we mean a complex algebraic variety Y, equipped

with a transitive action of some linear algebraic group G. Equivalently, Y = G/H
is the quotient of G by some closed subgroup H, up to isomorphism. Moreover,

we have to assume Y complete, or equivaléntly H parabolic, at least for most

of our major results. Our differential operators are linear, with algebraic coef-

ficients. They make up a sheaf of noetherian rings on Y, denoted Dy.



Since
we make a point, in our whole series, of working entirely in terms of algebraic

methods, we have to refer here to the &tale topology on Y. To clarify this

point, we recall for the convenience of the reader the definition of the sheaf

DY’ as well as its local description,in § o.

The main purpose of this article is to develop the concept of a "relative

enveloping algebra" for the study of the canonical fibration G —— G/H. In

fact, we introduce this notion in chapter 1 for the more general situation of

an arbitrary H-principal fibre bundle f: X ——> Y, that is a smooth mor-

phism of algebraic manifolds with H action such that the fibres are free H

orbits. The relative enveloping algebra of such a fibration is defined as the

sheaf of rings on Y given by
u = foo0"),
that is we take all differential operators on the total space X which are H

invariant, and consider the sheaf that they make up on the base space VY.

In the special case where the base Y reduces to a single point, so that
the sheaf ‘U reduces to a single stalk, observe that we obtain the usual de-

finition of the enveloping algebra U(h} of the Lie algebra h of H, namely

as the ring of all differential operators on H invariant under right trans-
lations. More generally, the sheaf U may be described as a tensqr product
Dy @ U(h) whenever the fibration is trivial. In full generality, such a des-
cription holds locally, er any local trivialization of the bundle, but not
globally. In this sense, the new concept is a proper generalization (not only

a scalar extension) of that of an enveloping algebra.
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Qur original purpose for introducing relative enveloping algebras was to

study induced ideals. This is a short term for annihilators of induced modules.

The process of induction attaches to each ideal J in U(h) a certain ideal

I in the enveloping algebra of g = Lie G, namely the largest one contained

in JU(g). (Here "ideal" means two-sided ideal.} Although this process is so
easily defined, its effect had turned out to be surprisingly difficult to under-
stand. We can get here some more control over this process by means of the
following more refined construction in the relative enveloping algebra U of
the fibration G —— G/H: for each ideal J in U(h), we construct a certain

sheaf of ideals J in U which “locally" (i.e. for each local trivialization

of the bundle) coincides with DY<3 J.

In case of the fibrafion G — G/H, the left G action gives rise to a
ring homomorphism U(g) — T'(G/H,U), since it commutes with the right H
action on G. Then a crucial result states that the kernel of the composed
homomorphism

U(g) — T(G/H,U) ——> T(G/H,u/J)

is the ideal induced by J in U(g), up to a certain "twist", see the Corollary
of proposition 2 for a precise statement. This result generalizes our earlier
result in [BBIJI, 3.6; it provides the basis for our applications to the study
of induced ideals.

We point out here, however, that the construction of J again
applies to an arbitrary H principal fibration. Let us mention the following
example, which is known from the previous literature. We first note that if H
is a torus, hence U(h) = S(h) commutative, and if we take for J a maximal

ideal in U(h), then u/J is sheaf of "twisted differential operators" on Y.
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Then we apply the construction to the principal H fibration
X = G/(B,B) — Y = G/B,
where H is a maximal torus in a Borel subgroup B of G, to obtain the twis-

ted differential operators considered in [BeBel].

In chapter 2, we introduce the notion of characteristic variety of a co-

herent U-module. This is just an obvious modification of the usual concept of
characteristic variety of a coherent D-module, that is a support of an associated
graded module, as familiar from the general theory of D-modules. By definition,
the characteristic variety Ch{M) of the coherent U-module M 1is a closed sub-
variety in the quotient (T*X)/H of the cotangent space T*X. over the bundle
space X by the free H action. In proposition 3, we give a description of

the characteristic variety Ch(u/j), where J 1is the sheaf of ideals "induced"
from an ideal J in U(h) by the above mentioned construction. This descrip-

tion is in terms of the associated variety of J, that is the zero set in h*

of the associated graded ideal in gr U(h) = S(h), usually denoted V(grJ) =V(U(h)/J)

in the literature (see e.g. (BBII).

Again the special case where H is commutative, and J a maximal ideal
of U(h) = S(h), deserves special attention as an example relating our new con-
cepts to the work of other authors. The associated variety of J consists of
a single point w €& h* in this case, and the characteristic variety of u/d

identifies with the so-called "shifted cotangent bundle" T: Y of the base

space Y; in particular it carries a natural structure of a symlectic manifold.
The notion of shifted cotangent bundles was suggested independently by V. Gins-
burg [G1], [G2], and B. Kostant (unpublished). If the "shift" wu is zero, then

it coincides with the cotangent bundie T*Y 1in the ordinary sense, otherwise
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it is only locally (i.e. with respect to a local trivialization) isomorphic to
T*Y, but differs from it in general by some global “"twist". If we further spe-
cialize this example to the case of a one parameter group H, then the sections
of the shifted cotangent bundle may be interpreted as connections of our H
principal fibration by a result of A. Weinstein (see proposition 5 for details).
- In this context, we also communicate some results of B. Kostant about polari-
zations of coadjoint G orbits iﬁ g*, and their characteristization in terms
of shifted cotangent bundles (theorem 1), complemented by some results on
associated varieties in the context of chapter 3 (theorem 3)}. We are grateful
to. B. Kostant for his generous kind permisssion to report on these unpublished

ideas of his at the present opportunity.

In chapter 3, we finally come to our main purpose which originally moti-
vated our concept of relative enveloping algebras, namely to establish the
behaviour of associated varieties of ideals in enveloping algebras under para-
bolic induction. This is achieved in our present theorem 2 in full generality,
while our methods employed in part 1 resp. IIl give only partial results, re-
stricted to annihilators of finite dimensional resp. of highest weight modules
(cf. [BBII resp. [BBJIII). A completely analogous result had previously been

established for the so-called "wave-front-sets" of representations by Barbasch

and Vogan ([BV]. The behaviocur under parabolic induction is very easy to guess,
but surprisingly hard to prove for associated varieties (cf. the comments in
[BV]). Let us explain our solution of this problem here a little more precise-

ly.

In our previous notation, we consider the principal H fibration G — G/H,
and we now assume H a parabolic subgroup. Let J be an ideal in U(h), and

I the induced ideal in U(g}. The claim is that the associated variety of I



is obtained from that of J as

V(gr 1) = 6™ V(gr J) (1)
where p: g* — h* denotes restriction, and G ... denotes G-saturation
(cf. theorem 2). As a first ingredient, we use the sheaf of ideals J in u,
and the description of its characteristic variety in (T*G)/H % 6 g*, as men-
tioned before in this introduction, to obtain an analogue of (1) on the level
of characteristic varieties, viz.

ch(u/d)y = ax o7t wigr ). (2)

Second, we use the canonical map n:(T*G)/H —— g* (& modified "momentum map",

cf. [BBII) to relate (2) to (1). In fact this map obviously maps the right-hand
sides onto each other, so it suffices to prove the same for the left-hand sides,
in order to derive (1) from (2). It actually suffices to prove only one inclusion,
namely

V(gr 1) ¢ Ch(u/d). (3)
(This is because the other conclusion in (1) is anyway true [Bo1l). Third, we
use the above mentioned fact that the induced ideal 1 appears as the kernel
of the canonical homomorphism of U(g) into the ring of global sections of U/j,
which gives

Vigr 1) = V(U(g)/1) < V(r(&/H,u/3)). (4)
Hence, as a fourth and last step toc complete our argument, it suffices 1o know
for the U-module M = U/J and its U(g)-module of global sections M = I'(G/H,M)
that we have

V(M) .c- = Ch(M). (5)
(Because (5) and (4) imply (3) and hence {1).) In fact, we establish (5) even
for an arbitrary coherent U-module M in our proposition 5 (special case i = 0

there).

At this point of our argument, the completeness of G/H {or the parabo-
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licity of H) is crucial, since it implies first properness of =, and then
finite type of M. We use similar arguments in [BBIIII to prove a result re-
lated to (5), which also relates asscciated to characteristic varieties, see

loc.cit., theorem 1.9.

As a final topic in this chapter, we discuss the case of the H princi-
pal fibration X = G/(P,P) —— G/P, where G 1is semisimple, P parabolic, and
H = P/(P,P) hence a torus. It seems to us that the relative enveloping alge-
bra U for this fibration should provide a usefull setting to study the con-
cept of a "Dixmier map", which can be (well-)defined as in [Bo 31 on the set of

_G-orbits in the "Dixmier-sheet" [Bo 21, [BK] attached to P. In fact, the image

of the "moment map" =x:(T*X)/H —— g* is the closure of this Dixmier sheet
(identify g* = g),and the map = "itself is its famous "generalized Grothendieck
simultaneous resolution". Now each G-orbit in the Dixmier sheet for P is re-
pfesented by an element f polarized by p = Lie P (in fact, this defines the
Dixmier sheet), and thé so-called "orbit method" of Dixmier-Kirillov attaches
to this orbit the ideal in U(g) induced from the maximal ideal of U(p)

given by f. It can be proven, generalizing [Bo3l, that this process attaches

a well-defined induced ideal to each orbit in the Dixmier sheet. It is a very-
delicate question, answered positively in [BJl for G = SLn only, wether this
map is also injective on the orbit space of the fixed sheet . We suggest here
to modify the orbit method by attaching to f above the corresponding sheaf

of induced ideals in U, since the G-orbit of f can actually be reconstructed

from this sheaf, as we show in proposition 7 and its corollaries. So our "modi-
fied orbit map" becomes injective. For this purpose, we have to introduce another.
notion of characteristic varieties, refering to an alternative filtration on

the relative enveloping algebra.
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However, this circle of ideas has not been developped very far yet and
should be further investigated in the future. In particular, we conclude the

last chapter by stating some typical open problems arising in this context.
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§ 0. Differential operators on algebraic varieties:

definitions and local expressions

Let X be a smooth algebraic variety over a field k of characteristic
0; we denote by ok the sheaf of (germs of) regular functions on X. Inside
the sheaf Endk (OX) aésociated to the presheaf U p— E”dk(ou)’ one may,
following (BGG], consider the subsheaves Dx(m) (for m € N) defined as fol-
lows:
(i) Ux(-1) = 0 and DX(O) = 0x c Endk(d&).
(ii) Dx(m) is the subsheaf of Endk (O&), whose local sections satisfy

[Dx(m), OX} c Dx(m-1), for any integer m > 0.

Then D

X = U Dx(m) is & sheaf of algebras on X; one has D k)

( (
X X
m
x (m+k)  and [Dx(m), Dx(k)] < Dx(m+k-1), hence grDy .-.?[Dx(m)/vx(m-ﬂ]

m). D
c?D
is a commutative sheaf of rings on X. If q:T*(X) —— X 1is the projection,

q*UT*(x) is isomorphic to ger. By [EGA 23,' q*OT*(X) is a coherent sheaf
of rings which is even noetherian in the sense of [KK]. Hence the same is true

of DX.

In order to give the traditional description of DX in terms of local
coordinates, we will need the following

Proposition 0: DX is in a natural way a sheaf of rings on X for the &tale

topology.

Proof: First we show that Dy, 1is a presheaf on X for the &tale topology.
For i: U ——»X an étale morphism, we have a morphism F(X,TX)-———af(U,TU)
since any tangent vector field 1ifts uniquely under an &tale morphism. This de-
fines a map T(X, DX(1)) ——-—>F(U,DU(1)). Now bx is generated by DX(1) as
a sheaf of algebras, hence it is easy to extend the previous map to & morphism

of algebras. This proves our first claim,
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Now let (ia: Uy — X) be a covering of X in the &tale topology [Gil,
[(SGA4I, i.e. the i, are étale and their images cover X. We have to prove that

the sequence

0 —> I {X,0,) — @T(U.,0, ) — & T(U x, U,, D )
X . ¢ Ua o.B a "X B Ua XX U|3
is exact. So let Py C.F(UG,DU } be such that P, and PBresUﬁct to the same
a
element P . of r(U, xy Ug, D ). It is well-known that Oy ?s a

, Ua Xy UB
sheaf for the &tale topology, hence the sequence
0 —> I (X,0,) —®r (U ,0, ) —> & T{UU_x, Uy, O
X o o’ U, o B a “X B Uaxx UB
is exact. Therefore the commutative diagram

).

@r{_,0, ) —> @r(U_ x, U, 0 }
o o Ua o 5 a "X "B Ua Xy UB
@ P, @ P, R
a a,B 7
v 4
® T 0, ) —> U x, Uy, 0 )
o « Uu a,B a "X B Ua XX UB

defines an endomorphism of F(X,Ox). We may similarly construct an endomorphism
of P(V,Ov) for any Zariski-open set of X, and these endomorphisms are com-

patible. Hence we have a section P of Endk (Ox), which maps to the section

P, of DU c Endk (0U ); let us check that P is in fact a section of Dx. Let

a o
x € X, and V a neighbourhood of x which is contained in the image of some

map i . If P_ 1is a section of DU (ma), then ﬁv is a section of Dx(ma),
a

which proves the proposition.

Now for any point x of X, there is a neighbourhood U of X and an

étale morphism wu: U — A", Récall that for (21,..., z”) linear coordinates

on m”, D n is a free-left O.n-module with basis
i A



3 _ 3 --- 3
a o o
8z oz, 1 azn n
indexed by « € N". Since DU = u*p _— OUQD u_1(D n) it follows that
A -1 A
(0 )
AN

D, is a free left ¢, -module with basis u'1'bii?) or simply 2 So any ele-
U U az® 7%

ment of F(U,DU) has a unique expression as
z 8

lai< m fo azqf
where fa€ R(U). In the same situation, there is a rational morphism
T*(U) — T*(A"). The corresponding morphism R(T*(m”)) —> R(T*(U)) coin-
cides with the graded map of D(A") —— D(U). In fact we have even T*(U) =
Ux nT*(An).

A

Remark: We refer to [EGA4] for a definition of the sheaf of differen-

v

. +1
tial operators of order <m as elements of Homox(p1,* (OXXX/JQx ),Ox)

where Ay € XxX is the diagonal, with defining sheaf of ideals JA , and
X
Pyi XxX —> X is the first projection. Grothendieck's duality theory {H2]

then implies the following equality

dim X max
DX = pi’* HAX (Dz* QX )
where Q?ax is the sheaf of differential forms of maximal degree (i.e. of

degree dim X); in the complex-analytic context, this is used in [SKK] as a

as a definition of DX.
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§ 1. Induced representations and the concept

of relative enveloping algebras

Qur Lie algebras are finite dimensional over some algebraically closed
base field k of characteristic 0. Let g be a Lie algebra, and hc g a
subalgebra. Let U(g) resp. U(h) ¢ U(g) denote their enveloping algebras.
Let us recall the notion of induction of modules (resp. ideals) of U(h) to

modules (resp. ideals) of U(g):

If M is a (left) U(h)-module, then
I dg- -
n EM = U(g) ®U(ﬁ) M

is called the (left) U(g)-module induced from M. If I is a (two-sided)

ideal of U(h), then the largest (two-sided) ideal J contained in the left

ideal U(g)I generated by I in U(g) is called the ideal induced from I

in U(g). The two notions are related as follows, as is well-known (and easy
to prove, cf. [Dil.

Lemma 1: Let M be a U(h)-module, and I = Ann M its annihilator. Let N
be the U(g)-module induced from M, and J = Ann N its annihilator. Then

J is the ideal induced from I in U(g).

Remark: We recall that Dixmier (Di], introduces the notion of "twis-

ted induction”. Let x denote the character of h such that

x(x) = %_trace g/h ad x, for all x € h.

For any U(h)-module M, the "twisted induced module" is given by
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g
Ind_E M B kx'
We shall meet below instead the "doubly twisted induction", replacing x by

A = x, which results in the U(g)-module

ko

g max
Indﬁ M@ ko = IndE M@ A" (g/h).

In the sequel, H is a linear algebraic group over k, acting on a smooth
algebraic variety X. We shall study sheaves of modules over DX, the sheaf of
differential operators on X (cf. parts I,III}, which are "equivariant" under

the action of H in the following weak sense:

Let q: Hx X — X denote the action, and p: Hx X —= X the pro-
jection. Notice that both inverse image sheaves p*M and g*M are modules over

DH « X ] DH Eqvx ( the external tensor product, notation [Godementl), hence

over the subsheaf OH BJDX. Then we define a weakly H-equivariant Dx-module
to be a Dx-module M, equipped with an isomorphism

a: ¢*M — p*M
of,OH[z Dx-modules, such that « induces a group action of H on M (i.e.
a satisfies the appropriate cocycle condition ensuring this, cf. [Mul.

The isomorphism o will be refered to as the {weak) eauivariance datum. The

same weak notion of equivariance is used in [BBM, § 2.12], see also [Mul

for more back-ground.

In the present paper, we shall use this notion to interpret modules

over the enveloping algebra as weakly equivariant D-modules on the group,

as stated more precisely in the next lemma. We let h denote the Lie alge-
bra of H, which we define as the Lie algebra of right-invariant vector-
fields on H. Then the enveloping algebra U(h) identifies with the algebra

of right invariant differential operators on H (as usual, cf. e.g. our
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part I, section 3.3). Hence we can make any h-module M into a DH-module
by the process
which is known as the "localization of M on H" {cf. part I, [BeBel, [BKI])}.

The following facts may be enlightening.

Lemma 2:

a) The localization on H of any U(h)-module is weakly equivariant with re-

spect to the action of H on itself by right multiplications.

b) The localization functor (*) establishes an equivalence of the category of

all left U(h)-modules with the category of all weakly H-equivariant quasi-

coherent left DH-modules.

c) A gquasi-inverse functor is given by

M —s r(H,M)", : (*%)

i.e. by taking the module of those global sections of M which are in-

variant under right translations.

It remains to exhibit the equivariance datum for the DH-moduIe UH GRNEU M,

to which the lemma refers. For this purpose, let us first recall the following

(cf. also [BBIILI, 1.7).

Lemma 3: Multiplication in DH induces an isomorphism

Oy @ U(h) =17,

of sheaves of (0,,U(h))-bimodules.

This may be proven by filtering both sides in the usual way. Then one

gets, on the associated graded sheaves, in each degree n > 0, the morphisms
0y @ s (h) — sN(T),

where TH is the tangent sheaf of H. These are isomorphisms, namely the

standard trivializations of Sn(TH).
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Now we\conclude from Lemma 3 that
U Gh(ﬂ) M=o, @ M

as OH-modules. On the right hand side, h acts by
x.(fom =x(f)oam+ f@ (x.m),

(where x € h, f € 0,, m € M). Now let us exhibit the equivariance datum

o,

where q: H x H — H denotes the action, and pzf HxH-—>H projec-

tion on the second factor. As 0,_I . H-modules, we have

o -1 4
P2 Puyn) ™ = % n® ) P2 O B F Gy oy B
2 Oy |

and similarly,

q* (Dy Gh(g) M) ¥ 0, & M

So both inverse image sheaves of DH Gb(ﬂ) M with respect to p, resp. q
identify with the same sheaf OH < H ak M. Hence the sought-for equivariance
datum «. Using lemma 3 once again, one easily checks that « 1is both OH < H™
linear and pé1(u(n))-linear, hence OH{E DH-linear. This proves lemma 2a),
that is for each U(h)-module M, the D -module M: =D, @h(n) M becomes weak-

ly H-equivariant.

To describe the quasi-inverse functor (2c¢)), let us first describe the
action of H on T(H,M). By the linearity of our group H, and the equi-
variance datum o, we obtain a morphism | |

I'{H,M) — T(H x H, gq*M)

— > T(H x H, p;M) = T(H,0,) @ T(H,M),

which by the cocycle condition for « gives TI(H,M) the structure of a co-
module over F(H,OH), hence an H action (cf. [Mul. In this comodule, the

H-invariants
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H

r(i M) ¥ r(H,0, @ M = rH,0)" @ Mo
form a module over the algebra
ot e un).
Hence we have reconstructed M from M, as claimed in lemma 2c). - To complete

the proof of the lemma, we note that the functor M ——» M is obviously fully-
faithful, and that its essential surjectivity follows from the fact that a quasi-
coherent H-equivariant OH-module L is generated by its invariant global sec-
tions L= F(H,L)H.

As suggested by lemma 2, we shall now proceed by describing the process of
"induction" from h to g in terms of D-modules. Our sheaf-theoretic analogue
of the induced module will be a sheaf of modules on the homogeneous space G/H,
over a certain sheaf of algebras U on G/H, which we will call a "relative

enveloping algebra", and which we want to define now.
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We shall introduce the notion of a "relative enveloping algebra" here in
the more general situation of any principal homogeneous fibration f: X —> Y
under a right action of H on X; in the applications, X will be a linear

algebraic group G, and Y = G/H its quotient by a closed subgroup H c G.

So X and Y are smooth algebraic varieties over k, f: X —> Y 1is a

smooth morphism, H acts on X on the right, the diagram

—< e—— <
—H

commutes, and the H-bundle f 1is locally trivial for the étale topology ("iso-

triviale" in the terminology of J.-P. Serre (Selt. ):
For any y € Y, there exists an é&tale morphism U L > ¥, the image of which
contains y, such that there exists

X x, U==>{ x H,

Y

an H-invariant isomorphism, H acting on U x H by right translation on the

second factor.

Remark: In practice, it is foostrict a condition for a fibration to be
locally trivial for the Zariski-topology. Most of the constructions to follow

would also work in the context of complex analytic manifolds.

Consider the projection f*(DX) of the sheaf DX to Y. This is a sheaf

of algebras, on which the group H acts. Let U be the sheaf of invariants



under H in f*(DX): U= (f*(DX))H.

Definition: U 1is called a "relative enveloping algebra".

let U—»Y bean étale open set such that X x, U-"~>UxH as above;
then it is easy to identify i“(u) with DU & U(h) (the tensor product of
the sheaves of algebras DU and U(h).

Lemma 4: U 1is a coherent sheaf of rings. Its fibers are left and right noetherien

rings.

This is easy to prove when the H-bundle is trivialized. Hence the state-
ment of the lemma is valid on each open set of an &tale open covering, hence

it is true on Y (see [EGA 41, 2°'T® partie, 2.5).

Choose x € X, and let y = f(x). To each left U(h)-module M, we will

associate a quasi-coherent sheaf ﬁx of left U-modules, concentrated at the
point y. First recall the sheaf of left DH-modules M = DH @h(g) M. Since H
is identified with f '(y) by the choice of x, in such a way that the right
action of H on f'1(y) corresponds to the action of H on itself by right

translations, one may view M as a sheaf of left D -modules. One then

-1
" £ {y)
has a way of constructing a sheaf M of left Dx-modules, concentrated on

f'1(y). To explain this, let Z = f'1(y), and let j: Ze— X be the in-

clusion. One may define a sheaf Dx 7 Of {(j DX,DZ)-bimodules (K1,p.431,

[(Bjl. Let QQEX (resp. anx) be the sheaves of differential forms of maxi-

mal degree on X (resp. Z}. Then ﬂan is a sheaf of right Dx-modules (with

W.V = -Gv(w), for w a section of anx’ v a vector field on X, and 6 de-

noting Lie derivation, see [K1] or (Bj]. Consider the sheaf 0, @, (n’)‘(‘ax)®'1,
: X
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it is a left Dx-module in two different ways
- the first module structure is just given by

P. (Q@w) = PQ® w.

- the second one arises as follows: DX is obviously a right Dx-module;

now for any sheaf N of right Dx-modules,

N®O (max)®—1 max )

Hon,, (9
is a sheaf of left Dx-modules, a vector field v acting on a section ¢ of

Qmax N

Homy (@,"", N) by

X
v.p{w) = o(w.v) - g{w).v.

1 1 n
This gives the second Dx-module structure on 0y @ox (Qx)®_ JIF (2, ..., 2)
are local coordinates, (dz)®'1 the section of (QX)@_1 which maps
dz = dz' A...adz" to 1, then the vector field _ﬁ.i acts on Dy @, (ﬂx)@_1
9z X
by 2 (Po @) = - (r.3h @ ().
az!
Consider now j~ (D ®O (anax)w 1), the inverse image to Z of D @O (Q max)®~1’
the second D -module structure on D x (a max)® 1 allows us to endow
' X
i (D ®0 (nmax)®-1) with a left Dz-module structure. We still have an action

X

of j~ Y.y, coming from the first action of 0, on 0D, ® (Qmax)®-1
X first x o Px ®p

; this action
commutes with the action of DZ. Hence

a1 max @1 max
X 37 (0y)

isa (j'1Dx,Dz)-bimodu1e.

Given a sheaf M of left Dz-modules, we then define
i (M) = M = 3«0y ;@ M). (Here j, just indicates that we consider this
z
sheaf, concentrated on Z, as a sheaf on X with zero fibres outside Z .) Let

us recall that this is an exact functor mapping (quasi-)coherent Dz—modules to
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(quasi-) coherent Dx-modules with support in Z (See {Bj, p. 234-51), Prop.
2.10.1 for exactness, 2.10.2 for coherence; Bjdrk considers only the complex ana-
iytic case, but the arguments carry over to the algebraic case considered here,

replacing open neighbourhoods by &tale neighbourhoods.)

Local computation: Let (21,..., Zn) be local .coordinates on X such that Z

has defining ideal (21,..., Zk). Then (dzk'”/\...,\ dzn)‘&'1 may be viewed as a

section of j*(nran)®-1 ® (nrgax), hence as a section of D As a j'1(DX)-

X&— 7°
zk+1A el A dzn)@H, the annihilator of
k+1

module, DX <« 7 s then generated by (d

which is the ideal of j'l(vx) generated by (z .., z"). The action of 4,
3z

(for k + 1 <1 <n), viewed as a vector field on Z, cn DX(—— 7 is given by

(@ (62T A. Ad2"®T) = - 0L 2 e (a2 AL adME
-3z} JA
where P is a section of DX, PlZ the corresponding section of j'1(Dx), and

-4
¥4

free with basis ( M u)
o, - k
6211 ceen Va2 0

P. 71 1is the product of two sections of DX' HencE as a DZ-module, Dx 1 is

, where jat= I o,
1

1

In case Z 1is a point, DX<—— 7 s isomorphic to HZ (X,OX), which is des-

=D

ribed in detail in [BB I, 1.6]. Notice also that .Dx id =
} «— X

Xo

Note that in our case where Z = £ '(y), Dy, 7 is aweakly H-equivariant sheaf
of (j'1(Dx), DZ)-bimodules, hence M is a weakly H-equivariant sreafofDx—birmdules,
supported on f'1(y). Then ﬁx: = [f*(ﬁ)]H is a left U-module concentrated on
the point vy, which we may identify with its fibre at y. This will be called

the uy-module induced from M" (of course, depending on the choice of x€f'1(y)).

We need the following self-evident:
Lemma 5: Let Z1 L —— X1, ZZ=——~> X2 be closed ‘imersions of smooth varieties.

There is a natural isomorphism

i

D

0 @0
X1>(X24—Z1)(Z2 X1¢———Z1 X24——-—-22
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Let U be an (étale) neighbourhood of y such that Uxy X—=— UxH as

always. We may then write:

y}xl-!_

Moty = 3 Cppe 3 7.8 M = Dy gy @M

e TN e e U

. ooy & . -1
Hence, using lemma 2, we have TI(f '(y),M)= DU — 1y} @ f(f. (y), M), there-
. . . -1 . .
fore the space of H-invariants in T(f "(y), M) 1is equal to DU«—{J} ® M. Here
M= F(f'1(y),M)H via the equivalence explained in lemma 2. From this we deduce

Lemma 6: The functor M k——a-ﬁ; is exact, and transforms U(h)-modules of finite

type.to uy-modules of finite type.

We now turn to the induction of ideals.

Proposition 1: Let M be a U(h)-module, J its annihilator. There exists a

~

sheaf J ‘of two-sided ideals of u, such that for any x € X, y = f(x), the

fibre ﬁy, is the annihilator of the uy—module ﬁx‘ Furthermore, J is a co-

herent sheaf of left (and right) ideals of U.

Proof.: One first verifies that ﬁyznﬂnn ﬁx is independent on the choice of

X € f'1(y). To this aim, one may replace Y by an &tale neighbourhood of vy,

and then reduce to the case X T Y x H. Then for h € H;.one. has

R Ad h Ad h
Meon = Dy «— {y} & )

M by ™wisting" the actionof h via Ad h. The annihilator of ﬁ;'h is then

0y y ® Ad hy . Dy y ®Jc uy: it does not depend on h. To prove that the

collection of the Jy, for y € Y, defines a sheaf J , one may verify it on each

M where M is the U(h)-module obtained from

open set of an étale covering, using the 2tale descent for quasi-coherent sheaves
of 0y-modules [SGA 11, Exposé VIII. One then reduces to the case. X = Y x H,

which is obvious from the above description of the 3&. The last statement fol-

lows also by &tale descent. Q.e.d.

We now specialize these considerations to the situation f: X = G —— Y = G/H,

as mentioned earlier: Recall the bimodule-isomorphism OG @k U{g) =L DG (Lem-

3
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‘ma 3). Projecting to G/H and taking the H-invariants, we get

U= 16,(0)1% = [£.(05) @ V(@I = (F.(05)1" @ U(g) = 05y & U(g)
as a (OG/H,U(Q))—bimodule. Similarly, U = U(g) @ OG/H’ as (U(g),OG/H)—bimodule.

This is a nice description of U, although it somehow hides the multipli-
cative structure: Let us 'mention that for g a section of OG/H’ £ €g, the
commutator [&,gl], computed in U, is a function on G/H, such that its pull-
back to G 1is E.(gef). On the other hand, the description of U wusing a lo-
cal trivialization of f does not lead to an easy description of the morphism
u(g) — u.

~

Proposition 2: Let M be a left U(h)-module. Then the Uf(1)—module M, 1s

canonically isomorphic to U(g) ®y(h) [M®k,1 as a U(g)-module.

Here we meet the chararcter X = 2x = tracgg/h ad of h, as mentioned at

the beginning of this chapter.

Proof: We first notice that
s qMAX @1 Max, = max -
AT @ () = 0y @ AT (Ty ) = Oy @ Ky
where j 1is the inclusion of f"1(y) into G, y = f(1), as before. Hence, for
the localization of M on H,

we have a natural map from

~ H _ H
M@ ky = P(H,DH ®U(E) M ® k)\]) = T(H,M & ky)
to
H _ MH o
F(G,DG — H @bH M)" = T(G,M)" = M.
This map is U(h)-linear, and so, by functoriality of induced modules, extends

uniquely to a U(g)-linear morphism
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Ind% M@ ky = U(g) @) (M@ k) — .
Our claim is that this map is an isomorphism. To prove this, we use a free pre-

sentation of M® kx as a U(h)-module, and apply lemma 3, to reduce to the case

M® K, = U(h), that is M =U(h) ® k_y- Then the above induced module is just

U(g), we have i = j*(j*DG), and we have to verify that the natural map
U(g) — (H,5*0 )" |
is an isomorphism.But

r(H, 30" = rihu(g) @ 0" = u(g) @ T(H, 0" = (),

and the map in question is just the identity ~map on U(g). Q.E.D.

Corollary: Let M be any U(h)-module, and let I = Ann M denote its an-

nihilator ideal in U(h). Then for any point y in G/H the kernel of the

map U(g) — EU/T]y is given by the annihilator of the induced module
=
(*) Tndd M: = Ulg) @) M@ KyJ.

Remark: We shall call (*) the "doubly twisted" induced module of M,
and its annihilator the "doubly twisted" induced ideal of I (cf. the intro-

ductory remarks of this chapter).

The corollary follows from the definition of J {given in proposition 1),
and from proposition 2, in the case y = f(1). By using the G-homogeneity of

the situation, it follows for arbitrary y as well.

Let us mention here also the following variant of proposition 2, dealing
with a situation which we had to study already in (BBI], (see 3.11, 4.8). In-
stead of the prinicipal H-fibration f: G —> G/H, we consider in this variant
the principal P/H-fibration f:G/P —> G/H, where P 1is another subgroup of

G, in which H 1is contained as a normal subgroup. Let p = Lie P. Let M be
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any left-p/h-module, and ccnsider it as & p-module with trivial action of h.
Denoting x € G/P, resp. y = f(x) € G/H the images of 1 € G, let us con-
sider the uy-module ﬁx as constructed in a more general situation above. Then

we have

(**) ﬁx 4 ?nd% M

as U(g)-modules. .FHere the "doubly twisted" induced module is U(g) ah(h)[Mtz kx]’
A= tracgg[gad, notation (*)). As from proposition 2, we may also concluaé from

its variant (**) a corollary describing the annihilator of the induced module

7nd§ M. Details are left to the reader.

The reader may compare this result with loc¢. cit., corollary 3.11, where
we were dealing with the special case that H = (P,P) 1is the commutator sub-
group of a parabolic subgroup P of a semisimple group G. On this com-
parison, the reader will notice that we actually encountered "relative en-
veloping algebras" in this context already in [BBIJ], although in a slightly

disguised form.

Let us now discuss an important class of examples of guotients of relative
enveloping algebras. For an arbitrary principal H-fibration f: X — Y, we
obtain from any ideal [ of U(h) a sheave of algebras U/T from the relétive
enveloping algebra U (notation: proposition 1). Let us consider more speci-
fically the case of the kernel of a character, that is

I =10 = (kerr)U(h) = Amn k,

where u: h ——> k 1is a character of h. We observe that the sheaf of algebras

u o= T
u U/Iu’

coming from a character wu, is locally isomorphic to Dy. (Here "locally" re-

fers to the &tale topology.) Indeed, for i: U——> Y an &tale morphism such

-1 _ -
that X x, U —=—>U x H, we have i u, = DU 8 [U(Q)/Iu] < DU.
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For u =0 for example, we note that Uy = U/TO is in fact canonically

isomorphic to DY' To see this, Tirst notice that the natural morphism of

sheaves of vector fields

H
fo (T —> T,

extends to a natural morphism of sheaves of algebras of differential operators

u—.»vy,
which is clearly surjective. It remains to determine its kernel. By an easy

computation, locally in the &tale topology, we identify the kernel with TO'

Applying this to the case of the fibration of a group by a subgroup,

f: X = 6 ——Y = G/H, we conclude the following

Corollary: The kernel of the "operator representation" U(g) —= D

Y
(terminology [BBIJ) is the annihilator of the induced module

Tndd ko = U(g) @y Ky

Comment: This result was established in (BBI], corollary 3.6. It was ac-
tually the desire to extend this result to induction of more general (infinite-
dimensional) h-modules, which led us to the concept of “"relative enveloping al-

gebras" as developed in the present paper.

Let us return to the sheaves U = U/Tu, as defined above for wu € X(h),
where X(h) denotes the vector space of characters of h. We note that
the set of equivalence classes of those sheaves of algebras on Y, which are

locally isomorphic to Dy (in the &tale topology),and contain 0Oy as a subalge-

1 1

bra, iS in bijection with H (YQI’QY cE)’ the first cohomology group of the

1 1 . .
sheaf nY,cﬂ‘: nY of closed 1-forms on the &tale site Yez of Y. This ob-

servation is due to Beilinson. Hence we obtain a map:
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X(h) —> H'(Y_., al )
- et Y,el?
p — class of Uu.

The composition of this map with the canonical map into -H1(Y,0$) is described

as follows. By replacing H with H/(H,H), and X with X/(H,H), we may assume
H commutative, In that case, we have an exact sequence of locally free sheaves

on Y

0 —>h@ 0, —> fu(TY —> T, — 0.

To we X(h) fis associated another extension of T, by 0, which is classified

by an element of

1 _ 1 1y _ it 1
Extol(Ty,oY) = Extoy(ov,nY) = H(Y.8y),
since Y is smooth. This element is the image of the class of Uu in H1(Y,01).

More generally. we may consider any finite-dimensional irreducible H-module

E with annihilator I = Annu(h) E, and still obtain a similarly natural des-

cription of the sheaf of algebras U/T as follows: We have U(h)/I —» Endk E.

Let E~ denote the vector-bundle on Y determined by E. Then /T is na-

turally isomorphic to the sheaf of algebras DY(E”) of differential operators

on Y, acting on the sectionsof E™.

Remark on direct and inverse images of U-modules. Given the classical notion

of morphisms of H-principal fibrations, one may develop a formalism of direct

and inverse image for sheaves of U-medules, entirely analogous to the corres-

ponding formalism of D-modules [K1,4.31. For example, let us give a few indi-
cations on how to define direct images, with respect to a morphism of H-princi-

pal fibrations, given by a commutative diagram
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-1

We first define a sheaf UY' of (h Y"U )-bimodules by

Y

. . max H\@1 max-H
t=h (uY ®0 ([fy e o e
h™'(0y)

Then the direct image, or "integration along the fibres", of a complex M’

UY'G-—Y

of UY-modules may be defined by {(cf. loc. cit.)

J M= Rhy (Uy @ M),
h Uy

L. . . max
Similarly, in the duality for UY-modules, one uses the UY-module [f Ay ]

instead of Q¢ax_ However, since we have no use for this formalism here, let

us leave the details to the reader.
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§ 2. Characteristic varieties of U-modules

and shifted cotangent bundles

As usual, H 1is a linear algebraic group, and f: X ——> Y 1is a H-prin-
cipal fibration. The sheaf of relative enveloping algebras, U:= [f*(DX)]H
admits a filtration given by the.dégrees m of differential operators a§
u(m) = [f, (0, (m))1".

It is easy to determine the associated graded sheaf gr U = @ U(m)/U(m-1):
m>0

The quotient T*(X)/H of the cctangent bundle T*{X)} by the action of H is
a vector bundle over Y; then

gr U = palOpaxy /)
where p: T*(X)/H —— Y denotes the structural morphism. For instance,
u(1)/uQ) = [f*TX]H identifies with the subsheaf of D*(OT*(X)/H) of func-
tions which are linear on each fibre of p. It is easily seen that any co-
herent sheaf M of U-modules admits locally a good filtration {M_ }

nne 2
which may be used to define the characteristic variety Ch(M): We define

Ch(M) as the support in T*(X)/H of the coherent sheaf gr (M) of gr (U)-
modules. Of course, this is not really a new notion: f'1(M) is a coherent
sheaf of Dx-modules, and Ch f'1 (M) is the inverse image of the character-

istic variety Ch M in the usual sense under the quotient map T*{X) — T*(X)/H.

There is a natural morphism i: T*{Y) — T*(X)/H of vector bundles on
Y. If M is a coherent sheaf of DY-modules, then 1 (Ch M) 1is the character-
istic variety of the U-module M.(Recall the natural surjection U —» 0, of

Y
§1.)

We shall ;;_,-‘< ~mainly be interested in the description of the characteristic

variety Ch(u/ﬁ), where J is the sheaf of ideals in U induced from an ideal
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J in U(h) as defined in §1. It is clear that Ch(u/J) contains
T*(Y) ¢ T*(X)/H (we assume J ¢ U(h)). Evenmore, let T be the vector
bundle on Y which is the cokernel of i (TF is dual to the tangent bundle

Tf to the fibres of f), and let q: T*(X)/H — T; be the quotient mor-
phism. Then Ch(u[ﬁ) is the g-inverse image of a subvariety of Tg, which we
now determine.

Lemma 7: Let V ¢ h* be a subvariety invariant under the coadjoint action of

H. There exists a unique subvariety v of T; such that, for any &tale map j:

U—>s Y with Uxy X—=—UxH (hence j'1 T¥# = U x h*), the inverse image

i"1(V) gets identified with U x V.

Proof: Uniqueness is clear. It then must be shown that any automorphism

of UxH —Ela U, commuting with the right action of H, induces an automor-
phism of TE1 = U x h* which stabilizes U x V. But such an automorphism is
of the following type

Ux H 3 (xy) — (x,alx)y},
where a: U ——H 1is a reqular map. This induces the automorphism

{(x,h*) — {x,Ad* é(x)o h*) of U x h*,
which fixes U x ¥, since V 1is stable under fhe coadjoint action of H.
Hence the lemma.

For any U(h)-module M, let V(M) or V_(M) denote its associated variety

=

(in the sense of Bernstein, cf. our part I, 4.1).

Proposition 3: For a (two-sided) ideal I of U(h), the characteristic variety -

of UV?, considered as a sheaf of U-modules, may be described in terms of the

associated variety of U(h)}/I, considered as a (left) U(h)-module, as follows:

ch(u/T) = ¢ (F(Uh)/1)),
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the preimage under the quotient morphism gq: T*X/H — T; (= Coker i} of the

variety defined in the previous lemma.

This proposition is proven by an easy local computation, which is left to

the reader.

Shifted cotangent bundles. It seems appropriate at this point to mention

some recent work of Ginsburg [Gil and Kostant (unpublished), explaining in
particular how their new noticn of "shifted cotangent bundles" fits into our
present context. Here we assume the group H commutative, and f: X —— ¥
is a principal H-fibration as before. Given any wu € h*, we consider the sub-
variety determined in T*X/H by the one element set VvV = {u} as q"1(V)

{notation as in proposition 3).

Definition: This subvariety, made into a sympletic manifold by the pro-
position below, is called a "shifted cotangent bundle" of Y. It is denoted by
-1, ™
T*(Y) =q ({ul).

Proposition 4: (Ginsburg-Kostant): a) For each u &€ h*, the variety T;(Y)"

carries a natural structure of a sympletic manifold.

b} This “shifted cotangent bundie" TE(Y), considered as a scheme over Y,

and as a sympletic manifold, is locally (with respect to the &tale topology)

isomorphi¢ to T*Y, the "ordinary" cotangent bundle.

¢} If the “shift" w» is zero, then the above construction reproduces the ordi-

nary cotangent bundle, that is T¥ (Y) 1is naturally isomorphic to T*Y.

Remark: In the subsequent sketch of a proof of the proposition, we apply

the so-called method of Hamiltonian reduction, which is explained more generally,

and in more detail in a paper by Kazhdan, Kostant and Sternberg [KKS].
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Proof: Since the natural action of G on T*X 1is Hamiltonian, we have

a momentum map n: T*X —— h* (see [BBIJ], 2.3 for a definition in this case,

or loc. cit., and [Kostant] for more general terminology). In the present case,
the momentum map is smooth, since we are dealing with a principal H-fibration
(consider a local trivialization to see this). It follows that the fibres of

x are smooth subvarieties of T*X. Furthermore, we claim that they are in-
volutive:

Lemma 8: The fibre = 'u is an involutive subvariety of T*X.

This means (by definition of "involutivity") that the tangent space
Tp n'1u at any point p of the fibre, is co-isotropic (contained in its

orthogonal) in Tp T*(X).

T*X = T*Y x T*H

Then = 'w = T*Y x H x {u}, so let p = (z, h, u) with z € T*Y, h € H.

As usual, we may assume X = Y x H, hence

nt

T*Y x H x h*.

Then

-1
Tp T o= TZT*Y @Th

In this description, the orthogonal of the tangent space Tp n'1u is 0@he0,

which’is, indeed, contained in Tzn'1(u), as was to be shown. This simultaneouly shows

that this orthogonal is the image of h in TD » "' under the map h ——> Tpn"1u
coming from the H-action on n

H=T,™@he®0 c T,T*f®h ®h*.

Hence the mapping LTI n'1u/H has for fibres the leaves of the

"foliation" defined by the kernels of uw| P the restrictions of the cano-

T n

pt * o
nical sympletic form w on T*X to the tangent spaces of n'1u at its various

1

points p € n 'u. This is the so-called "null-foliation™. It follows now that

the restriction of « 1o the tangent bundle of x'1u is the inverse image of

a 2-form w' on n'1u/H, which is non-degenerate. We have exhibited now the
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~ ‘1

sympletic structure of the "shifted cotangent bundle" T:(Y) ¥ r u/H, and
the additional claims of proposition 4 are now easily seen from the description

of this structure as given above. Q.e.d.

Affine structure on shifted cotangent bundles. Notice that we have a

natural morphism

TE(Y) xy TE(Y) — %, (Y)

Y H+v

for any u,v € h*. This satisfies an obvious associativity law. In paricular,
taking v = 0, we see that T*Y = T%(Y), as a group scheme over Y, acts on
the Y-scheme Tﬁ(Y). Thus the shifted cotangent bundle Tﬁ(Y), for any wu € h*,
becomes a principal hamogeneous T*Y-space. In the terminology of Ginsburg (loc. cit.), the

scheme T:Y —— Y is endowed with an affine structure. In more concrete terms,

the fibers of the projection map T:(Y) —>» Y have the structure of affine
spaces. It is then clear that the sheaf OT*(Y) of functions on the shifted
cotangent bundle carries a natural filtratign, given by degrees -of restrictions
ot the functions to fibers, these restrictions being considered as polynomials.
The symplectic structure of Tﬁ(Y) detines a Poisson bracket structure on
OTﬁ(Y)' If" g° and h are two germs of sections of OTE(Y)’ which are affine

on each fibre i.e. of degree < 1, then their Poisson bracket {g,h} is also

affine.

An interpretation in terms of connections. Let us now assume the group H
one-dimensional, so its Lie algebra is h = k. In this case, the shifted co- |
tangent bundle TQ(Y) has the following nice interpretation due to A.Weinstein,
in terms of connections of the H-principaf fibration f: X —— Y under con-
sideration. Let us recall that a connection on this fibration is given by a
morphism

v f*(TY) — TX



- 33 -

of coherent sheaves on X satisfying the following two conditions (see [KN]):
To state the conditions, let TXIY denote the subsheaf in TX of those vector
fields on X tangent to the fibres of f, hence an exact sequence of locally

free coherent sheaves on X:
r df %
O_'TXTY_.TX—"T- (TY)
Then the defining conditions of a connection are:
a) v 1is H-equivariant.

b) v splits the above exact sequence.

Alternatively, we may describe the connection in terms of a 1-form B8 on

X satisfying certain properties. To do this, we associate to vy given as above
the morphism of coherent sheaves on X, say

B: Tx-———+ TAY’
such that

reB = Id - vedf. |
This definition makes sense, since Id - vedf has image contained in TXW’ and
B and v determine each other uniquely. We may view B as a 1-form on X.
In conclusion, a connection on the H-principal fibration f: X —— Y is the
same thing as the datum of a 1-form 8 on X satisfying:
a') 8 is invariant under H.
b') Ber = IdT .
The latter condition means that, if v denotes the canonical image of 1 € h

(= k) in TXN e Ty (coming from the H action on X}, then <8,v> =1,

Now observe that a section of the fibration n'1(1) —— X determines a

differential form B on X which satisfies b'). And B8 will satisfy a') if
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and only if B is induced from a section of the quotient fibration

n-1(1)/H = T?(Y) —> Y. Hence we have proved:

Proposition 5 (Weinstein): For a one-parameter group H, the connections of an

H principal fibration f: X —— Y are naturally in bijective correspondence

with the sections of the shifted cotangent bundle TT(Y) —— Y,

Interpretation of the symlectic form on- T?(Y) in terms of a curvature

form. Let us now discuss a little bit further the case H = Gm of the multi-

plicative group. In this case, we may always realize our principal fibration

f: X—>Y in the following way: X 1is the complement of the zero-section
Ye—— 1 in the total space of a line bundle L over Y, with H = Gm
acting by homotheties. Given a 1-form B8 on X satisfying a') and b')
above, we may construct a connection ¥V on the line bundle L, that is a
morphism of sheaves

v L— 0 @, L
such that

V(fs) = f.9(s) + df ® s

for f,s any local sections of OY resp. L.

The construction proceeds as follows. First assume s takes values in
X ¢ L. Then define a morphism of sheaves a: TY —_— OY by the following

diagram

TY _151_9 s*s’1Tx
ul B[

0 = S 5'10

Y * X

as a = Beds. Then Vs will be characterized by the equality
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<Vs,w> = a(w):s
for any local section .w of TY' To verify that this defines indeed a con-
nection Vv, we may as well assume that X = Y x Gm c L=Yx Ga and that
B = z'1dz, where z 1is the coordinate on G.; in fact, any other B8' satis-
fying a') and b') belongs to B + f*(n%) C n;. Considering now s as a
function on Y, it is now immediate that

a(u)f , = g%yj w,ds7]

where Iy means evaluation at y € Y. We conclude

<Vw> = <y,ds>,
whichproves that Vv is in fact a connection. Now consider the curvature of the
connection V, which is defined as a 2-form on Y. By an easy computation in lo-

cal coordinates, we see that its inverse image to X coincides whith dB8.

It follows from proposition 5 that the H-principal fibration
*
X Xy TH(Y) == TH(Y)
admits a connection (which is canonical). Hence there is a canonical 1-form 8
on X Xy TT(Y) satisfying the conditions analogous to a') and b'). Now
X xy T#(Y) is obviously isomorphic to V(1) ¢ T*X: in this way B becomes

the restriction to n‘1(1) of the cotangent 1-form n on T*X.

By the previous considerations, there is a natural connection on the pull-
back of the line bundle L to the shifted cotangent bundle T?(Y). Let R de-
note the curvature form of this connection. Then the pull-back of R to
X Xy T?(Y) is equal to

dg = d(nl ).

)
Now we recall the sympletic form w' on T?(Y) constructed in the proof of

proposition 4, and we observe that the 2-forms R and w' have the same pull-

back d8 to X Xy T?(Y); We conclude that the curvature R and the sym-
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plectic form w' on Ti(Y) are equal. This observation is due to V. Ginsburg

(loc cit.).

Shifted cotangent bundles and polarizations. Let us now report on some re-

rentrresulfs of B. Kostant (unpublished), relating polarizations of linear forms
on a Lie algebra to affine bundles of the type TT(Y) considered above. Here

we consider a principal Gm-bundle X —— Y on a homogeneous space Y = G/M
coming from an eguivariant line bundle L —— Y by removing the zero section.
In more detail, let G be a linear algebraic group over k, M ¢ G a closed
subgroup. Then an equivariant line bundle L on Y = G/M 1is given by a charac-

ter v M —s Gm as the associated bundle L = GxM

ku —— G/M, and our princi-
pal Gm-bundle is thus described as X = Gka: —> G/M. Furthermore, let me g
denote the Lie algebras of M c G, and d,: m ——k the differential of the

character u.

We recall that a polarization of some linear form fe g* is a subalgebra

he g such that (1) f restricts to a character of h, and (2) the codimension
of h in g equals half the dimension of the'coadjoint orbit generated by f
(cf. e.g. 1Di], (Ko2]1, [Gil for more back-ground).

Theorem 1 (Kostant): (i) With notations as above, the following statements.

are equivalent:

a} m is a polarization of some linear form f € g* which extends du € m*.

b) The shifted cotangent bundle T?(Y) has an open G-orbit.

ii) Moreover, if such is the case, then , for any a € Kk, the induced module

(
?nﬁ% Kygu = U(Q) & (m) Ksdua (notation § 1) admits a central character.
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Proof: Let Gf resp. ge = Lie Gf denote the isotropy group resp. sub-

algebra for f € g*. Then 9e is the kernel of the (Kirillov-) alternating bi-
linear form B, defined on g by
Be(x,y) = f(lx,y1),
for x,y € g. Now consider du + m ¢ g*, that is the set of those linear forms
on g which restrict to du on m, and note that this set is M-stable. Then
property (1) of a polarization is satisfied by m automatically for any f € du + mt,
and it says that f € [g,m]l, so that m is isotropic for f; in particular we
have then g-c m cg. But Qince B is non-degenerate on g/g., which identi-
fies with the tangent space of the coadjoint orbit 0} E G/Gf, we see that then

porperty (2) of a polarization requires that m be a maximally isotropic sub-

space of g with respect to Bf, or equivalently that
dim m/g. = dim g/m = dim m*"

But m/gf is the tangent space of the M-orbit Mf generated by f. Since dn + m

is M-stable we have Mf c du+ m

, and the above eguation requires that

dim MF = dim m/ge = dim u + .
We conclude from this discussion that statement a) 1is eguivalent to the fol-
lowing:

a') M has an open orbit in du + m.

In order to see that this is equivalent to statement b}, we notice that the
shifted cotangent bundle T?(Y) ——> Y is a G-equivariant affine bundle over
the homogeneous G-space Y = G/M with fiber du + ml‘ at the base point; it
follows that T?(Y) = GxM(du + mt), and that this associated bundle containes a

dense G-orbit if and only if the fibre dn + mg' contains a dense M-orbit.

This proves the equivalence of assertions a) and b). To prove the se-
cond part of the theorem, let us now assume that a) and hence b) hold. We
first claim the following:

Lemma 8: Every G-invariant section of U belongs to the center of U.
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Here U 1is the relative enveloping algebra for our Gm-principal fibration

X —— Y. To prove the lemma, we proceed by induction on the degree j of a
G-invariant operator P € U, beginning with j = -1, where the claim is empty,
since U(-1) = 0. So let P € U(j) for some j >0, and let 0 % Peu(j)/u(j-t1)
denote its "principal symbol", considered as a function on T*X/Gm.

Since P is assumed G-invariant, P is a G-invariant function. By our assump-
tion b), G has a dense orbit on T?(Y). It follows then that the same is true
on TX(Y) for all scalars 0 ¢ « € k. Hence F is constant on each T*(Y).
But the T;(Y) = 1 e are the fibers of the momentum map =: T*X/Gm  — Ga,
hence we conclude that P comes from a function on Ga. Hence P = Q@ equals
the principal symbol of some Q &€ U(j) which belongs to the enveloping alge-

bra of Lie(Gm) = k, which is central in U. Now P - Q € U(j - 1) 1is central

by induction hypothesis, hence P 1is central, which proves the lemma.

To prove statement (ii} of the theorem, let us apply proposition 2 in

order to interpret the induced module
?nd% Kagu = Y19 Bym) Kagy + »

in terms of Utﬁodules: Denotiné- T the base point of Y = G/M, and N the one-
dimensional module for Lie = (Gm) = k given by multiplicationwith a ¢ Kk,
the above induced module, in the notation of proposition 2, is equal to ﬁ-,
made into a U(g)-medule by means of the algebra-homomorphism U(g) — Us.
By lemma 9, the center Z(g) cof U(g) maps into U("k")c Ur, where k"
stands for the Lie algebra of Gm' But U{"k") acts on ﬁT by the character

corresponding to N (resp. a), hence by scalars. This proves that the center

of U(g) acts by scalars. Now the proof of the theorem is complete. Q.e.d.

Remark 1: Assuming statement b) in the theorem to be valid, let T de-

note the open G-orbit in T?(Y). Then the momentum map
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ne T*(X)/6 — g*
maps g G-equivariantly onto a coadjoint orbit @ < g*. This is the orbit
generated by any f as in statement a) of the theorem. We note that the map-
ping § —- ¢ is a finite covering: In fact, if fe® isa preimage of f,
then Gz = Gcn M, and since grc m, we have G2 c M, hence ¥ = G/Gf — G/G;

f
the covering 6-———+ g is an isomorphism, if and only if Gf c M. It is easy to

is a covering of degree [Gf : Gg] = [Gf (G A M) < [Gf : G;] < o, Note that

verify that the inverse image of the Kostant-Kirillov symlecticform on O (see
(Ko1l, §5) to & coincides with the restriction of the symplectic form on

T?(Y), as. described in proposition 4. For a systematic discussion of finite co-

verings of coadjoint orbits, the reader may consult the work of Kostant, loc.cit..

Remark 2: Let us only mention at this point, that Ginsburg has weakened the

notion of a polarization in such a way that all linear forms on g admit a pola-

rization in this weak sense. For this point, and, more generaily, for a very

careful analysis of the geometry.of the diagram

T*(Y)

.

the reader is refered to Ginsburg's papers [G1], [G2].

g*
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§ 3. Application to the description of the associated

variety of an induced ideal

In this chapter, G 1is a linear algebraic group with Lie algebra g,

P is a parabolic subgroup of G, with Lie algebra p, and we consider the P-

principal fibration f: G —— G/P as in §1. The assumption of parabolicity on

P amounts to the assumption of completeness of the base space G/P (see [Spl

for such standard background on algebraic groups), and some of the argu-
ments below are heavily based on this extra assumption.

Proposition 6: Let M be a coherent sheaf of left U-modules which admits a glo-

bal good filtration on G/P. Then:

a) The sheaf cohomology groups Hi(G/P,M), for any integer i, are U(g)-modules

of finite type.

b) The associated (Bernstein-) varieties in g* of these U(g)-modules (termi-

nology [BBII, 4.1) are contained in the image of the characteristic variety

Ch{M) (as defined in §2) under the momentum map =:(T*G)/P — g*.

That is to say
V(H (6/P.M)) c =(ChM})

for all i € 2.

Here the assumption on M means that M is represented as a union of co-
herent_fh/P-submodules M{r), r € Z, such that
(i) u(m) M(r} c M(m+r), for all m,r € 2,
(ii) the associated graded sheaf gr M := @ M(r)/M{r-1) is coherent as a
r

gru-module.

Recall that gru %= g, O(T*G)/P’ if q: (T*G)/P —— G/P denotes the canonical

projection.
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Proof: Let us filter HI(6/P,M) by the following subspaces
HU(6/P M) (r):= ImLH!(6/P,M(r)) — Hi(G/P,M)].
Then
gr . H1(6/P M) 2= L (6/P, M)(r) / HI(G/P,M)(r-1)
is a quotient of
H(6/P,M(r)) / Image Hl(G/P,M(r-1)),
which in turn injects'into
Hi(G/P,grr M), where ar. M= M(r)/M(r-1).
We conclude that, considered as modules over gr U(g) = S{g), the associated
graded module
gr Hi(G/P,M) =@, 9, Hi(G/P,M)
is a subquotient of
Hl(6/P,gr M).
(Cf. also [BB IIIl, lemma 1.6, for a similar kind of argument.) To prove our
proposition, it therefore suffices to prove the following:

Lemma: a) Hi(G/P,gr M) 1is a S(g)-module of finite type.

b) Its support is contained in = Ch(M).

We may interpret gr M as a direct image q,(N) of some coherent sheaf
N of O(T*G)/P-modules. Since the morphism q is affine, we have:
(1) - WY (6/P.gr M) = HL((T*G)/P.N).
Now since g* 1is affine, we conclude by Serre's vanishing theorem that the
cohomology Hj(g_*,Ri t, N) vanishes in degrees j > 0, and so the Leray spec-
tral sequence for the sheaf N, and the morphism = degenerates. This gives
(2) HE((T%6)/P,N) = HO(g, RY x, N).
Now we use the completeness of G/P to conclude that = 1is proper, so that

Grauert's theorem applies (see [EGAJIIII, Théoréme 3.2.1, or [Hartshornel III,

Theorem 8.8), to give that R! n, N is a coherent Qg*-module. Hence
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Ho(gf,Ri 1, N} is of finite type. Now equations (2) and (1) above imply a).

To prove b), consider any polynomial function on g*, say F € Sm(g),
whose pull-back to (T*G)/P vanishes on the characteristic variety ChiM).

Then by the definition of Ch{M}, there is a covering (U )

a‘a

of G/P by
Zariski open sets Ua, and there are integers 5, > 0, such that Fsa
annihilates gr M on Ua. By the guasi-compactness of G/P, we may assume
this covering to be finite, so there exists an integer s > 0 such that FS
annihilatés gr M, and hence all its cohomology groups HifG/P,gf M). Hence
the function F vanishes on the support of Hi(G/P,gr M). This proves b)

of the lemma. Q.e.d.

By the associated variety of an ideal I in U(g), we mean the zero set

in g* of its associated graded ideal gr I c S(g) with respect to the ca-
nonical filtration of U(g), notation: V(grl) = V(U(g)/I) (as in [BBI], 4.2).
We are now ready to prove our main result, on the behaviour of associated va-
rieties under "parabolic induction”:

Theorem 2: Let I be any (two-sided) ideal of U(p), and let J be the ideal -

induced from I in U(g). Then the associated variety of J is obtained from

that of I by taking the G-saturation of the inverse image with respect to the

restriction map p: g* — p*, that is to say:

Uigr 3) = 6 o~ V(gr 1).

Remark: The same statement is - equivalently - true for "twisted" or
"doubly twisted" induction. In fact, we have for a U(p)-module M:
V(gr Ann M) = V(gr Ann M ® ku)’

even for an arbitrary character u of p, as is very easy to see.



- 43 -

Proof: It is clear that V(gr J) contains p'1 V(gr I), and that it

must be stable under the coadjoint action of G, since J 1is a two-sided ideal.
Hence the inclusion

Vigr d) 2 G o

Vigr I)
is easy (same arguments as used already in [Bo1l, 2.3}. So the point is to prove
the opposite inclusion. We prove instead:
Vigr 3') ¢ 6 o™ W(gr 1),
for J' the "doubly twisted" induced ideal. (By the previcus remark, the "twist"

does not matter for establishing the theorem.)

As explained in §1, the ideal I defines a sheaf of ideals T (notation
§1) in the relative enveloping algebra U of the fibration G —— G/P. Notice
that U/T admits a globally defined good filtration, given by the images of the
u(m), m€ N (notation §2). So by proposition 6, its ring of global sections
P(G/P,U/T) is of finite type as a left module over U(g), and its associated

variety is contained in = Ch(u/T).

Oﬁ the other hand, we know that this U(g)-module contains " U(g)/J’ as a
submodule (see proposition 2 and its corollary). So we have shown that
Vigr 3') < = CA(u/T).
Now we make use of the description of the characteristic variety Ch(u/?) given
in proposition 3 and lemma 7. Using the associated fibre bundle descriptions of
XY = T*(6/P) = 6 x (g/p)* = 6 x'pt,

(T*X)/P = 6 x'g*, and T*P = G x p*,

1}
i

we obtain

ch(u/T) = 6 xPp!

v(u(p)/1)-
Since =:(T*X)/P — g* is given by "collapsing" the vector-bundle G xpgf, we

finally conclude that
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Vigr ') e n ch(u/T) = 6 o~ V(gr 1),

which is what we wanted to prove. Q.e.d.

Remarks.

1.) Our result above on the behaviour of associated varieties under induction
from a parabolic subalgebra (theorem 2) is analogous to a result of Barbasch
and Vogan on the behaviour of wave front sets of representations under para-
bolic induction EBVI.

2.) We do not know about possible extensions of this result to the case of a non-
parabolic subgroup P.

3.) The special case of parabolic induction from a finite-dimensional represen-

tation is particularly important, since it suffices for most of the appli-
cations. For this special case of theorem 2, we have given a proof in more
elementary terms in [BBII(see theorem 4.6 and corollary 4.7). Note that in
this previous proof, we used the algebra of those differential operators on
G/(P,P) which are invariant under the right action of P/(P,P), hence we
were in effect using already there a special case of the method fully de-
veloped in the present paper. Later in this chapter, we shall return to
this situation from [BBl, loc.cit., and discuss it a little bit further

in the new light of our present methods.

A related result of Kostant. Let us mention here without ﬁ}oof an unpub-

lished result of B. Kostant (cf. also [Ko2] in this context), which bears some
resemblance to our results here, and which he kindly communicated to us in a

letter in 1981, shortly after we had established theorem 2. We use the same no-
tation as in theorem 1 (on the shifted cotangent bundle characterization of po-
larizations). In particular, a character of & of the closed subgroup M ¢ G
is given, and its differential dw € m* 1is extended to a linear form f € g*;

the momentum map =: T*Y —— g* refers to the homogeneous space Y = G/M.
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Assumption a) of the theorem below coincides with a} of theorem 1.

Theorem 3 (Kostant): Assume that

a) m is a polarization of f,

b) the coadjoint orbit & = Gf is closed, with centralizer Gf connected, and

c) dim & = dim ={T*Y).

Consider the annihilator ideal I

Ann U(g) Gﬁ(m) Kaduer 10 U(g), and

0(g*) of all functions vanishing on

compare this to the ideal J in S(g)

g. Then, with respect to the canonical filtrations on U(g) resp. S{(g}, we

have:

(1) gr T is prime if and only if gr J 1is prime.

(2) If (1) holds, then gr I = gr J, and the associated variety of I is the

closure of the image of the momentum map: V(gr I} = n(T*Y).

Basic filtration of relative enveloping algebras. Let us return once more

to the case of a principal H-fibration f: X —— Y with respect to a com-
mutative algebraic group H, as considered in §2. As a complement to the theory
of the relative enveloping algebra U as developed so far, we want to suggest
now an alternative concept of ‘'characteristic variety", which refers to the
following new filtration of by subsheaves ubas (m) (m€Z). Roughly speaking,

u (m) 1is the subsheaf of U made of those differential operators on X

bas
invariant under H, which have locally order at most m in the base-direction.
More precisely, the definition is given by part a) of the next lemma.

Lemma 10:

a) There exists a unique filtration (Ubas(m)) me€ Z of U such that for

any étale map U L. v with UxYX = UxH we have

(U, (m) = Dy(m) @ U(h). (%)
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b) The associated graded sheaf with respect to this filtration,
9 yas u:= @ u

(m)/u
nez bas bas
is a coherent sheaf of commutative rings on Y, with noetherian stalks.

(m-1)

Proof:

a) To establish the existence of this filtration, it suffices to show that an
automorphism o« of U x H of the form a:(x,h) —s {x,a{x)h) preserves
the right-hand side of (*), for all degrees m > 1. It actually suffices
to consider the case m = 1, because DU(m} ® U(h) 1is generated an U
by the product of m copies of DU(1) ®, U(h). Now DU(1) & u(h) is
generated by U(h) and by T, @ U(h) as an g -module, and o preserves U(h), and
maps a vector field on U into an elerent of TU EB(OU @, h). Hence « pre-

serves  U,,(1) @ U(h).
b) The claim is clear locally, i.e. over U for any &talemap i1 — Y as

in a). Then the same holds already on Y by étale descent theory. Q.e.d.

Alternative description of gryasY- Recalling the exact sequence of vector-

bundles on Y:

0 > T*Y > (T*X)/H > T%’ > 0

q

let us now also define a "basic filtration" of the sheaf

F

.= q*O(T*X)/H
by the subsheaves Fbas(m) which consist of those germs of functions, which

restrict to polynomials of degree <m on each plane parallel to (T*Y)y in

the fibre q'1(y) for any y € Y.
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Lemma 11: There is a canonical isomorphism

Ihas Y = Ihas I O(Tey) /-

Here the right-hand side is the associated graded sheaf

gr F:= @ F. _(m)/F
bas me bas
in the above notation.

bas(m'1)

Proof: Let us define a map Ubas (1) — Fba (1) as follows: A local

s
section s of Upas (1) may be written as
S=VRA+W®B
where A,B € U(h), and v resp. w are local sections of 0Y resp. f*(TX)H.
Qur map is defined by sending
s+—=B o, (W),
where 01(w) denotes the ordinary principal symbol of w, considered as a function
on (T*X)/H, and B € U(h) = S(h) is viewed as a function on T%, pulled back
to (T*X)/H. By taking products, this definition extends to define maps
u

(m) —> F (m) in all degrees m > 1, or a filtered map U —— F.

bas
Hence we obtain an associated graded map 9 bas u — s F. The verification

bas

that this is an isomorphism may be done locally for the &tale topology, and then

it presents no difficulty. Q.e.d.

Comment. We notice that the "basic filtration" of g, OT*X/H does not come
from any natural grading, because one can not define the notion of "homogeneous

functions” on an affine space without making a choice of an origin.

The geometrical meaning of the "basic filtration" is further clarified by

the following lemma.
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Lemma 12: Let q' denote the canonical projection map

q': (T*Y) x T¥—>Y.
Y

Then we have canonically

W O/ = O Ogrey) x T
v

Proof: Obviously, a local trivialization of f gives rise to such a natural
iscmorphism. Since this isomorphism is easily seen to be independent of the

choice of a trivialization, the lemma follows. Q.e.d.

Modified notion of characteristic variety. Based on the notion of basic

filtrations introduced above, we may now define for a coherent sheaf M of left
u-modules a new notion of characteristic variety Chbas (M). This is, by de-

finition, the support of the asscociated graded gr U-modules cbtained from

bas
M by using locally a "basic" good filtration of M. In view of the canonical
identifications made by lemmas 10 and 11, this defines a subvariety

Chbas (M) ¢ (T*Y) Xy T;.
This definition is not particularly useful in itself. However, we may use it -
under a certain assumption - to define yet another notion of characteristic
variety, which is contained in (T*X)/H, and which is no longer necessarily

homogeneous. We first state the exira assumption, and then the new definition.

Assumption: The characteristic variety ChbaS (M) 1s a union of fibres
of the projection map P! T™*Y x, T%* —> T;, that is

Y ' f
(*) Chy o (M) = péT Py Chyyo (M).

bas

Definition: If (*) holds, then we define
S
ChStr (M) := t Ps Chbas(M),

where t is the projection map (T*X}/H —> T; = h* x Y.



- 49 -

We note that the two varieties Ch (M) and Ch (M) have the same di-

str bas

mension.

This definition applies for instance to the study of induced ideals as
follows: Let J be an ideal in U(h) = S(h), and let J denote the sheaf of
"induced" ideals in U as considered in §§1 and 2.

Lemma 13: The module M = u/J satisfies (*), so Ch_._ (u/J) is defined.

str
Moreover, it is described by the support Supp (S(h)/J) e h* as

Ch, . (u/3) = t7'(supp(s(n)/9) x ¥).

str (

The case of parabolic induction and relatioﬁ to Dixmier sheets. We shall

illustrate and clarify now the purpose of our new notion of characteristic
variety by specializing the previous discussion to the study of parabolic in-
duction as begun in [BBII,4.6 ff.. So let P be a parabolic subgroup of a
semisimple group G. Now we take X = G/(P,P), Y = G/P, and f: X —— Y the
canonical fibration; this is an A-principal fibration with respect to the com-
mutative group A = P/(P,P), a torus. Let us describe the quotient map

T*X — (T*X)/A and the moment map =#:(T*X)/A —— g* for this case more
explicitly. For convenience, we may identify g* with g by the Killing form7
and we let p = Lie P, a = Lie A etc. the Lie algebras as usual. We note that
the orthogonal in g* = g of the commutator [(p,pl = Lie (P,P) is equal to
the solvable radical L of p. Then the canonical maps T*X — (T*X}/A —— g*

have the following description in terms of associated fibre bundles:

L
T*X = Gx(P’P)[E,E] = Gx(P’P)E10
\ 4 ...L. p
(T*X)/A = 6x"[p,p] = G rp
T
4L v
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(The bottom right arrow is known as a case of "collapsing" a vector-bundle, or

in this particular case it is also known as a “"generalized Grothendieck simul-
taneous resolution"; this situation has been extensively studied in various con-
texts by many authors; for more back-ground, we refer to [BK1, [Bo2], [BM], [BBII,
4.6, (S11.) In particular, the image of the moment map = identifies with

Imn:G_r_P='S'p,

the closure of the so-called "Dixmier sheet" S5,c g attached to the parabolic

subgroup P {see [BKIJ)}.

Let p:g* — p* denote the restriction map, as in theorem 2. Note that
its kernel _Ql identifies with the nilradical n, of p under the Killing
form identification g* =g. Let p =ny + s, be the Levi decomposition, and
g; the complement of p in g which is stable for the reductive subalgebra
Sps SO that p= := s, +n5  is the parabolic subalgebra "opposite" to p.
Then wg may identify p:g* —— p* with the projection map of g = Ny @ P

onto p~. We further observe that the center of the Levi subalgebra Sp» Which

equals Sp N rp, maps isomorphically onto a = p/lp,pl (T a* by Killing form);
by transposition , we get a linear map of a* into g* = g, wh—> a(n), where a(u)
is w on a, and 0 on the complement ([p,pl + ny, of a. With this notation,
we shall have for any wu € a*{ cp*):

o~ W) = a(u) + Np.

Now let Iu = AnnU( ku denote the annihilator of the one-dimensional

)
p-module of weight w e_i%, and let Tu denote the sheaf of "induced" ideals
in U, as introduced in §1. Let us first note that the "ordinary" characteristic
variety Ch (u/?u) is not of much interest to us, bécause it is independént of
u. In fact, it is determined by the associated variety of Iu {by proposition

3), and this is always the zero point only. More precisely, proposition 3

gives that:



= P -1 P
Ch(u/Iu) = Gx'p ' (0) = Gx No,

which is a vector-bundle {isomorphic to T*Y) independent of u.

Next, let us determine the "new" characteristic variety for this case;

from the previous discussion, we conclude:

P
Tp-

Proposition 7: Chstr(U/Tﬁ) = prp'1(u) = pr(a(u) + gp) ¢ Gx

This is an affine bundle depending on u, and not a vector-bundle unless
u = 0. Not only does this characteristic variety depend on wu, but even its

image under the moment map does, for we have:

Corollary: I(ChstE(U/Tu)) = G(a(n) + gp), i.e. the image under the mo-

ment map equals the G-saturation of a(u) + ny

Now let us recall a few facts from the theory of sheets [Bo2l (see also
(8k1, [BJ]): (1) For each w € a*, the above G-stable subset G(a{u) + gp)
is the closure of a single G-orbit, denoted G(a(u) + ﬂp)reg (notation of
loc.cit.). (2) These G-orbits have all dimension equal to 2 dim G/P = 2 dim Np.
(3) The union of these orbits, for all wu € a* is a maximal irreducible G-
stable subset of g containing only orbits of this dimension. (4) This union

is the Dixmier sheet
s, = J  6(a(s) +n,)'%9 = gr'®9,
P weEax = -
(5) The map wu +—> G(a(n) +

)reg induces a bijective correspondence

_LJ:

> ~
a /NP —— SP/G
between the set of G-orbits in the sheet Sy, and the set of Wy-orbits in a*,
where wp is the normalizer of a in the Weyl group (see loc.cit.). The last

statement is one version of the "parametrization theorem" for the orbits in a

sheet, as proved in [B02],. 5.6.
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Corollary: The moment map w:(T*X)/A — g* maps Ch., (U/1 ) onto the

str
closure of the orbit in the Dixmier sheet SP determined by the parameter u

(according to the parametrization thecrem (5)).

In conclusion, we obtain the remarkable fact that the orbit determined by
p in the Dixmier sheet SP is intrinsically attached to the sheaf of ideals
?u in U.

Some complementary remarks and open questions. The basic filtration of U,

as defined before lemma 11, induces an interesting filtration on the ring

g ‘ . . . .
R := U(g)/Ann Ind[g,gl(ko) (the quotient of U(g) considered already in [BBII,
theorem 4.6), which is in general not the one induced from the natural filtration
of U(g):

x4

d
Problem 1: What is the "associated variety" of U(g)/Ann IndEku with respect

to this non-standard filtration of R?

We conjecture that this associated variety should be again that closure of

7

the orbit determined by u in the Dixmier sheet SP'

Problem 2: Work out the precise relation between the primitive ideals of the

ring R above, and those of T{(G/P,U).

We expect that this relation would essentially amount to a Galois theory

of central ring extensions, provided that one has solved the following:

Problem 3: Is T(G/P,uU) equal to the central extension R ®(q) S(a)?

Thié has been proved - up to a central localization - by Gelfand

and Kirillov for the special case where P = B 1is a Borel subgroup [bK],
Cerollary 12.1.
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In this case, a = h 1is a Cartan subalgebra, the central extension refers to
the Harish-Chandra isomorphism of the center Z(g) of U{(g) onto the Weyl
)W

group invariants S(a)”, and the Galois group of this extension is the Weyl

group W.

We prove the following result for P=8B, conjectured in [GK], remark 10.4.
Proposition 8: The ring of global sections T(G/B,U) 1is equal to the central

extension U(g) @ (q) S(h).

g

Proof: Both U(g) and S(h) have natural filtrations by order; these
filtrations have the same restriction to Z(g), as follows by a careful

W used for

examination of Harish-Chandra's isomorphism w: Z{g) —=~ S(h)
identification. Now the left action of G, and the right action of H = B/(B,B)
on G/B provide us with natural ring homomorphisms U{g) — T'(G/B,U) resp.
S(h) = U(h) ——> T(G/B,U) (the"operator representations" in the terminology of
(BBJ]I) which respect filtrations. These two homomorphisms coincide on
Z(g) = S(g)“, as can be seen from the following characterization of Harish-
Chandra's isomorphism w:

o(P} - P € ng U(g) for all Pe Z(g).
Since furthermore the left G-action commutes with the right H-action, we get
a morphism

¢: U(g) ®Z(_g_) S(h) — T(G/B,U)
of filtered rings. In order to prove that ¢ 1is an isomorphism, it is there-

for enough to prove that the associated graded homomorphism gr ¢ is an isamcrphism, where

gr ¢:5(g) ®S(h)w S{h) —— 0((T*X)/H) = o(T*x)

(recall that X = G/(B,B)) coincides with the ring homomorphism given by the
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canonical map
¢: (T*X)/H —— g* Xﬂf/w h*.

This latter map ¢ 1is the composition of the momentum map of the G x H action

on X, and the projection map g* x h* — g* Xp* /1 h*. Now it is easily seen

that the map ¢ 1is proper and birational. It follows that O({T*X)/H) is an

integral extension of S(g) ® W S(h), and ¢* = gr ¢ induces an isomorphism
S(h) - _

of the fields of fractions. Therefor the following lemma implies that ¢* must

be an isomorphism and hence completes the proof of proposition 3. Q.e.d.

Lemma 14: The variety g* Xpx sy D* 1is normal.

To prove this, we use the normality criterion of Serre (Se2]. Observe that
g* xh*/w h* is finite over g*, hence affine. Its singular locus has codimension
> 2;—since this singular locus is contained in the inverse image of the singular
locus of the discriminant of h* —.h*/W. Since O0(h*) = S(h) is free over
0(n*/M) = S()* by Chevalley's theorem, it follows that 0(g* X, h*) is
free as a module over 0(g*) = S(g), hence is a Cohen-Macanlay r?ng. Now Serre's

criterion applies and gives the lemma.

Remark: This proof will fail for a general G/P, since the corresponding

variety S xa*/Np a* will in general not be normal.
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