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The Bloch-Wigner-Ramakrishnan polylogarithm function

DON ZAGIER

The polylogaxithm function

(x E C, Ix I ::; 1, m E N)

appears in many parts of mathematics and has an extensive literature [2]. It can be analytieally
extended to the cut plane C '- [1, 00) by defining Lim ( x) inductively as fox Li m -1 ( Z ) Z -1 dz hut
then has a discontinuity as x crosses the cut. However, for m = 2 the modified function

D(x) = ~(Li2(x)) + arg(l- x) log lxi

extends (real-) analytically to the entire complex plane except for the points x = 0 and x = 1
where it is continuous but not analytic. This modified dilogarithm function, introduced by
D. Wigner and S. Bloch (cf. [1]), has many beautiful properties. In particular, its values at
algebraic arguments suffice to express in closed form the volumes of arbitrary hyperbolic 3­
manifolds and the values at s = 2 of the Dedekind zeta functions of arbitrary number fields
(cf. [6} and the expository article [7]). It is therefore natural to ask for similar real-analytic
and single-valued modification of the higher polylogarithm functions Li m. Such a function Dm
was eons tructed, and shown to satisfy a functional equation relating Dm (x-I) and Dm (x), by
Dinakar Ramakrishnan [3]. His construetion, which involved monodromy arguments for certain
nilpotent subgroups of GLm(C), is completely explicit, hut he does not actually give a formula
for Dm in terms of the polylogarithm. In this note we write down such a formula and give a
direct proof of the one-valuedness and functional equation. We will also:

i) prove a fonnula (generalizing a fonnula of Bloch for m = 2) expressing certain infi­
nite sums of the Dm as special values of I(ronecker double series related to L-series of Hecke
characters,

ii) describe a relation between the Dm(x) and certain Green's functions for the unit disc,
and

iii) discuss the conjeeture that the values at s = m of the Dedekind zeta function (F(S)
for an arbitrary number field F can be expressed in tenns of values of Dm(x) with x E F.
The last relationship, which seems to be the most interesting property of the higher polyloga­
rithm functions, is closely connected with algebraic ](-theory and in facts leads to a conjectural
description of higher ](-groups of fields, as will be diseussed in more detail in a later paper [9).

1. Definition of the function Dm(x). For m E N and x E C with lxi::; 1 define

~ (-log Ixl)m-j .
Lm(x) = L..J ( _ ')' Lzj(x),

. m J.
]=1

(m even),

(m odd).



PROPOSITION 1. D m ( x) can be continued real-analytically to C , {O, l} and satisfies the func­

tional equation D m(.!.) = (_l)m-I Dm(x).
x

REMARKS: Ramakrishnan's Dm is equal to ours for m even but isjust ~(Lm(x))for m odd. We
have included the extra term (log Ix I)m12m! for m odd in order to make the fllllctional equation
as simple as possible (Ramakrishnan's funetion satisfies Dm(1/x) = Dm(x) + (log Ixl)m Im! for
m odd), but at the eost of making the funetion diseontinuous at 0 in this ease. (For m even,
Dm extends to a continuous funetion on the extended plane C U {oo}, vanishing on R U { ce} .)
The definition of Dm here also differs by a factor (_1)[m/2]+1 from the normalization given in
[7], which was chosen to give a simpler relation between 8Dm l8z and Dm-I. The funetious
DI (x) and D2(x) are equal to log Ix! - x-! I and D(x), respectively.

PROOF: As mentioned in the introduetion, we can continue Lim (x) analytieally to the cut
plane C'[l, 00) by sueeessive integration along, say, radial paths from 0 to x. The two branches
just below andjust above the cut then eontinue aeross the cut. Write ~ for the difference of these
two analytie funetions in their common region of definition (say, in the range Iarg(x-I) I < f,

where f is small). Sinee LiI(x) = log _1_ for lxi< 1, we have ~LiI = 27ri, and it then
I-x

follows from the formula xLi~(x) = Lim- I(x) that ~Lim(x) = 27ri(1ogx)m- I/(m - I)! for
eaeh m 2:: 1. (This is well-defined in the region in question: we take the branch of log x which
vanishes at x = 1.) Consequently,

AL ( ) = 2 .~ (-log lxl)m- j (log X)j-I
..w. m X 7r1, L.J ( _ ')' ( . _ 1)'. m J. J .}=I

Since log I:' is pure imaginaxy, this is real for m even and pure imaginary for m odd. Hence

~(im+ILm(x)) is one-valued, proving the first assertion of the proposition.
To prove the seeond, it will be eonvenient to introduce the generating function .c(Xj t) =

00

L: Lm(x) tm-I. For lxi< 1, Itl < 1 we have
m=1

L:(x; t) - . L (-lo;!'Xl)k Lij(x) ti+k - 1
- Ixl-t f: Lij(x) t j - 1

;;::I,k;::O j=1

00 00 t j - I 00 n

Ixl- t L L --;Txn
- Ixl- t L n

X

_ t
n=lj=1 n=1

or

(0 ::; T < 1),

n-t
where we have written _T_ as J; u n - t - I du and summed the geometrie series under the

n -t
integral sign. The integral converges also for r 2:: 1 and immediately gives the extension to
the cut plane Iarg(1 - z)1 < 7r. Since the integrand has a simple pole of residue _e it8 at
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u = e- i8 , we again see that the difference between the two branches of L m (re i8 ) near the
cut is 21TimBm-l/(m - I)!, giving the one-valuedness of Dm as before. In tenns of .c(x; t),

the functional equation can be stated as the assertion that .c(r eie; t) + .c(re- ie; - t) + ~ r -1 is
t

unchanged when r is replaced by r- 1 . But for 0 < t < 1 we have

ie -ie r-
t l r

u-
t

du l r
v

t
dv 100

-t-1E,(re ;t) + .c(re ; -t) + - = -ie + ie + u du
t 0 e -u 0 e -v r

= ( (OO -100 -100

) ~~: :u (v = u- I
).Jo r r- 1 e u

Trus makes the desired symmetry obvious.

2. The functioßs Da,b(x) and Kronecker double series. It is clear from the definition
that the Bloch-Wigner function D(x) goes to 0 like Ix I log IxI as x -+ 0, and from the functional
equation that D(x) = O(lxl-1log lxI) as x -+ 00. Hence, for a complex number q of absolute
value strictly less than 1 and any complex nurnber x, the doubly infinite series

00

D(q;x) = I: D(q'x)
1=-00

converges with exponential rapidity. Clearly D(q; x) is invariant under x ......-+ qx, so it is in fact a
function on the elliptic curve CX/qz. In other words, if we write q = e2trir with T in the cornplex
upper half-plane and x = e21riu with u E C, then D(q; x) depends only on the image of u in the
quotient of C by the 1attice L == Zr + Z. In [1], Bloch computed the Fourier deve10pment of
this non-holomorphic elliptic function. Actually, he found that D(x) should be supplemented
by adding an imaginary part -iJ(x), where

J(x) = log lxi log j1 - xl (xEC,xf.O,I).

The function J(x) is small as lxi -+ 0 but large as lxi -+ 00, so we cannot form the series
L: J(q'x) as we did with D. However, using the functional equation J(x- 1 ) = -J(x) +log21xl
lEI
we find after a 8hort calculation that the function

J( . ) =~ J( I ) _ ~ J( I -1) log31xj _log2jx l log jxllog Iql
q, x L-t q x L-t q x + 310 I I 2 + 2

1=0 1=1 g q
(q,xEC,lql<l)

is invariant under x ......-+ qx, so descends to the elliptic curve CX/qZ :::: C/L as befare. Bloch's
result cau then be written

D( . ) - 'J( . ) = ~~( )2 I:' sin(21T(ne - m7]))q, x t q, X ,,- T ( )2(_ ) ,1T mr+n mT+n
m,n

where q = e21rir , x = e2triu with tL = er + 7] (e, 1] ER/I) and the surn is over all pairs of
integers (m, n) f. (0,0). This is a classical series studied by !(ronecker (see for instance Weil's
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book [5]). The special case when 'T is quadratic over Q and ~ and 1] are rational numbers
occurs in evaluating L-series of Hecke grossencharacters of type Ao and weight 1 at s=2. To get
other weights and other special values, we have to study series of the same type hut with other
powers of mr +n and mT +n in the denominator. In this section we will prove the anal0b'11e
of Bloch's fonnula for such series, the function D(x) - iJ(x) being replaced by a suitable linear
combination of the Ramakrishnan functions Dm(x).

To define these comhinations, we will need certain combinatorial coefficients, and we begin
by defining these. For integers a, m, r with 1 :::; a, m :::; rlet c~::n denote the coefficients of
x a - l in the polynomial (1 - X )m-l (1 + x )r-m. These coefficients are easily computed hy the

. (r) (r-l) (r-l) (r) a h-l m-I r-m
recurSlon Ca,m = Ca,m +ca-l,m or by the closed fonnula Ca,m = L: (-1) (h-l) (a-h). They

h=l
have the symmetry properties

(r) _ ( 1)a-l (r) _ ( l)m-l (r)
ca,m - - ca,r+l-m - - cr+1-a,m' (

r -1 )c(r) = (r -l)c(r)
m - 1 a,m a - 1 m,a'

the former being obvious and the latter a consequence of the identity

r r ( 1)~~ :-=-1 c~:!..xa-1ym-1= (1 + x+ y- xyr-1.

The definition of c~:~ is equivalent to saying that the r x r matrix er = (C~:?n)a,m=l, ... ,r gives the
transition between the hases {tr- 1 , t r- 2u, ... , tur- 2,ur-I} and {(t+u)r-t, (t+u)r-2(t-uh ... ,
(t + u)(t - u)r-2, (t - u)r-l} of the space of homogeneous polynomials of degree r - 1 in two

variables t and u. The fact that the matrix (~1 ~) has square 2 implies that

(2) C;l = 2- r +1Cr.

(1)

(3)

We will also need the formulas

tk (:-=-~)c~:!.. = (_1)"-1G=~)2r-k

tk(_1)m-1 (:-=-~)c~:!.. = (-lr-
aG=~)2r-k

(1 ~ a, k ~ r)

(the expressions on the right heing 0 for k < a or k < r + 1 - a, respectively) and

(4) '"' (r)c(r) =2 r - 1 (l~a~r).L..." m a,m
nl.. l
modd

1
-6
15

-20
15
-6

1

1
-5
10

-10
5

-1

1
-3

2
2

-3
1

1
-1
-2

2
1

-1

1
1

-2
-2

1
1

1 1
5 3

10 2
10 -2
5 -3
1 -1

We leave the proofs to the reader (hint: expand (1- x)k-l {I + x ± (1 - x)}r-k for 0 ~ k ~ r).

As numerical examples to illustrate properties (1)-(4) we give the ct?n for r = 6 and 7:

1 1 1 1 1 1
6 4 2 0 -2 -4

15 5 -1 -3 -1 5
C7 = 20 0 -4 0 4 0

15 -5 -1 3 -1 -5
6 -4 2 0 -2 4
1 -1 1 -1 1-1
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We now deBne for integers a, b ~ 1 and x E C

D ()
= 2 L:r (r) D- ( ) (-log Ixl)r-m (-2log lxl)r

a b x Ca m m X ( )t + 2 I
I , r-m. r.

m=l

(r=a+b-1),

where D~(x) = Dm(x) for m add, D~(x) = iDm(x) = ![Lm(x) - Lm(x)] for m even.

PROPOSITION 2. (i) Da,b is a one-valued real-analytic function on C '- [1,00) and satisEes tbe
functional equation

D.,b( ~) = (-1y-1 D.,b(x) + (21o;,lx Ir .

(ii) D a,b is given in terms of tbe polylogarithm by

(iü) The function defined for q, x E C witb Iql < 1 by

~ 1 r-1 ~ "I -1 (21oglql)r (loglxi)
Da,b(qj x) = L." Da,b(q X) + (-1) L..J Da,b(q X ) + (r + I)! B r+1 10 I I

1=0 1=1 g q

(Br+ 1 ( x) = (r+1)st Bernoulli p olynomial) is invariant under q ~ qx .

PROOF: Statement (i) follows immediately from Proposition 1 and statement (H) from equa­
tions (3) and (4). For (iii), we note first that the infinite sum converges absolutely for any x,

because Da,b(x) = O(lxlloga+b lxI) as lxI -Jo O. Hence Da,b(q; x) makes sense. Using (i) and
the property B r+1 (x +1) - B r+1(x) = (r + l)x r

, we find

r-1 -1 (-2log Iql)r ( )(loglxl)r
Dalb(qjx)-Da,b(qjqx)=Da,b(X)-(-l) (X)Da,b(X )- (r+1)! r+1 loglql =0.

This completes the proof of the proposition.
Notice that we can use the inversion formula (2) to write

D* ( )(-loglxl)n = '" r {2- rn () _ (-lOg!Xl)r}
m x , L..J Cm,a a,b X 2 ,n. r.

".b~l
"+b ..r+l

(m ~ 1, n ~ 0, r = m +n);

in particulax, the Ramakrishnan functions Dm are linear combinations of the Da,b. We could
therefore have equally weH defined the functions Da,b directly by the formula in (ii) and taken
them rather than the functions Dm as the primitive objects of study. The proof of the analytic
continuation can be given directly from (ii) by the same method as in the proof of Proposition
1: using 6.Lik ( x) = 21l"i (log x) k -1 / (k - I)! and the binomial theorem, one Bnds easily that
6.Da b = O.,

Part (iii) of the proposition says that the function Da,b(q; e21l"iu) is a (non-holomorphic)
eHiptic function of u. Our goal is to compute the Fourier development of this function.
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THEOREM 1. Write q = e21fir , X = e21tiu with T in tbe complex upper balf-plane and u =
~T + 7] E C, ~, 7] E Rll. Tben

(T-r)r , e21ti(ne- m f])
D. b(q; x) = . '" ( ) ( )b ., 27l"z LJ mT+n a mr+n

m,n

PROOF: Since Da,b(e2rrir , e21ti (er+f]») is invariant under ~ ........ ~ + 1, we can develop it into a
Fourier series L: Ane21tine with

nEI

where we have substituted for Da,b the expression defining it and then in the first two tenns
combined the SlUll over I and the integral from 0 to 1 into a single integral from 0 to 00 by t.he
substitution I ± ~ ~ ( It is well-known (and easily shown by repeated integration by parts,
using Bj = jBj-l and Bj(l) = Bj(O) for j t:- 1) that the last integral is equal to 0 for n = 0
and to -(r+1)!/(21rin)r+l for n t= O. Substituting for Da,b(X) from part (ii) of the proposition,
we find

where the second tenn denotes the result of interchanging a and b and replacing T by -r in
the first tenn and the last term is to be omitted if n = O. The two arguments of Lik in the
integrand are less than 1 in absolute value, so we can replace Lik by its definition as apower
series, obtaining
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where we have used the forrnula Jooo e-).e€' d~ = I! A-1-1 for ~(A) > O. Hence

r (k _1) e-2rrimq ( a Ho b) 2(-2i~( r))r
21riA n = -1 b 2i~ r r-k + - .( ) L a - 1 ( ()) L m k(mr +n )r+1-k r ~ -"7 n r+1

k=a m:;tO

Applying the easily checked identity

1a r (k - 1) (X - y)r-k r (k - 1) (X _ y)r-k(- ) L a - 1 xr+1-k +L b - 1 yr+1-k -
k=a k=b

to X = mr + n, y = m'T + n, we find

(r=a+b-1)

e-21fimq

21l-iAn = (2i~(T)r ~ (mT + n)a(mr + n)b .
(m,n),*(O.O)

Trus proves the theorem.

3. Dm and the Green's function ofthe unit disco Let jj = {z = x+iy E C Iy > O} denote
the upper half-plane and for each positive integer k define a function G~ : jj X ß , (diagonal) -4

R by
s, Iz - z'I 2

Gk (z,z') = -2Qk-1(1 + 2 ,) (z = x + iy, z' = x' + iy' E ß).
yy

Here Q n (t) (n ~ 0) is the n th Legendre function of the second kind:

3t2 - 1 t + 1 3
Q2(t) = log - - -t

4 t -1 2

and in general Qn(t) = Pn(t)Qo(t) - Rn(t) where Pn(t) and Rn(t) are the unique polynomials
2n n!2

of degree n and n - 1, respectively, making Qn(t) "J ( )1 t-n- 1 for t -+ 00. The function
2n + 1 .

G~ is real-analytic on ß x jj, (diagonal), has a singularity of type

G~(z, z') = log Iz - z'1 2 + continuous (z' -+ z)

along the diagonal, and satisfies the partial differential equation.6.zG~ = .6. z1 G2 = k(l- k)G~,

where .6. z = _y2( ::2 + :y22 ) denotes the hyperbolic Laplace operator. Moreover, by virtue of
the defining property of Qk-l, it is small enough at infinity that the series

C1)/Z ( ') _
k Z,z-

00

L G~(z,z'+n)
n=-oo

converges and has properties similar to those of G~, hut now with z and z' in ß/Z. This

"Green's function" is studied (in connection with the analogously defined functions cf}/r, where
r is a subgroup of finite index in PSL(2, Z)) in [8J and is shown there to be closely related to
Ramakrishnan's modified polylogarithm function. We content ourselves with stating the result,
referring to [8J for the proof.
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THEOREM 2. Let k E N, Z = x + iy, z' = x' + iy' E..t). Tben

k

G~/l (z, z') = L /k,n(2rry, 21ry') [D2n - 1(q/q') - D 2n- 1(qq')],
n=l

/k,n(U, v) = 21- 2k(uv)1-k L
r,";?:O

r+,,=k-n

(2k - 2 - 2r)! (2k - 2 - 2s)1 2r 2"
..;.-.---~~..;..----~U v .
r!(k-l-r)! s!(k-l-s)!

Note that the symmetry of G~/l in its two arguments is reflected hy the two symmetry
properties D 2n- 1(X) = D 2n_1(X-1) = D2n- 1(X). The map z -+ q identifies ..t)/Z with the
punctured unit disc {q E C I 0 < Iql < I}, hut the right-hand aide of the fonnula in the
theorem now makes sense for any q, q' E C X (with 21ry, 21ry' replaced by -log Izl, -log Iz'l)
and represents same kind of Green's function on C X x C X

• .

4. Dm and special values of Dedekind zeta functions. The Bloeh-Wigner dilogarithm
function D(x) is related in a very beautiful way to special values of Dedekind zeta funetions.
Speeifieally, we have the following theorem.

THEOREM 3. Let F be an arbitrary algebraic number field, dF the cliscriminant of F, il and
;2 the numbers of real and complex places (r1 + 2r2 = [F : Q]), and (F( s) the Dedekind zeta
fun ction (F(s). Then (F (2) is equal t 0 1r

2(rl + r2) IdF 1- ~ times a rationallinear combination of
i2-fo1d products D(x(rl+l») D(x(rl+r2 ») with x E F.

(Here X(l) ,... ,x(rd ,x(rl +1) , ,x(rl +r2), X(rl +1) ,... ,x(rl+r2) are the images of x under the vari-
ous embeddings F L.....t C.)

This result was proved in [5] in a samewhat weaker form (it was asserted only that tohe
x could be chosen of degree ~ 4 over F, rather than in Fitself) by a geometrie method:
the value of (F(2) was related to the volume of a hyperbolic 3r2-dimensional manifold (more
precisely, a manifold loeally isometrie to ~;2, where Ji 3 denotes hyperbolic 3-spaee) and this
volume was then eomputed by triangulating the manifold into a union of r2-fold products of
hyperbolic tetrahedra whose volumes could be expressed in terms of the function D(x). The
more precise statement above comes from algebraic [(-theory: the value of (F(2) is related by
a result of Borel to a certain "regulator" attached to K 3 (F), and this is ealeulated using results
of Bloch, Levine, BusEn and Mercuriev in terms of the Bloeh-Wigner function. For details and
references, see [4] or [7]. The [(-theoretical proof in fact gives a somewhat stronger statement
than the above theorem: the value of IdFI'! (F(2)/1r2r1 +2r2 is equal to an r2 X r2 determinant of
rational linear combinations of values D(x), rather than merely to a rational linear combination
of i2-fold combinations of such values.

As examples of Theorem 3, we have for F = Q(A) (dF = -7, r1 = 0, T2 = 1)

(F(2) = 3~2;:2 (2D(I +~) +DeI +4A ))
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and for F = Q(8) with 83
- 8 - 1 = 0 (dp = -23, rl = r2 = 1)

where ()' ( = ; (-1 + ;~3)' if () is the real root) denotes the conjugate of () with !;1'(()') > O.

We can now formulate

CONJECTURE 1. Theorem 3 holds true for (F( m) for a11 positive even m with 1r2(rl +1"2)
replaced by 1rm (rl+r2) and witb the function D replaced by the fl.ll1ction Dm. For m odd
a similar statement is true but with 1r mr2 instead of 1rm (r1 +r2) and Dm(x(1») ... Dm (x(r1 +r2 »
instead oE Dm(x(r1+l») ... Dm(x(r 1+r2».

The difference between the two cases m even and m odd is, on the one hand, that Dm
satisfies Dm(x) = (_l)m-l Dm(x) (so in particulax Dm(x) = 0 for x real and m even) and, on
the other hand, that the order of vanishing of (p( s) at s = 1-m for m > 1 equals r2 for m even
but Tl +T2 for m odd. Again we can make a more precise conjecture with an r X r determinant
(r = r2 or rl + r2) instead of sirnply a linear combination of r-fold products. Moreover, one
can make a more general conjecture with Artin L-functions in place of Dedekind zeta funetions.
In particular , (p (s )/ ( s ) «( = (Q), whieh is a produet of such L-series, should be a surn of
(r - l)-fold produets of values Dm' This statement makes sense also for m = 1 and is true by
the DirieWet regulator formula (recaU that D l is essentially the logarithm-of-the-absolute-value
funetion), but even when m = 1 the general conjeeture for Artin L-series is unknown (Stark
conjectures). .

As a special case, we make the very specme

CONJECTURE 2. Let F be areal quadratic neId. Then IdFl' (F(3)/(3) is a rationa11in{~ar
combination of differences D 3 (x) - D 3 (x'), x E F.

Here x' denotes the eonjugate of x over Q. Note that (3) = D 3 (1), so trus is a strength­
ening of Conjecture 1 in this case. As numerical examples, we give

aod

(Q(y'2)(3)? 3 ([ J;; J;; J;; In
(3) = 5.25/2 D3(4+2v2)-D3 (4-2v2)] -9[D3 (2+v2)-D3 (2-v2)]

- 6[D3 (1 + V2) - D 3(1- V2)] + 9 [D3 (V2) - D 3(-V2)]).

both true to at least 25 decimals. (These relations were found empirically by using the Lenstra­
Lenstra-Lovasz lattice reduction algorithm to search nwnerically for linear relations between
IdFI!(F(3)/(3) and selected values of D3 (x) - D3 (X ' ), x E F.)

That the quotient (F/(zQ should be connected with the differenceJ Dm(x) - Dm(x') is a
special case of a "Galois descent" property which we expect to hold in general, and which is
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known for the case m = 2 by the J{-theoretical work already cited (cf. [4] for details). Roughly
speaking, this property implies that the Q-vector space spanned by the x E F occurring in the
conjecture should be invariant under the group of automorphisms of F over Q and that the
value of an (abelian or Artin) L-function factor of (F at s = m should be the determinant of
a matrix of combinations of Dm (x) with x in the corresponding subspace. An example of how
this works is provided by the case when Fis abelian over Q. Here the assertion of Conjecture 1
is easy if we allow the argwnents x to be in the abelian c10sure N = Q((f) (f = conductor of
F), rather than in Fitself: (F factors into a product of Dirichlet L-series L(s, X) with rl + r2

even and r2 odd Dirichlet characters X modulo f (of course, either rl or r2 is zero), and the
value of L(m,x) is an algebraic multiple of 7r

m if Xe-I) = (_l)m and an algebraic linear
combination of values of Dm(x), x f = 1 in the opposite case. This gives the statement with
an algebraic rather than rational combination of products of D-values, but a little more work
shows that the algebraic multiples occurring combine correctly to gjve a rational multiple of
IdFI'. The point is now that the set of x occurring, and the coefficients with which they occur,
are invariant under the action of Gal(N/ F). For instance, in the above case F real quadratic,
m = 3, f = dF, we have

and the conjugates of e2rrin / f E N over F are exactly the e2rrin' / / with (!!.;-) = (~).
Ey analyzing the structure of the numerical examples of Conjectures 1 and 2, oue can

get a more precise conjecture which actually predicts which linear combinations of products of
polylogarithm values must be used in order to get zeta-values. Using it, it is easy to produce
as many (conjectural) formulas involving polylogarithms and zeta-values as desired. In many
cases, these seem to be new even for F = Q, e.g.

67 ? 2 3 1 8 1 1
24 ((3) = 6D3 ( '3) + 3D3 ("4) - 3D3 ('2) - D 3 ( 9) - 2D3 ( 3) + D 3 ( -3)'

We will discuss the various versions of this conjecture, and its relation to algebraic K-theory,
in a later paper [9].
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