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and an old result of Barratt
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Let n 2 1, in this paper we describe a minimal algebraic model for the homotopy category gn/ ~
of Moores spaces M(Z/f,n) of cyclic groups Z/f, f€N.For n=1 we obtain the isomorphism
of categories

n

& By /x SR/

where R is a category derived from group rings of cyclic groups, see (1.6) and (1.7). This seems
to be the most elegant description of the category 2_1/2 ; results of Rutter [10] are immediate
conscquences of the isomorphism (1).

For n 2 2 we show that the category P /% 1is a split linear extension of the category F Cyc of
cyclic groups, see (2.5). Moreover we compute the suspension functors

)X

(2) pjyEpmE

IR
P/ 2

on these categories, see (2.7) and (2.5). Using these functors ¥ we obtain a canonical splitting
functor B, of the homology functor H_:

H
n
(3) P /~T_ ___"ECyc, n22,
= B
n

compare (2.3). We determine the additive structure of Pn/z , 0 2 2, by computing the term
N Y _ _ 7
(4) Alpw’) =B (¢+¢")—B (¢) —B (¢)

for ¢’ € Hom(Z/f,Z/g) , see (2.10). Using this formula we obtain a new proof of an old result of
Barratt [2] on the homotopy groups

(5) [M(Z/fn),M(Z/gn)} , n22,

see (2.13) and (2.14). Our method for the computation of the group (5) is algebraic and very



[P P )

different from Barratt’s highly involved geometrical techniques, compare the remark following
(2.14). We also derive from (1) and (3) an algebraic description of the group of homotopy
equivalences

(6) Aut(M(Z/tn)) , nd>1.

For n=1 this yields an easy proof of a result of Olum [9], see (1.15). For n 22 the
description of the group (6) gives us the result of Sieradski [11], see (2.8). Our computation of
the homotopy category Pn/ﬁ , 02 2, also solves a problem of Barratt [1], compare the remark
following (2.14).

In the first two sections § 1, § 2 we describe the main results of this paper. In section § 3 we recall
some basic facts on crossed chain complexes which are the crucial tools in our proofs in section § 4.
In particular we derive from the temsor product for crossed chain complexes (due to
Brown—Higgins [6]) a formula for the crossed chain complex of the James construction J(X) of
a CW—complex X, see (3.5). This formula is essential in our computation of (4) and (5) above,
see (4.5) and (4.9).

The author would like to acknowledge the support of the Max—Planck—Institut fir Mathematik in
Bonn.

_ § 1. The homotopy category of pseudo projective planes

Pseudo projective planes, P, = M(Z/f,1), are the most elementary 2-—dimensional
CW—complexes. They are obtained by attaching a 2—cell & toa 1—sphere st by an attaching
map {: st sl of degree {2 1, that is

(1.1) Pr=5'Uge? = D/n;.

Here D is the unit disk of complex numbers with boundary s! = 4D and with basepoint * = 1.

The equivalence relation ~ is generated by the relations x Ney & xf= yf with x,y € Sl.
Clearly P, = [RP2 is the real projective plane. Let P be the category consisting of pseudo
projective planes P f and of cellular maps. We consider the quotient functors

(1.2) P—P/2 P/~



R T S

where we use O—homotopies (2) running through cellular maps and homotopies (=) relative * .
Moreover, there is a canonical functor

(1.3) 7: Pair(N) — P,

where Pair(N) is the category of pairs in the monoid N of natural numbers. Objects are
elements f € N and morphisms f— g are pairs (£,7) EN xN with g¢ = nf. Let {f,g] be the
set of such morphisms (¢&,7) : f— g. The functor 7 carries { to Py and (§,7) to the map

Te Pr— Pg with rf{x} = {xf} for x € D, see (1.1). The induced homomorphism

(1.4) 7 (&m) = z'l(rg) i (P) =I/f— xl(Pg) =1fg

on fundamental groups is given by the number 5 = g&/f which carries the generator 1€ Z/f to
n-1€ I/g. Clearly 7 above is a faithful functor. We now introduce the natural equivalence
relation ~ on Pair(N) which is generated by the relations

(&m) = (&%) <= nn =0modg,
e mén=m("n")=0

(1.5) Theorem: The functor 7 induces faithful functors

7: Pair(N) >— P/R, and 7:Pair(N)/~>—P/~.
The image category of 7 in P/~ is the subcategory of principal maps in the sense of (V.§3) in
Baues [3]. We now define a category R which is actually a simple algebraic model of the

category P/2.

(1.6) Definition: The objects of the category R are the elements f€ N. A morphism A € R(f,g)
is an element A € Z[Z/g] for which thereis 7 € Z with g-e(A) =1{-n Here e:Z[Z/g] — 1 is
the augmentation of the group ring. Composition A © g for x4 € R(h,f) is defined by

(1) Aop=2-Auln)

where the right hand side is a product in the group ring Z[Z/g]. The homomorphism
,\#  L[Z]f) — T[T /g) with /\#[x] = [nx] is induced by the homomorphism
7(A)=n:L/f— T[g. Let

©) o= 3 I
x€L/f

be the norm element in Z[Z/f]. We introduce a natural equivalence relation ~ on the category R
as follows (A,u € R(f,g)) :



(3) Az p e m(Ad)=r(p) and 3 BET[Lg)
with A—y:A#(ﬁf) - B,

(1.7) Theorem: There are isomorphisms of categories

p:P/R-"5R,and p:__P;:-:—»g/z.
Various results of Olum [9] and Rutter [10] are immediate consequences of this theorem.

For ¢ € Hom(Z/{,Z/g) let [f,g] , and [Pf,Pg]¢ be the set of all morphisms in [f,g] and [Pf,Pg]
respectively which induce ¢ on ﬁmdamental groups, see (1.4). By (1.5) the function

(1.8) T: [f,g]w — [Pf’Pg]p

is injective for ¢ # 0 and is identically 0 if ¢ = 0. The group of integers Z acts freely on [f,g]
by (&7 +k=(€+ K, n+kg) and [f,g]w is the orbit of (£,7) with = (£,7) = p. On the

other hand the coaction Pr— P V $2 induces an action + of the cohomology group

— 72 * _ .

on the set [Pf,P g] 0 which is transitive and effective. The group rng can be described by each
of the following equations

(1.10) | mpP =HP = {x€ILlfg| 0% = 0}
= kernel (e : Z[Z/g) — )
= ([0] - [1]) - Z{Z/g] -

Let t:Z — E;a be the homomorphism mapping 1 to the class of

P

t¢=f-[0]- 0; € kernel (€) = m, g

P4
(1.11) Proposition: = in (1.8) is t—equivariant or equivalently
H(Em) + ket = (€ + 4,7+ kg) in (PP )

This result follows easily from (1.7).

We next derive from (1.7) a result on the group of homotopy equivalences Aut(Pf)* , in the



category Pf=~.Let I be the'ideal generated by the norm element d; in I[Z/1) and let U; be

the group of units in the quotient ring Z[Z/f]/1. Moreover let Uf be the group whose elements
are those of Up but with a multiplication

{2} o {u} = {2-24(1)} .
Here {A} denotes the class of A € Z[Z/f] modulo 1.
(1.12) Proposition: There is an isomorphism of groups
Au(P)* =— U,

Proof: Let E(f) be the group of equivalences of the object { in R/~. Then we have {A} € E(f)

Hf there is 4 with Ap = [0], #A = [0]. This is equivalent to 4+ (syA) = [0] and = = (27
This is the case iff

38 with ,u~_(,u#,\)= [0] + 3 - Py O
& 38 with (A#p)-A = [0] +().#ﬁ) + 9

& {Ayev;.

Since the composition in Aut(Pf)* corresponds to the composition in R, we get the

isomorphism for Aut(Pf)* .

/

We do not know whether the functor

T g/:—'v-)&/z——»—» FCyc

admits a splitting where EFCyc is the category of finite cyclic groups Z/f, f € N. However a
splitting of the homomorphism

my : Aut(PY)* & U Aut(z/1)

can be constructed as follows. For this we consider the commutative diagram



ltg] L . Rlg
(1.13) l " l q
Hom(I/LZ/g)~-L——=  R[igl/
Here T' is defined for (&,7) € [f,g] by
£—1
D(¢ém) = ) li-pl] €2(L/g]
j=0

with p= wl(f,n) and q is the quotient map.

(1.14) Lemma: The function T induces a function f* such that (1.13) commutes.

Proof: We have to check that =,(&,7) = xl(ﬁ’,n’) = p implies I'(&,n) ~T(€7,n'):

£+1-1 §+1-1
M(é+ntg) = ) [irell=Tn+ ) litel
j=0 j=¢
f—1
=T(6m) +py(le-1 - ) 1)
j=0

=I'({,n) + 99#([51] : gp#é‘f
/l

(1.15) Proposition: Let U} be the group of units x in the quotient ring Z{Z/f]/I with
€(x) = 1. Then we have the split short exact sequence of groups

1 n
0— Uy — U — Aut(Z/) — 0

where ﬁ{ N Aut(Pf)* by (1.12). The splitting carries ¢ € Aut(Z/f) to (;a“l)#f*(ga) .

(1.16) Remark: Proposition (1.15) is proved by different methods in (3.5) of Olum. It is known
that there is an isomorphism of abelian groups

1
UfgﬂXGBZZ/f,



where y is the number of all i € N, 1 <i < {/2, for which i is not a divisor of f. It is, however,

a deep number theoretic problem to determine the action of Aut(Z/f) on ZX ® Z/f in terms of
basis elements. This action is defined by the split exact sequence (1.15).

/1

§ 2. The homotopy category of suspended pseudo projective planes

We consider the suspensions

(2.1) £*71P, = M(Z/fn) = 8" Ue"

of pseudo projective planes, n 2 1, which are Moore spaces of cyclic groups. Let gn be the

category consisting of the spaces Z‘n_le, f> 1, and of cellular maps. In section 1 above we
studied the category P = P, of pseudo projective planes and its homotopy category P/~ We
here compute the suspension functor ¥ gn/z — P _I_l/:, n 2 1, which is an isomorphism of
categories for n 2 3. For this we consider the commutative diagram of functors

. pX )
Pair ) —T—  P/x - py/x L py/n

(2.2) l r,  H H,

where H, and H, are the homology functors. The next result seems to be new; recall that (f,8)
is the set of morphisms f— g in Pair(N), f,g, € N, see (1.3).

(2.3) Theorem: Let ¢ € Hom(Z/{,Z/g). Then there is a unique element p = B,(#) in the image
of

Er:|f YP. LP
7: [fg] — [EPGEP
with Hzﬁ = y. Moreover there is a unique element p = B3(ga) in the image of
_ 2
IE: [PpP ] — £2P 2 P,]

with H,p = ¢.



et oed 4l -

(2.4) Corollary: The functors H (n = 2,3) in (2.2) admit a splitting functor

B, :FCyc— P, [~
with H B =1

This follows immediately from (2.3) since the definition of B _(y) is compatible with com-
positions. The splitting functor Bn' however, is not additive; below we describe the distributivity
law for B (¢ + ¢’ ). The functors H_ in (2.2) are part of the following commutative diagram in
which the rows are split linear extensions of categories (compare IV. § 3 and V § 3ain [3])

2 Hy
E? 4> Po/x —2 1 FCyc

(2.5) la \ | ls ”

E® +>— __I_"3/z —HS__H FCyc
Here E® is the bifunctor on FCgc given by
1
(1) E™(Z/1,2/g) = Ext(T/LT 1/g)

where F111 is Whitehead’s functor I' for n =2 and the functor —®Z/2 for n 2 3. The group

(1) is a cyclic group of order (f,2g,g2) for n =2 and (f,g,2) for n 2 3 where the bracket (...)
denotes the greatest common divisor. The natural transformation ¢, in (2.5) is induced by the

surjection

*

(2) o:['(1]g) —U/g®T/2

compare (IX. 4.4) [3]. The action of E" on _E_n/: is given by the well known central extension
of groups

(3) Bxt(T/fr_, ,U) > (5271P,U] — 2 Hom(Z/t, 7, U)

n+1

which is known as the ' wrdsersad caegficiont sequence’ compare Hilton [7] or (V.3a) in Baues [3].

For U=3"1P we have TV = F;(H/g). The splitting B_  gives us an identification
(n22) ‘

(4 Hom(Z/£,2/g) x E"(Z/51/g) = ("' Py" P



which carries (p,a) to B () +i(a). The composition in P/~ then satisfies the simple
formula

(5) (p,a) 0 (¥,6) = (¢¥,0,a + ¥*B).

This indeed yields a very simple algebraic description of the category P _/~. The suspension
functor in (2.5) is given by E(p,a) = (p,0, ). We now consider the image category of the functor
L:P/~— Po/~. Recall that 1€ I/ denotes the canonical generator..

(2.8) Definition: For maps u,v: P,— P, in P weset usv if ¥f~Yg. Whence the quotient
category P/= is the same as the image category L(P/~). For morphisms A,z € R({,g), see (1.6),
weset A =p if 7(A) = 7(p) andif for some S € Z[Z/g] with

A—p—e(A—pl0]=([0] -[1]) - 8

the greatest common divisor (f,g2,2g) divides g-e(4).

/1l

The following result shows that the image category X(P/~) is surprisingly small. By (2.3) we
know that the image category XX(P/~) is isomorphic to FCyec.

(2.7) Theorem: The isomorphism p in (1.7) induces an isomorphism of categories

p:L(P/~) =P/= =3 R/=.

Moreover one has a split linear extension of categories

By>— P/= _“'1_H FCyc
where ® is the quotient of E2 above with B(Z/1,Z/g) = g-Ext(Z/f,"(Z/g)) . This group is /2

if (f5%2g) = 2g andin 0 otherwise. The splitting is given by By in (2.3).

We derive from (2.6) and (2.7) the following commutative diagram in which the rows are split

X
extensions of groups. Here Aut(X) denotes the group of homotopy classes of basepoint
preserving homotopy equivalences of X .



(2.8) TAut(Py)* Aut(/1)

Y

I/f > Aut(SP)* —  Auy(Z/)

1/(52) >——  Auw(E?P)* —n Aut(T/0)

Using different methods the split extension for Aut(EPf)* was obtained by Sieradski [11].

The morphism sets [EPf,EPg] in P,/~ are groups since the suspension YP, is a co—H—group.
As pointed out in (2.4) the splitting

(2.9) B, : Hom(Z/f,Z/g) — [EPI’EPg]

is not additive. We now describe the distributivity law for B,(p + v’). Let

A: Hom(ﬂ/f,ll/é) x Hom(Z/f,I[/g) — Ext(Z/{,TL]g) ~ H/({,2g,g2)
be the linear map which carries the pair (p,¢’) to the element
Alp,p”) = (I(-1)/2)py 0] - 1
where (1) = p,1, v’ (1) = gail. Then we get
(2.10) Theorem: Bo(p+p”) = Bo(p) + By(¢”) + A(p,¢”)
The splitting B_, n 2 3, satisfies the addition law

B (v,¢’) =B () + B (¢") + 0,8(p,¢"). This follows from (2.5). The formula for A yields
the following property.

(2.11) Lemma: Let = 2af0, g = 2bg0 where f, and By are odd. Then we have A #0 iff
a=b21 or a=b+ 122 and we have cr*A:f:O iff a=b=1.

Using the identification (2.5)(4) we can describe the group structure < of the group
[En_le,En_ng], n 2 2, by the formula

(2.12) (p,a) + (97 ,0") = (p+ ¢ o+ o’ + 4 _(p9")



where 4 =4 for n=2 and A =o,A for n 2 3. This formula describes completely the
additive structure of the category P /~. Since A(p,p’) = A(p’,p) we see that also the group
[EPf,EP g] is abelian for all f,g € N. The cyclic summands and explicit generators of this group
are described in the next result.

(2.13) Corollary: Let = 2af0 and g = 2bg0 where f, and g, are odd. Then the homo-
morphism

Hy : [EPyEP,] — Hom(T/L,1/g) ¢ T/d

has an additive splitting of abelian groups if and only if (a,b) # (1,1). Moreover for the greatest

common divisors d = (f,g) and ¢ = (f,g2,2g) one has

Z/d®I/c for (a,b)#(1,1),
[EPEP ) =
Z/2d ® I/(c/2) for (a,b) = (1,1).

The generator of the first summand is (900,({/4)1) if a>b=1 and (p,,0) otherwise where ¢,
is a generator of Hom(Z/f,Z/g). The generator of the second summand is (0,1) if (a,b) #(1,1)
and is (0,2-1) if (a,b) = (1,1). Here we use again the identification in (2.5)(4).

{2.14) Addendum: The homomorphism
H, : [Esz,Eng] — Hom(Z/1,I/g) = I/d

has an additive splitting if and only if (a,b) # (1,1). Moreover for e = (f,g2,2) one has

Z/d®I/e for (ab)# (1,.1),
[)32Pf,E2Pg] - |
Z/2d for (ab) =(1,1).

The generator of the first summand is (gaO,O) and the generator of the second summand Z/e is
(0,1).

Remark: The result in (2.13), (2.14) is due to Barratt [2], (table 2 in 10.6). Barratt uses
Whitney’s tube system for proving this result; his arguments are highly geometrical and totally
different from our method. Hilton (p. 125) presents a different approach for the stable groups

[E2P{,22P8] and points out that a more simple minded proof of Barratt's result is needed. A



further improvement in the results above is the fact that we describe explicitly generators of the
cyclic summands. The algebraic description of the category P /=~ by (2.5)(5) and (2.12) solves a
problem of Barratt [1] who used generators and relations for the description of P f~, n 2 3. Our
algebraic model of gn/:: is simpler and also available for n = 2.

/

Proof of (2.13): H, has a splitting if and only if there is a such that (;po,a) has order d. By the
group law in (2.12) we obtain the formula

d—1

(1) (Poaa)‘d = (Oia.d + z A(f"ostWO)) .
t=1

We choose the generator py = 7 ({,7) with n=g/d, see (1.4). Then we have

(2) Apgitey) = (((=1)/2)n-tn-1

and therefore we have (gy,a)-d =0 iff

(3) ad = (£(E-1)/2)nn(d(d-1)/2) 1.

If a>b=1 weseethat n and d/2 are odd. Thus a = ({/4)1 satisfies the equation (3).
Otherwise a =0 satisfies (3) for (a,b) #(1,1). For (a,b) =(1,1) we have ad =0 for all aq,
however, the right hand side of (3) is a non trivial element of order 2 in this case. This proves the
proposition. If we reduce equation (3) modulo 2 then both sides of (3) are zero for a > b = 1. This
shows that Ba(y) yields an additive splitting for if (a,b) #(1,1).

//

Finally we consider the group structure of the homotopy groups with coefficients in Z/f. As in
(2.5)(3) we have the central extension of groups

-1 T
(2.14) 1/f® x_ U >— [E" P,U] = Hom(Z/f,x U)

+

where we identify Ext(Z/f,r +1U) =I/{®r +1VU- This extension is completely determined by
the following proposition which completes the partial results on the extension (2.14) in Hilton [7]
(page 125—128).

(2.15) Proposition: For x,y € [EP;,U] we have the commutator rule (v = {(f-1)/2)

~—x—y+x+y=v1®[i*x,i*y]



where i:5%CEP; is the inclusion and where [*xi*y]€ 73U is the Whitehead product.
Moreover let Zy be the subgroup of Hom(Z/f,x U) generated by an element ¢. Then there is a

function T: Zp — [En_le,U] with 7 T(x) =x for x € Zy and with (r;s € )
~T((r+8)p) + T(rp) + T(s) = rtvl ® (% p(1))

where #: Sn"'1 — 8" is the Hopf element.

Proof: The property of the commutator follows from the definition of the Whitehead product and
the lemma on the reduced diagonal A :P;—— P A P¢ in (4.10) below, see for example 11.1.12
in Baues [4]. Next let Z/g be the cyclic group generated by ¢(1) in x,U. Then we can choose

a map F: £27lp U with i*F= ¢(1). Moreover an element ty € Ty corresponds to a
homomorphism ty: I/f — I/g. Now we define T in (D.22) by T(ty)=F,B (tp) where B
is the splitting in (2.4) and (2.10).

/l

§ 3 Crossed chain complexes

Let CW be the category of CW—complexes X with X% = % and of cellular maps. Our main
tool for the proofs of the results in § 1 and § 2 is the functor

(3.1) p:CW—H

which carries X to the crossed chain complex p(X). Here H is the category of totally free
crossed chain complexes which are called homotopy systems in Whitehead [12], compare also
(VI. § 1) [3] where weset D = * and G = 0. The crossed chain complex p(X) is given by the
sequence of boundary homomorphisms

d d d
o (X3 %% 2 (P 22—y (x)
with dn—ldn = 0. The cells of X form a basis of the totally free crossed chain complex pX,
that is rl(xl) is a free group generated by the 1—cells of X and d, is a free crossed module

generated by the 2—cells of X, moreover xn(Xn,Xn—l), n23, isa free 7 (X)-module
generated by the n—cells of X . There is a notion of homotopy = for morphisms in H such that
p induces a functor p: CW/~ —— H/~ between homotopy categories. Here we use basepoint



0
preserving homotopies for maps in CW denoted by f~g. Let f~g be a homotopy running

through cellular maps. T

(3.2) Theorem: The functor p induces equivalences of categories

2

1o

2

Q
=
=

2/g

~

p: —_
~

P —

/
2/

Q
=

12
{[=-

where @2 and gz denote the full subcategories of 2—dimensional objects. Moreover
p:CW/~ —— H/~ induces the map

p: [X,Y] —— [pX,pY]

between homotopy sets which is a bijection if dim X <2, X,YE CW .

This theorem is an old result of J.H.C. Whitehead [12], it is as well proved in chapter VI of [3],
(compare (VI.3.5) and (VI.6.5)). We use the theorem as the main tool in the proofs of § 4. We
shall also use the temsor product of Brown—Higgins [6] which gives us a functor
®:Hx H—— H such that there is a natural isomorphism

(3.3) P(XxY) = p(X) ® p(Y) .

Here XxY is the product with the CW—topology given by product cells exf. The crossed chain
complex A ® B is generated by elements a®b, a®*, *®b where a€ A, b€ B with the
following defining relations (plus, of course, the laws for crossed chain complexes):

(1) |a®b| = |a| +|b|, |a®*x| = |a], |*¥®Db| = |b]|.

(2) (+®b)*® = x®(bY) for |t{=1 and (a®b)*® = a@(bl) for |t|=1, [b|>2,
(a®%)"®* = (2%®* for |s|=1 and (a8b)°®* = (a®)®b for |s|=1, |a|>2.

(3) (a+a’)®x=a®x*x+a’ ®x |
(a+a’)®b=a®b+a’"®b for |a] 22,

/
(a+a’)®b=(a®b)* ®* +a’®b for [a| =1.

(4) *®(b+b')=%x®b+*x®b’ |
a®(b+b')=a®b+a®b’ for |b|2>2,

/
a®b+b)=2® b’ +(a® b)*®® for b =1.



(5) d(a®x*)=(da)®x*, d(*®b)=*®(db) and d(a®b) =

(—a® - x®b+2a®x+ @D for |a] =|b| =1 ,
x®b)*®*+x@b] - 2@ db for [a| =1, |b]22,
(da) @ b + (=1)2/[- (2 @ ¥)*P 4 a@%] for [a] 22, [b|=1,
(da) ® b + (—1)12la @ (db) for [a] 22, |b|l22.

Moreover A ® B is totally freeif A and B are totally free, a basis of A ® B is given by the
elements *®b, a®%*, axb where a and b are basis elements of A and B respectively.
The isomorphism (3.3) carries exf to e®f.

Next we consider the James construction which is a functor J: CW —— CW pgiven by the
direct limit JX=1im J X where J X= (X x..xX)/~ is given by the relations
(xl,...,xn_l,*) ~ (xl’“"xt—l’*’xt"'"xn—l) for t=1,..,n. It is a classical result of James [8]
that there is a natural homotopy equivalence

(3.4) I(X) ~ nEX

for X in CW. Using (3.3) we obtain a functor J:H-—— H together with a natural
isomorphism

(3.5) pJ(X) = Jp(X) .

Let A be a crossed chain complex. The crossed chain complex JA is generated by all words
a8, (a.i €A,i=1,..,n and n2 1) with the following defining relations (plus, of course, the
laws of crossed chain complexes). Let u,v be such words or empty words ¢ and let a,a’,t € A.
Then (a) denotes the word given by a € A .

(1) |ayap| = [ag} + ...+ |3, -

(2) (uav)' = u(at)v for [t] =1, |a|22 and (a)'=(a}) for |t|=1.

(3) u(a+a’)v= [uav + ua’v for |a] 22
ua’v + (uav)® for [a =1, [u] 21
(uav)a', +ua’v for |a]| =1, |v|21
(a) + (a”) foru=¢=v




(4) ‘ d(a) = (da) and d(uv) =

[—u—v+u+tv for ju| = |v| =1,
[—"4+v-u(dv) for |ul =1, |v| 22,

(du)v + (=) 1l (V) for [u| 22 |v] =1,
(du)v + (=1)1 %] u(dv) for |u| 22, |v| 22

For a map F:A—B in H the induced map JF:JA—JB s defined by
- }
(JF)(a...a ) = (Fa,)...(Fa ). There is a well defined natural map i

(5) 4:JA®JA — JA

given by u(u®v) = uv, u(*®v) = v, u(u®*) = u. Therefore JA is an example of a *crossed chain
algebra’.

//

One can check that JA is totally free if A is totally free. In fact, if Z is a basis of A then
Mon(Z) — * is a basis of JA: Here Mon(Z) is the free monoid generated by Z. As an application
of (3.2) we get:

(3.6) Corollary: Let XY be CW-complexes in CW with dim(X) £ 2. Then one has the
binatural isomorphism of groups

[EX,DY] ¥ [X,JY] % [pX,JpY]

where the group structure in [pX,JpY] is induced by g in (3.5) (5). As a special case one gets
74(LY) = 7,(JpY).

A more detailed study of the James construction of crossed chain complexes can be found in
Baues [5].

§ 4. Proofs

We here prove the main results of § 1 and § 2. Using (3.2) and (3.6) these proofs turn out to be
purely algebraic. This indeed is an advantage compared with the longwinded sequence of
geometric arguments of Barratt [2]. For a more detailed discussion of the following prools see
Baues [5].



We first observe that the group xz(Pf,Sl) is abelian. Let e, be the 2—cell of P, andlet e be

the 1—cell of P.. Then the elements ege, n € Z, generate the group xz(Pf,Sl). The

commutators satisfy the formula
ne _me & ne & _me e me e me
(4.1) —€) —€, tey ey = (eg ,el; ) — (e’;l ,elg .

Ix

Here (x,y) = —X—y+x+y is the Peiffer commutator which is trivial in the crossed module

1 1
do : 7o(P,S™) — m,(57) .
(4.2) Proof of (1.7): Since xz(Pf,Sl) is abelian we have an isomorphism

hy : 7o(PeST) M T[T/1]

this follows from a result of J.H.C. Whitehead [12], compare for example (VI.1.12) in Baues [3].
As a special case of diagram (3) in (VI.1.14) [3] we obtain the commutative diagram

1, 99 1
1o (Pp,87) ——— 7, (57) =1
fre
h, hy

1[(1/f] —g—— T[L/1]

where d(x)=x - d; is given by the norm element J; in (1.6). The boundary d describes the
cellular chain complex of the universal covering of P, and h, isa (I —— I /f)—crossed
homomorphism. Using the isomorphism h2 we can identify the crossed module d2 = p(Pf) with
the map f-e¢ where € is the augmentation of the group ring Z[Z/f] . We now restrict the
functor p in (3.1) to the subcategory P C CW . The functor p carries P; to the totally free

crossed module f-e¢ and carries a map F: Pf———» P_toamap (§,7):f-€e —g-€ whichis

g
given by a commutative diagram

1[z)f] —€ 1

e

1[1/g] —ge— I

We identify the full subcategory of 22 consisting of the objects f-e, f €N, with the category .

2

R defined in (1.6). The identification carries the morphism (§,7) in H® to the morphism



A=¢[1] in R. This proves that p:P/2 "4 R is the restriction of the first equivalence in

(3.2). A homotopy a:(&n)~(€/,9') in gz is an p—crossed homomorphism a: Z — ZI[Z/g]
which is determined by an element a(1) = # asin (1.8) (3). The equation —§ + £’ = a(f¢) is
equivalent to the equation

A+ A7 = (1] + ¢'[1] = a(f) = a(1) * (140

which is equivalent to the equation in (1.6) (3).

/1

(4.3) Proof of (1.5): The functor p in (1.7) carries T¢ to the element ¢ - [0] € R(f,g) C [Z/g]
where [0] is the unit of the ring Z[Z/g]. By (1.7) we know

(ém =&’ ') S e=mr (&) =7 (€ ,n") and
Ap € L[L/g) with (£-¢7)(0] = B+ pu(9p).

This implies 7 — 5’ = €(f)-g. We now observe

(1) puop= ) led=t- ) [yl
x€1/f yEpll/f

where t is the number of elements in the kernel of ¢. For g = 2 ay[y] in Z{l/g] we have
y€L/g

(2) Brogdy =t ) a [y+v],
y€L/g, vEpl/f

=t- Yy () a,)Mul
u€ll/g y€Eutpl/f

Now ﬂ-go#(?{: (¢/=€)[0] with ¢ = Te= My Tyl implies

(3) 0= E 3, for u€ /g, uto.
yEu+pl/f

The number of elements in pZ/f is g/gcd(n,g). If ged(7,8) < g we add up the equations in (3)
for u€U={x-1;1<y<ged(ng)} CIZ/g. Since the union of all u+ pl/f,u €U, is A/g we
get €(B) = 2 a, = 0 for ged(7,g) < g Whence in this case =5’ and thus (&,9) = (¢',n").

y
If gecd(n,g) =g, that is, if ¢ =0 we see by (3) that ay = 0 for y#0 and ag = ¢/ — &, 80
that in this case § exsts. . /!



The crucial step for the proof of (2.3) and (2.7) is the computation of the suspension
homomorphism ¥ on szg . For this we consider the diagram

44 73 (Py) 2

I , il

([01-[11)Z[Z/g] 2 1/ (g22)

where X/ is defined by the formula X/ (([0]-[1])8) =g-€(B)-1 for B € U[Z/g]. Here € is
the augmentation. The right hand isomorphism carries the generator 1 to the Hopf element

s3—s?cwp g The left hand side isomorphism is described in (1.12).

(4.5) Lemma: Diagram (4.4) commutes. This shows that E:rz(Pg) is of order 2 if g is even, and
is trivial if g is odd. Moreover the subgroup E7,(P g) = 0 is trivial in 14()32Pg) for all g .

Proof: We use (3.6) so that ¥ in (4.4) corresponds to the map
(1) . iy, : 7"2(9) — 72'](19) = H2CJ(p)
where p = p(Pg) and where i: p CJ(p) is the inclusion. Let e =e, and e, be the cells of P

which are the generators of p with d(e2) = g+e = e+...+e. The boundary d: J(,o)3 — .](p)2 is
given on generators by the following formulas.

@ doo)  =eftey=e(sd)
-] o
i=0
® de) = (et
Z(3 e - g vy
i=1
@ d(oee) = ~{ee) + oo

These equations are simple applications of (3.5) (4) since d{ee) = 0. The same equation hold in
Cl(p), this is the cellular chain complex of the universal covering of J(Pg), compare the
definition of the functor C in (VI.1.2) of Baues [3]. Let B =4d(Clp); be the group of
boundaries. Then we get modulo B the congruences (see (1.6)(2))



(5) egl0] —[1]) = (ee) - G, = (ee)(g-[0]) -

The Hopf element in (2.9) corresponds to the cycle ee in CJ(p). Whence (5) shows that L/ is
defined correctly for G =][0]. For general [ we can choose 7 € [Z/g] such that

B = €(B)[0] + 7{[0] ~ [1]). Then we get
(6) &o([0] = [1])8 = (ee) 6,5 = (ee) (/) = (ee)(g* (A)[0])

since ([0] ~ [1])¢9g = 0 for the norm element 88. This proves (2.10).
/l
(4.6) Proof of (2.3) and (2.7): The second part of (2.3) and also (2.7) follow immediately from

lemma (2.10) since ¥ is compatible with the coaction on Py For the first part of (2.3) we have
to check that E’tip is trivial if considered as an element in the group

(1) Ext(Z/f,0(Z/g)) = T/(1,28.6°)

Here we use (1.13). By (1.9)(1) we know

(2) ty =10 = pydp=t-(v[0] = } )
xEV

where t = |ker |, t-v =1{, V =image(yp) with |V| = v. Since tp € ker(e) thereis g with

(3) v[o] - ) [x] = ([0]-[1])8.
xEV

This shows that there is an integer b with

(4) | €(8) = g-b—u(v(v-1))/2

where u-v = g. Whence EL’(t ‘a) is given by the element

(5) £/(t,) = t-g" €(B) 1 = {tg"(v-1)/2)1

in Zl/(g2,2g). Now it is clear that (5) represents the trivial element in the group (1).

/l

The proof of (2.10) is based on the following lemma on commutators (a,b) = —a—b+a-+b.



(4.7) Lemma: Let G = <a,b> be the free group generated by elements a and b andlet € N.
Then there exists elements ¢; € G (i = 1,2,...,f(f-1)/2) such that

f(1-1)/2
(atb)-f=a-f+b-f= )  (ab)

i=1

§;

Here we set x-f = x+..+x ({—times x) and we set x¥ = —y + x + y. The sum is the ordered
sum in the non commutative group G.

Proof: We show inductively that there are a; € G with

f—1

a.
(1) (a+b)-f=a-f+b-f) (ab-i) .
i=1
This is true for = 1. Now we get for (a+b)(f+1):
f—1 .
(a+b)f+(a+b) =a-f+b-f— ) (a,bi) '+ (a+b)
i=1
1 ai'+a+b
=a-f+b-f+(a+b) — ) (a,bi)
i=1
b =1 a;+a+b
= a-(f+1)+b(f+1) — (a,bf)” = ) (a,bi)
i=1
This proves (1). Moreover there are ﬂj € G with
L B;
2) (a,b+i) =) (a,b) *.

=1

This follows inductively from (a,y+z) = (a,2) + (a,y)® where weset y =b-i and z ="b. From
(1) and (2) we derive the proposition.

//

We derive from (4.7) the following algebraic description of the diagonal A : P¢— Px Pp.

(4.8) Corollary: Let ee, be the generators of p = p(P;). Then a=e®, b=*®e are
generators of p® p so that (p® p)1 = <a,b>. Moreover we obtain a map A: p— p®p by
A(e) = a+b and



(i-02
®k +%Be,— ) (eBe)
i=1

A(e,) = e,

where the £ are the elements in (4.7). The map A satisfies p;A=1 and p,A=1 where
Py.Py 2re the projections of the tensor product p® p.

~ Since we have [Pf,Pfof] = [0,p®0] by.(3.2) we see that A in (4.8) represents the homotopy
class of the topological diagonal of Pp

(4.9) Proof of (2.10): The group addition in the group
(1) ‘ [EPEEP ] = [pPJpP ]

can be described by the composition F + F’ = G,
4
(2) G:pp; - pp @ o, —FEE IpP, ®IpP, —£ - 3pP

where A is the diagonal in (4.8). Now we choose (£,n), resp. (¢§/,n”) € [f,g] which induces p,
resp. p’,in (2.10). We may set 7 = gol,n’ = 1. Moreover let F, resp. F’, be given by

Fle) = e, Fey) = fey
(3)
F'(e)=n"e,F'(e)) = {e,.

Then the composition G in (2) represents B,(y) + B,(p”). Explicitly we get G by the
formulas:

Gle)=(n+1n")e ,

(4) v (&)

Gley) = (E+ €)ey— T (me)-(n'e) 1
i=1

where v ={(f-1)/2 and 7e=e+..e= n—fold sum of e. On the other hand B,(y + ¢’) is
represented by the map G’ : pPy— J,:)Pg with G'(e)=(n+n)e and
G’(e2) =(¢+ f')e2 . This shows that A(p,¢”) is represented by the element

(ne)(n’ e)p( ) € kernel(d,)
1

(5) a=

Il 1 <

i



where d, is the boundary of Jp(Pg). We know that :|r2JpPg = kernel(d2)/image(d3) is
generated by the cycle ee. Whence we have to show

(6) a=v-7-n’(ee) moduloimage (dg) .

This is easily checked by use of (4.5) (4) and (3.5) (3). Therefore the proof of (2.19) is complete'.
//

We also derive from (4.8) the following well known result on the reduced diagonal of P [

(4.10) Corollary: The following diagram homotopy commutes.

A

o e

s ¥,glag2c Pa Py

Here v is a map of degree f(f—1)/2 and q denotes the quotient maps. Recall that the smash
product AAB is defined by the quotient AAB = AxB/(AvB). We obtain (4.10) directly from

(4.8) since p(PAP() = p(P)®p(Py)/p(P¥ Py) .
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