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On the homotopy category of Moore spaces

and an old result of Barratt

Hans Joachim Baues

Let n ~ 1 ) in this paper we describe a minimal algebraic model for the homotopy category "tn/'.::!.
af Moores spaces M(ll/f,n) of cyclic graups lllf) f E [N • For n = 1 we obtain the isomorphism

of categories

(1)

where R is a category derived !rom group rings cf eydic graups, see (1.6) and (1.7). This seems

to be the most elegant description cf the category P1/'::. ; results of Rutter [10] are immediate

eonscquences of the isomorphis~ (1).

For n ~ 2 we show that the category f::n/'::!. is a split linear extension of the category F eyc of

eyelie groups, see (2.5). Moreover we eompute the suspension funetors

(2)

on these categories) see (2.7) and (2.5). Using these functors I; we obtain a canonical splitting

functor Bn of the homology functor Hn :

(3) p / '::. • F eyc, n ~ 2 ,=n ~-B---

n

compare (2.3). We determine the additive structure of Pn/r.::.) n ~ 2 ) by computing the term

(4)

for cp)ep' E Hom(ll/f,ll/g) , see (2.10). Using this formula we obtain a new proof of an old result of

Barratt [2] on the homotopy groups

(5) (M(ll/f,n)JM(llJg,n)], n ~ 2 J

see (2.13) and (2.14). Our method for the computation of the group (5) is algebraic and very



different from Barratt's higWy involved geometrical techniques, compare the remark following

(2.14). We also derive from (1) and (3) an algebraic description of the group of homotopy

equivalences

(6) *Aut(M(ll/f,n)) , n ~ 1 .

For n = 1 trus yields an easy proof of a result of Olum [9], see (1.15). For n ~ 2 the

description of the group (6) gives UB the result of Sieradski [11], see (2.8). Our computation of

the homotopy category Pn/'::!.' n ~ 2 , also solves a problem of Barratt [1], compare the remark

following (2.14).

In the first two sectians § 1, § 2 we describe the main results of this paper. In section § 3 we recall

some basic facts on crossed chain complexes which are the crucial tools in our proofs in section § 4.

In particular we derive from the tensor product for crossed chain complexes (due to

Brown-Higgins [6]) a formula for the crossed chain complex of the James construction J(X) of

a CW--eomplex X, see (3.5). This formula is essential in our computation of (4) and (5) above,

see (4.5) and (4.9).

The author would like to acknowledge the support of thc Max-Planck-Institut für Mathematik in

Bonn.

§ 1. The homotopy category of pseudo projective planes

Pseudo projective planes, Pf = M(7J./f,I), are the most elementary 2-dimensional

C\V-complexes. They are obtained by attaching a 2-cell e2 to a l-sphere SI by an attaching

map f: SI ---1 SI of degree f ~ 1, that is

(1.1)

Here D is the unit disk of complex numbers with boundary SI = OD and with basepoint * = 1.

The equivalence relation N C is generated by the relations x N f Y {:::} xI = yf with x,y E SI.

Clearly P2 = lRP2 is the real projective plane. Let ~ be the category consisting oI pseudo

projective planes Pfand of cellular maps. We consider the quotient functors

(1.2)



where we use o-homotopies (g) running through cellular maps and homotopies (~) relative *.
~1:oreover, there is a canonical functor

(1.3) T : Pair(lN) --+ ~

where ~(IN) is the category of pairs in the monoid IN of natural numbers. Objects are
elements f E lN and morphisms f --+ g are pairs (~ ,t}) E lN x IN wi th g~ = 1]f. Let [f,g] be the

set of such morphisms (e, 1]) : f --+ g. The functor T carries f to Pfand ( e, t}) to the map

T ~ : Pf -I Pg with T ~{x} = {x~} far x E D, see (1.1). The induced hamomorphism

(1.4)

on fundamental groups is given by the number 1] = g{/f which carries the generator 1 E71lf to

1]-1 E ll/g. Clearly T above is a faithful functor. We now introduce the natural equivalence

relation ~ on Pair(lN) which is generated by the relations

{=} 1],17' =Omodg,

~ 1f"1({,7]) = 1r1({' ,7]') = Q.

(1.5) Theorem: The functor Tinduces faithful functols

The image category of T in PI'::!. is the subcategory of principal maps in the sense of (V.§3) in

Baues [3]. We now define a category R which is actually a simple algebraic model of the

category fJg .

(1.6) Definition: The objects of the category ß are the elements eE IN. A morphism A EJ1(f,g)

is an element A E 11[111g] for which there is 1] E II with g - f( A) = f· 1]. Here f: 71[1l1g] --+ 71 is

the augmentation of the group ring. Composition "" 0 Jl for Jl E R(h,f) is defined by

(1) "" 0 j.L = ,\ - ",,#(j.L)

where the right hand side is a product in the group ring ll[lI/g]. The homomorphism

).# : 1l[1l/~ --+ 7l[71/g] with ",,#[x] = [7]x] is induced by the homomorphism

1r1(..\) = Tl : 71/f --+ ll/g. Let

(2) Oe = l [x]
xEll/f

be the norm element in ll[ll/q. We introduce a natural equivalence relation '::!. on the category R

as follows ("" ,j.L ER(f,g)) :



(3) A ~ J.L t=} 1r1( A) = 1r1(J.L) ancl 3 ß E 11 [11/ g]

with ;\ - J.L = )..#( Bf) · ß ,

(1. 7) Theorem: There are isomorphisms of categories

Q N N
P : fJ- --+ R, and p: P ~ --+ R /~.

Various results of Olum [9] and Rutter [10] are immediate consequences of this theorem.

For 'iJ E Hom(11JfJ11/g) let [f,g] and [Pf,P] be the set of all morphisms in [f,g] and [Pf,P ]
'iJ g'iJ g

respectively which induce 'iJ on fundamental groupsJ see (1.4). Ey (1.5) the function

(1.8)

is injective for 'iJ f 0 and is identically 0 if 'iJ = o. The group of integers II acts freely on [f,g]

by ({,1J) + k = ({ + kf, 1] + kg) and [f,g]~ is the orbit of ({,Tl) with 1r1({,Tl) = 'P. On the

other hand the coaction P f --+ P f VS2 induces an action + of the cohomology group

(1.9)

on t he set [PflPg] 'P which is transitive and effective. The group 7r2Pg can be described by each

of the following equations

(1.10) ={xE71[llJg]IO ·x=o}g

=kernel (€ : 1l[7lJg] --i ll)

= ([0] - [1]) • 1Z[ll/g] .

Let t: 11 --i E'iJ be the homomorphism mapping 1 to the dass of

(1.11) Proposition: T in (1.8) is t-equivariant or equivalently

This result follows easily from (1.7).

We next derive !rom (1.7) a result on the grQYQ of homotopy eguivalences Aut(Pf)*, in the



category fJ'::!.. Let I be the"ideal generated by the norm element af in 1l[7I/fj and let Uf be

the group of units in the quotient ring ll[ll/fj/I. Moreover let Of be the group whose elements

are those of Uf but with a multiplication

Here {A} denotes the dass of A E ll[ll/fj modulo I .

(1.12) Proposition: There is an isomorphism of groups

Proof: Let E(f) be t he group of equivalences of t he object f in "'ßJ '::!.. Then we have { A} E E(f)

Hf there is Jl with AJ1. '::!. [0] I J1.A '::!. [0]. This is equivalent to J1." (1.1,#),) '::!. [0] and 11'"IJ1. = (11'"1 A)-1.
This is the case Hf

3ß with Jl" ~Jl#A) = [0] + ß . /L# Of

~ 3ß with (),#J1-)' A = [0] + (),,#ß) " 8f

~ {A} EUf .

Since the composition in

isomorphism for Aut(Pf)* .

*Aut(Pf) corresponds to the composition in ß I we get the

//

"\Ve do not know whether the funetor

admits a splitting where Feye is the eategory of finite cyclic groups ll/f, fEIN. However a

splitting of the homomorphism

ean be eonstrueted as follows. For this we eonsider the commutative diagram



(1.13)

[f,g] r__-t

!""1

Hom(71Jf;!lJg) - - r - ---t

R [f,g]

!q
Er [f,gl/~

Here r is defined for (~,'7) E [f,g] by

~-1

r( ~ ,1]) = l [j - ~1] E 71[71Jg]
j=O

with rp= 1r1(~,1]) and q is the quotient map.

(1.14) Lemma: The function r induces a function r such that (1.13) commutes.

r( ~+f,17+g)
~+f-l ~+f-l

- l [j·rpl]=r(~,1])+ 1: [j°rpl]
j=O j={

f-l

::: r(~,17) + f{J#([,-1] - l [j-l]
j=O

JJ

(1.15) Proposition: Let Vi be the group of units x in the quotient ring 7l[71JnJI with

E(X) = 1. Then we have the split short exact sequence of groups

where f:tf~ Aut(Pf)* by (1.12). The splitting carries rp E Aut(71Jf) to (rp-l)#r(rp).

(1.16) Remark: Proposition (1.15) is proved by different methods in (3.5) of Olum. It is known

that there is an isomorphism of abelian g~oups

u} ~ 7lX EB 7lJf ,



where X is the number of a11 i E IN, 1 ~ i ~ f/2, for which i is not a divisor of f. It ia, however,

a deep number theoretic problem to determine the action of Aut(71/f) on 71X m71/f in terms of

basis elements. This action is defined by the split exact sequence (1.15).

//

§ 2. The homotopy category of suspended pseudo projective planes

We consider the suspensions

(2.1)

of pseudo projective planes, n ~ 1, which are Moore spaces of cyclic groups. Let ~ be the

category consisting of the spac~s rf-1p f' f ~ 1, and of cellular maps. In section 1 above we

studied the category P = ~1 of pseudo projective planes and its homotopy category f)'::!.. We

here compute the suspension functor E: f:.n/':::. ----t P n+1/'::!.' n ~ 1, which is an isomorphism of

categories for n ~ 3. For this we eonsider the commutative diagram of funetors

(2.2)

~(lN)_T--t E E
fJ'::!. --t '&.2/':::. ----.. P 3/':::.

111"1 H2 H3
Feye

where H2 and H3 are the homology functors. The next result seems to be neWj reeall that [f,g]

is the set of morphisms f ----t g in Pair(lN), f,g, E IN, see (1.3).

(2.3) Theorem: Let rp E Hom(ll/f,ll/g). Then there is a unique element rp = B2(~) in the image

of

Er : [f,g] ----t [EPpEPg]

with H2rp = 'P. Moreover there is a unique element ~ = B3(~) in the image of



(2.4) Corollary: The functors H (n = 2,3) in (2.2) admit a splitting functorn

B : FCye -+ P I'::!.n -=n

with H B = 1n n

This follows immediately from (2.3) since the definition of Bn()O) is compatible with com­

positions. The splitting funetor Bn, however, is not additive; below we deseribe the distributivity

law for Bn()O + )0 I ). The funetors Hn in (2.2) are part of the following commutative diagram in

whieh the rows are split linear extensions of categories (eompare IV. § 3 and V § 3a in [3])

2 H2 FCyeE +>----t f:2/'::!. I I

(2.5) !u* !E 11
3 FeyeE +>-----:-J f 31'::!. H3

I I

Here EU is the bifunetor on Feyc given by

(1) EnCD.lf,ll/g) == Ext(lllf,r~ll/g)

I·

where r~ is Whitehead's funetor r for n = 2 and the fnnetor -07112 for n ~ 3 . The group

(1) is a cyclie group of order (f,2g,g2) for n = 2 and (f,g,2) for n ~ 3 where the bracket (...)

denotes the greatest common divisor. The natural transformation 0"* in (2.5) is indueed by the

surjection

(2) (1 : r(ll/g) --t ll/g ~ lll2

compare (IX. 4.4) [3]. The action of En on Pn/ ':::. is given by the well known central extension

of groups

(3) If
n

I Rom(71/f, 1f' U)
n

whieh is known as the )~~~' compare Rilton [7] OI (V.3a) in Baues [3].

For U = ~-lpg we have ll"n+lU = r~(7I/g). The splitting Bn gives us an identification

(n ! 2)

(4)



whieh carries (~,a) to Bn( 10) + i(a). The eomposition in ~/'::!. then satisfies the simple

formula

(5)

Trus indeed yields a very simple algebraie deseription of the eategory f.n/'::!.. The suspension

funetor in (2.5) is given by E( 10,0') = (10,0"*0). We now eonsider the image eategory of the funetor

E : fJ'::!. -+ P2I'::!. . Recall that 1 E H/f denotes the eanonieal generator..

(2.6) Definition: For maps u,V: Pf -+ Pg in P we set u =. v if Ef ~ Eg. Whenee the quotient

category fJ=. is the same as the image category E(~'::!,). For morphisms A,J.l E R(f,g), see (1.6),

we set A =. J.l if 1I'"1(A) = 1'f1(J.l) and iffor some ß E ll(ll/g) with

A - J.l- E(A - Jl)[O) = ([0] - [1]) · ß

2the greatest eommon divisor (f,g ,2g) divides g. E(ß).

/1

The following result shows that the image eategory E(~~) is surprisingly small. Ey (2.3) we

know that the image category EE(~~) is isomorphie to FCye.

(2.7) Theorem: The isomorphism p in (1. 7) induees an isomorphism of categories

11oreover one has a split linear extension of categories

~ + >--+ PJ= ;r I I FCye
1

where ~ is the quotient of E2 above with ~(ll/f,ll/g) = g. Ext(lllf,r("ll/g)) . This group is 1l/2

if (f,g2,2g) = 2g and in 0 otherwise. The splitting is given by B2 in (2.3).

We derive from (2.6) and (2.7) the following commutative diagram in which the rows are split

*extensions of groups. Here Aut(X) denotes the group of homotopy classes of basepoint

preserving homotopy equivalences of X .



(2.8) *EAut(Pf) N Aut(l1/f)

~ ~
*ll/f >-----tl Aut(EPf) ---+-t Aut(ll/f)

± ± 11
2 *11/(f,2) > Aut(E Pf) -++ Aut(71./f)

Using different methods the split extension for Aut(EPf)* was obtained by Sieradski [11].

The morphism sets [EPpEPgl in f:2/':::!. are groups since the suspension EPf is a co-H-group.

As pointed out in (2.4) the splitting

(2.9) B2 : Hom(ll/f,ll/g) -t [EPpEPgl

is not additive. We now describe the distributivity law for B2( rp + rp'). Let

!:l : Hom(11/f,1l./g) )( Hom(ll/f,ll/g) -t Ext(ll/f,rll/g) ~ 11/(f,2g,g2)

be the linear map which carries the pair (~)rp') to the element

where rp(l) = rpl l, rp' (1) = rpi 1. Then we get

The splitting Bn, n ~ 3, satisfies the addition law

Bn(Y?'~') = Bn(rp) + Bn(~') + iT*L\(rp,~'). Trus follows from (2.5). The formula for L\ yields

the following property. .

(2.11) Lemma: Let f = 2afol g = 2bgo where fo and go are odd. Then we have 6. f 0 Hf

a = b ~ 1 or a = b + 1 ~ 2 and we have (J'*6. f 0 Hf a = b = 1.

Using the identification (2.5)(4) we cau describe the group structure + of the group

[Ifl-1pf'Ifl-lpgl. n ~ 2. by the formula

(2.12) (~,a) + (rp' ,0') = (~+ ~' ,0 + 0' + 6.n(rp,rp'))



where 6. = t1 for n = 2 and t1 = "*& for n >3. This formula describes completely the- n n-
additive structure of the category En/'::!.. Since 6.( y?, y?') = t1( y?' ,~) we see that also the group

(EPfiEP gl is abelian for all f,g EIN. The cyclic sum.mands and explicit generators of trus group

are described in the next resul t.

. b
(2.13) Corollary: Let f = 2afo and g = 2 go where fO and go are odd. Then the homo-
morphism

has an additive splitting of abelian groups if and only if (a,b) f (1,1). Moreover for the greatest

common divisors d = (f,g) and c = (f,g2,2g) one has

{

71/d EB lI./c for (a,b) f (1,1),

71/2d EB 71/(c/2) for (a,b) = (1,1).

The generator of the first summand is (~O,(f/4)1) if a > b = 1 and (~O,O) otherwise where y?0

is a generator of Hom(ll/f,71/g). The generator of the second summand is (0,1) if (a,b) f (1,1)
and is (0,2 -I) if (a,b) = (1,1). Here we use again the identification in (2.5)(4).

.(2.14) Addendum: The homomorprusm

has an additive splitting if and only if (a,b) f (1)1). Moreover for e = (f,g2,2) one has

{

ll/d Ellll/e far (a,b) *(1,1),

ll/2d for (a,b) = (1,1).

The generator of the first summand is (~O,O) and the generator of the second summand ll/e is

(0,1).

Remark: The result in (2.13), (2.14) is due to Barratt [2] I (table 2 in 10.6). Barratt uses

Whitney's tube system for proving trus result; bis arguments are highly geometrical and totally

different from our method. Hilton (p. 125) presents a different approach for the stable groups

[~P flE2pgl and points out that a more simple minded proo! of Barratt's result is needed. A



further improvement in the results above is the fact that we describe explicitly generators of the

cyclic summands. The algebraic description of the category P I'::!. by (2.5)(5) and (2.12) solves a=n
problem of Barratt [1] who used generators and relations for the description of frn/~, n ~ 3. Dur

algebraic model of f:n/'::!. is simpler and also available for n = 2.

II

Proof cf (2.13): H2 has a splitting if and only if there is 0 such that (~O,a) has order d. By the

group law in (2.12) we obtain the formula

(1)
d-l

(1?O,a) -d = (0,0· d + L Ä( 1?O,t~O)) .
t=1

We choose the generator 1?0 = 11'"1(~) 1]) with 1] = g/d, see (1.4). Then we have

(2) Ä( ~o,t ~O) = (f(f-1)/2) 1] • t7]-1

and therercre we have (1?0' a) •d = 0 iff

(3) ad = (f(f-1)/2)1]1](d(d-1)/2)·1 .

If a > b = 1 we see that 1] and d/2 are odd. Thus a = (f/4)1 satisfies the equation (3).
Otherwise a = 0 satisfies (3) for (a,b) f (1)). For (a,b) = (1,1) we have ad = 0 for all a,
howeverJ the right hand side of (3) is a non trivial element of order 2 in this case. This proves the

proposition. If we reduce equation (3) modulo 2 then both sides of (3) are zero for a > b = 1. This

shows that B3(~) yields an additive splitting for if (a,b) f (1,1).

11

Finally we consider the group structure of the homotopy groups with coefficients in 71/f. As in

(2.5)(3) we have the central extension of groups

(2.14)

where we identify Ext(71lf,1f"n+lV) = "D./f 0 7rn+1V. This extension is completely determined by

the following proposition which completes the partial results on the extension (2.14) in Rilton [7]
(page 125-128).

(2.15) Proposition: For x,y E [EP{,V] we have the COffimutator rule (v = f(f-l)/2)



where i: 82 ( EPf is the indusion and where [i*x,i*y] E ~3U ia the Whitehead produet.

Moreover let lJ.tp be the subgroup of Hom(71/f,~ U) generated by an element VJ. Then there ia a, n

funetion T ': 7ltp -+ ~-1p{,U] with IrnT(x) = x for x E llrp and with (rJa E 1l)

where 1]: 8n+1
--+ Sn ia the Hopf element.

Prcof: The property of the eommutator follows from the definition of the Whitehead produet and

the lemma on the redueed diagonal ~: Pf----t Pf APf in (4.10) below, see for example 11.1.12

in Baues [4]. Next let 1l/ g be the eyelie group generated by ~1) in wonU. Then we ean ehoose

a map F: If-lp g -l U with j*F = \?(1). Moreover an element t\O E"8.\O corresponds to a

homomorphism trp: ll/f -+ ll/g. Now we define T in (D.22) by T(trp) = F*Bn(trp) where Bn
is the splitting in (2.4) and (2.10).

//

§ 3 Crossed chain complexes

Let CW be the category of CW-<:omplexes X with XO= * and of cellular maps. Dur main
-tool for the prooCs of the results in § 1 and § 2 is tbe funetor

(3.1) p: CW ----t H

which carries X to the crossed chain complex p(X). Here H is the category of totally free

crossed chain complexes which are called homotopy systems in Whitehead [12], compare also

(VI. § 1) [3] where we set D = * and G = 0 . The crossed chain complex p(X) ia given by the

sequence of boundary hOIDoIDorphisIDs

with d Id = 0 . The cells of X form a basis of the totally free erossed chain complex pX In- n

that ia wo1(Xl) is a free group generated by the 1-<:ells of X and d2 ia a free crossed module

generated by the 2-<:ells of X, moreover Irn(Xn,Xn- 1), n ~ 3, is a flee 11'"1 (X)-module

generated by the n-eells of X. There is a notion of homotopy ~ for morphisms in H such that

p induces a funetor p: CWI'::!. --+ I!/~ between bOIDotopy categories. Here we use basepoint



o
preserving homotopies for maps in CW denoted by f ~ g . Let f ~ g be a homotopy running

through eellular maps.

(3.2) Theorem: The funetor p induces equivalences of categories

[

2 0 N 2
P : CW /~ --t H ,

2 N 2
P : CW /~ --t H /~

where CW2 and H2 denote the full 8ubcategories of 2-dimensional objects. Moreover

p : CW/~ --t !!/~ induces the map

p: [X,Y] --t [pX,pY]

between homotopy sets which is a bijection if dim X ~ 2 , X,Y E CW .

This theorem ia an old result of J .H.C. Whitehead [12], it ia as weIl proved in chapter VI of [3],

(compare (VI.3.5) and (VI.6.S)). We use the theorem as the main tool in the proofs of § 4. We

shall also use the tensor product of Brown-Higgins [6] which gives UB a functor

~ : H )( H --t H such that there is a natural isomorphism

(3.3) p(XxY) = p(X) 8 p(Y) .

'Here XxY ia the product with the CW-topology given by product cells exf. The crossed chain

complex A ~ B is generated by elements al> b, a 8 *, *8 b where a E A, bEB with the

following defining relations (plus, of course, the laws for crossed chain complexes):

(2) (*8b)*et = *8(bt ) for Itl =1 and (a8b)*et = a~bt) for Itl =1, Ib I~2 ,

(a8*)sh = (&s)8* for Isl =1 and (a8b)s8* = (aS)l>b for Jsl =1, Ia I~2 .

(3) (a+&')I>*=a 8 *+a'8* ,
(a + a/ ) I) b = a I) b + a I I> b for IaI ~ 2 ,

(a + a') I) b = (a I> b)& '8* + a' 8 b for Ia I = 1 .

(4) * I> (b + b
/
) = *8 b + *8 b ' ,

a I> (b + b / ) = a I> b + a I> b' for Ib I ~ 2 ,

a I> (b + b / ) = a I> b ' + (a I> b)*8b I for Ib I = 1 .



-a~*-*~b+a~*+*9b for lai = Ibl = 1

[- (* 8 b) a9* + * 8 b] - a 8 db for lai = 1 I Ibl ~ 2,

( da) eb+ (- 1) I a I [_ (a e *) *~b + a e *] for lai ~ 2 Ibl = 1,

( da) e b + (-1) I ala 9 (db) for lai ~ 2 Ibl ~ 2.

Moreover A 9 B is totally free if A and B are totally free, a basis of A ~ B is given by the

elements *e b, a 9 *, a * b where a and b are basis elements of A and B respectively.

The isomorphism (3.3) carries exf to ~.

Next we consider the James construetion which is a funetor J: CW -----4 CW given by the

direct limit JX = tim I JnX where JnX = (X x X X)/N is given by the relations

(xl' ... ,xn_l'*) N (xl' ... ,xt_1'*,xt ,... ,xn_ 1) for t = l, ,n . It is a classical result of James [8]
that there is a natural homotopy equivalence

(3.4) J{X) ~ mx

for X in CW. Using (3.3) we obtain a functor J: H -----+ H together with a natural

isomorphism

(3.5) pJ(X) = Jp{X) .

Let A be a crossed chain complex. The crossed chain complex JA is generated by all words

a1.'.&n (ai E A, i = l, ... ,n and n ~ 1) with the following defining relations (plus, of course, the

laws of crossed chain complexes). Let UJv be such words or empty words ; and let a,&',t E A.
Then (a) denotes the word given by a E A .

(I)

(2)
(3)

I&1" .an I = Iall + ... + Ian I .

(uav)t = u{at)v for Itl = 1, lal~2 and (a)t={at ) for Itl=l.

u(a + a')v = uav + ua' v for Ia I ~ 2
a'

ua' v + (uav) for Ia I = 1, Iu I ~ 1,
(uav)a + ua' v for Ia I = 1, Iv I ~ 1

(a)+{a') for u = ; = v



, (4) d(a) = (da) and d(uv) =

-u-v+u+v for lul = lvi = 1,

-vu+v-u(dv) for Iu I = 1, Iv I ~ 2,

(du)v + (-l)l u l(_uv+u) for lul ~ 2, lvi = 1,

(du)v + (-l)l u lu(dv) for lu!, ~ 2, lvi ~ 2.

For a map F : A --+ B in H the induced map JF : JA --+ JB ia defined by

(JF)(ar ..an) = (Fa1)...(Fan). There ia a weil defined natural map

(5) jJ : JA ~ JA --t JA

giyen by jJ(u@V) = Uv, 1'(*@V) = v, 1'(US*) = u. Therefore JA is an exampIe of a ' crossed chain
algebra'.

//

One can check that JA ia totally free if A is totally free. In fact, if Z ia a basis of Athen

Mon(Z) - * is a basis of JA: Here Mon(Z) is thc free monoid generated by Z. Aa an application

of (3.2) we get:

(3.6) Corollary: Let X,V be CW-<:omplexes in CW with dim(X) ~ 2. Then one has the

binatural isomorphism of group8

[EX.EY] ~ [X,JY] ~ [pX,JpY]

where thc group structure in [pX,JpY] is induced by JJ in (3.5) (5). As a special case one gets

""3(EY) = r 2(JpY).

A more detailed study of the James construction of crossed chain complexes can be found in

Baues [5].

§ 4. Proofs

We here prove the main results of § 1 and § 2. Using (3.2) and (3.6) these proofa turn out to be

purely algebraic. This indeed ia an advantage compared with tbe Iongwinded sequence of

geometrie arguments of Barratt [2]. For a more detailed discussion of thc following proofs see

Baues [5].



We fir~t observe that thc group W"2(P{,SI) is abelian. Let ~ be thc 2-eell of Pfand let e be

the l-cell cf Pf' Then thc elements e~e, n E 1l. , generate the group ""2(P[,SI) . The

COIDIDutators satisfy the formula

(4.1) _ ene _ eIDe + ene + eIDe _ (ene eIDe) _ (eme eme)
2 2 2 2 - 2'2 2'2'

f·( 111

Here (x,y) = -x-y+x+yOx is the Peiffer commutator which ia trivial in the crossed module

d2 : ""2(Pf,SI) --t ""I(SI) .

(4.2) Proof of (1.7): Since ""2(Pp Sl ) is abelian we have an isomorphisID

h2 : ""2(Pf,SI) ~ 11 [71/!] ,

this follows from a result of J.H.C. Whitehead [12], compare for example (VI.1.12) in Baues [3].

As a special case of diagram (3) in (VI.l.14) [3] we obtain the commutative diagram

where d(x) = x • Oe ia given by the norm element 8f in (1.6). The boundary d describes the

cellular chain eomplex of the universal eovering of Pfand h1 is a CD. ---+ ll/f)-erosscd

homomorphism. Using thc isomorphism h2 we can identify the crossed module d2 = p(Pf) with

the map f· E where E ia the augmentation of the group ring 71 [ll/!] . We now restriet the

funetot p in (3.1) to the subeategory P ( CW . The funetor p earries P f to the totally free

crossed module f· ( and carries a map F: P f ---+ Pg to a map ({,1]): f· (--t g. f which is

given by a commutative diagram

71[1Z/f]

l~
11 [71 / g] -g-.(--tl 11

We identify the full subcategory of H2 consisting of thc objects f· (, fEIN, with thc category .

R defined in (1.6). The identification carnes the morphism ( {, 1]) in H2 to the morphism



,\ = e[1] in R. ThiB proves that p: rJ& ....::... ß. is the reBtriction of the first equivalence in

(3.2). A homotopy Q: ({,11) ~ (e' ,11') in 1!2 ia an ,.,-crossed homomorphisffi a: ll--+ ll[ll/g]

which ia det'ermined by an element 0(1) = 13 as in (1.6) (3). The equation -~ + e' = a(fl) ia

equivalent to the equation

whieh ia equivalent to the equation in (1.6) (3).

//

(4.3) Proofof (1.5): The funetor p in (1.7) earries Te to the element ~. [0] E!i(f,g) ([ll/g]

where [0] ia the unit of the ring lI[ll/g]. By (1.7) we know

r{ e,1]) ~ r{e' ,1]') ~ '" = ".1( ~ ,1]) = "'1( ~' ,1]') and
313 E 1Z[lI/g] with ({-{' )[0] = ß· "'#( 0f)·

This implies 1] - 1]' = €(ß) -g. We now observe

(1) '"# af = 1: [tpX] = t· 1: [y]
xElI/f yE rplIlf

where t is the number of elements in the kernel of VJ. For ß = 1: ay[y] in ll[lI/g] we have

yE11/g

(2) = t • 2: ay[y+v] ,
yElllg, vE ",1l./f

= t· 1: ( 1: ayHu] .
uEll./g yEu+",ll/f

Now ß- VJ#8C= ({'-{)[O] with VJ = W"1 Te = W"1T{' impliea

(3) o= 2: ay for u E 1J./g, u :f o.
yEu+VJll.IC

The number of elements in ",11./ f ia glged( 1],g). If ged(1],g) < g we add up the equations in (3)

for u E U = {x·lj1 ~ Y~ ged(1],g)} C 11/g. Sinco thc union of all u + VJlllf, u E V, is ll/g wc

get f(ß) = l ay = 0 for gcd( 1],g) < g. Whence in this case 1] = 1]' and thus (e, 1]) = (e' ,1]').

y
Ir gcd(1],g) = g, that is, if VJ = 0 we see by (3) that ay = 0 for Yf 0 and aO= ~' - ~, so

that in thia case ß exists. II



The crucial step for the proof of (2.3) and (2.7) ia the computation of the suspension

homomorphjsm E on "'"2Pg . For this we consider the diagram

(4.4)

where E' is defined by the formula E' « [0] - [1]){J) = g. E(ß) -1 for ß E "0.["0./g]. Here E ia

the augmentation. The right hand isomorphism carries the generator 1 to the Hopf element

S3 ---+ S2 CEPg' The left hand aide isomorphiam is described in (1.12).

(4.5) Lemma: Diagram (4.4) commutes. This shows that E~2(Pg) ia of order 2 if g is even, and

is trivial if g is odd. Moreover the subgroup il lr2(Pg) = 0 is trivial in lr4(ilpg) for all g.

ProoC: We use (3.6) so that E in (4.4) corresponds to the map

(1) ~

where p = p(Pg) and where i : p CJ(p) ia the inclusion. Let e = e1 and e2 be the cells of Pg

which are the generators of p with d(e2) = g'e = e+...+e. The boundary d: J(P)3 ---t J(P)2 is

given on generators by the following formulas.

(2)

(3)

(4)

= -e~ + e2 - e(g -e)
g-l

= --e~ + e2 - l (ee)ie
i=O

= (g. e)e - e~ + e2
g

= (1: (ee)(g-i)e) - e~ + e
2

i=l

d(eee) = -(ee)e + ee

These equationB are simple applications of (3.5) (4) since d(ee} = O. The same equation hold in

CJ(p) J thia ia the cellular chain complex of the universal covering of J(Pg} J compare the

definition of the functor C in (VI.!.2) of Baues [3]. Let B = d(CJp )3 be the group of

boundaries. Then we get modulo B the congruences (see (1.6){2))



(5)

Thc Hopf el~ment in (2.9) corresponds to the cycle ee in CJ{p). Whence (5) shows that E' is

defined correeUy for 13 = [0]. For general ß we ean choose 1 E ll[ll/g] Buch that

ß = €(ß)[O] + 7([0] - [1]). Then we get

(6)

since ([0] - [I)) 8g = 0 for the norm element 8g. This proves (2.10).

//

(4.6)~ 2f (2.3) i!l.d (2.7): The seeond part of (2.3) and also (2.7) follow immediate1y !rom

lemma (2.10) since E is eompatible with the coaction on Pf For the first part of (2.3) we have

to check that E' t VJ is trivial if considered aB an elementin the group

(1) 2
Ext(71/fJr(71/g)) = 1l/(f,2g,g ) .

Here we use (1.13). By (1.9)(1) we know

(2) tft' = f· [0] - ~#af = t· (v[O] - 1: [x])
xEV

where t = Iker VJIJ t·v = f, V= image(VJ) with lVI = v. Since tVJ E ker(E) thereia ß with

(3) v[O] - 1: [x] = ([0] - [l])ß .
xEV

This shows that there is an integer b with

(4) e(ß) = g. b - u(v(v-l))/2

where u· v = g. Whence E' (t VJ) is given by thc element

(5) 2
E' (t~ = t· g. E(ß)·1 =-{tg (v-l)/2)1

in 1l/(g2,2g). Now it ia clear that (5) represents the trivial element in the group (1).

//

Thc praof of (2.10) is based on the following lemma on commutators (a,b) = -a-b+a+b.



(4.7) Lemma: Let G = <a.b> be the free group generated by elements a and b and let fEIN.

Then there exists elements {i E G (i = 1,2,... ,f(f-I)/2) such that

f( r-1)/2 {.
(a+b) · f = a· f + b· r- l (a,b) 1

i=l

Here we set x· f = x+...+x (f-times x) and we set xY = -y + x + y. The sum ia the ordered

sum in the non commutative group G.

Proof: We show inductively that there are ai E G with

(1)

I-I a.
(a+b)· f = a e f + b • f-l (a,b· i) 1.

i=l

This ia true for f = 1. Now we get for (a+b)(f+I):

(a+b)f+(a+b)

f-I o.
= a· C+b •f - 1: (&,bi) 1 + (a+b)

i=I
f-I o'-+a+b

= aeC+beC+(a+b) - l (a,bi) 1

i=I
f-I a.+a+b

= a e (f+I)+b(f+1) - (a,bf)b - l (a,bi) 1 •

i=I

This proves (1). Moreover there are ßj E G with

(2)
ß·

(a,b ·i) = l (a,b) J.

j=I

This follows inductively from (a,y+z) = (a,z) + (a,y)z where we set y = b·i and z = b. From

(1) and (2) we derive the proposition.

1/

We derive from (4.7) thc following algebraic description oC tbe diagonal &: P f --+ Pr>< P f .

(4.8) COlollary: Let e,e2 be thc generators oC p = p(Pf)' Then a = ~*, b = *~ e are

generators of p 0 p so that (p _~ P)I = <a,b>. Moreover we obtain a map tJ.: P ---+ p0p by

tJ.(e) = a+b and



f( f -1)/2 {.
L\(e2) = e2 ~ * ~ *~2 - l (~) 1

i=1

where the {i are the elements in (4.7). The map ä satisfies PIL\ = I and P2& = 1 where

Pl,P2 are the projections of the tensor product p G:D P .

Since we have (PpPf'Pfl = [p,~p] by. (3.2) we see that !J. in (4.8) represents the homotopy

dass of the topological diagonal of P f

(4.9) Proof of (2.10): The group addition in the group

(1)

can be described by the composition F + F' = G,

(2) P IJpP ,g

where L\ is the diagonal in (4.8). Now we choose ({,'1), resp. (e' ,1]') E [f,g) which induces VJ,

resp. VJ', in (2.10). We may set Tl = VJ1''1' = VJi.. Moreover let F, resp. F', be given by

(3)
[

F(e) = f]C, F(e2) = {e2 '

F ' (e) = 1]' e, F' (e2) = {' e2 .

Then the composition G in (2) represents B2(VJ) + B2(VJ'). Explicitly we get G by the

formulas:

(4)

where v = f(f-1)/2 and qe = e+...e = ,,-fold sum of e. On the other hand B2( cp + VJ') ia

represented by the map G' : pPf-t JpPg with G'(e) = (1] + 7J')e and

G ' (e2) = ({ + {' )e2 . This showa that L\( cp, VJ') ia represented by the element

(5)
v p(e

i
)

Q' = l (f]C)( 11' e) E kernel(d2)

i=1



where d2 ia the boundary of Jp(Pg). We know that ~2JpPg = kernel(d2)/image(d3) ia

generated by the eyde ee. Whence we have to show

(6) a:: v -1]- 1]' (ee) module image (d3) .

This ia easily cheeked by use of (4.5) (4) and (3.5) (3). ThereCore the proof oC (2.19) ia complete.

//

We also derive !rom (4.8) the Collowing well known result on the reduced diagonal oC PC.

(4.10) Corollary: The Collowing diagram homotopy commutes.

dPC-------tl Pf x Pf

lq lq
S2 --Y..... SI A S2 ( P f A P j

Here v ia a map of degree f(C-l)/2 and q denotes the quotient map8. Recall that the smash

product A AB ia defined by the quotient A AB = AxB/(Av B). We obtain (4.10) directIy from

(4.8) since p(PfA Pf) = p(Pf)~P(P{)Ip(P fV Pf) .
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