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Introduction. Let g be an odd prime and denote by

Mz(Po(q)) resp. J2'1(P°(q)) the space of modular forms of
weight 2 resp.Jacobi forms of weight 2, index 1 with respect
to the congruence subgroup T,(g) . In [Kr] we introduced
the Jacobi-theta~series to the quaternary quadratic forms of

discriminant q2 representing 2: they are defined by

Itz = § g e g o
by o €1 !
A
(q, := exp(2miT) , T€{¢ar; r := expl2miz) , z€q) ,

where I1”"’IT is a set of representatives of the isomorphism
classes of maximal orders of the (definite) quaternion algebra
K/@ , ramified over g and e« ; T denotes the type number

of K, and n(*}) resp. t(*) is the reduced norm resp.

trace of K . We proved that the Jacobi-theta-series are

linear independent, if the representation of the classical

Hecke-algebra, given by T(p) t—> B+(p) (T{p) classical

Hecke-operator, B+(p) reduced Brandt-matrix {cf. [Po3l) ,

p #2, g a prime ), allows only to reduce the 1-dimensional

part over {0 , which corresponds to the Eisenstein series

of Mz(Fo(q)) (cf. [Kr], satz II.3). Then, by proving a
necessary and sufficient condition for the injectivity of the
map J, 4{Telq)) —> My(lolq)) (£(T,2) > £(7,0)) , we
deduced a criterion for the linear independence of the classi-

cal theta-series 3& () == J& {t,0) (A= 1,0e.,.T) .
A A

In this note we shall give similar criterions for the lineaxr
independence of the Jacobi-theta-series resp. classical

theta-series attached to the quaternary gquadratic forms of



discriminant g representing 2 (theorem 2 resp. 3). The re-
sults are essentially obtained by translating the above
mentioned theorem to certain theta-series to ternary qguadra-
tic forms, namely those studied in [Gr]l. We explicitly de-
termine the (predicted) linear relation for these theta-series
in the case g = 389 ; by the way we are led to the linear
relation between the classical theta~series to the guaternary
quadratic forms of discriminant 389 representing 2, which was

already calculated by Kitaoka (cf.[HH]).
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[Gr] and to C. Tschudin (Basel) for his assistance concerning
the computer-calculations. Finally I would like to express my
hearty thanks to the Max-~Planck-Institut fir Mathematik for

its hospitality during my stay at Bonn,

2. The main result. We restrict to primes q = 1 mod 4 and

consider the equivalence classes of quaternary quadratic forms
of discriminant g representing 2; these are in 1-1-correspon-
dence to the similtude classes of certain quaternary lattices
of reduced discriminant q (level g}, which were especially
studied in [Ki]. There one also finds the formula for the

corresponding class number T' .

TV = T -~ (h(V—@)/4 - a/2) , where
T is the type number of X (cf. introduction),

h(V=q) the ideal class number of @(V~q) , and

0 g =1 mod. 8
a- {
1 g = 5 mod. 8



The lattices K1"“’KT' representing the T' similtude
classes can always be chosen such that the first T" latti-

ces K1”"'KT" (T" :=h(V-q)/4 - a/2) have two inequivalent

representations of 2, while for the latter omnes Kfm”,.u,KT,

all representations of 2 are equivalent (cf. [Ki] , § 1.}.

The quadratic forms corresponding to K1""'KT‘ will be

denoted by G4I{x], ..., GT,[xJ ; the matrices Gu can

always be chosen in the form

*

* *
G = (u=1flvc,T') .

Putting r = (1,0,0,0)t and writing ru for a column vector
with Gu[ru] = 2 , which is inequivalent to x(p = 1,...,T")
we get the following T = T' +T" Jacobi-theta-series {of Ne-
bentype}) :

Gu{x]/z rtGux

q, L (W= 1,00.,T")
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These are obviously elements of the space J2 1(P°(q),xq) of
r

Jacobi forms of weight 2, index 1 with respect to I'e(g) and
with ﬁhe character xq(') = (g) . In [Kr] , Corollar I.3 it
is shown that this space is isomorphic to Kohnen's space
M3;2(F,(4q),xq) (cf. [Kol], [Ko2]) , Now one easily proves



Theorem 1. The isomorphism between J, 1(F°(q)1xq) and
I
M3;2(Po(4q),xq)) maps the Jacobi~theta~series

J (1.2), J (1,2) (u=1,40.,7'; v=1,...,T") to the
G G

r
Hy Vrr\)

theta-series 3k*(r),3ﬁ*(1) attached to ternary lattices

H
M; ,Ns of reduced discriminant 32qg (level 4q).

Remark 1. The lattices M; ,Nz (¥1=1,...,Tf; v=1,...,T")
just represent the similtude classes of ternary lattices of

reduced discriminant 32g (level 4q).

Remark 2. In [Krl, Satz II.1 it is proved that the iso-
morphism between J, .(To(g)) and M3;2(I‘°(4q)) maps the
r
Jacobi-theta-series 3& (t,2) (A=1,...,T) to the theta-
A

series J.,(T) attached to ternary lattices L} of re-
A

A
duced discriminant 32q2 (level 4qg). These are the theta-

series considered in [Gr] , where the dimension of their
€-span is determined, which leads to a necessary and sufficient

condition for their linear independence.

Remark 3. Dualizing the result of [Po2] , theorem 1,one
realizes that M;,N; can be considered as sublattices of
index g in the lattices Lx (eventually by taking suitable
other representatives for the similtude classes of ternary
lattices of reduced discriminant ?2q2, which again are
dencted by Li) . If we arrange the corresponding maximal
orders Il such that the first 2T -H(H =class number of K)
possess principle two~sided ideal of norm q, while for the

remaining H-T this ideal is not principle, we have the

following inclusions, in the case g=1 mod 8 :



Mt’ < Lg\)_-‘ (v = 1'0.0’ T“)
(2) N* < L*, (v = 1,..., ")
MIniy Limwsy (v = 1,..., H-T) .

(2) reflects the correspondence between quaternary quadratic
forms of discriminant q2 and those of discriminant g (both
representing 2), which is given in [Ki] and [Po1], and

can be stated as follows (if g=1 mod. 8) :

} i K'\) (\)=1,u~-,T")

} e K (v=1,...,H-T) ;

T"+V
in the case g=5 mod. 8 there is an "exceptional" maximal
order with principle two-sided ideal of norm ¢, which corres-

ponds alone to a quaternary lattice of reduced discriminant q.

We are now in position to give a criterion for the linear in-—

dependence of the Jacobi-theta-series (1):

Theorem 2. The Jacochi-theta~series (1) are linear independent,
if the representation of the Hecke-algebra, given by

T(p) +—> B*(p) ; allows only to reduce the 1-dimensional part
over @ , which corresponds to the Eisenstein series of

My (To(q)) -

Proof. Paying attention to the operator T(g): M3;2(T°(4q)) —
+

M3/2(P9 (4q) IXq) . defined by Xn € mo c(n)qg { T(q) :=

):ne N c(qn)qg (this operator was introduced in [S88], § 3.)

' 0

and applying remark 3 (especially (2)) we get (if g=1 mod.8):



Y . | @ (1) = 314:,)m (V=T,.0.,T")
2v=-1

31,; I T@ (r) = Jygu(r) (V=1,...,T")
v AY)

‘714* [ T(Q) (T) = ‘D’M* (T) (\)=1’;¢91H—T) -
2T"+vy T 4y

From this one concludes that the operator T(g) induces an
isomorphism between the subspaces of M3;2(To(4q)) resp.
MB;Z(F°(4q),xq) spanned by the theta-series ﬁ'*(ﬂ (A=1,...,T)

I

resp, Jy, (1) , i, (1) (W=1,...,T" ;v=1,...,T") . So theorem 2
M Vv
follows from theorem 1 and [Kr], 8Satz II.3 {cf. introduc-—

tion). An analogous argument applies to g =5 mod. 8.

Before stating the criterion for the linear independence of the
classical theta-series to the quaternary quadratic forms of

discriminant g representing 2, giwven by

{3) f)'G (1) HES JG r(TrO) {u=1,...,T7") ,
H He

we define by ¢ +the linear map

flr,z). —> f(t,0)

(here 4M2(P¢(q),xq) denotes the space of modular forms of
weight 2 with respect to To(g) with the character Xq) .
Evidently dimlkero) 2T", if the condition in theorem 2 is

satisfied (the differences



(4) 3G r(TIZ) - 3G r (t,2z) (p=1,...,T")

are T" 1linear independent elements of keroc) .

Theorem 3. The theta-series (3) are linear independent, if
the representation of the Hecke—-algebra, given by

T(p) +—> BY(p) , allows only to reduce the 1-dimensional
part over Q, which corresponds to the Eisenstein series of

Mz(Po(q» and if dim(kerc) = T" .

Proof. It has only to be noted that, under the conditions

stated, the differences (4) form a basis of kero .

3. The example g = 389, The necessary and sufficient con-

dition for the linear independence of the theta-series

3£*(T)' (cf. remark 2) is violated for the first time for
A
g = 389 (T = 22, 7' = 17) . We explicitly calculated the

single existing linear relation:

22

(5) AZ1 akaiz(T) = 0 , where (a1,...,322)

{0,0;+1,-1;+1,-1;+1,0;-1,0;0;0;0;0;+1;+1;+1;+1;-17=~1;~1;-1) ;

the corresponding 22 ternary quadratic forms of discriminant

32q2

are listed (in the same order) in the first column of
table 1. By remark 2 the same relation is valid for the Jacobi-
theta-series Di {t,2); the corresponding quaternary quadra-

tic forms of discriminant g2 representing 2 are given in the



-8~

second column of table 1. It is worth to be noted that by
putting z = 0 the corresponding theta-series 3&A(T) are
also involved in only one linear relation, which is of course
again of the same type.

Via the diagram

+ ":'-" z=0
My (Tldal) = 3, (Gt@) 22 (@)

T(q’l TT (@)

My Telda)xy)  —> T ((Tol@ix) —0> My (Tala)ixg)

it is now easy to calculate from (5) the linear relation between

the theta-series (3), which was already found by Kitoaka (cf.[HH]):

17 .
uiﬂ Byd (1) = 0, where  (Bys...sfyy)

(0;0;0;+1;-1;0;0;0;0;+1;+1;+1;+1;-1;-1;-1;-1) ;

the corresponding 17 quaternary quadratic forms of discrimi-
nant q representing 2 are listed in the third column of table 1.
Our list especially shows the Kitaoka-Ponomarev-correspondence

in the case g = 3889,



Table 1

Ternary quadratic forms Quaternary quadratic forms Quaternary quadratic forms
of discriminant 32-3892 of discriminant 3892, re— of discriminant 389, re-

presenting 2 presenting 2
1. (1040 520 4 1. [2 1 0 0
( 520 1038 2) 1 2 =2 —1)
4 2 6 0 -2 262 131
0 -1 131 260 1. (2 1 0 0
1 66 -65 64
2, 784 4 12 2. [2 1 0 0 0 -65 66 -65
4 262 8 1 66 2 -1 0 64 -65 66
12 8 24 0 2 6 -3
6 -1 -3 196
3. 814 -72 10 3. [2 1 0 0
( -72 144 -20) 1 12 5 =9
10 -20 46 0 5 36 13
0 -9 13 210 2. (2 1 0 0
1 10 -7 18
4, 824 -56 -36 4, (2 1 0 0 0 -7 16 -13
~-56 102 10 1 16 -18 -9 0 18 -13 36
-36 10 62 0 -18 46 23
0 -9 23 206
5. 798 18 -40 5. (2 1 0 0
18 94 -36 1 24 9 ~-28
-40 -~-36 80 0 9 20 -19
0 -28 -19 232 3. (2 1 0 0
1 6 -5 10
6. 798 -40 2 6. (2 1 0 0 0 -5 24 -9
-40 80 -4 1 20 1 =19 6 10 -9 20
2 -4 78 0 1 20 9
0 -19 9 218
7. 832 108 8 7. (2 1 0 0
108 216 16 1 8 4 2
8 16 30 0 4 54 27
0 2 27 208 4. (2 1 0 0
1 8 2 4
8. 808 -60 8 8. (2 1 0 0 0 2 14 27
-60 120 ~16 1 14 4 2 0 4 27 54
8 -16 54 0 4 30 15
0 2 15 202




Table 1, continued

-10-

9. ( 830 104 2 9. /2 1 0 0
104 208 4 1 8 1 =7
2 4 30 0 1 52 25
5. /2 1 0 O
0 -7 25 214 1 14 -13 26
10. [ 830 -54 =50 0. {2 1 0 0 g “;g _gg 'ég
-54 86 22 1 20 -25 -32
-50 22 78 0 -25 52 51
0 -32 51 252
11. 782 2 -8 11. (2 1 0 0 6. /2 1 0 ©
2 390 -4 1 98 1 -98 1 2 =1 -1
-8 -4 16 o 1 4 -3 0 -1 2 1
0 -98 -3 294 0 -1 1 98
12. { 400 -28 -16 12. {2 1 0 0 7. {10 1 8 11
-28 142 -30 1 24 -16 -4 1 4 1 1
-16 =30 94 0 -16 44 11 g8 1 12 4
0 -4 11 100 11 1 4 18
13. 312 -104 -36 13. f2 1 0 0 8. {2 1 0 0
-104 294 12 1 74 -3 26 1 6 5 3
-36 12 64 0 -3 16 =9 0 5 6 3
0 26 -9 78 0 3 3 26
14. [ 270 12 =32 14. f2 1 0 © 9. {2 1 0 0
12 208 -36 1 68 -3 -8 1 18 3 17
-32 -36 96 0 -3 52 9 0 3 8 3
: 0 -8 .9 24 0 17 3 18
15. [ 408 =56 -20 15. f2 1 0 o0\ 10.({8 1 3 12
~-56 206 18 1 16 =20 -5 1 4 1 1
-20 18 62 0 -20 76 19 3 1 8 =2
0 -5 19 102 12 1 -2 26
16. [ 334 ~-138 -34 16. f2 1 0 0\ 11. 10 5 4 10
-138 262 42 1 20 -30 -28 5 6 3 1
-34 42 78 0 -30 106 73 4 3 8 -
0 -28 73 120 10 1 =3 22
17. ( 302 =76 -52\ 17. f2 1 0 0y 12.f2 1 o0 0
-76 184 44 1 76 19 =13 17 10 9 13
-52 44 112 0 19 46 -11 0 9 10 13
0 -13 -11 28 0 13 13 32
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Table 1, continued

18. (264 -28 12 18. /2 1 0 0 13. { 4 & 3 ?E
-28 168 =72 1 36 18 3 0 6 1 GI
12 =72 142 0 18 42 7 | 3 1 12 6}
0 3 7 66 7 0 6 14/
19. {406 -68 2 18. {2 1 0 0 14, {10 2 1 174
-68 272 -8 1 12 2 =11 zZ 4 1 0}
2 -8 46 0 2 68 15 1 1 6 1
0 -11 15 112 70 1 34
20. /270 ~42 =22 20, f2 1 0 0 15. f &8 4 3 8Y
-42 214 38 1 24 -33 -29 4 6 1 @%
-22 38 94 0 ~33 96 49 3.1 8 -3,
0 ~-29 49 102 L& 1 -3 18/
21. (278 -56 4 21. /2 1 0o 0 16. {2 1 © 0%
-56 168 ~12 1 70 14 1 11¢C 9 1}
4 =12 112 0 14 42 3 0 g1 1
0 1 3 28 o 1 1 14y
22. [262 ~102 ~-78 22. {2 1 0 o0 17. {%@ A
(~102 206 66) 1 36 ~52 =55 7 & 3
~78 66 142 0 -52 120 97 l 5 3 14
0 ~55 97 140 \ 7 3 -2
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