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Abstract. We describe the noncommutative Batalin-Vilkovisky geometry as-
sociated naturally with arbitrary modular operad. The classical limit of this
geometry is the noncommutative symplectic geometry of the related cyclic
operad. We show, in particular, that the algebras over the Feynman trans-
form of a twisted modular operad P are in one-to-one correspondence with
solutions to quantum master equation of Batalin-Vilkovisky geometry on the
affine P−manifolds. As an application we give a construction of characteristic
cohomology classes in the quotient of Deligne-Mumford moduli spaces. These
classes are associated naturally with solutions to quantum master equation of
Batalin-Vilkovisky geometry on affine S[t]−manifolds, where S[t] is the twisted
modular Det−operad generalizing the cyclic operad of assocciative algebras.

1. Introduction.

Modular operads, introduced in [GK], are the higher genus analogs of cyclic
operads. The basic idea is to replace the trees, playing the central role in the
theory of cyclic operads, by graphs. In particular, the graph complexes from [K2]
arise naturally as the modular analog of cobar transformation. The calculation of
homology of graph complexes is a very complicated combinatorial problem. The
examples here are the homology of chord diagrams, which encode the Vassiliev
invariants of knots, or the cohomology of moduli spaces of Riemann surfaces.

In this note we show that the modular operads are intimately related with a kind
of noncommutative Batalin-Vilkovisky geometry. The classical limit of the latter is
the noncommutative symplectic geometry described in [K1], [G] in connection with
cyclic operads.

We show, in particular, that the algebras over the Feynman transform of a
twisted modular operad P are in one-to-one correspondence with solutions to quan-
tum master equation of Batalin-Vilkovisky geometry on the affine P−manifolds.

As an application we give a construction of characteristic cohomology classes in
the quotient of Deligne-Mumford moduli spaces. These classes are associated natu-
rally with solutions to quantum master equation of Batalin-Vilkovisky geometry on
affine S[t]−manifolds, where S[t] is the twisted Det−operad generalizing the cyclic
operad of assocciative algebras. This construction is based on the identification of
the Feynman transform of S[t] with the stable ribbon graph complex.
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in Kyoto and Max Planck Institut for Mathematics in Bonn. I’m greatful to both
institutions for support and excelent working conditions. It is a pleasure to aknowl-
edge the stimulating discussions with Yu.I.Manin, S.Merkulov and K.Saito.

Notations: we denote by k a field of characteristic zero, if V = ⊕iVi is a graded
vector space over k then V [i] denotes the vector space with graded components
V [i]j = Vi+j , if x ∈ Vi then x = i mod 2 denotes its degree modulo Z/2Z, the
cardinality of a finite set I is denoted by |I |. Throughout the paper we work in
the tensor symmetric category of Z−graded vector spaces where the isomorphism
X

⊗
Y ' Y

⊗
X is

(1.1) x⊗ y → (−1)xyy ⊗ x

For a module U over a group G we denote via UG the k−vector space of coinvariants:
U/{gu− u|u ∈ U, g ∈ G} and via UG the subspace of invariants: {∀g ∈ G : gu =
u|u ∈ U}.

2. Modular operads.

In this section we collect the definitions relative to the concepts of the modular
operad and of the Feynman transformation of modular operad. These are the
higher genus analogs of the cyclic operads and their (co)-Bar transformations. The
material presented in this section is borrowed from [GK].

An S-module P is a collection of chain complexes of k−vector spaces P((n)),
n ∈ N, equipped with an action of Sn, the group of automorphisms of the set
{1, . . . , n}. Given an S-module P and a finite set I we extend P to functor on finite

sets by putting P((I)) =
(⊕

bijections:I↔{1,...,n} P((n))
)

Sn

.

A graph G is a triple (F lag(G), λ, σ), where F lag(G) is a finite set, whose el-
ements are called flags, λ is a partition of F lag(G), and σ is an involution acting
on F lag(G). By partition here one understands a disjoint decomposition into un-
ordered subsets, called blocks. The vertices of the graph are the blocks of the
partition. The set of vertices is denoted by V ert(G). The subset of F lag(G) cor-
responding to vertex v is denoted by Leg(v). The cardinality of Leg(v) is called
the valence of v and is denoted n(v). The edges of the graph are the pairs of flags
forming a non-trvial two-cycle of the involution σ. The set of edges is denoted
Edge(G). The legs of the graph are the fixed elements of the involution σ. The set
of legs is denoted Leg(G). The number of legs is denoted n(G).

Stable graph G is a connected graph with a non-negative integer number b(v)
assigned to each vertex v ∈ V ert(G), such that 2b(v) + n(v) − 2 > 0 for any
v ∈ V ert(G). For a stable graph G we put

b(G) = Σv∈V ert(G)b(v) + b1(G).

Stable S-module P is an S-module with extra grading by non-negative integers on
each Sn-module : P((n)) = ⊕b≥0P((n, b)), such that P((n, b)) = 0 if 2b+n−2≤ 0.
In the modular operad setting P((n)) can be thought of space of all possibilities to
get an n−tensor using contractions of indices and basic P-operations.

Given a stable S-module P and a stable graph G one defines

P((G)) =
⊗

v∈V ert(G)

P((Leg(v), b(v)))
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where the tensor product over v ∈ V ert(G) is understood as



⊕

bijections:V ert(G)↔{1,...,l}

V ((Leg(v1), b1))⊗ . . .⊗P((Leg(vl), bl))




Sl

Let us denote by Γ((n, b)) the set consisting of all pairs (G, ρ) where G is a stable
graph with n(G) = n and b(G) = b and ρ is a bijection Leg(G) ↔ {1, . . . n}. A
modular operad P is a stable S-module P together with the composition maps

(2.1) µP
G : P((G))→ P((n, b))

defined for any stable graph G ∈ Γ((n, b)) and all possible n and b. These maps
must be Sn−equivariant with respect to relabeling of legs of G and satisfy the
natural associativity condition with respect to the compositions in the category of
stable graphs (see loc.cit. sections 2.13-21). Given a finite set I and a stable graph
G with exterior legs marked by the elements of I , we extend the composition (2.1)
to the map µP

G : P((G))→ P((I, b(G))), using a bijection I ↔ {1, . . . , n}. Because
of Sn−equivariance this does not depend on the choice of the bijection. For any
subset of edges I of G one has the stable graph G/I and naturally defined morphism
of stable graphs f : G→ G/I . For such morphism one defines the natural map

µP
G→G/I : P((G))→ P((G/I)), µP

G→G/I =
⊗

v∈V ert(G/I)

µP
f−1(v)

and the associativity condition tells that

µP
G = µP

G/I ◦ µP
G→G/I

It follows from the asssociativity condition, that it is sufficient to define µG just
for the stable graphs with one edge. There are two types of such graphs. The first
one, which we denote G(I,J), has two vertices so that the set of legs is decomposed
into two substes I t J = {1, . . . , n}

(2.2) µP
G(I,J)

: P((I t {f}, b))⊗P((J t {f ′}, b′))→ P((n, b + b′))

where f , f ′ are the two flags corresponding to the edge joining the two vertices.
The second type, which we denote by G2,n, has one vertice and in this case the
single edge is a loop

(2.3) µP
G2,n

: P(({1, . . . n} t {f, f ′}, b))→ P((n, b + 1))

Moreover, since the symmetric group Sn, acting on P((n, b + b′)), acts transitevely
on the set of all pairs I , J in (2.2) with |I | = const, it is sufficient to consider the
composition (2.2) just for the subsets I = {1, . . . , m− 1}, J = {m, . . . , n} with any
m < n. We denote this composition via

(2.4) oP : P((m, b))⊗P((l, b′))→ P((l + m− 2, b + b′))

where l + m = n + 2 and where we use the natural bijections respecting the orders:
{1, . . . , m − 1} t {f} ↔ {1, . . . , m} with the element f corresponding to m and
{m, . . . , n} t {f ′} ←→ {1, . . . , l} with the element f ′ corresponding to 1.

An example of modular operad is the endomorphism operad. Let V = ⊕iVi[−i]
be a chain complex over k equipped with symmetric pairing B of degree 0,

B(u, v) = (−1)u vB(v, u), B : V ⊗2 → k
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so that B(u, v) = 0 unless deg u + deg v = 0. The S−module underlying the
endomorphism modular operad of V is defined as

(2.5) E [V ]((n, b)) = V ⊗n

with the standard Sn−action. Then

E [V ]((G)) = V ⊗Flag(G)

The composition (2.1) is the contraction with B⊗Edge(G). This is compatible
with the definition of the usual endomorphisms whose components are defined as
Homk(V ⊗n−1, V ): the isomorphism induced by B: V ' V dual gives the isomor-
phisms of the underlying operad

E [V ]((n, b)) ' Homk(V ⊗n−1, V )

Any cyclic operad with P((m)) = 0 for m = 1, 2 can be considered as a modular
operad by putting P((m, b)) = 0 for b ≥ 1.

The image of a modular operad under Feynman transform is some modification
of modular operad with extra signs involved. To take into account these signs one
needs to introduce the twisting of modular operads. The twisting is also necessary
when one wants to associate an endomorphism modular operad with chain complex
with symmetric or antisymmetric inner products of arbitrary degree.

2.1. Determinants. To simplify the signs bookkeeping it is convenient to intro-

duce for a k−vector space V the determinant

Det(V ) = ΛdimV (V )[dim V ]

This is the top-dimensional exterior power of the k−vector space V concentrated
in degree − dim V . We shall mostly need the determinant of the vector space kS

associated with a finite set S. We denote it Det(S):

Det(S) = Det(kS)

Because of (1.1) one has the natural isomorphism for the disjoint union of sets
ti∈ISi

(2.6) Det(
∐

i∈I

Si) '
⊗

i∈I

Det(Si)

Another obvious property is Det⊗2(S) ' k[2|S|]. We shall also put for a graded
k−vector space V∗

Det(V∗) =
⊗

i

det(Vi)
((−1)i mod 2)

2.2. Cocycles. We will only consider cocycles with values in the Picard tensor

symmetric category of invertible graded k−vector spaces. Such a cocycle D is
a certain functor which assigns to a stable graph G ∈ Γ((n, b)) the graded one-
dimensional vector space D(G) and to any morphism of stable graphs f : G→ G/I
the linear isomorphism

νf : D(G/I)⊗
⊗

v∈V ert(G/I)

D(f−1(v))→ D(G)
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satisfying the natural associativity condition with respect to the composition of two
morphisms, see loc.cit. section 4.1. It satisfies also D(∗n,b) = k. Examples of such
cocycles are

(2.7) K(G) = Det(Edge(G))

L(G) = Det(F lag(G))Det−1(Leg(G))

By definition modular D−operad P is a stable S-module P , P((n)) = ⊕b

P((n, b)), together with the composition maps

(2.8) µP
G : D(G)

⊗
P((G))→ P((n, b))

for G ∈ Γ((n, b)) which should satisfy associativity and Sn−equivariance conditions
parallel to those of modular operad.

2.3. Coboundaries. Let s be an S-module such that dimk s((g, n)) = 1 for all g,

n. Then s defines a cocycle

Ds(G) = s((n, b))⊗
⊗

v∈V ert(G)

s−1((n(v), b(v)))

This is called the coboundary of s. Tensoring underlying S-modules by s defines
equivalence of the category of modular D−operad with the category of modular
D ⊗Ds−operad. Examples of such coboundaries are

Σ((n, b)) = k[1]

α((n, b)) = k[n]

β((n, b)) = k[b− 1]

s̃ = sgnn[n]

in the first three examples the Sn−action is trivial, and in the last example it is
the alternating representation.

2.4. Free modular operads. The forgettful functor

modular operads → stable S −modules

has the left adjoint functor which associates to a stable S−module A the free
modular operad MA generated by A:

MA((n, b)) =
⊕

G∈[Γ((n,b))]

A((G))Aut(G)

here [Γ((n, b))] denotes the set of isomorphisms classes of pairs (G, ρ) where G is a
stable graph with n(G) = n, b(G) = b and ρ is a bijection Leg(G)↔ {1, . . . n}.

Similarly one defines the free modular D−operad MDA generated by stable
S−module A:

MDA((n, b)) =
⊕

G∈[Γ((n,b))]

(D(G) ⊗A((G)))Aut(G)

On the subspace of generators the composition map µG is simply the projection
D(G)⊗A((G)) → (D(G) ⊗A((G)))Aut(G)
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2.5. Feynman transform. Let P be a modular D−operad. Let us put D∨ =
KD−1, where K is the cocycle (The Feynman transform of a modular D−operad P
is a modular D∨−operad FDP , defined in the following way. As a stable S−module,
forgetting the differential, FDP is the free modular D∨−operad generated by stable
S−module {P((n, b))dual}. The differential on FDP is the sum dF = ∂Pdual + ∂c

of the differential ∂Pdual induced on MD∨Pdual by the differential on P and of the
differential ∂c, whose value on the term (D∨(G)⊗Pdual((G)))Aut(G) is a sum over

all graphs G̃ such that G̃/{e} ' G of the map dual to the composition µP
eG→G

multiplied by the element e[1] ∈ Det({e}):

∂c|(D∨(G)⊗Pdual((G)))Aut(G)
=

∑

eG/{e}'G

e[1]⊗ (µP
eG→G

)dual

see section 5 of loc.cit. .
The Feynman transform is a generalisation of graph complexes from [K1]. The

Lie, commutative and associative graph complexes correspond to the |Leg(G)| = 0
part of the Feynman transforms of the corresponding cyclic operads, considered as
modular operads with P((n, b)) = 0 for b ≥ 1.

3. Endomphorism operad for inner products of arbitrary degree.

Here we discuss the natural twisted modular operads of endomorphisms associ-
ated with symmetric or antisymmetric inner products of arbitrary degree.

3.1. Symmetric inner product of degree l ∈ Z. Let V be a chain complex with

symmetric inner product B of arbitrary degree, deg B = l, l ∈ Z:

B(u, v) = (−1)u vB(v, u), B : V ⊗2 → k[−l], l ∈ Z

so that B(u, v) = 0 unless deg u + deg v = l. If we put for underlying S-modules

E [V ]((n, b)) = V ⊗n

then the contraction with BEdge(G)defines naturally the composition map

µ
E[V ]
G : E [V ]((G)) ⊗K⊗l(G)→ E [V ]((n, b))

of the modular K⊗l−operad where

K⊗l(G) = Det⊗l(Edge(G))

Indeed, for even l, l = 2l′, the cocycle acts simply as the degree shift

K⊗2l′ (G) = k[2l′|Edge(G)|]

and the contraction with BEdge(G) acting on V Flag(G) decreases the total degree
exactly by 2l′|Edge(G)|. For odd l, l = 2l′ + 1, the cocycle is the degree shift
tensored by the top exterior power of kEdge(G)

K⊗2l′+1(G) = Λ|Edge(G)|(kEdge(G))[(2l′ + 1)|Edge(G)|]

Notice that the permutation of any two edges inverses the sign of the value of
B⊗Edge(G) on V ⊗Flag(G) since B is of odd degree. This explains the necessity for
the term Λ|Edge(G)|(k|Edge(G)|) in the case of odd degree.
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3.2. Antisymmetric inner product of degree l ∈ Z. Let V be a chain complex
with antisymmetric inner product

B(u, v) = −(−1)u vB(v, u), deg B = l, l ∈ Z

The cocycle corresponding to such inner product is

K⊗l−2L(G) = Det⊗l−2(Edge(G))Det(F lag(G))Det−1(Leg(G))

Using (2.6) we get

K⊗l−2L(G) = K⊗l
⊗

e∈Edge(G)

Λ2(k{se,te})

where {se, te} is the set of two flags corresponding to the edge e. We put now
E [V ]((n, b)) = V ⊗n and define the composition map (2.8) as in the previous cases:
identify E [V ](G) with V Flag(G) and contract with BEdge(G). The composition map
is well defined since permutation of two flags se, te reverses the sign of Λ2(k{se,te}).

3.3. Suspension. The suspension coboundary Ds from loc.cit. is associated with
the S−module

s((n, b)) = sgnn[2(b− 1) + n]

where sgnn is the standard alternating representation of Sn. Identifying sgnn(v)[n(v)]
with Det(Leg(v)) we get

Ds(G) = Det(Leg(G))[2(b(G)− 1)]
⊗

v∈V ert(G)

Det−1(Leg(v))[2(1− b(v))]

This is equal to L−1K⊗2(G) because of the formula

Σv∈V ert(G)(b(v)− 1) = b(G)− 1− |Edge(G)|

We see that the multiplication by s transforms modular K⊗l−2L-operads to modular
K⊗l-operads and vice versa. In particular, the degrees of the corresponding inner
products must be the same. Perhaps more useful in the situation of inner products
of arbitrary degree is the coboundary associated with

s̃ = sgnn[n]

so that

Des = L−1

The multiplication by s̃ of the underlying S−module transforms modular K⊗l−2L-
operad to modular K⊗l−2-operad and, since L2 ' K⊗4, it transforms modular
K⊗l+2-operad to modular K⊗l−2L-operad. If V is a chain complex with symmetric
(respectively antisymmetric) inner product B of degree deg B = l, then the suspen-
sion of V is a chain complex V [1] with the antisymmetric (respectively symmetric)

inner product B̃ of degree l − 2 defined via

B̃(x[1], y[1]) = (−1)xB(x, y)

The multiplication by s̃ of the modular K⊗l-operad E [V ] gives the modular K⊗l−4L-
operad E [V [1]]. We see that if P is a K⊗l−operad and V is a chain complex with
symmetric inner product B of degree l, then the modular P−algebra structure on
V corresponds under the suspension to the modular s̃P-algebra structure on the

chain complex V [1] equipped with the antisymmetric inner product B̃ of degree
l− 2.
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3.4. Twisted modular P-algebras. Twisted modular P-algebra structure on
chain complex V with symmetric inner product of degree l is a morphism of mod-
ular K⊗l−operads : P → E [V ]. Twisted modular P-algebra structure on chain
complex V with antisymmetric inner product of degree l is a morphism of modular
K⊗l−2L−operads : P → E [V ].

The twistings corresponding to the inner products can be reduced using cobound-
aries to just two cocycles: the trivial cocycle, if l is even, and the cocycle Det whose
value on a graph G is

Det(G) = Det(H1(G)),

if l is odd. The last cocycle is isomorphic to

Det(G) ' K−1D−1
es
D−1

Σ

see loc.cit. proposition 4.14. Notice that both cocycles are trivial on trees. A
possible choices of such coboundaries given by the following identities :

(K⊗2l)D⊗−2l
β ' k, (K⊗2lL)DesD

⊗−2l
β ' k,

(K⊗2l−1)D−1
es
D⊗−2l

β D−1
Σ ' Det(G) (K⊗2l−1L)D⊗−2l

β D−1
Σ ' Det(G).

One can use these twistings by coboundaries in order to extend the notion of algebra
over a cyclic operad from complexes with degree zero inner product to complexes
with inner products of arbitrary degree.

4. Algebras over Feynman transform.

In this section we consider the equation defining the structure of algebra over
Feynman transform of a modular D−operad.

Let us consider first the case of FDP−algebra structure on the chain complex
V with symmetric inner product B of degree l, B : V ⊗2 → k[−l], this implies that
D ' K⊗1−l. The FDP−algebra structure on V is a morphism of modular operads
m̂ : FDP → E [V ]. Since FDP is generated by P((n, b))dual, the FDP-algebra
structure on V is determined by a set of Sn−equivariant linear maps

m̂n,b : P((n, b))dual → V ⊗n

or, equivalently, of degree zero elements

(4.1) mn,b ∈ (V ⊗n ⊗P((n, b)))Sn

As above, for any finite set I one can extend this to the collection of elements {mI,b}:

mI,b ∈ (V ⊗I ⊗ P((I, b)))Aut(I) using an arbitrary bijection I ↔ {1, . . . , |I |}. On
the subspace MK⊗lPdual((G))Aut(G) of FDP((n, b)) corresponding to a stable graph
G ∈ [Γ((n, b))] the map

m̂ : MK⊗lPdual((G))Aut(G) → V ⊗n

is given by

(4.2) µ
E[V ]
G ◦




⊗

v∈V ert(G)

m̂n(v),b(v)




since an element from MK⊗lPdual((G))Aut(G) is represented by the composition

along G of elements from P((n(v), b(v)))dual , v ∈ V ert(G). The map m̂ : FDP →
E [V ] corresponding to the set {mn,b} is a morphism of modular K⊗l-operads iff it
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respect the differentials on FDP and E [V ]. It is sufficient to check this condition on
the generators of FDP . On the subspace P((n, b))dual the differential dF is a sum
of dPdual plus sum of the adjoints to the structure maps µP

G
(2.8) corresponding to

the graphs with single edge, multiplied by e[1], the canonical element of degree -1
from Det({e}) where e is the unique edge of the graph G:

dF = dPdual +
∑

{1,...,n}=ItJ

e[1]⊗ (µP
G(I,J)

)dual + e[1]⊗ (µP
G2,n

)dual

We see that the condition

m̂ ◦ dF = dV ◦ m̂

is equavalent to

(4.3) m̂n,bdPdual − dV m̂n,b + µ
E[V ]
G2,n

(e[1]⊗ (m̂{1,...,n}t{f,f ′},b−1µ
P
G2,n

dual))+

+
1

2

∑

{1,...,n}=I1tI2
b1+b2=b

µ
E[V ]
G1(I1,I2)

(e[1]⊗ (m̂I1t{f},b1 ⊗ m̂I2t{f ′},b2µ
P
G(I1,I2)

dual)) = 0

where µ
E[V ]
G2,n

is the contraction (k[1])⊗l ⊗ V ⊗{f,f ′} ⊗ V ⊗n → V ⊗n with the bilinear

form B applied to the factors corresponding to f, f ′ and µ
E[V ]
G1

is the similar con-

traction (k[1])⊗l⊗V ⊗I1t{f}⊗V ⊗I2t{f ′} → V ⊗n. In terms of m this can be written
as the equation

(4.4) (dP + dV )mn,b −Bff ′ξPff ′m{1,...,n}t{f,f ′},b−1)−

−
1

2

∑

{1,...,n}=I1tI2
b1+b2=b

Bff ′φP
ff ′(mI1t{f},b1 ⊗mI2t{f ′},b2)) = 0

where the degree (l − 1) maps

φP
ff ′ = µP

G1(I1,I2)
(e[1]⊗1−l)(4.5)

φP
ff ′ : P((I1 t {f}, b1))⊗P((I2 t {f

′}, b2))→ P((n, b1 + b2))[l − 1]

ξPff ′ = µP
G2,n

(e[1]⊗1−l)(4.6)

ξPff ′ : P(({1, . . . n} t {f, f ′}, b))→ P((n, b + 1))[l − 1]

are the evaluation on (e[1])⊗1−l of the P−compositions, and Bff ′ : V ⊗{f,f ′} →
k[−l] is the degree (−l) contraction with B. Let us put mn =

∑
b zbmn,b then

(4.7) (dP + dV )mn − zBff ′ξPff ′m{1,...,n}t{f,f ′}−

−
1

2

∑

{1,...,n}=I1tI2

Bff ′φP
ff ′(mI1t{f} ⊗mI2t{f ′}) = 0

We can rewrite this equation directly in terms of {mn} using the canonical projec-
tion to the Sn−invariant subspace 1

n!(Σσ∈Sn
σ). Notice that the terms of the last

summand in (4.4) are invariant with respect to the action of the subgroup Scard(I1)×
Scard(I2). The Sn-equivariance of (2.1) implies that the result of the action of arbi-
trary element σ of Sn on such a term is (Bff ′φeI1 eI2

)(meI1t{f},b1
⊗meI2t{f ′},b2

) with

Ĩ1 = σ(I1), Ĩ2 = σ(I2). Let us single out the term Bff ′φP
ff ′(mI1t{f} ⊗mI2t{f ′})
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with I1 = {1, . . . , n1} and denote via oP the composition φP
ff ′after the identifica-

tions: I1 t {f} with {1, . . . , n1 + 1} such that i↔ i for 1 ≤ i ≤ n1 and f ↔ n1 + 1,
and I2t{f

′} with {1, . . . , n2+1} such that f ′ → 1, i→ i−n1+1 for n1 +1 ≤ i ≤ n
:

oP : P((n1 + 1, b))⊗P((n− n1 + 1, b′))→ P((n, b + b′))[l − 1]

Let us identife also in the first summand {1, . . . , n} t {f, f ′} with {1, . . . , n + 2} in
such a way that i↔ i for i ∈ {1, . . . , n} and f ↔ n + 1, f ′ ↔ n + 2. Then we can
write the equation (4.4) as

(4.8) (dP + dV )mn − zBn+1,n+2ξn+1,n+2mn+2+

−
1

2

∑

n1+n2=n

1

n1!n2!

∑

σ∈Sn

σ(Bn1+1,1o
P (mn1+1 ⊗mn2+1)) = 0

In the case when V is a chain complexes with antisymmetric inner product of
degree l the FDP−algebra structures on V is described again by the equation
(4.3). In this case P must be a D−operad with D = K⊗−1−lL. If one rewrites this
equation in terms of {mn} then one gets the equations (4.7,4.8) with degree (l− 1)
compositions

(4.9) φP
ff ′ = µP

G1(I1,I2)
(e[1]⊗−1−l ⊗ (f [1] ∧ f ′[1]))

(4.10) ξPff ′ = µP
G2,n

(e[1]⊗−1−l ⊗ (f [1] ∧ f ′[1]))

and Bff ′ : V ⊗{f} ⊗ V ⊗{f ′} → k[−l] the degree (−l) contraction with B where
the order of flags f and f ′ is taken the same as in (4.9,4.10). We have proven the
following result.

Proposition 1. The element m from
⊕

n,b(V
⊗n ⊗ P((n, b)))Sn defines the mod-

ular FDP−algebra structure on the chain complex V with symmetric (respectively
antisymmetric) inner product B of degree l, B : V ⊗2 → k[−l], where P is a twisted
K⊗1−l−modular operad (respectively K⊗−1−lL−moduar operad) iff m satisfies the
equation (4.7).

5. Differential graded Lie algebra
⊕

n,b(V
⊗n ⊗P((n, b)))Sn [1].

Recall that the equation defining the algebra structure over the
cobar−transformation of some cyclic operad A can be written as [h, h] = 0, where
h is a function on the symplectic affine A−manifold. The cobar−transformation
is the tree-level part of the Feynman transform. As we shall see below for the
twisted modular operad P the equation (4.7) describing the algebra over the Feyn-
man transform is the principal equation of the Batalin-Vilkovisky P−geometry on
the affine P-manifold.

5.1. Odd vector field on the space of morphisms MD∨Pdual → E [V ]. Let V
be chain complex with symmetric or antisymmetric inner product B of degree l. Let
P be a modular D−operad, so that D∨ is the cocycle corresponding to the twisting
of E [V ], i.e. D = K⊗1−l for symmetric B and D = K⊗−1−lL for antisymmetric B.
We explain in this subsection that the linear and quadratic terms in the equation
(4.3) define the structure of differential graded Lie algebra on the graded k-vector
space

⊕
n,b(V

⊗n ⊗P((n, b)))Sn [1].
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Let Mor(MD∨Pdual, E [V ]) denotes the space of operad morphisms from MD∨Pdual

to E [V ]. Since MD∨Pdual is a free modular operad we have

Mor(MD∨Pdual, E [V ]) = (
⊕

n,b

(V ⊗n ⊗P((n, b)))Sn)0

One can consider the corresponding graded version of the space of morphism
Mor(MD∨Pdual, E [V ]). It is the affine Z− graded scheme representing the functor
R→Mor(MD∨Pdual⊗R, E [V ]) where R is a graded commutatitve k−algebra. For
the graded version we have

Mor(MD∨Pdual, E [V ]) =
⊕

n,b

(V ⊗n ⊗P((n, b)))Sn

The differential dF acting on MD∨Pdual induces canonical odd vector field on
Mor(MD∨Pdual, E [V ]):

(5.1) Q(ϕ) = dV ϕ− ϕdF

Since d2
F = 0 it follows that

(5.2) [Q, Q] = 0.

The equation (4.3) describing the FDP−algebra structures on V is precisely the
equation

Q(ϕ) = 0

on the subspace deg ϕ = 0. The same calculation as in the previous subsection
shows that the vector field Q has only linear and quadratic components and they
are given by the linear in {mn} and the quadratic in {mn} terms in (4.3). The
vector field Q induces the odd derivation of cocommutative coalgebra generated by
the Z− graded vector space F =

⊕
n,b(V

⊗n⊗P((n, b)))Sn . It follows from (5.2) that

the linear and the quadratic components in (4.3) define the structure of differential
graded Lie algebra on F [1] (in the category of chain complexes). In particular,

{m1, m2} =
(−1)m1m2

n1!n2!

∑

σ∈Sn

σ(oE[V ]oP(m1 ⊗m2)),(5.3)

mi ∈ (V ⊗ni+1 ⊗P((ni + 1, bi)))
Sni+1 , i = 1, 2

is the odd Lie bracket and

(5.4) ∆m = (−1)mξ
E[V ]
n−1,nξPn−1,nm, m ∈ (V ⊗n ⊗P((n, b)))Sn

is a degree (−1) differential. Notice that the bracket (5.3) is defined in terms of the
compositions of the underlying cyclic operads, while the operator (5.4) is defined
in terms of the extra modular compositions along the graphs G2,n. Remark that
this bracket is closely related with the bracket defined in [KM] in the case of usual
operads. If we put dm = ((−1)mdP − dV )m then our basic equation 4.7 becomes
the familiar quantum master equation

(5.5) dm + z∆m +
1

2
[m, m] = 0

Using this and the proposition 1 we get the following result
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Theorem 1. The modular FDP−algebra structure on the chain complex V with
symmetric (respectively antisymmetric) inner product B of degree l, B : V ⊗2 →
k[−l], where P is an arbitrary twisted K⊗1−l−modular operad (respectively K⊗−1−lL-
moduar operad), are in one-to-one correspondence with solutions of the quantum
master equation (5.5) in the space (

⊕
n,b(V

⊗n ⊗P((n, b)))Sn)0.

If one considers the modular FDP−algebra structures over some commutative
graded algebra C then they are in one-to-one correspondence with solutions to
(5.5) in the space (F ⊗ C)0. One can define, using the algebra C = k[ε]/ε2, the
modular homotopy equivalence of the modular FDP−algebra structures and the
gauge equivalence on the solutions to (5.5). Then equivalence classes of the modular
FDP−algebra structure are in-to one correspondence with the gauge equivalence
classes of solutions to the quantum master equation.

We must add that a characterisation of algebras over the Feynman transform of
the modular completion of the commutative operad was given in [M] via higher order
coderivations of a free cocommutative coalgebra. We are not aware of extension of
this approach to other operads.

One may notice that the definitions of the odd bracket (5.3) and the odd differen-

tial (5.4) work in fact for an arbitrary pair (P , P̃) where P is a modular D−operad

with arbitrary D and P̃ is a modular D∨−operad. Then there is a natural differ-
ential graded Lie algebra structure on

⊕

n,b

(P̃((n, b))⊗P((n, b)))Sn [1]

defined by the components of the vector field (5.1). The solutions to the correspond-

ing Maurer-Cartan equation in
⊕

n,b(P̃((n, b)) ⊗ P((n, b)))Sn [1] are in one-to one

correspondence with morphisms of operads FDP → P̃ . Notice that this equation

coincides with the equation describing the morphisms FD∨P̃ → P .

6. Free P−algebra.

If P is a cyclic operad then the free P−algebra generated by the graded k−vector
space V is

C =
⊕

n

(V ⊗n ⊗P((n + 1)))Sn

and it was argued in ([K1],[G]) that the vector space

F =
⊕

n

(V ⊗n ⊗P((n)))Sn

can be considered naturally as the analog of the space of functons on Spec(C). If P
is a twisted modular operad then the compositions along trees form twisted version
of cyclic operad. There is the corresponding version of the free P algebra and the
arguing can be repeated that F can be seen as the space of functions on Spec(C)
in the twisted case.

Let P be a modular Det−operad in the category of graded vector spaces and
let CycP = ⊕n P((n, 0)) is the cyclic operad, which is b = 0 part of P . Then
Cyc(Σ−1FDetP), the b = 0 part of Σ−1FDetP = FDΣDetΣP , is equal to sBCycP ,
that is the suspension of the cobar transformation of CycP . In the framework of
non-commutative symplectic geometry of [K1], see also [G], the BCycP−algebra
structures on a vector space V with symmetric inner product B of degree zero
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are described by functions on affine CycP−manifold sV , that is the elements h ∈⊕
n((sV )⊗n ⊗P((n, 0)))Sn , of degree deg h = 1, such that

(6.1) [h, h] = 0,

where the bracket is the Poisson bracket which is associated with the antisymmetric

inner product sB. Let us put P̃ = ΣP and consider the FDP̃−algebra stractures
on sV , where D = DΣDet. Then b = 0 part of such structure correspond to

BCycP−algebra structure on V . The FDP̃−algebra stractures on sV is described,

as we proved in section 4, by an element ĥ(z) =
∑

b≥0 hbz
b, hb ∈

⊕
n((sV )⊗n ⊗

ΣP((n, b)))Sn , deg hb = 0, such that

z∆ĥ(z) +
1

2
[ĥ(z), ĥ(z)] = 0

We see that in the ”classical” limit z → 0, ĥ(z) becomes a solution to (6.1), the
”classical” master equation. The operator ∆ can be seen as the odd second order
operator and the bracket is the odd Poisson bracket extending the previous bracket,
which was defined on the subspace b = 0. The whole picture is a noncommutative
P−analog of the usual commutative Batalin-Vilkovisky geometry, described for
example in [S]. We plan to return elsewhere to the corresponding analog of the

theory of integration of exp(ĥ(z)/z) and to the combinatorial consequences of the
invariance of such integrals under deformations.

7. Characteristic classes of FDP−algebras.

Let m̂ : FDP → E [V ] be an FDP−algebra structure on the chain complex V
with symmetric or antisymmetric inner product B of degree l. Here P is a modular
D−operad, such that D∨ is the cocycle corresponding to the twisting of E [V ], i.e.
D = K⊗1−l for symmetric B and D = K⊗−1−lL for antisymmetric B. It is one of
the main application of the formalism developped in [GK] that taking the n = 0
component of the morphism m̂

m̂((0, ∗)) :
⊕

G∈[Γ((0,b))],b>1

(D∨(G) ⊗Pdual((G)))Aut(G) → k

we get a cocycle on the subcomplex of FDP corresponding to graphs with no
external legs:

(7.1) m̂((0, ∗))(dFγ) = 0, γ ∈ (⊕bFDP((0, b))).

More generally if m̂t ∈ ... is the FDP−operad structure depending on some graded
parameters t then all Taylor cofficient of expansion of the component m̂t((0, ∗)) at
t = 0 are cocycles on the subcomplex of graphs with no external legs

(7.2)
∂|α|

∂tα1
1 . . . ∂tαn

n
m̂t((0, ∗))|t=0(dFγ) = 0, γ ∈ (⊕bFDP((0, b))).

It follows from (4.2) that the value m̂((0, ∗)) on an element from (D(G)⊗P((G)))Aut(G)

corresponding to the stable graph G is given by a partition function by the tensors
mn,b ∈ (V ⊗n⊗P((n, b)))Sn and the inner product B. Similarly the cocycle (7.2) is

a partition function involving insertions of the derivatives ∂|β|

∂t
β1
1 ...∂tβn

n

mn,b((0, ∗))|t=0

with βi ≤ αi so that for all 1 ≤ i ≤ n the total sum of βi for all such insertions in
the given graph is equal to αi.
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8. Stable ribbon graphs.

In this section we give an application of the above construction and explain how
it gives the cohomology classes in Deligne -Mumford moduli spaces associated with
solutions to the master equation 5.5 on the space of functions on affine P−manifold
where P is the modular Det−operad S[t] which is introduced below. We use the
complex of stable ribbon graphs and its relation with a compactification of moduli
spaces of algebraic curves described in [K3], see also [L]. This is a generalisation of
the equivalence of ”decorated” moduli spaces of algebraic curves and moduli spaces
of ribbon graphs due to J.Harer, D.Mumford, R.C.Penner, W.Thurston and others.

Stable ribbon graph is a connected graph G together with :

• partitions of the set of flags adjacent to every vertex into i(v) subsets

Leg(v) = Leg(v)(1) t . . . t Leg(v)(i(v)), v ∈ V ert(G)

• fixed cyclic order on every subset Leg(v)(k) ,
• a map g : V ert(G) → Z≥0 such that for any vertex 2(2g(v) + i(v) − 2) +

n(v) > 0, so that putting b(v) = 2g(v) + i(v)− 1 defines a stable graph.

Let us denote via SR(n,b) the set of all stable ribbon graphs with n exterrior
legs and b(G) = b. The usual ribbon graphs correspond to the case b(v) = 0 for all
v ∈ V ert(G),.

It is easy to see that for graphs from SR(0,b) our definition is equivalent to the
definition given in [K3] as the limit of certain functor on ribbon graphs. A metric
on the stable ribbon graph is a function l : Edge(G)→ R>0. Given a stable ribbon
graph G ∈ SR(0,b) a metric on G one can construct by the standard procedure a
punctured Riemann surface Σ(G), which will be singular in general. Namely one
should replace every edge by oriented open strip [0, l]×]− i∞, +i∞[ and glue them
for each cyclically ordered subset according to the cyclic order. In this way one gets
several punctured Riemann surfaces and for every vertex of the graph G one should
identify the points on these surfaces corresponding to different cyclically ordered
subsets associated with the given vertex of G. We also have the nonnegative integer
g(v) associated to every singular point of the Riemann surface Σ(G). The graph
G is naturally realised as a one-dimensional subset of Σ(G), which we denote by
|G|. One can also construct the Riemman surface associated with the general stable
ribbon graph G having the legs. In such case one gets the singular Riemann surface
associated with the graph G/Legs(G), i.e. the stable ribbon graph G with legs
removed, plus the extra structure, which consists of the lines on Σ(G/Legs(G)),one
for each leg, which connect the vertice with the corresponding adjacent puncture,
so that G is again naturally realised as a subset of Σ(G). We shall denote the set
of punctures of the surface Σ(G) via PΣ(G).

One can consider the moduli spaceM
comb

γ,ν parametrizing the equivalence classes
of data (G, l), where G is a graph from SR(0,γ) whose associated surface Σ(G) has
exactly ν punctures numbered from 1 to ν, and l is a metric on G. It can be shown,

see loc.cit. and [L], that there is a natural factor space M
′

γ,ν of the Deligne-

Mumford moduli space of stable curves Mγ,ν so that M
comb

γ,ν is homeomorphic

to M
′

γ,ν × Rν
>o and the projection to Rν

>o corresponds to the map which sends
stable graph with metric and numbered punctures to the set of perimeters of edges
surrounding the punctures. In particular the preimage of p = (p1, . . . , pν), p ∈ R

ν
>o
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in M
comb

γ,ν can be considered as the moduli space space M
comb

γ,ν (p) of data (G, l)
such that the perimeters around punctures are equal to p1, . . . , pν . This moduli

spaceM
comb

γ,ν (p) is then homeomorphic toM
′

γ,ν . The spaceM
comb

γ,ν (p) has natural
structure of a cell complex, or better say, orbi-cell complex, with (orbi-)cells indexed
by equivalence classes of stable graphs G with numbered punctures as above.

8.1. Modular Det−operad S[t]. Let us introduce the following modular Det−operad

S[t]. Let k[Sn]⊗Det(Cycle) denotes the graded k−vector space with the basis in-
dexed by elements σ ⊗ aσ, where σ ∈ Sn is a permutation with i(σ) cycles σα and
aσ = σ1 ∧ . . . ∧ σi(σ), aσ ∈ Det(Cycle(σ)) represents one of the generators of the
one-dimensional determinant of the set of cycles of σ. The symmetric group Sn

acts naturally on k[Sn] ⊗ Det(Cycle) by conjugation. Let k[t] denotes the space
of polynomials in one variable t, deg t = −2. The cyclic S−module underlying our
modular operad is the set of graded Sn−modules

S[t]((n)) = (Sn ⊗Det(Cycle)[1])⊗ k[t]

where Sn acts trivially on k[t], and the degree b of the element σtg ⊗ aσ is defined
as

b = 2g + i(σ)− 1

in particular S[t]((n, b)) is a graded k−vector space concentrated in degree (−b).
We also put S[t]((n, 0)) = 0 for n ≤ 2. Notice that for b = 0 we get the underlying
S−module of the cyclic operad Ass of associative algebras with invariant scalar
products.

Compositions in S[t] are k[t]−linear and defined via sewings and dissections of
cycles of permutations. The compositions can be easily described using multi-

plication on the group of permutations. Let us describe the composition µ
S[t]
G(I,J)

along the simplest graph with two vertices (2.2). Let σtg ⊗ aσ ∈ S[t]((I t {f}, b)),

aσ = σ1 ∧ . . . ∧ σi(σ), ρtg
′

⊗ aρ ∈ S[t]((J t {f ′}, b′)), aρ = ρ1 ∧ . . . ∧ ρi(ρ) with f
belonging to the cycle σk and f ′ belonging to the cycle ρl. Let us denote by πff ′

πff ′ : Aut({1, . . . , n} t {f, f ′})→ Sn

the operation erasing the elements f and f ′ from the cycles of permutation

πff ′ : (i1 . . . iαfj1 . . . jβf ′)→ (i1 . . . iαj1 . . . jβ)

If b = b′ = 0 then we have simply the cyclic permutations and the composition

µ
S[t]
G(I,J)

coincides with the composition in the cyclic operad Ass, which can be written

as πff ′σρ(ff ′) where (ff ′) is the transposition f ↔ f ′. For general elements of
S[t] we have the following expression

µ
S[t]
G(I,J)

= (πff ′σρ(ff ′))tg+g′

⊗ aµ

where

aµ = (−1)k+lπff ′(σkρl(ff ′)) ∧ σ1 ∧ . . . ∧ σ̂k ∧ . . . ∧ σi(σ) ∧ ρ1 ∧ . . . ∧ ρ̂l ∧ . . . ∧ ρi(ρ)
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The expression for aµ follows from the natural isomorphisms

Det(Cycle(πff ′σρ(ff ′)) ' Det({πff ′σkρl(ff ′)})⊗

⊗Det(Cycle(σ) \ {σk} t Cycle(ρ) \ {ρl}),

Det(Cycle(σ))[−1] ' Det(Cycle(σ) \ {σk}),(8.1)

Det(Cycle(ρ))[−1] ' Det(Cycle(ρ) \ {ρl})

Let us describe the composition along the graph with one loop (2.3)

µ
S[t]
G2,n

: Det(H1(G2,n))⊗ S[t](({1, . . . , n} t {f, f ′}, b))→ S[t]((n, b + 1)).

Let σtg ⊗ aσ ∈ S[t](({1, . . . , n} t {f, f ′}, b)), aσ = σ1 ∧ . . . ∧ σi(σ) and f ∈ σk and
f ′ ∈ σl with k < l. The pair ff ′ defines the oriented loop eff ′ and hence an element

eff ′ [1] of Det(H1(G2,n)). Then the composition µ
S[t]
G2,n

on eff ′ [1]⊗ (σtg⊗aσ) is the

sewing of cycles σk and σl times t

µ
S[t]
G2,n

= (πff ′σ(ff ′))tg+1 ⊗ aµ′

where

aµ′ = (−1)k+l−1πff ′(σkσl(ff ′)) ∧ σ1 ∧ . . . ∧ σ̂k ∧ . . . ∧ σ̂l ∧ . . . ∧ σi(σ)

following a sequence of natural isomorphisms analogous to (8.1). If the elements

f and f ′ belong to the same cycle f, f ′ ∈ σk then composition µ
S[t]
G2,n

on eff ′ [1] ⊗

(σtg ⊗ aσ) is the dissection of the cycle σk into two cycles whose relative order in
Det(Cycle) is determined by the orientation of the edge eff ′ :

µ
S[t]
G2,n

= (πff ′σ(ff ′))tg ⊗ aµ′′

where, if we denote by σf
k and σf ′

k the two cycles of σk(ff ′) containing f and f ′

correspondingly, then we have

aµ′′ = (−1)k−1(πf σf
k ) ∧ (πf ′σf ′

k ) ∧ σ1 ∧ . . . ∧ σ̂k ∧ . . . ∧ σi(σ)

which follows from natural isomorphisms analogous to (8.1). Remark that if one of

the cycles σf
k , σf ′

k consist of just one element f or f ′ correspondingly, which happens
precisely when f and f ′are neighbours in the cycle σk , then the composition is zero

in such case ((πf σf
k ) = 0 or (πf ′σf ′

k ) = 0).
One can check that these compositions define on S[t] the structure of twisted

modular Det−operad. Namely, contraction of several edges corresponds, forget-
ting the elements from k[t]⊗Det(Cycle), to successive operators of multiplications
by transpositions followed by erasing operators. But operators corresponding to
different edges commute [πff ′ , πgg′ ] = 0, [πff ′ , (gg′)] = 0. It follows that the com-
position on the level of permutations is associative with respect to the morphisms
of stable graphs. It follows from commutativity of the diagrams of natural isomor-
phisms that the rules for compositions of decorations from k[t] ⊗ Det(Cycle) are
also compatible with morphisms of stable graphs.

8.2. Feynman transform of S[t]. Let us consider the Feynman transform of S[t].
Notice that S[t]((n)) has a basis labeled by partitions of n into i subsets with cyclic
orders on the subsets, plus the nonnegative integer g,such that 2(2g + i−2)+n > 0
and plus the choice of an element from Det(Cycle). It follows that the Feynman
transform FDetS[t] has the basis labeled by the stable ribbon graphs plus a choice
of generator of KDet−1(G). If (G, αG) is such an element, let ν(G) be the number
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of punctures of the Riemann surface Σ(G) associated with G. Then it belongs to
the subspace FDetS[t]((n, b)) where n is the number of legs of G and

b(G) = 2γ(G)− 1 + ν(G)

where
γ(G) = g(NΣ(G)) +

∑

v∈V irt(G)

(g(v) + i(v)− 1)

where g(NΣ(G)) is the genus of the normalisation of Σ(G), in other words γ(G) is
the genus of Σ(G) taking into account the genus defects associated with vertices of
G. It is easy to see that every chain complex FDetS[t]((n, b)) is in fact the direct
sum of complexes

FDetS[t]((n, b)) =
⊕

b=2γ−1+ν

FDetS[t]((n, γ, ν)

The moduli spaceM
comb

γ,ν (p)/Sν has natural (orbi-)cellular decomposition with cells
indexed by the isomorphism classes of stable ribbon graphs with γ = γ(G), ν =
ν(G) and |Leg(G)| = 0. Moreover, the differential on FDetS[t] coincides with the
differential of the cochain complex of the (orbi-)cell complex so that we have the
identity

Proposition 2. H i(M
′

γ,ν/Sν) ' H−i(FDetS[t]((0, γ, ν)))[2γ − 1]

Proof. This identification is analogous to the proposition 9.5 of [GK]. Firstly, for
every stable ribbon graph G the vector space K(G) is naturally isomorphic to
Htop

c (CG) where CG is the (orbi-)cell corresponding to G. To prove that the complex

FDetS[t]((0, γ, ν))[1 − 2γ] computes indeed the cohomology ⊕iH
i(M

′

γ,ν/Sν) it is
sufficient to identify the inverse to the sheaf of cohomology of the fibers of projection

M
comb

γ,ν /Sν →M
′

γ,ν/Sν , i.e. to show that

(8.2) Det(G)−1
⊗

v∈V irt(G)

Det−1(Cycle(σ(v))[1− 2g(v)] ' Det−1(PΣ(G))[1− 2γ]

In order to prove this let us consider the surface Σ̃(G) which is obtained topolog-
ically as follows. Let us remove a small neighborhoud of every singular point v
of Σ(G). If v has the genus defect g(v) and i(v) branches are meeting at v, then
let us glue instead of this neighborhoud a curve Σ(v) of the genus g(v) and with
i(v) boundary components. We obtain topologically a curve of genus γ without ν
marked points. Then

Det(H∗(Σ̃(G),tv∈V irt(G)Σ(v))) ' Det(H∗(|G|, V ert(G)) ' Det(G)−1[1−|V ert(G)|]

since (Σ̃(G),tv∈V irt(G)Σ(v)) is homotopic to (|G|, V ert(G)). Using the Poincare

duality for the compact surface Σ̃(G) t PΣ(G) and the Mayer-Vietoris sequence as
in loc.cit. we get

Det(H∗(Σ̃(G))) ' Det−1(PΣ(G))[2− 2γ]

Also, by similar arguments

Det(H∗(Σ(v))) ' Det−1(Cycle(σ(v))[2− 2g(v)]

Now the equality (8.2) follows from the exact sequence associated with the pair

(Σ̃(G),tv∈V irt(G)Σ(v)). �
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8.3. Operad FDetS[t] and higher genus GW-invariants. The operad FDetS[t]

arises naturally in the counting of holomorphic curves of arbitrary genus with
boundaries in the set of Lagrangian submanifolds of a simplectic manifold. Namely,
consider the total number of holomorphic maps of the surfaces of genus g with i
boundary components with sets of points lying on these boundaries, such that the
boundaries are mapped to the fixed set of graded Lagrangian submanifolds, inter-
secting transversally, and the points are mapped to the intersection points. This
gives naturally the set of elements of

⊕
n(V ⊗n⊗S[t]((n, b)))Sn where b = 2g+ i−1,

and V is the graded vector spaces with the basis labeled by points of intersection
of Lagrangian submanifolds. Then the standard arguments, involving the degener-
ation of one-parameter families of such maps, show that this set of elements satisfy
the quantum master equation (5.5) of the Batalin-Vilkovisky geometry on the affine
S[t]−manifold. We discuss this in more details in [B1] and explain how this leads
to the combinatorial description of Gromov-Witten invariants with values in coho-
mology of Deligne-Mumford moduli spaces via the characteristic class map and the
cyclic homology of the twisted modular operad.

8.4. The map χFAss→ S[t]. Recall that forgetting the differential the Feynman

transformFAss of the cyclic operadAss is aK−operad generated by the S−module
Assdual. It follows that FAss has a basis labeled by ribbon graphs with a choice of
a generator of the one-dimensional vector space K(G). The complex FAss((n, b))
is decomposed as the sum of subcomplexes FAss((n, γ, ν)) according to the genus
γ and the number of punctures ν of the Riemann surface associated with the ribbon
graph, see [GK]. Notice that

Det(G) ' KDχ

where Dχ is the coboundary associated with the S−module χ = sΣ−1. It follows
that χFAss is a modular Det−operad which as a k−vector space consist of linear
combinations of elements [G]⊗ α̂G where G is a ribbon graph and α̂G is an element
of the one-dimensional vector space Det(G) ⊗ (⊗v∈V irt(G)Det(Leg(v)[−3]). The
subset of legs of ribbon graph G adjacent to a given puncture has natural cyclic
order. It follows that every ribbon graph G defines naturally a permutation σG

on the set Leg(G). Notice that for graphs with at least one leg adjacent to every
puncture we have

(8.3) Det(G) ' Det(Cycle(σG))[2γ − 1]

see loc.cit, page 117. Let G be a trivalent ribbon graph. The cyclic order on Leg(v)
gives a canonical element in Det(Leg(v))[−3] for every vertex v. This is the element
e1 ∧ e2 ∧ e3 if e1 → e2 → e3 → e1 denotes the cyclic order on the three flags. Let
α̂can

G denotes the product of an element αG ∈ Det(G) with the tensor product of the
canonical elements in ⊗v∈V irt(G)Det(Leg(v))[−3]. Let ασG

∈ Det(Cycle(σG))[2γ−
1] denotes the element corresponding to αG under the isomorphism (8.3).

Proposition 3. Let G be a trivalent ribbon graph such that for every puncture of
G there is a leg adjacent to it. Let us put φ([G]⊗ α̂can

G ) = σGtγ⊗ασG
for such graph

and φ([G]⊗ α̂G) = 0 for all other ribbon graphs. Then φ defines natural morphism
of twisted modular Det−operads χFAss→ S[t].
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