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Abstract

We show that any abelian surface with multiplication by the quaternion

Q-algebra of discriminant 6, with field of moduli Q and which is a Jaco-

bian in characteristic 2 and 3, has infinitely many primes of superspecial

reduction. This is done by examining CM points in characteristic 0 and

p and the values of a certain j-function on the associated moduli space at

these points.

Key words: abelian surface, quaternionic multiplication, super-

special reduction

2000 Mathematics Subject Classification: 11G18, 14G35, 11G25

An abelian variety A over an algebraically closed field of characteristic p > 0
is supersingular if it is isogenous to a product of supersingular elliptic curves.
If A is isomorphic to such a product, then A is said to be superspecial. Elkies
showed in [4] that if A/Q is an elliptic curve, then it has infinitely many super-
singular primes. His proof uses properties of the classical j-invariant of elliptic
curves and the reduction theory of elliptic curves with complex multiplication
to characteristic p. Similar techniques have since been used by M.L. Brown to
prove the infinitude of supersingular primes for certain Drinfeld modules, and
more recently by D. Jao to points on X0(N).

In the case of A being an abelian surface, Sadykov has shown in [14] that
certain abelian surfaces with quaternionic multiplication by the quaternion al-
gebras of discriminant 22 and 33 have infinitely many supersingular primes. In
this paper, we establish the corresponding result for the Shimura curve of dis-
criminant 6. Using properties of the j-invariant constructed in [2], we apply the
idea of proof of Elkies to show the following.

Theorem 1. Let C be a genus 2 curve whose Jacobian has multiplication by
the maximal quaternion order with discriminant 6, has field of moduli equal to
Q and has potentially smooth stable reduction at 2 and 3. Then its Jacobian has
superspecial reduction at infinitely many primes.

∗The second named author was supported by a Marie Curie Intra-European Fellowship un-
der the Sixth Framework Programme of the European Commission (MEIF-CT-2004-501793).
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1 Preliminaries

For any square free integer ∆ > 0, let B∆ denote the quaternion algebra over Q
ramified at the places dividing ∆. When ∆ has a positive and even number of
prime divisors, then B∆ is an indefinite skew field. We fix such a ∆. Let x 7→ x∗

be the canonical involution on B∆, and let Λ∆ be a maximal order in B∆. Fix an
element µ ∈ Λ∆ with µ2 = −∆. It determines a positive anti-involution a 7→ a′

on B∆ by a′ = µ−1a∗µ, i.e., the quadratic form a 7→ tr(a′a) is positive definite.
We call the pair (Λ∆, µ) a principally polarized maximal order in B∆. Given
(Λ∆, µ), let V∆ denote the Shimura curve which is the moduli space of triples
[A, ρ, ι] where A is an abelian surface, ρ is the Rosati involution corresponding
to a principal polarization on A, and ι : Λ∆ → End(A) is an embedding such
that the Rosati involution defined by ρ on ι(Λ∆) is ′. Shimura showed in [15]
that V∆ is defined over Q. For any positive integer d | ∆, the Atkin-Lehner
involution wd on V∆ is defined by wd([A, ρ, ι]) = [A, γ∗

dρ, γ−1
d ιγd], where γd is an

element of norm d in B∆. Let W = W∆ denote the Atkin-Lehner group acting
on V∆.

Let A be an abelian surface with QM by Λ = Λ∆. Denote the commutator of
the image of Λ in End(A) by EndQM(A). In characteristic 0, EndQM(A) is either
Z or a complex quadratic order OD. In characteristic p > 0, every QM abelian
surface is either ordinary or supersingular [3, Proposition 68]. In the ordinary
case, EndQM(A) is a complex order. In the supersingular case, EndQM(A) is an
order in the quaternion algebra Bp∆ (resp. B∆/p) if p - ∆ (resp. p | ∆). See [3],
Corollary 69.

Let OD be the complex quadratic order with discriminant D. We say that
A has CM by OD if there exists an optimal embedding of OD into EndQM(A).
An abelian surface is clearly supersingular if it has CM by at least 2 quadratic
orders, or equivalently if it has CM by an order OD in a field in which p does
not split.

Consider a QM abelian surface A over C with CM by OD. The corresponding
lattice in C2 is a natural OD module, hence it is of the form a1l1+a2l2, where ai

is an OD ideal and li ∈ C2, for i = 1, 2. It follows that the A is the product of two
CM elliptic curves (as a complex torus). In particular, the endomorphism ring of
A over C contains two orthogonal idempotents. Consider now any QM abelian
surface A in characteristic 0 with CM. It is, together with its endomorphism
ring, defined over some number field k. Since, by the above, End(A) contains
orthogonal idempotents, we observe that A/k is isomorphic to a product of CM
elliptic curves (as unpolarized varieties).

Supersingular abelian surfaces with QM are described in detail in Ribet’s
paper [13]. If p | ∆, then every abelian surface with QM by B∆ is supersin-
gular [13, Lemma 4.1], but not necessarily superspecial. On the other hand, if
p - ∆, every QM abelian surface over F̄p is either ordinary or superspecial ([13,
p. 23], and [3]).

Let now D be the fundamental discriminant of an imaginary quadratic field.
Let K = KD = Q(

√
D), with maximal order O = OD and let H = HD

denote the Hilbert class field and h the class number of K. Let W ′ denote
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the subgroup of W generated by elements wp, where p | ∆ is a rational prime
inert in K. Similarly, let W ′′ denote the subgroup of W generated by elements
wp, where p | ∆ is a prime ramified in K, so W ∼= W ′ × W ′′. We will use
the following facts, all of which are proved in [9]. If a ∈ V∆ is a point such
that the corresponding abelian surface has CM by O, then a is defined over the
field H . There is a homomorphism W ′′ → Gal(H/K), given by wd 7→ σd where
σd = (a, H/K) ∈ Gal(H/K) is defined by the class of an ideal a of norm d in K,
such that wd(a) = σd(a). The natural action of the group W ′ × Gal(H/K) on
the points on V∆ with CM by O is effective and transitive. Hence the number of
O CM points on V∆ is h#(W ′). Let H ′ = {x ∈ H | xσ = x for all σ ∈ W ′′}, and
let h′ be the degree of the extension H ′/K, i.e., h′ = h/#(W ′′). Consider the
set of points on the quotient curve V∆/W which are images of O CM on V∆.
The number of elements in this set, counted with appropriate multiplicities,
is h′.

We let B(a, b), where a, b ∈ Q and ab 6= 0, denote the quaternion algebra
Q[µ, ν], where µ2 = a, ν2 = b and µν + νµ = 0. Let τ denote the action of
complex conjugation on V∆. Jordan [9] used Shimura reciprocity to calculate
the action of τ on CM points in the following sense. If a is an O CM point, then
so is τ(a), and hence τ(a) = wσa for a unique pair (w, σ) ∈ W ′ × Gal(H/K).
If a is replaced with some other O CM point a′, then (w, σ) is replaced with
(w, σβ2) for some β ∈ G = Gal(H/K). Hence, complex conjugation defines
a well defined class [τ ] := (w, σ) ∈ W ′ × G/G2. Theorem 3.1.3 in [9] states
that [τ ] = (wd, (a, H/K)) for an ideal a of O and d | ∆ if and only if B∆

∼=
B(D, d nr(a)).

2 The moduli space E6

In the case ∆ = 6, the group of Atkin-Lehner involutions on the curve V6 is
W = {1, w2, w3, w6}, and we define E6 = V6/W . E6 is the moduli space of
principally polarized abelian surfaces with potential quaternionic multiplication
by Λ6. The curve E6 contains an open subvariety E0

6 which is the moduli space
of genus 2 curves whose Jacobians lie on E6.

A point in the moduli space A2 of genus 2 curves is determined by its
Igusa invariants [J2, J4, J6, J10], which should be considered as a point in the
weighted projective space P(2, 4, 6, 10), see [8]. In [2] we showed that there is
an isomorphism j = j6 : E0

6 → A1 \ {0} given by

j =
1210J2

10

(J2
2 − 24J4)5

, (1)

and that this map extends to an isomorphism of E6 with P1
Q as varieties defined

over Q. The inverse of the map j is given as follows: For any j, the corresponding
genus 2 curve C, which is defined over some field k, has Igusa invariants

J2 =12(j + 1)s, J4 =6(j2 + j + 1)s2,

J6 =4(j3 − 2j2 + 1)s3 J10 =j3s5
(2)

3



S. Baba, H. Granath

for some s ∈ k.
As varieties over Q, it is well known [12] that the curve V6 can be identified

with the conic {x2 + 3y2 + z2 = 0} ⊂ P2
Q. This identification was made explicit

in [2]. Composing the quotient map V6 → E6 with j, we get a map V6 → P1
Q

which, in terms of these coordinates, is given by

j =
16y2

9x2
. (3)

In particular, the j-value of any OD CM point on E6 is always a square in H .
The following result strengthens Proposition 32 in [2].

Proposition 2. Let C/k be a genus 2 curve corresponding to a point on E0
6 ,

and p a prime in k. Then C has potentially smooth stable reduction at p if
and only if vp(j(C)) = 0. In the case vp(j(C)) 6= 0, the stable reduction of
C at p is a union of two smooth elliptic curves meeting transversally in one
point. Furthermore, the elliptic j-invariants of these two components are 1728
if vp(j(C)) < 0 and 0 otherwise.

Proof. This is a direct application of Théorème 1 in [11] using the expressions
of the Igusa invariants given by (2).

In other words, the primes occurring in j are exactly the places where the
genus 2 curve does not have potentially smooth stable reduction.

We use the presentation B6 = B(3,−1) = Q[µ, ν], and choose the maximal
order Λ6 given by Λ6 = Z[µ, ν, (1 + µ + ν + µν)/2]. We now want to describe
the real locus of E6. Consider the elements γ−4 = ν, γ′

−4 = −2ν + µν, γ−3 =
(1 + µ − 3ν + µν)/2 and γ−24 = 3ν − µν of Λ6. From the description of the
upper half plane uniformization given in [1], one can choose a fundamental
domain bounded by the hyperbolic triangle with vertices at the fixed points of
γ−4, γ−3 and γ′

−4 respectively. The real line for the function j = j6 is given by
the following: The (open) hyperbolic line segment from the fixed point of γ−3

to the fixed point of γ−24 maps under j to the interval (−∞,−16/27). Similarly
the line segments determined by γ−24 and γ−4 yields the interval (−16/27, 0),
and γ−4 and γ−3 corresponds to the interval (0,∞).

Let D be the fundamental discriminant of a complex quadratic order OD

embedding into B6, i.e., D 6≡ 1 (mod 8) and D 6≡ 1 (mod 3). Let E6(D) denote
the set of points with CM by OD. The elements of E6(D) are denoted

a1, a2, . . . , ah′ ∈ E6(D).

Define the polynomial

QD(x) =

h′

∏

i=1

(x − j(ai)),

for D 6= −3, and let Q−3(x) = 1. Since Gal(H/K) acts on the roots of QD(x),
it is clear that QD(x) ∈ K[x]. Since also complex conjugation preserves the set
of points with CM by OD , we can conclude that QD(x) ∈ Q[x]. Define PD(x) to
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be the integral minimal polynomial of the j-invariants of the points in E6(D),
so

PD(x) = bh′QD(x),

where bh′ > 0 is the smallest integer such that bh′QD(x) is integral. We write

PD(x) = bh′xh′

+ · · · + b1x + b0.

Recall that for any wd ∈ W ′′ the corresponding Galois element σd acts as
wd on the O CM points of V6, and hence by definition σd acts trivially on the
roots of PD(x). It is therefore clear that H ′ is a splitting field of the polynomial
PD(x). We now prove some general arithmetic properties of the coefficients of
the polynomials PD(x).

Lemma 3. PD(x) ≡ xn (mod 2) for some n, and PD(x) ≡ ±xm (mod 3) for
some m.

Proof. Let p = 2 or 3 and p a prime ideal in OH above p. Since, in characteristic
0, all OD CM surfaces are products of elliptic curves, their reductions modulo
p are superspecial. It is a known fact, that in characteristic 2 and 3 there are
no genus 2 curves whose Jacobians are superspecial [5, Proposition 7.5]. Hence,
by Proposition 2, vp(ji) 6= 0 for every root ji of PD(x). It follows that PD(x)
reduces to a single monomial modulo p.

It follows from Proposition 2 and Lemma 3, that any genus 2 curve in char-
acteristic 0 with potentially smooth stable reduction at 2 or 3 has a simple
Jacobian.

Lemma 4. Let p be a rational prime. The following hold: (a) If p occurs with
odd multiplicity in b0 or bh′ , then p is ramified in K. (b) Assume p > 3. If

p | b0, then
(

−1
p

)

= −1, and if p | bh′ , then
(

−3
p

)

= −1.

Proof. Let xi = j(ai) for i = 1, . . . , h′. We have
∏

xi = ±b0/bh′ . Since,
by (3), x1 is a square in H , and the field extension H/H ′ is unramified, we
get x1OH′ = b2 for some fractional ideal b in H ′. Write b = b0/bh′ , with b0

and bh′ relatively prime integral ideals in OH′ . We have b0 = ± nrH′/K(b2
0), so

b2
0 = nrH′/Q(b2

0). Hence a0 = nrH′/K(b0) is an ideal in OK such that

b0 = ± nrK/Q(a0). (4)

Similarly,

bh′ = nrK/Q(ah′) (5)

for some ideal ah′ ⊆ OK .
To prove (a), assume that p divides b0 (resp. bh′). Then some OD CM abelian

surface must be supersingular at some prime p above p, so p must be ramified
or inert in K. But if p is inert, then it must occur with even multiplicity, by (4)
(resp. (5)).
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(b) Assume p divides the constant term b0. Then there exists a OD CM
surface A and a prime p above p such that the reduction Ā of A at p is isomorphic
to the O−4 CM abelian surface in characteristic p, i.e., Ā ∼= E0 ×E0, where E0

is the elliptic curve with modular j-invariant 0. But Ā has also OD CM, so E0

must be supersingular at p, and hence
(

−1
p

)

= −1. The case of p dividing the

leading coefficient bh′ is analogous.

3 The construction of supersingular primes

To prove Theorem 1, we will use the basic strategy of Elkies in [4]. In particular,
we will give an algorithm which, given any finite set of superspecial primes,
produces a new one. To achieve this, we will consider the family of CM points
having discriminants of the particular type D = −4l, where l is a prime such that
l ≡ 13 (mod 24). For these discriminants D, we need more detailed information
about the polynomials PD(x), in particular about its real roots and about the
reductions of PD(x) modulo various integers.

From now on, we only consider D of the form D = −4l as above. For the
convenience of the reader, we give the first few polynomials PD(x):

P−4·13(x) = 56x + 2634

P−4·37(x) = 56176x + 263474114

P−4·61(x) = 176296x3 + 94525046763039936x2

+ 786711750553350144x+ 218312194

P−4·109(x) = 176416536x3 + 10968775518096466071945031872x2

+ 18314519349761523526089682944x+ 218312712314.

In this case W ′ = {1, w3}, so the number of O−4l CM points on E6 is h′ =
h(Q(

√
−l))/2. This number is odd [6, Theorem 41]. Let σ2 denote the element

of G = Gal(H/K) which induces w2 on the points on V6 with CM by OK . The
roots of P−4l(x) lie in H ′ which is the quadratic subextension of H fixed by σ2.
The subgroup G2 of G, which consists of the elements of G of odd order, cuts
out the unique quadratic unramified extension L of K. It is easy to see that
L = K(

√
−1), and since G = W ′G2 we have H = H ′L, so

H = H ′(
√
−1). (6)

Since PD(x) has odd degree, it has at least one real root. Assume that j(a1)
is real. Let â1 be a point on V6 above a1. To apply the results in section 1
describing the action of complex conjugation τ in this case, we note that B6

∼=
B(−4l, 3). We conclude that τ(â1) = w3(â1). The group G2 acts effectively and
transitively on E6(D), so any a ∈ E6(D) can be written as a = σ(a1) for some
σ ∈ G2. Hence τ(a) = σ−2a, and it follows that a1 is the only real point.

Lemma 5. The polynomial P−4l(x) has exactly one real root j(a1), and it
satisfies −16/27 < j(a1) < 0. Furthermore, let m and n be positive integers
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with (m, 6n) = 1, and ε > 0 a real number. Then there exists a prime l such
that l ≡ 13 (mod 24), l ≡ n (mod m) and −16/27 < j(a1) < −16/27 + ε.

Proof. In order to locate the real zero j(a1) of P−4l(x), we are led by our
description of the real locus of E6 to compute the quadratic forms

nr(bγ−3 + cγ−24) = 3(b2 + 4bc + 2c2),

nr(bγ−24 + cγ−4) = 6b2 + 6bc + c2,

nr(bγ−4 + cγ−3) = b2 + 6bc + 3c2,

where b, c > 0 are integers. It is clear that only the second form represents
primes l with l ≡ 13 (mod 24), hence −16/27 < j(a1) < 0.

For the second part, it is therefore enough to show that for any δ > 0 there
exists integers b, c > 0 and a prime l such that l = 6b2 + 6bc + c2, l ≡ 13
(mod 24), l ≡ n (mod m) and c/b < δ. This is a direct application of Hecke’s
classical results on the distribution of primes represented by forms. See [7], in
particular formula (52).

Lemma 6. The following reductions hold:
(a) P−4l(x) ≡ xh′

(mod 4).
(b) P−4l(x) ≡ (27x + 16)S(x)2 (mod l), for some S(x) ∈ Z[x],

Proof. (a) Take any prime p above 2 in H . We need to show that vp(j(ai)) >
vp(4) = 4 for every i. Now j(ai) = 16y2/(9x2) where

x2 + 3y2 + z2 = 0 (7)

and x, y, z ∈ Hp. Identify the local field Hp with Q2[
√
−l]. We can assume

that x, y, z ∈ Z2[
√
−l] and that they are are coprime, i.e., not all divisible by

π =
√
−l − 1. Assume x2 ∈ (4π) = (π5). Then π3 divides x, and we get a

contradiction by considering (7) modulo π6. Hence x2 is at most divisible by 4
and we are done.

(b) By definition, P−4l(x) = bh′

∏

(x − j(ai)). By the above, we know that
all the j(ai) lie in H ′, and that P−4l(x) has exactly one real root j(a1). Since h′

is odd, there is a degree 1 prime ideal p′ of residue characteristic l in H ′ which
is fixed by complex conjugation. Thus τ(ai) ≡ ai (mod p′) for all i.

Let â1 be a point on V6 that lies above a1. As before τ(â1) = w3(â1), so
σ2(τ(â1)) = w6(â1). By (6) and the fact that the primes above p′ have have
prime residue fields, it follows that they are switched by complex conjugation τ .
Hence there is a prime p in H above p′ which is fixed by σ2τ (in fact, both
primes above p′ are), so σ2(τ(â1)) ≡ â1 (mod p). Thus, â1 reduces mod p to a
fixed point of w6, so j(a1) ∼= −16/27 (mod p).

Thus P−4l(x) ≡ bh′(x + 16/27)S(x)2 (mod p). Since p is a degree 1 prime,
we obtain (b) up to a constant factor. We will be done if we can show that
the highest coefficient bh′ of P−4l(x) is a square modulo l. But by part (a) of
Lemma 4 the only possible odd prime powers in bh′ are 2 and l. By part (b) of
Lemma 4 we have l - bh′ , and that 2 - bh′ follows from part (a) of this lemma.
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Lemma 7. Let j0 ∈ Q be such that v2(j0) = v3(j0) = 0. Suppose that
(

−4l
q

)

= 1 for all primes q such that vq(j0) or vq(27j0 + 16) is non-zero, and

that (27j0 + 16)P−4l(j0) > 0. If l - P−4l(j0), then

( −4l

|P−4l(j0)|

)

= −1.

Proof. Let P = |P−4l(j0)|, Q = |(27j0 + 16)|, and s = sign(P−4l(j0)). Assume
that l - P . Note, by Lemma 3, that v2(P ) = v3(P ) = 0. By the condition on

the primes occurring in Q, we get
(

Q
l

)

=
(

−1
Q

)

. By the reduction of P−4l(x)

in Lemma 6 we have
(

P
l

)

=
(

Q
l

)

. Hence

(−4l

P

)

=

(−1

P

)(

l

P

)

=

(−1

P

)(

P

l

)

=

(−1

P

)(

Q

l

)

=

=

(−1

P

)(−1

Q

)

=

( −1

sjh′

0

)( −1

s3j0

)

= −1.

Proof of Theorem 1. Let j0 = j(C) ∈ Q. Since we assume potentially smooth
stable reduction at 2 and 3, we have v2(j0) = v3(j0) = 0 by Proposition 2. Let
S be a finite set of primes containing 2, 3 and all primes occurring in j0 and
27j0+16. By Lemma 5, we can choose a prime l satisfying the conditions l ≡ 13

(mod 24),
(

−4l
q

)

= 1 for every prime q ∈ S \{2, 3}, and (27j0+16)P−4l(j0) > 0.

Assume first that l - P−4l(j0). Then, by Lemma 7,
(

−4l
|P−4l(j0)|

)

= −1. This

means that there is a prime p | P−4l(j0) with
(

−4l
p

)

= −1. Since P−4l(j0) is

a unit at 2 and 3, this prime p cannot be in S. So p must be a supersingular,
and hence superspecial, prime for C outside of S. If l | P−4l(j0), then similarly
p = l is a superspecial prime outside of S.

Example. Consider the curve C with j = −1. This curve can not be de-
fined over Q. In fact, the Mestre obstruction for this is given by the algebra
B(−6j,−2(27j + 16)) ∼= B22 (cf. [2]), so it is defined for instance over Q(

√
6).

One model is given by

y2 = 4(x6 − 33x5 − 462x4 + 484x3 − 10164x2 − 15972x + 10648)

+3
√

6(x6 + 198x4 − 435x2 − 10648).

We get P−4·13(−1) = −53·197, and in fact
(

−4·13
197

)

= −1, so 197 is a superspecial
prime. Similarly the algorithm is applicable for the discriminant D = −4l for
l = 61 and 109, which yields the superspecial primes 281 and 673 respectively.
In fact, a Hasse-Witt matrix computation on this example shows that the 6 first
superspecial primes for this curve are 29, 83, 197, 281, 673 and 1009.
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