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Abstract. Les théories algébriques elles-mêmes peuvent être considérées en tant que certaine
sorte de structures algébriques, par consquent il est possible de considérer leur cohomologie dans
le sens du Quillen.

Dans cette note on le montre que le cohomologie de Quillen d’une théorie algébrique est
isomorphe à sa cohomologie de Baues-Wirsching.

Introduction

The aim of this work is to construct cohomology groups of algebraic theories. Our construction
follows the general philosophy of Barr&Beck and Quillen. As prescribed by it, the category of
coefficients for cohomology of a theory T is the category F (T) of internal abelian groups in the

comma category
���������
	 � �

/T of theories over T. We show that F (T) is an abelian category with
enough projective and injective objects, and we give two more alternative descriptions of it. First,
it is equivalent to the full subcategory of the category of natural systems on T in sense of [6],
namely, of the s. c. cartesian natural systems (see Section 2); on the other hand, we construct
an explicit ringoid valued functor UT and prove that F (T) is also equivalent to the category of
modules over UT.

After establishing these three alternative descriptions of the category F (T) we accordingly
give three different constructions of the cohomology groups of T with coefficients in an object of
F (T). The first construction follows the Quillen approach and uses simplicial resolutions of T

in
�����
����	 �
�

by free theories. The second “Cartan-Eilenberg style” approach defines cohomology
groups as suitable Ext-groups in the category F (T). Finally, the third approach utilizes the
Baues-Wirsching cohomology of T considered as a small category.

Our main result claims that these three approaches give essentially the same result. In particu-
lar, we prove that the Baues-Wirsching cohomology of a free theory with coefficients in a cartesian
natural system is trivial in dimensions > 1.

Finally, we must note that our constructions and results generalize the work of the authors on
this subject [10]. In that paper, coefficients for the cohomology of theories were defined in much
more restricted situation — which however was of sufficient generality for the theories of modules
over a ring. The difference roughly corresponds to the difference between bifunctors and Cartesian
natural systems as coefficients for the Baues-Wirsching cohomology.

1. Recollections

1.1. Cohomology of small categories.

1.1.1. Basic definitions. Let C be a category. Then the category FC of factorizations in C is
defined as follows. Objects of FC are morphisms f : A → B in C and morphisms (a, b) : f → g
in FC are commutative diagrams

A

f

��

A′

g

��

aoo

B
b

// B′
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in the category C. A natural system on C is a functor D : FC → ��� to the category of abelian
groups. We write D(f) = Df . If a : C → D, f : A→ C and g : D → B are morphisms in C, then
the induced homomorphism (1A, a)∗ : Df → Daf will be denoted by ξ 7→ aξ, for ξ ∈ Df , while
(a, 1B)∗ : Dg → Dga will be denoted by η 7→ ηa, η ∈ Dg. We denote by C∗(C;D) the following
cochain complex:

Cn(C;D) =
∏

„

A0

a1←−A1←−···
an←−−An

«

∈C

Da1...an
,

with the coboundary map given by

d(ϕ)(a1, a2, ..., an+1) = a1ϕ(a2, ..., an+1)+

+
n

∑

i=1

(−1)if(a1, ..., aiai+1, ..., an+1) + (−1)n+1ϕ(a1, ..., an)an+1.

According to [6] the cohomology H∗(C;D) of C with coefficients in D is defined as the homology
of the cochain complex C∗(C;D).

A morphism of natural systems is just a natural transformation. For a functor q : C
′ → C,

any natural system D on C gives a natural system D ◦ (Fq) on C
′ which we will denote q∗(D).

There is a canonical functor FC → C
op ×C which assigns the pair (A,B) to f : A → B. This

functor allows one to consider any bifunctor D : C
op ×C → ��� as a natural system. In what

follows bifunctors are considered as natural systems via this correspondence. Similarly, one has
a projection C

op × C → C, which yields the functor FC → C given by (a : A → B) 7→ B.
This allows us to consider any functor on C as a natural system on C. In particular one can talk
about cohomology of a category C with coefficients in bifunctors and in functors as well. One

easily sees that for a bifunctor D : C
op ×C → ��� the group H0(C;D) coincides with the end

of the bifunctor D (see [12]), which consists of all families (xC)C∈ObC , where xC ∈ D1C
, for each

C ∈ Ob C, satisfying the condition a(xA) = (xB)a for all a : A → B. In the case of a functor

F : C → ��� the group H0(C;F ) is isomorphic to the limit of the functor F and the groups
H∗(C;F ) are isomorphic to the higher limits (see [6]).

1.1.2. Linear extensions and second cohomology of categories. We will need the definition of linear
extensions of categories and their relationship with the second cohomology following [6]. Let D
be a natural system on a small category C. A linear extension

0→ D → E
p
−→ C → 0

of C by D is a category E, a full functor p which is identity on objects, and, moreover, for each
morphism f : A→ B in C, a transitive and effective action of the abelian group Df on the subset
p−1(f) ⊆ HomE(A,B),

Df × p
−1(f)→ p−1(f); (a, f̃) 7→ a+ f̃ ,

such that the following identity holds

(a+ f̃)(b+ g̃) = fb+ ag + f̃ g̃.

Here f and g are two composable arrows in C, f̃ ∈ p−1(f), g̃ ∈ p−1(g) and a ∈ Df , b ∈ Dg . Two
linear extensions E and E

′ are equivalent if there is an isomorphism of categories ε : E → E
′ with

p′ε = p and with ε(a+ f̃) = a+ ε(f̃). For example, there is a trivial linear extension Do C → C

with

HomDoC(A,B) =
∐

f∈HomC(A,B)

Df

and composition given by

ab = fb+ ag

for any composable f and g in C and any a ∈ Df , b ∈ Dg . It is proved in [11, 1.6] that for any
natural system D on a category C the trivial linear extension DoC → C has the structure of an
internal abelian group in the comma category CAT/C of categories over C and moreover there
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is a one-to-one correspondence between linear extensions of C by D and (D o C → C)-torsors in
CAT/C.

Let Linext(C;D) be the set of equivalence classes of linear extensions of C by D.

1.1.3. Theorem. ([6]) There is a natural bijection

Linext(C;D) ≈ H2(C;D).

1.2. Finite product theories.

1.2.1. Basic definitions. A finite product theory (simply theory for us) is a small category with
finite products. A morphism of theories is a functor preserving finite products. With these

morphisms, theories form a category
���������
	 � �

. Let C be a category with finite products. A model
of a theory T in the category C , also termed a C -valued model of T, or an T-model in C , is a
functor T → C preserving finite products. Models of T in C form a category T(C ), with natural

transformations as morphisms. Models in the category ��� � of sets will be called simply models,

and the category T( ��� � ) will be also denoted by T-mod. It is known that the category T-mod

is complete and cocomplete for any theory T. Moreover the inclusion T-mod ↪→ Funct(T, ��� � )
preserves all limits and has a left adjoint, and the Yoneda embedding T

op → Funct(T, ��� � ) factors
through it, i. e. there is a full embedding F : T

op → T-mod. Models in the image of F are called
finitely generated free models, so that T is equivalent to the opposite of the category of such models.
It is easy to see that the functor F preserves coproducts, i. e. F (X × Y ) is a coproduct of F (X)
and F (Y ) in the category of models. A morphism of theories f : T→ T

′ induces a functor

f∗ : T
′-mod→ T-mod,

where f∗(M) = M ◦ f . Clearly this functor preserves all limits. Since moreover the categories
of models have small generating subcategories (those of free models), by Freyd’s Special Adjoint
Functor Theorem the functor f∗ has a left adjoint

f! : T-mod→ T
′-mod.

One can see that the square

T
op

IA //

fop

��

T-mod

f!

��
T
′op

IB //
T
′-mod

commutes. See [2] for details.

1.2.2. Single sorted theories. Let S
op ↪→ ��� � be the full subcategory of ��� � with the objects

n = {1, ..., n} for n > 0. Since the category S
op has finite coproducts, the category S, opposite

of the category S
op is a theory, which is called the theory of sets. To distinguish objects of S and

S
op we redenote objects of S by X0 = 1, X1 = X , X2, X3, · · · . For any 1 6 i 6 n we denote by
xi : Xn → X the morphism of S corresponding to the map {1} → n, which takes 1 to i. It is clear
that n is a coproduct of n copies of {1} in S

op. It follows that x1, ..., xn : Xn → X is a product
diagram in S. One observes that S(C ) is equivalent to C for any category with finite products C .

In particular S-mod is equivalent to the category ��� � .
A single sorted theory is a theory morphism S → T which is identity on objects. The full

subcategory of S/
���������
	 � �

with single sorted theories as objects will be denoted by
���

1. Thus
objects of single sorted theories are just natural numbers, which are denoted by X0 = 1, X1 = X ,
X2, X3, · · · . There are projections x1, ..., xn from Xn to X . If M is a model of a single sorted
theory T, then M(X) is called the underlying set of M . It is then equipped with operations
uM : M(X)n → M(X) for each element u of HomT(Xn, X), satisfying identities prescribed by
category structure of T. By this reason, elements of HomT(Xn, X) will be called n-ary operations
of T. Thus for any single sorted theory T, the category T-mod is a variety of universal algebras.
Conversely, for any variety V, the opposite of the category of the algebras freely generated by the
sets n = {1, ..., n}, n > 0, is a single sorted theory, whose category of models is equivalent to V.
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1.2.3. Multisorted theories. Let I be a set and consider the category S
op/I of maps n → I for

various sets n = {1, ..., n}. Morphisms in S
op/I from n→ I to m→ I are commutative diagrams

of sets

n //

��2
22

22
22

m

����
��
��
�

I

One easily sees that this category has finite coproducts; for example, coproduct of f1 : n1 → I
and f2 : n2 → I is

(

f1

f2

)

: n1 t n2 → I . in fact, the set of objects of S
op/I can be identified with

the free monoid generated by the set I in such a way that a word i1...in represent the coproduct of
the objects iν : 1→ I , ν = 1, ..., n. So any f : n→ I is the coproduct of the objects f(1) : 1→ I ,
..., f(n) : 1 → I in S/I . We let ����� I be the opposite of the category S

op/I . Then ����� I is
a theory called the theory of I-indexed families. To distinguish objects of ����� I and S

op/I we
denote the object of ����� I corresponding to a map f : n → I by Xf . Hence an object of ����� I

has the form Xi1 × ... ×Xin
for a unique n-tuple (i1, ..., in) ∈ In. It is straightforward to check

that the functor

(*) ����� I (C )→ C
I

which assigns to a model M : ����� I → C the family M(Xi)i∈I is an equivalence.
For a set I , an I-sorted theory is a theory morphism ����� I → T which is identity on objects.

The full subcategory of ����� I/
���������
	 � �

with I-sorted theories as objects will be denoted by
���

I .
Although I-sorted theories appear to be of very special kind, one has

1.2.4. Proposition. For any theory T there is a set I and an I-sorted theory ����� I → T̃ such
that the category T̃ is equivalent to T.

Proof. Let I be the set Ob(T) of objects of T. We then are forced to take for the set of objects

of T̃ the free monoid
∑

n>0 Ob(T)n on I . There is an obvious map from this monoid to the set

of objects of T, Π : Ob(T̃) → Ob(T) which assigns to an n-tuple (X1, ..., Xn) of objects of T its
product X1 × ...×Xn in T. We then simply define

Hom
T̃
((X1, ..., Xn), (Y1, ..., Ym)) = HomT(Π(X1, ..., Xn),Π(Y1, ..., Ym)).

This clearly defines the category T̃ with the same objects as ����� Ob(T) and a functor T̃→ T which
is full and faithful and surjective on objects, i. e. it is an equivalence. Moreover by (*) above,
models of ����� Ob(T) in a category with finite products C are families (CX)X∈Ob(T) of objects of C ,
so the tautological family (X)X∈Ob(T) gives a finite product preserving functor ����� Ob(T) → T. It

is then obvious that this functor lifts to a functor ����� Ob(T) → T̃ which is identity on objects. �

A model of an I-sorted theory ����� I → T is just a T-model. For such a model T → C in a
category C its underlying family is the object of C I corresponding to the composite ����� I →
T → C . When safe, we will denote images of morphisms ω : Xi1 × ... × Xin

→ Xi of T under
a model T → C by ω again. Thus intuitively, models M of an I-sorted theory ����� I → T in
categories with finite products C are I-tuples of objects (Ci)i∈I , Ci = M(Xi), equipped with
additional structure, namely various operations of the form

ω : Ci1 × ...× Cin
→ Ci

corresponding to morphisms ω : Xi1 × ... × Xin
→ Xi in T. These operations must further

satisfy various identities expressing the fact that M is a product preserving functor. In detail, this
amounts to the following:

• the morphisms corresponding to the projections π1 : Xi1 × ... × Xin
→ Xi1 , ..., πn :

Xi1 × ...×Xin
→ Xin

must be product projections themselves;
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• for morphisms ω : Xi1×...×Xin
→ Xi, ω

′ : Xi′1
×...×Xi′m → Xi and ω1 : Xi′1

×...×Xi′m →
Xi1 , ..., ωn : Xi′1

× ...×Xi′m → Xin
in T with ω(ω1, ..., ωn) = ω′, the diagram

Ci1 × ...× Cin

ω

����
��

��
��

�

Ci Ci′1
× ...× Ci′m

(ω1,...,ωn)

__????????

ω′
oo

must commute.

The “substrate” underlying the structure of an I-sorted theory is a family of sets of the form
(S(i1,...,in),i)(i1,...,in)∈In,i∈I for n = 0, 1, ..., namely, the sets HomT(Xi1 × ... × Xin

, Xi). We thus
have a forgetful functor

U :
���

I →
∏

n>0

��� � I
n×I

.

It is proved in [7] that this functor admits a left adjoint F . Theories in the image of this left
adjoint are free theories. It is more or less obvious that the adjunction counits FUT → T are all
full functors, so that in particular one has

1.2.5. Proposition. For any theory T there exists a morphism F → T from a free theory to T

which is a full functor.

�

Moreover, since every componentwise surjective map in
∏

n>0 ��� � I
n×I

admits a section, it
follows

1.2.6. Proposition. Let P : T → F be a morphism in
���

I which is a full functor. If F is a free

theory, then P has a section, i. e. there is a morphism S : F→ T in
���

I with PS = 1.

�

1.3. Ringoids and modules over them. Let us here recall some well known facts about ringoids
and modules over them. A good reference on this subject is [13].

A ringoid is a category enriched in abelian groups. It is thus a small category R together
with the structure of abelian group on its Hom-sets in such a way that composition is biadditive.
Morphisms of ringoids are enriched functors, i. e. functors preserving the abelian group structures.

These are also called additive functors. The category of ringoids will be denoted by
� 	 � �

� 	 � �
.

Let R be a ringoid. We denote by R-mod the category of all covariant additive functors from

R to ��� , and by mod-R the category of all contravariant additive functors from R to ��� .
Objects from R-mod are called left modules over R, while those from mod-R are called right
modules.

For any small category I , we let Z[I ] be the ringoid with the same objects as I , while for any
objects i and j the group of homomorphisms from i to j in Z[I ] is the free abelian group generated
by HomI(i, j):

HomZ[I](i, j) = Z[HomI(i, j)],

whereas the composition law is induced by

Z[HomI(i, j)]⊗ Z[HomI(j, k)] ∼= Z[HomI(i, j)×HomI(j, k)]→ Z[HomI(i, k)].

Then clearly one has Z[I ]-mod ' ��� I

.

For any ringoid R and an object c ∈ R we define hc : R → ��� and hc : Rop → ��� by

hc(x) = HomR(c, x)

and
hc(x) = HomR(x, c).

Then one has natural isomorphisms

HomR-mod(hc,M) ∼= M(c)
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and

Hommod-R(hc, N) ∼= N(c).

Therefore, the family of objects (hc)c∈Ob(R) (resp. (hc)c∈Ob(R)) forms a family of small pro-
jective generators in R-mod (resp. in mod-R). The functor hc is called the standard free left
R-module concentrated at c.

Let f : R → S be a morphism of ringoids. Composition with f induces a functor

f∗ : S -mod→ R-mod.

It is well known that f∗ has right and left adjoint functors f∗ and f! respectively (the so-called
right and left Kan extensions).

There is a generalization to ringoids of the fact that to any ring R corresponds the theory MR

of (left) R-modules, which obviously is the category opposite to that of free finitely generated left
R-modules and their homomorphisms. Note that equivalently we may take for MR the category
of free finitely generated right R-modules.

In fact there is a functor M :
� 	 � �

� 	 � �
→

���������
	 �
�
. It assigns to a ringoid R the theory MR of

R-modules. MR is the additive category freely generated by R, i. e. it is an additive category
equipped with a homomorphism of ringoids IR : R →MR which has the following universal prop-
erty: for any additive category A , precomposition with IR induces an equivalence of categories

Add(MR,A ) ∼= Hom ��� � ��� � �	� (R,A ).

There exists an explicit description of MR as the category of matrices over R: MR can be chosen
to be an Ob(R)-sorted theory, so that its objects are finite families of objects of R, pictured as
a1⊕ ...⊕ an, for any a1, ..., an ∈ R, n > 0. Moreover HomMR

(a1⊕ ...⊕ an, b1⊕ ...⊕ bm) is defined
as

∏

i=1,...,m
j=1,...,n

HomR(aj , bi),

with composition defined via matrix multiplication, i. e. (f ◦ g)ik =
∑

j fijgjk for fij : bj → ci,
gjk : ak → bj .

1.3.1. Enveloping ringoids. There is a functor in the opposite direction, from theories to ringoids.

1.3.2. Proposition. For any I-sorted theory T there exists a ringoid U(T), depending functorially
on T, such that 
�� (T-mod) is equivalent to the category of U(T)-modules.

Proof. The key observation here is that in the presence of an abelian group structure any operation
like ω : X1 × ... × Xn → X must be an abelian group homomorphism, hence have the form
ω(x1, ..., xn) = ω1(x1) + ...+ ωn(xn) for some unary operations ωi : Xi → X .

Let the set of objects of U(T) be I , and present morphisms of U(T) by generators and relations
as follows. For each ω : Xi1×...×Xin

→ Xi in T we pick n generators ∂1(ω) : Xi1 → Xi, ..., ∂n(ω) :
Xin
→ Xi. And for each such ω and any ω1 : Xi′1

× ...×Xi′m → Xi1 , ..., ωn : Xi′1
× ...×Xi′m → Xin

we impose the relations

∂µ (ω(ω1, ..., ωn)) =

n
∑

ν=1

∂ν(ω) ◦ ∂µ(ων)

for µ = 1, ...,m. Furthermore we impose the relations

∂µ(xν) = δµν ,

with δ the Kronecker symbol, meaning the zero morphism for µ 6= ν and the identity morphism
for µ = ν. Here, xν : Xi1 × ...×Xin

→ Xiν
are the projections, µ, ν = 1, ..., n.

Thus a U(T)-module is a collection of abelian groups (Ai)i∈I and homomorphisms ∂ν(ω) :
Aiν
→ Ai, ω ∈ HomT(Xi1 × ... ×Xin

, Xi), ν = 1, ..., n satisfying the above relations. Then from
any such module we obtain an object of 

� (T-mod) by defining

ω(a1, ..., an) =

n
∑

ν=1

∂ν(ω)aν
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for ω as above and (a1, ..., an) ∈ Ai1 × ...×Ain
. Conversely, if (Ai)i∈I is given the structure of an

object from 
�� (T-mod), then we define

∂ν(ω)a = ω(0, ..., 0,a, 0, ..., 0).

ν-th↑position

It is easy to see that these procedures determine mutually inverse equivalences between the
category of U(T)-modules and 
�� (T-mod). �

2. Cartesian natural systems

2.1. The notion. Let T be a theory and let D be a natural system on T. We will say that the
natural system D is cartesian (or compatible with products — cf. [5]) if for any product diagram
pk : X1× ...×Xn → Xk, k = 1, ..., n and any morphism f : X → X1× ...×Xn the homomorphism

Df → Dp1f × ...×Dpnf

given by a 7→ (p1a, ..., pna) is an isomorphism. Obviously D is cartesian if and only if it satisfies
the above condition with n = 0 and n = 2, i. e.

• D!X = 0 for the unique morphism !X : X → 1 to the terminal object;
• Df → Dp1f ×Dp2f is an isomorphism for any f : X → X1 ×X2.

One observes that if a bifunctor D : T
op × T → ��� preserves products in the second variable,

then the natural system induced by D is cartesian. We denote by F (T) the category of cartesian
natural systems on T.

2.2. Motivation and properties. The following fact goes back to [10].

2.2.1. Lemma. Let

0→ D → E
P
−→ T→ 0

be a linear extension of a theory T by a natural system D. Then D is cartesian iff E is a theory
and P is a theory morphism.

Proof. Take a product diagram pi : X1 × ... ×Xn → Xi, i = 1, ..., n, and choose arbitrarily p̃i in
E with P (p̃i) = pi. This then gives a commutative diagram

HomE(X,X1 × ...×Xn)

P

��

f̃ 7→(p̃1 f̃ ,...,p̃nf̃) // HomE(X,X1)× ...×HomE(X,Xn)

P

��
HomT(X,X1 × ...×Xn)

≈ // HomT(X,X1)× ...×HomT(X,Xn)

which shows that E has and P preserves finite products iff all the maps

P−1(f)→ P−1(p1f)× ...× P−1(pnf),

given by f̃ 7→ (p̃1f̃ , ..., p̃nf̃) are bijective.
On the other hand the above maps are equivariant with respect to the group homomorphisms

Df → Dp1f × ...×Dpnf

and the actions given by the linear extension structure. Our proposition then follows from the
following easy lemma. �

2.2.2. Lemma. Suppose given a group homomorphism f : G1 → G2 and an f -equivariant map
x : X1 → X2 between sets Xi with transitive and effective Gi-actions. Then x is bijective iff f is
an isomorphism.

Proof. See e. g. [10, Lemma 3.5] �

2.2.3. Theorem. For any I-sorted theory T there is an equivalence of categories

Ξ : F (T)
'
−→ 
�� (

���
I/T)

of the category F (T) and the category of internal abelian groups in
���

I/T.
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Proof. It is easy to see from 1.1.2 above that for any natural system D on T, the trivial linear
extension DoT→ T of T by D is an internal abelian group in categories over T. If D is moreover
cartesian, then by 2.2.1 D o T is actually a theory and the projection is a morphism of theories.
Furthermore the group structure functors + : Do T×T Do T→ Do T, − : Do T→ Do T and
0 : T → D o T over T are evidently morphisms of theories, i. e. preserve product projections, so

that one obtains an internal abelian group Ξ(D) in
���

I/T. The aforementioned correspondence
between natural systems and internal abelian groups is in fact functorial and it is equally easy
to see that under it morphisms of cartesian natural systems are carried to product preserving
functors.

Conversely, given an internal abelian group structure on an object p : E → T of
���

I/T,
put D(p)f = p−1(f) for a morphism f in T and define for any composable f , g the actions
D(p)g → D(p)fg , D(p)f → D(p)fg by

fg̃ = 0(f)g̃,

f̃g = f̃0(g)

for any pf̃ = f , pg̃ = g, where 0 : T→ E is the functor defining zero of the internal abelian group
structure. This clearly defines a natural system D(p) on T. It is easy to see that D(p) is cartesian
if (and only if) p is a morphism of theories, i. e. preserves products. Moreover any morphism of
theories f : E → E

′ over T clearly defines a natural transformation of the corresponding natural
systems.

We have thus defined functors in both directions between F (T) and 
�� (
���

I/T). It is straight-
forward to check that the composite F (T) → F (T) is identity. To show that the other com-

posite is isomorphic to the identity of 
�� (
���

I/T), note that for an internal abelian group

(p : E → T, 0 : T → E,− : E → E,+ : E ×T E → E) in
���

I/T functoriality of + : E ×T E → E

implies

f̃ g̃ = (0(f) + f̃)(g̃ + 0(g)) = 0(f)g̃ + f̃0(g)

for any composable f , g in T and any f̃ ∈ p−1f , g̃ ∈ p−1g. It follows that E is isomorphic to
D(p) o T over T. �

2.2.4. Remark. The above theorem can be also deduced from general results of [4, 1.5 and 4.11].
We omit the details.

The terminal object of
���

I/T is obviously the identity functor 1T : T→ T. The global sections
functor

Γ = Hom���
I/T

(1T, ) : 
�� (
���

I/T)→ ���
composed with the above equivalence F (T) → 

� (

���
I/T) yields the functor

�����
(T; ) : F (T) → ��� .

It is easy to identify the functor
�����

(T; ) explicitly. Given a Cartesian natural system D on
T, the abelian group

�����
(T;D) is by definition the group of global sections of the projection

D o T→ T. It is then straightforward to calculate that this amounts to

2.2.5. Proposition. For any theory T and any Cartesian natural system D ∈ F (T) there is an
isomorphism

�����
(T;D) ∼=







d ∈
∏

ω∈HomT(X,Y )

Dω

∣

∣

∣

∣

∣

∀X
ω
−→ Y, Y

ω′

−→ Z

d(ω′ω) = d(ω′)ω + ω′d(ω)

}

.

Proof. A section T → D o T must assign to each morphism ω ∈ HomT(X,Y ) a morphism
(d(ω), ω) ∈ HomDoT(X,Y ); preservation of composition amounts precisely to the above equal-
ity. The latter also implies that d(identity) = 0, so identities are preserved too. �

3. Enveloping ringoids and modules over ringoid valued functors

3.1. Enveloping ringoids.
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3.1.1. The Grothendieck construction. Our next goal is to prove that the category F (T) is an
abelian category with enough projectives and injectives. To do that, we are going to generalize
the notion of module over a ringoid to that of one over a ringoid valued functor on a small category.
We will then realize F (T) as the category of modules over certain ringoid valued functor.

Suppose given a functor F : I → CAT from a small category I to the category of categories,
denoted (ϕ : i → j) 7→ (Fϕ : F i → F j). Then the Grothendieck construction ∫I F of F is
defined as the lax colimit of F . Explicitly, it is a category with objects of the form (i,X), with
i ∈ Ob(I) and X ∈ Ob(F i); morphisms (i,X) → (i′, X ′) are defined to be pairs (ϕ, f), with
ϕ : i → i′ and f : Fϕ(X) → X ′. Identity morphism for (i,X) is (idi, idX), and composition of
(ϕ′ : i′ → i′′, f ′ : Fϕ′(X ′) → X ′′) with (ϕ, f) as above is defined to be the pair (ϕ′ϕ, f ′Fϕ′(f)).
There is a canonical functor PF : ∫I F → I given by projection onto the first coordinate, i. e.
sending (i,X) to i and (ϕ, f) to ϕ.

3.1.2. Comma category as models. As an application of previous discussion we prove that the
comma category of a category of models of a theory is still a category of models for a theory.

3.1.3. Proposition. For an I-sorted theory T and any model M in T-mod, the category ∫TM
is a

(
∐

i∈I Mi

)

-sorted theory and moreover the comma category T-mod/M is equivalent to the
category of models (∫

T
M) -mod.

Proof. Any object N of T-mod equipped with a morphism f : N → M can be considered as a
collection of sets

(

Nx = f−1
A (x) ⊆ N(A)

)

x∈
‘

A∈Ob(T) M(A)

and maps Nx1 × ... × Nxn
→ Nω(x1,...,xn), for all (x1, ..., xn) ∈ M(Xi1) × ... ×M(Xin

) and ω :
Xi1 × ...×Xin

→ Xi in T, fitting into certain commutative diagrams.

Then regarding M as an object of ��� � T

, and defining N(x) = NM(p1)x × ... × NM(pn)x, for

x ∈M(Xi1× ...×Xin
), we can consider the above data as a functor Ñ : ∫

T
M → ��� � , which sends

the object x ∈ M(Xi1 × ... × Xin
) of the latter category to the product of the objects Ñ(Xiν

),
ν = 1, ..., n. Now the proof follows from the subsequent lemma. �

3.1.4. Lemma. A functor M : T→ ��� � preserves finite products if and only if the category ∫TM
has finite products and the canonical functor P : ∫

T
M → T, sending m ∈ M(X) to X, preserves

them.

Proof. Let us first recall that functors of the form P : ∫T M → T for any functor M : T → ��� �
are characterized by a property called discrete opfibration:

for any x ∈ ∫T M and any ϕ : Px→ a, there is a unique ψ : x→ y with Pψ = ϕ.

Using this property it is easy to prove that a pullback of a product preserving discrete fibration
between categories with products along a product preserving functor is again a product preserving
functor between categories with products.

The “only if” part then follows because of the following pullback diagram in the category of
categories

∫T M //

P

��

��� � •
U

��
T

M // ��� �

in which ��� � • denotes the category of pointed sets and U the forgetful functor: since the latter
is a discrete opfibration and preserves products, it follows that ∫T M will have and P : ∫TM → T

preserve them too.
For the “if” part, we again use the discrete fibration property to prove

a) M(1) has single element: the particular case of the above discrete opfibration condition

with Px = a = 1 implies that for any x ∈ P−1(1) one has
(

x
idx−−→ x

)

=
(

x
!x−→ 1

)

, since

P (idx) = P (!x) = id1.
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b) M(a1 × a2)
(Mπ1,Mπ2)
−−−−−−−−→Ma1 ×Ma2 is bijective: this follows from another two particular

cases of the discrete opfibration condition — with x = x1 × x2 for some xi ∈ P
−1(ai) and

ϕ = πi, i = 1, 2; indeed these cases give that there are unique ψi starting out of x with
P (ψi) = πi, hence x is a unique element of M(a1 × a2) satisfying Mπi(x) = xi, i = 1, 2.

�

3.1.5. Corollary. For any model M of a theory T, there exists a ringoid U (M), the enveloping
ringoid of M , depending functorially on M , such that the category 
�� (T-mod/M) is equivalent
to the category of U (M)-modules.

Proof. Of course this is just a particular case of 1.3.2 in view of 3.1.3. Let us, however, give
explicit presentation of U (M) = U(∫

T
M) in this case, assuming for simplicity that T is an I-

sorted theory. The set of objects of U (M) is then
∐

i∈I M(Xi), and the morphisms are generated
by ones of the form ∂ν(ω)(c1, ..., cn) : cν → ω(c1, ..., cn), for each ω ∈ HomT(Xi1 × ... ×Xin

, Xi),
(c1, ..., cn) ∈M(Xi1)× ...×M(Xin

) and ν ∈ {1, ..., n}. The defining relations are indexed by data
ω ∈ HomT(Xi1×...×Xin

, Xi), ω1 ∈ HomT(Xi′1
×...×Xi′m , Xi1), ..., ωn ∈ HomT(Xi′1

×...×Xi′m , Xin
),

(c1, ..., cm) ∈M(Xi′1
)× ...×M(Xi′m), and µ ∈ {1, ...,m} and have the form

∂µ(ω(ω1, ..., ωn))(c1, ..., cm)

=
n

∑

ν=1

∂ν(ω)(ω1(c1, ..., cm), ..., ωn(c1, ..., cm)) ◦ ∂µ(ων)(c1, ..., cm)

and

∂µ(xν)(c1, ..., cn) =

{

idcν
, µ = ν,

0, µ 6= ν.

Once again, functoriality is obvious from this presentation. �

Occasionally we will write UT(M) to make explicit dependence on T. This construction is
known under various names in the literature — see e. g. [3] or [16].

3.2. Derivations. Given a theory T, its model M ∈ T-mod, and an object p : A → M of the
category 
�� (T-mod/M) ' UT(M)-mod, we will denote by Der(M ;A) the abelian group of all
sections of A→M , i. e. the set of all morphisms s : M → A of T-models with ps = 1M . Elements
of Der(M ;A) will be called derivations of M in A. Der(M ;A) is contravariantly functorial in M ,
in the following sense. For a morphism f : M ′ →M of models we get the induced homomorphism
f∗ : Der(M ;A) → Der(M ′; f∗A), where f∗A denotes the pullback of p : A → M along f .
Equivalently, one might interpret Der(M ′; f∗A) as the abelian group of all T-model morphisms
M ′ → A over M , i. e. fitting in the commutative diagram

(1)

A

p

��
M ′

=={{{{{{{{ f // M

.

Clearly also Der(M ;A) is covariantly functorial in A and so defines a functor Der(M ; ) on
UT(M)-mod. We then have

3.2.1. Proposition. The functor Der(M ; ) is representable. That is, there exists an UT(M)-
module Ω1

M with natural isomorphism Der(M ;A) ∼= HomUT(M)(Ω
1
M , A) for all A. Moreover Ω1

M

depends functorially on M . When M is a finitely generated free T-model, then Ω1
M is a projective

object of U (M)-mod.

Proof. Following the equivalence from 3.1.5, for an U (M)-module A the corresponding object of

�� (T-mod/M) is the T-model with Xi 7→

∐

x∈M(Xi)
A(x), with the T-model structure assigning
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to ω : Xi1 × ...×Xin
→ Xi the operation

ω :





∐

x1∈M(Xi1 )

A(x1)



× ...×





∐

xn∈M(Xin )

A(xn)



→
∐

x∈M(Xi)

A(x)

given by

ω(a1, ..., an) =
n

∑

ν=1

∂ν(ω)(x1, ..., xn)aν .

Then
Der(M ;A) ⊂

∏

i∈I
x∈M(Xi)

A(x)

consists of those families (d(x) ∈ A(x))x∈
‘

i M(Xi) which respect all these operations. That is,

Der(M ;A) consists of assignments, to each x ∈M(Xi), of an element d(x) ∈ A(x), in such a way
that for any ω : Xi1 × ...×Xin

→ Xi and any xν ∈M(Xiν
), ν = 1, ..., n, one has

(*) d(ω(x1, ..., xn)) =

n
∑

ν=1

∂ν(ω)(x1, ..., xn)d(xν).

Because of this expression it is natural to call such assignments derivations.
We then present Ω1

M by generators and relations as a U (M)-module as follows: it has generators
d(x) ∈ Ω1

M (x) for each x ∈ M(Xi) and each i ∈ I ; and the defining relations are (*) above. It is
then clear that Ω1

M carries a generic derivation d, so that one has a natural isomorphism

HomU (M)(Ω
1
M , A)

∼=
−→ Der(M ;A)

given by f 7→ fd. That Ω1
M is functorial in M is also clear from the construction.

Now suppose M is a finitely generated free model F (X), i. e. there is an X ∈ T with
M = HomT(X, ). Then it is straightforward to check using Yoneda lemma that for an object
of 
�� (T-mod/M) corresponding to a U (M)-module A we will have Der(F (X);A) ∼= A(idX ). It
follows that HomU (F (X))(Ω

1
F (X), A) is an exact functor of A, i. e. Ω1

F (X) is projective. In fact of

course this actually means that Ω1
F (X) = hidX

. �

3.3. Ringoid valued functors. Let us consider now a small category I and a covariant functor

R : I →
� 	 � �

� 	 � �
.

It is easy to see that the category ∫I R is a ringoid in a canonical way.
We will say that M is a left R-module if the following data are given:

i) a left Ri-module Mi for each object i ∈ I ;
ii) a homomorphism Mα : Mi → R∗

αMj of Ri-modules for each arrow α : i→ j of I .

Moreover it is required that for any composable morphisms α and β one has Mαβ = MαMβ.
If M is a left R-module, i is an object of I, and x is an object of the ringoid Ri, then we denote

by M(i,x) the value Mi(x) of Mi on x. Having this in mind it is clear that a left R-module is

nothing else but a functor M : ∫ R → ��� such that each composition M ◦ ξi : Ri → ��� , i ∈ I ,
is an additive functor. The category of all left R-modules will be denoted by R-mod.

3.3.1. Example. As an example, we can take any small subcategory I of the category of com-

mutative rings and let O be the inclusion I ↪→
� 	 � �

�
. Thus O is a ring valued functor, hence

can be regarded as a functor with values in ringoids with a single object. For any ring S ∈ I

the absolute Kähler differentials Ω∗
S is a module over S. Since Ω∗

S functorially depends on S we
obtain that Ω∗ ∈ O-mod. Another example comes from topology. Let I be a small subcategory
of the category of topological spaces. Then for any ring R, the ordinary (singular) cohomology of
spaces with coefficients in R defines a ring valued functor H∗( ;R), and for any R-module M the
functor H∗( ;M) is a module over H∗( ;R) in the above sense. Similarly X 7→ Z[π1X ] is a ring
valued functor defined on any small subcategory of the category of pointed topological spaces,
while X 7→ πiX is a module over it, for any i > 2.
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An alternative description of the category R-mod is possible, showing that it is equivalent

to the category of modules over a single ringoid. Given a functor R : I →
� 	 � �

� 	 � �
as above,

we define its total ringoid R[I] in the following way: the set Ob(R[I ]) of objects of the ringoid
R[I ] is the disjoint union

∐

i∈Ob(I) Ob(Ri) — or else again the set of pairs (i, x), just as for ∫ R.

Morphisms of the ringoid R[I ] are given by

HomR[I]((i, x), (j, y)) =
⊕

i
α
−→j

HomRj
(Rα(x), y).

Composition homomorphisms are given by







⊕

i
α
−→j

HomRj
(Rα(x), y)






⊗







⊕

j
β
−→k

HomRk
(Rβ(y), z)







∼=
−→

⊕

i
α
−→j

β
−→k

HomRj
(Rα(x), y)⊗HomRk

(Rβ(y), z)

L

α,β Rβ⊗1
−−−−−−−−→

⊕

i
α
−→j

β
−→k

HomRk
(RβRα(x),Rβy)⊗HomRk

(Rβ(y), z)

L

α,β ◦

−−−−−→
⊕

i
α
−→j

β
−→k

HomRk
(RβRα(x), z)→

⊕

i
γ
−→k

HomRk
(Rγ(x), z),

and the identity of x ∈ Ob(Ri) is the element of
⊕

i
ε
−→i

HomRi
(Rε(x), x) given by the identity

of x in Ri, situated in the idi-th summand. It is straightforward to check that this construction
indeed yields a ringoid. One then has

3.3.2. Proposition. For any ringoid-valued functor R : I →
� 	 � �

� 	 � �
, the category of left R-

modules is equivalent to R[I ]-mod.

Proof. An R[I ]-module M is a family of abelian groups (M(i,x))x∈
‘

i Ob(Ri) and a family of abelian
group homomorphisms







⊕

i
α
−→j

HomRj
(Rα(x), y)

M(i,x),(j,y)
−−−−−−−→ Hom��� (M(i,x),M(j,y))







x∈Ob(Ri),y∈Ob(Rj)

,

satisfying certain conditions. Just by universality of sums then, specifying the above homomor-
phisms M(i,x),(j,y) is equivalent to specifying families

(

HomRj
(Rα(x), y)

Mα−−→ Hom��� (M(i,x),M(j,y))
)

α∈Hom∫ R((i,x),(j,y))
.

It is then straightforward to check that the conditions on the M(i,x),(j,y) to form an R[I ]-module
give precisely the conditions on the Mα to form an R-module. �

It is thus clear that R-mod is an abelian category with enough projective and injective ob-
jects. Let us give the explicit description of the projective generators and injective cogenerators
corresponding to the standard ones from R[I ].

Take i ∈ Ob(I) and let x be an object of the ringoid Ri. Then, in accord with the above 3.3.2,
associated to the standard free R[I ]-module concentrated at (i, x) there is a left R-module hR

i,x

given by
(

hR

i,x

)

j
(y) =

⊕

i
α
−→j

HomRj
(Rα(x), y).
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In other words (hR

i,x)j is the direct sum of standard free Rj-modules:
(

hR

i,x

)

j
=

⊕

i
α
−→j

hRα(x) .

It follows that for any Rj-module X one has isomorphisms

HomRj
((hR

i,x)j , X) ∼=
∏

i
α
−→j

X(Rα(x)).

Thus for any R-module M one has a natural isomorphism

HomR(hR

i,x,M) ∼= Mi(x).

Let now k be an object of I and let A be an Rk-module. We denote by k∗(A) the R-module,
whose value at i is given by

(k∗A)i =
∏

i
α
−→k

R
∗
αA.

The α-component of (k∗A)i has an Ri-module structure given by restriction of scalars along the
ringoid homomorphism Rα : Ri → Rk. Hence (k∗A)i is an Ri-module and now it is clear that k∗A
is an R-module. Moreover the functor k∗ : Rk-mod→ R-mod is right adjoint to the evaluation
functor evk : R-mod → Rk-mod, which is given by evk(M) = Mk. In particular, if A is an
injective Rk-module then k∗A is an injective R-module. Hence the family (k∗Q)k,Q, is a family
of injective cogenerators for the category of R-modules. Here k runs over the set of objects of I ,
and then Q over the set of injective cogenerators of the category of Rk-modules.

3.4. The equivalence. Our main example of a ringoid valued functor stems from 3.1.5. To any
theory T one can assign a ringoid valued functor UT on T considered as a small category, by
sending an object X of T to the enveloping ringoid UT(F (X)) of the corresponding free T-model
F (X).

For any two objects A, B of UT-mod there is a natural system
� ���

U (A,B) on T given by� ���
U (A,B)

X
f
−→Y

= HomUT(F (Y ))(AY , F (f)∗BX),

where the ringoid morphism F (f) : UT(F (Y ))→ UT(F (X)) is induced by F (f) : F (Y )→ F (X),
i. e. by (g 7→ gf) : HomT(Y, ) → HomT(X, ). Let us find out when is this natural system
cartesian. For this it will be convenient to rewrite the above in the following way:� ���

U (A,B)
X

f
−→Y

= HomUT(F (X))(F (f)!AY , BX).

Indeed as we saw in 1.2.1 all the functors F (f)∗ have left adjoints. The above conditions then
show that this natural system is cartesian if and only if

• HomU (F (X))(F (!X )!A1, BX) = 0 for all X ;
• the canonical morphism

HomU (F (X))(F (f)!AX1×X2 , BX)→ HomU (F (X))(F (p1f)!AX1 ⊕ F (p2f)!AX2 , BX)

is an isomorphism for any f : X → X1 ×X2.

In particular
� ���

U (A,B) is cartesian for all B if and only if A satisfies

• A1 = 0;
• F (p1)!AX1 ⊕ F (p2)!AX2 → AX1×X2 is an isomorphism for any X1, X2.

It is natural to call such an A a cartesian UT-module.
We next discuss our main example Ω1 of such an UT-module, obtained from 3.2.1.

3.4.1. Example. Any UT-module B determines a natural system � � �
( ;B) on T in the following

way: for a morphism f : X → Y of T, put

� � �
( ;B)f = Der(F (Y ); f∗(BX)).

Here pX : BX → F (X) is the object of 
�� (T-mod/F (X)) corresponding to B(X) under the
equivalence UT(F (X))-mod ' 
�� (T-mod/F (X)). That this is indeed a natural system, follows
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from the functorial properties of Der. Moreover this natural system is cartesian. Indeed, T-
models of the form F (X) are the representable ones, F (X)(Y ) = HomT(X,Y ). Then considering
the diagram (1) we see that Der(F (Y ); f ∗(BX)) can be identified with the set of all elements
b ∈ BX(Y ) with pX(b) = f ∈ F (X)(Y ) = HomT(X,Y ). Then given fi : X → Xi, i = 1, ..., n, one
has

� � �
( ;B)(f1,...,fn) = Der(F (X1 × ...×Xn); (f1, ..., fn)∗(BX ))

≈ {b ∈ BX(X1 × ...×Xn) | pX(b) = (f1, ..., fn)}

≈ {(b1, ..., bn) ∈ BX(X1)× ...×BX(Xn) | pX(bi) = fi, i = 1, ..., n}

≈ � � �
( ;B)f1 × ...× � � �

( ;B)fn
.

But it is immediate from 3.2.1 that there is an UT-module Ω1 such that the natural system� � �
( ;B) is actually isomorphic to

� � �
U (Ω1

F ( ), B). Namely, Ω1 is just given by X 7→ Ω1
F (X).

It is then a cartesian UT-module in the above sense, i. e. one has

• Ω1
F (1) = 0;

• F (p1)!Ω
1
F (X1) ⊕ F (p2)!Ω

1
F (X2) → Ω1

F (X1×X2) is an isomorphism for any X1, X2.

3.4.2. Theorem. There is an equivalence of categories

Φ : F (T) → UT-mod;

in particular, F (T) is an abelian category with enough projectives and injectives. Moreover the
quasi-inverse of this equivalence assigns to an object A of UT-mod the cartesian natural system� � �

( ;A) ∼=
� ���

U (Ω1, A) from 3.4.1.

Proof. As always, we can assume here that T is an I-sorted theory. Then for a cartesian natural
system D on T, to define Φ(D) we must first name for each X ∈ Ob(T) a UT(F (X))-module
Φ(D)X . The set of objects of UT(F (X)) is

∐

i∈I F (X)(Xi) (see 3.1.5), i. e.
∐

i∈I HomT(X,Xi).
We then define values of Φ(D)X on these objects by

Φ(D)X(X
x
−→ Xi) = Dx.

Next action of morphisms of UT(F (X)) is uniquely determined by requiring, for (x1, ..., xn) : X →
Xi1 × ...×Xin

and ω : Xi1 × ...×Xin
→ Xi, commutativity of the diagrams

D(x1,...,xn)

ω

wwppppppppppp
Dx1 × ...×Dxn

∼=oo

Dω(x1,...,xn) Dxν
,

∂ν(ω)(x1,...,xn)oo

ιν

ffNNNNNNNNNNN

where the isomorphism is the inverse of the canonical map that is required by cartesianness of D,
and ιν is the ν-th embedding into ⊕ = × of abelian groups.

We also have to define action on Φ(D) of morphisms f : X → Y in T, which must be UT(F (Y ))-
module morphisms Φ(D)Y → F (f)∗(Φ(D)X ), where the functor F (f)∗ : UT(F (X))-mod →
UT(F (Y ))-mod is the restriction of scalars along the ringoid morphism UT(F (Y )) → UT(F (X))
induced by the morphism of T-models F (f) : F (Y ) → F (X). Now F (f)∗(Φ(D)X ) is easily seen
to be given by (y : Y → Xi) 7→ Dyf , so what we must choose is a suitably compatible family of
abelian group homomorphisms

Φ(D)f (Y
y
−→ Xi) : Dy → Dyf ,

and these we declare to be the action of f on D. It is then straightforward that all of the above
indeed gives a functor Φ : F (T) → UT-mod.

Next note that, as we have seen in 3.2.1, one has Der(F (X);A) ∼= A(idX ) for any UT(F (X))-
module A, so in particular for any f : X → Y in T we have by 3.4.1

� � �
( ; Φ(D))f = Der(F (Y );F (f)∗(Φ(D)X )) ∼= F (f)∗(Φ(D)X )(idY ) = DidY f = Df .
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Conversely, given a UT-module A, by definition

Φ( � � �
( ;A))X (X

x
−→ Xi) = � � �

( ;A)x = Der(F (Xi);F (x)∗(AX ))

∼= F (x)∗(AX )(idXi
) = AX(x).

(Of course one should also check these on morphisms, but this is straightforward too). �

3.4.3. Corollary. A natural system on a theory T is cartesian if and only if it is isomorphic to
one of the form � � �

U (Ω1, B)

for some UT-module B.

�

As another corollary we obtain a generalization of [11, 2.4].

3.4.4. Corollary. For any additive theory T (i. e. a theory which is additive as a category) the
functor

T-modT
op

→ F (T)

which assigns to a functor

T : T
op → T-mod

the cartesian natural system T̃ on T given by

T̃
X

f
−→Y

= HomT-mod(F (Y ), T (X))

is an equivalence of categories.

Proof. Following the proof of 3.4.2 in this case, we see that any cartesian natural system D on T

can be given by

D
X

f
−→Y

= Der(F (Y ); f∗(BX))

where B is some UT-module and BX → F (X) is the object of 
�� (T-mod/F (X)) corresponding
to B(X) under the equivalence

UT(F (X))-mod ' 
�� (T-mod/F (X)).

But since the category T-mod is additive (even abelian), there is a canonical equivalence of
categories


�� (T-mod/M) ' T-mod

for any T-model M . Composing these two equivalences we obtain that there is a functor T :
T

op → T-mod such that for each object X of T the above internal abelian group in T-mod/F (X)
represented by BX → F (X) is naturally isomorphic to the constant one given by the direct sum
projection F (X)⊕ T (X)→ F (X). Moreover this isomorphism gives compatible isomorphisms

Der(F (Y ); f∗(BX )) ∼= Hom(F (Y ), T (X))

for any f : X → Y . �

3.4.5. Example. As an example of essentially non-additive situation, let us take the case when T

is the theory of groups
� �

. The corresponding coefficient systems according to [10] were functors
from the category of finitely generated free groups to the category of abelian groups.

The category F (
� �

) is equivalent to a larger category whose objects are assignments M of an
F -module MF to each finitely generated free group F , in a way which is functorial in F . Then
coefficients in the sense of [10] correspond to those objects M for which the F -module structure
on MF is trivial for all F .

The enveloping ringoid U ��� (G), for any group G, has the set of objects equal to G. From
the relations given in 3.1.5 it is clear that all morphisms of U ��� (G) are linear combinations of
composites of the ones of the form

∂ν(x1x2)(g1, g2) : gν → g1g2, ν = 1, 2,
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for g1, g2 ∈ G. Moreover these relations imply that ∂ν(x1x2)(g1, g2) are isomorphisms, with the
inverses given by

∂1(x1x2)(g1, g2)
−1 = ∂1(x1x2)(g1g2, g

−1
2 )

and

∂2(x1x2)(g1, g2)
−1 = ∂2(x1x2)(g

−1
1 , g1g2).

Indeed the relations from 3.1.5 easily imply that for any 1 6 ν 6 n an operation ω of the form

Xi1 × ...×Xin

projection
−−−−−−→ Xi1 × ...×Xiν−1 ×Xiν+1 × ...×Xin

→ Xi

in any theory T one has for any model M of T and any (c1, ..., cn) ∈M(Xi1)× ...×M(Xin
)

∂ν(ω)(c1, ..., cn) = 0 : cν → ω(c1, ..., cn);

taking this into account readily gives

idg1 = ∂1(x1)(g1g2g
−1
2 )

= ∂1(x1x2)(g1g2, g
−1
2 )∂1(x1x2)(g1, g2) + ∂2(x1x2)(g1g2, g

−1
2 )∂1(x

−1
2 )(g1, g2)

= ∂1(x1x2)(g1g2, g
−1
2 )∂1(x1x2)(g1, g2)

and

idg1g2 = ∂1(x1)(g1g2, g
−1
2 ) = ∂1(x1x2x

−1
2 )(g1g2, g

−1
2 )

= ∂1(x1x2)(g1, g2)∂1(x1x2)(g1g2, g
−1
2 ) + ∂2(x1x2)∂1(x

−1
2 )(g1g2, g

−1
2 )

= ∂1(x1x2)(g1, g2)∂1(x1x2)(g1g2, g
−1
2 ),

and similarly for the inverse of ∂2(x1x2)(g1, g2).
We thus see that all objects of U ��� (G) are isomorphic to each other, so that U � � (G) is equiva-

lent to the ringoid with single object whose endomorphism ring is that of the unit of G in U � � (G).
It is easy to show that this ring is isomorphic to the group ring Z[G] of G. Indeed this is also

clear already from the statement of 3.1.5 since it is well known that the category 
�� (
� ����� � �

/G)
is equivalent to the category of Z[G]-modules for any group G.

Moreover it is easy to see that under this equivalence the functor Der corresponds to taking
derivations of G with values in G-modules, hence the U � � (G)-module Ω1

G described in 3.2.1
corresponds to the Z[G] module equal to its augmentation ideal. It follows that the U � � -module
Ω1 assigns to the group F the U ��� (F )-module uniquely determined by the fact that its value on
the unit object is the augmentation ideal of the group ring Z[F ], with actions of morphisms of
U ��� (F ) prescribed by the structure of F -submodule of Z[F ].

3.4.6. Example. Let us give another example in which the notation Ω1 has its “usual” mean-
ing. For a commutative ring k, let Ak be the theory of commutative k-algebras. Finitely gen-
erated free k-algebras are the polynomial algebras k[x1, ..., xn], so as a category Ak is equivalent
to the full subcategory of the category of affine k-schemes whose objects are the affine spaces
A

n
k =Spec(k[x1, ..., xn]).
Similarly to the above example, it is easy to see that for any k-algebra A the ringoid UAk

(A)
with the set of objects A is equivalent to the ringoid with a single object whose endomorphism
ring is A. Moreover this equivalence indentifies the functor Der with usual k-derivations of A with
values in A-modules, so the U (A)-module Ω1

A corresponds to the classical module Ω1
A/k of Kähler

differentials. It follows that the values Ω1(An
k ) of the UAk

-module Ω1 are determined by assigning to
the zero object 0 ∈ A of the ringoid UAk

(An
k ) the module Ω1

k[x1,...,xn]/k = k[x1, ..., xn] 〈dx1, ..., dxn〉,

with the action of morphisms determined by the free module structure on the latter.

4. The local-global spectral sequence

The aim of this section is to construct our main technical tool — a spectral sequence computing
the Ext groups in the category of modules over a ringoid valued functor, using some local data.
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4.1. Construction. Let I be a small category and let R : I →
� 	 � �

� 	 � �
be a ringoid valued

functor on I. As we have seen in 3.3.2, the category R-mod is an abelian category with enough
projective and injective objects. One can generalize the construction in 3.4.1 and define for any

R-modules M and N the natural systems
� ���

R(M,N) and ��� � nR(M,N) on I by� � �
R(M,N)

i
χ
−→j

= HomRi
(Mi, Nj)

and

��� � nR(M,N)
i

χ
−→j

= Extn
Ri

(Mi, Nj)

respectively, where the actions of Ri on Nj are given via restriction of scalars along Rχ : Ri → Rj .

We call the natural systems
� ���

R(M,N) and ��� � nR(M,N) local Hom and local Ext groups. One
observes that in the case when R is a constant functor, these natural systems actually come from
bifunctors. The following theorem, which is the main result of this section, was proved for the
particular case of such constant R with values in rings in [10].

4.1.1. Theorem (the local-to-global spectral sequence). Let I be a small category and let R :

I →
� 	 � �

� 	 � �
be a functor to the category of ringoids. For any R-modules M and N there exists

a spectral sequence with

Epq
2 = Hp(I ; ��� � qR(M,N)) =⇒ Extp+q

R-mod
(M,N).

4.1.2. Corollary. Let I be a small category and let M , N be R-modules, where

R : I →
� 	 � �

� 	 � �

is a functor. Then one has a five-term exact sequence

0→ H1(I ;
� ���

R(M,N))→ Ext1R-mod
(M,N)

→ H0(I ; ��� � 1R(M,N))→ H2(I ;
� ���

R(M,N))→ Ext2R-mod(M,N).

Moreover, if gl. dim Ri 6 1 for each object i, then one has an exact sequence

0→ H1(I ;
� ���

R(M,N))→ · · · → Hn(I ;
� ���

R(M,N))

→ Extn
R-mod(M,N)→ Hn−1(I ; ��� � 1R(M,N))→ Hn+1(I ;

� ���
R(M,N))→ · · ·

4.1.3. Corollary. Suppose Mi is a projective Ri-module for each i ∈ Ob(I). Then there is an
isomorphism

H∗(I ;
� ���

R(M,N)) ∼= Ext∗R-mod(M,N).

4.2. Proof of Theorem 4.1.1. We fix a left R-module N . We claim that for any left R-module
X one has an isomorphism:

H0(I ;
� ���

R(X,N)) ∼= HomR-mod(X,N).

Indeed, it follows from the definition of cohomology that H0(I ;
� ���

R(X,N)) is isomorphic to
the kernel

Ker







∏

i∈Ob(I)

HomRi-mod(Xi, Ni)→
∏

i
α
−→j

HomRi-mod(Xi, Nj)






.

Thus H0(I ;
� � �

R(X,N)) consists of families (fi : Xi → Ni) of Ri-homomorphisms, such that
for any α : i→ j the diagram

Xi
fi //

Xα

��

Ni

Nα

��
Xj

fj // Nj
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commutes, and the claim is proved. One observes that the diagram

Nat(I)

H0(I; )

##HH
HH

HH
HH

H

R-modop

� � �
R( ,N)

99rrrrrrrrrr

HomR-mod( ,N)
// ���

commutes and the Theorem is a consequence of the Grothendieck spectral sequence for composite
functors. Of course in order to apply the Grothendieck theorem we first have to show that
Hn(I ;

� ���
R(M,N)) = 0 as soon as n > 0 and M is projective. To this end we can assume

without loss of generality that M = hR
i,x, for some i ∈ I and x ∈ Ri. In this case� ���

R(M,N)
c

ϕ
−→d
∼=

∏

i
α
−→c

N(d,Rϕα(x))

and therefore we can use the following Lemma to finish the proof. �

4.2.1. Lemma. Let us fix i ∈ I and x ∈ Ob(Ri). For any functor N : ∫
I
R → ��� consider the

natural system D on I given by

D
c

ϕ
−→d

:=
∏

i
α
−→c

N(d,Rϕα(x)).

Then

H0(I ;D) = N(i, x).

and

Hn(I ;D) = 0 for n > 0.

Proof. One easily checks that

C∗(I ;D) ∼= C∗(i/I;T ),

where i/I is the comma category under the object i and T : i/I → ��� is given by

T
(

i
α
−→ c

)

= N(c,Rα(x)).

Hence the cohomology of I with coefficients in D coincides with the cohomology of the category
i/I with coefficients in the functor T .

Now cohomology groups of a category with coefficients in functors are isomorphic to the right
derived functors of the inverse limit on that category. Since 1i is the initial object in the category
i/I, inverse limit of a functor on it is given by the value of this functor on 1i. So the inverse limit
is exact and its right derived functors vanish. This gives the Lemma. �

5. Cohomology of algebraic theories

5.1. Definitions. There are several possible approaches to define cohomology of an I-sorted the-

ory T. First, there is a general approach of Quillen to define cohomology of an object T in
���

I

with coefficients in an object of 
�� (
���

I/T), which by 2.2.3 we know to be equivalent to F (T).
The main ingredient needed to construct this cohomology is availability of simplicial resolutions

in
���

I by degreewise free objects. In our case this is possible due to 1.2.5. Namely, for any T we

choose a simplicial object F• in the full subcategory of
���

I on free theories and an augmentation
ε : F0 → T. This is called a free resolution of T if for any sorts i1, ..., in, i ∈ I the augmentation ε
induces a weak equivalence from the simplicial set HomF•

(Xi1 × ...×Xin
, Xi) given by

HomF•
(Xi1 × ...×Xin

, Xi)k = HomFk
(Xi1 × ...×Xin

, Xi)

to the discrete simplicial set on the set of 0-simplices HomT(Xi1 × ... × Xin
, Xi). Existence of

such a free resolution is a consequence of the work of Quillen [14]. Namely, it is straightforward

to check that the category
���

I satisfies condition (∗∗) of Theorem 4 in §4 of Chapter II of [14]
(page 4.2). This allows one to apply the whole machinery of Quillen (simplicial) closed model
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category theory to
���

I . In particular, our resolution is a cofibrant replacement of T considered

as a constant simplicial object of
���

I .

Having this, we then define for any T in
���

I and any A ∈ F (T) the Quillen cohomology groups
of T with coefficients in A by the equality

H∗
Q(T;A) := H∗(

�����
(F•;A)),

where A is considered as an object of each of the categories F (Fn), n > 0, via pullback along the
unique morphism of theories Fn → T given by the resolution.

For a theory T and an object A ∈ F (T), we next define the Cartan-Eilenberg type cohomology

H∗
CE(T;A)

by the equality

H∗
CE(T;A) := Ext∗UT-mod

(Ω1,Φ(A))

Here Ω1 is from 3.4.1 above.
Finally, there is yet a third approach to constructing cohomology. Given a theory T and an

object A ∈ F (T), one can form the Baues-Wirsching cohomology

H∗(T;A)

of the category T with coefficients in the cartesian natural system A as in 1.1.1.

5.2. Equivalence. We will show that these three approaches actually give isomorphic results.
More precisely, for any I-sorted theory T and any Cartesian natural system A ∈ F (T) there are
natural isomorphisms

H∗
CE(T;A) ∼= H∗(T;A) ∼= H∗−1

Q (T;A).

5.2.1. Theorem. Let T be an I-sorted theory and let A ∈ F (T) be any Cartesian natural system
on T. Then there are isomorphisms

H∗
CE(T;A) ∼= H∗(T;A).

Proof. Since by 3.4.2 Φ and � � �
( ;−) are mutually inverse equivalences, by Proposition 3.2.1 one

has an isomorphism of natural systems:

A ∼=
� ���

(Ω1,Φ(A)).

Hence the isomorphism to be proved is a consequence of Corollary 4.1.3. The fact that the
condition of Corollary 4.1.3 holds here follows from Proposition 3.2.1. �

5.2.2. Lemma. If F is a free I-sorted theory and A is a cartesian natural system on F, then

H i(F;A) = 0, i > 1.

Proof. First consider the case i = 2; thanks to Theorem 1.1.3 it suffices to show that any linear

extension of F by A splits. By Lemma 2.2.1 any such extension is an extension in
���������
	 �
�

and we
can use Proposition 1.2.6 to conclude that it really splits. If i > 3 we can use the isomorphism of
Theorem 5.2.1 above to identify H i(F;A) with H i

CE(F;A). These are Ext-groups in appropriate
abelian categories vanishing on injective objects. As we showed, they also are identically zero in
dimension two. Standard homological algebra argument shows that derived functors identically
vanishing in some dimension are zero in all higher dimensions too. This finishes the proof. �

This result in the case when A is a bifunctor over a single sorted theory was proved in [10] (see
Proposition 4.22 of loc. cit.).

5.2.3. Theorem. There is an isomorphism

Hn
Q(T;A) ∼=

{ �����
(T;A), n = 0,

Hn+1(T;A), n > 0

for any theory T and any A ∈ F (T).
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Proof. Let C∗+1(T;A) be the downshift by one of the cochain complex from 1.1.1. That is, it is
the cochain complex with Cn+1(T;A) in degrees n > 0 and zero in all negative degrees. Thus we
have

Hn(C∗+1(T;A)) =

{ �����
(T;A), n = 0,

Hn+1(T;A), n > 0.

Next suppose given a free resolution ε : F• → T of T in
���

I/T. We then similarly obtain a
cosimplicial cochain complex C∗+1(F•;A), with two spectral sequences converging to the coho-
mology of the total complex of the associated bicomplex.

The spectral sequence with
′Epq

1 = Hq(C∗+1(Fp;A))

has

′Epq
1 =

{ �����
(Fp;A), q = 0,

0, q > 0,

by Lemma 5.2.2 above, so the common abutment is isomorphic to H∗
Q(T;A) by definition.

The second spectral sequence has

′′Ep∗
1 = H∗(Cp+1(F•;A)).

By definition of the resolutions, for any objects Y , Z of T the augmentation ε induces a weak
equivalence from the simplicial set HomF•

(Y, Z) to the discrete set HomT(Y, Z). In particular, the
latter is in one-to-one correspondence with the set of connected components of the former.

Now, looking at the explicit formula for the cochain complex C∗ in 1.1.1, we see that there are
isomorphisms

Cp+1(F•;A)
∼=
−→

∏

Y0,...,Yp+1

C∗(HomF•
(Y1, Y0)× ...×HomF•

(Yp+1, Yp);A(−))

to the product of cochain complexes of simplicial sets HomF•
(Y1, Y0) × ... × HomF•

(Yp+1, Yp)
with coefficients in abelian groups equal to Af1···fp+1 on the connected component of the former
corresponding to (f1, ..., fp+1) ∈ HomT(Y1, Y0) × ...× HomT(Yp+1, Yp). Since these simplicial sets
have trivial cohomology in positive dimensions, we obtain

′′Epq
1 = 0 for q > 0.

Moreover obviously

′′Ep0
1 =

∏

Y0,...,Yp+1

H0(HomF•
(Y1, Y0)× ...×HomF•

(Yp+1, Yp);A(−)) ∼= Cp+1(T;A),

so on the other hand the abutment is isomorphic to
�����

(T;A) in dimension zero and toHn+1(T;A)
in dimensions n > 0.

Comparing these two descriptions of the abutment gives the theorem. �
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