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Almost Riemannian Spaces
by

Conrad Plaut

A complete metric space (X, d) 1s called almost Riemannian
if X is finite dimensional and d is a geodesically complete inner
metric of (metric) curvature locally bounded below. Our main

result is the following:

Theorem 1. If (X, d) is almost Riemannian, then X is a
topological manifold. For each p € X there exist an
n-dimensional vector space Tp (n = dim X) with inner product
<-,->p; a function expp : il —> X which is continuous in a
neighborhood of 0; and a dense subset I; of T;, having the
following properties:

a) if v e I;, then tv € Tp for all t € R,

b) the restriction expp : Tp -> X is surjective,

c) the correspondence v <—> 7v(t) - expp(tv) is a one-to-one
correspondence between unit vectors in (I;, <-,~>p) and unit
geodesics starting at p.

Expp need not be locally one-to-one (so there may not be
"normal coordinates"), but very short geodesics are "almost
minimal® in the sense that the ratio of their length to the
distance between p and their endpoint 1s uniformly close to 1

(Lemma 12). In particular, there are not arbitrarily short

geodesic loops starting at p.



Theorem 1 represents the last "manifold theorem" having as

its hypothesis only finite dimensionality and some combination of

the three fundamental metric conditions, 1) geodesic
completeness, 2) curvature locally bounded below, and 3)
curvature locally bounded above. In [Be] and [N1] {(cf. also

{ABN]) it is shown that a space satisfying 1), 2), and 3) is a
smooth manifold with a C"% Riemannian metric. This theorem
leads to a short, entirely "metric" proof of the Convergence
Theorem for Riemannian manifolds ([P], [CW]). The main theorem
of [Pl] is that a space satisfying 2) and 3) is a smooth manifold
with boundary, with fallure of geodesic completeness occuring
precisely on the boundary. Theorem 1 covers the case of 1) and
2), and examples show that there are finite dimensional
non-manifolds satisfying any other combination of the above
properties.

Theorem 1 is also a little progress toward solving the
conjecture that 1limits 1in the Grove-Petersen-Wu class of
Riemannian manifolds ([GPW]) are topological manifolds. These
spaces have curvature bounded below, but are mnot geodesically
complete; Theorem 1 reduces the problem to considering
neighborhoods of "geodesic terminals" (points where geodesic
completeness fails).

Finally, Theorem 1 gives rise to the question of whether
almost Riemannian spaces admit smooth structures. If some do

not, then one must ask how large the class of topological



manifolds admitting an almost Riemannian structure 1is, and
whether the structure produced in Theorem 1 has wuseful
topological applications.

For basic definitions, see [Pl] or [R]. We confine
ourselves to a few background comments. Since a finite
dimensional, metrically complete metric space is locally compact,
we will assume, for the remainder of this paper, that (X, d) is a
metrically complete, locally compact inner metric space having
curvature locally bounded below. Then every pair of points in X
is joined by a minimal curve and there is a notion of angle
between geodesics. We denote the angle between geodesics vy, B by
a(y, B). Every sufficiently small (open) ball B = B(x, r) 1s a

region of curvature = k for some k, in which the following hold:

T1. For any geodesic triangle ('yab, v, ch) in B such

ac

that T and 7. &re minimal and L(y ) < w/JE, there exists a
C ac

representative triangle (I"AB, rm’ I‘BC) in Sk (i.e., with

same side lengths), and a((FAB, FAC) =< a(7ub, 7«)'

T2. For any geodesic wedge (1d“ ¥ ) in B such that T is

ag
minimal and L(1“) =< ﬂ/JE; there is a representative wedge
U}a, FM) in Sk (i.e., with same side lengths and angle), and

d(B, C) =z d(b, c).

The above comparisons for minimal wedges and triangles

follow easily from the definition of bounded curvature (cf.



[P1]); the more general Tl and T2 can then be proved as in the
final step in the proof of Toponogov's Theorem ([CE]).

The space of directions at a polnt p € X is the metric space
(Sp, @) of all unit geodesics starting at p. If Sp has at most
two points, it is easy to show that X is homeomorphic to an
interval or a circle. Some of the lemmas below fail for this
trivial case, and to avold speclal exceptlions in the statements,
the direction space at each point will be assumed, when
necessary, to have at least three elements. The tangent space Tp
at a point p € X 1s the metriec space obtained from Sp x R by
identifying all points of the form (v, 0) (and denoting the
resulting point by 0) with the following metric, where the class
of (v, t) in the identificatlon space is denoted tr:

5(ty, sB) = (2 + s® - 2st-cos a(y, A%

The exponential map is defined by expp(s-v) = y(g); 1if X is
geodesically complete, then expp is defined on all of Tp, and is,
by T2, continuous on any B(0, r) such that expp(B(O, r)) 1is
contalned In a region of curvature =z k. Expp then has a
contlnuous extension to the metric completion T; of Tp.
Furthermore, expp 1s (locally) a radial isometry, and preserves
the angle between radial geodesics (i.e., starting at p). The
cut radius map C : Sp — R' U = is defined by

C(y) = sup (t : Tl[mtl is minimal}.

C is clearly upper semicontinuous. For v € T, we let C{(v) =
P

civ/llvl .



Let S be the metric completion of SP; then elements of Tp
P

can clearly be written in the form t;, where :r- S §p, t € R+, and

Oy = 0. For any ;1, ;2, ;3 €S, ;2 is said to be between ;land

P

;3 if a(;l, --7_3) - a(;l, ;2) + a(;z, ;3). For any distinct
;1, ;2 € §p, the span sp (;1, —2) Q Tpof -;1, ;2 is the set of all
ty such that one of :1-1, ;2, 4 is between the other two. In
general, given distinct ;1, ceey ;k € gp, k > 1, the span of
;1' cee ;k is the smallest subset sp [;1, cey ;k] c :f;
containing ;1, e, ;k such that if ;, ; € sp {;1, ce, ;k], then
sSp {a, 7} C sSp {;l, Ceey ;k]. The elements _1-1, ceny ;k are said
to be independent if ;31-1 does not lie in sp {;1, cey ;J} for
any J. The notions of angle {(not as a metric!), betweeness,
etc., can be generalized to the space Tp in the obvious way;
e.g., for t1’ c e tk > 0, sp [t1;1' Cees tk;k} -
sp {7, oo )

Finally, a geodesic terminal 1is a point in X beyond which
some geodeslc cannot be extended. An open subset U of X 1is

geodesically complete if U has no geodesic terminals.



Lemma 2. Let ¢ > 0 and k be arbitrary. Then
a) there exists a number 6§ > 0 such that if v |, Y, are
xa
minimal curves in Sk of length L < 1 with d(a, b) / L < §, then
aly, 1, S ¢ and
b) there exlists a v > 0 such that if V.. T &Ye minimal

curves in Sk of length L =< 1 with a(y , -yxb) < v, then
xa

d(a, b) / L < ¢.

Proof. Tor a » x, let ¥(a) be the smallest number such that
if d(a, b) / d(a, x) = ¥(a), a('yn, 7xb) - ¢, The map ¥ 1is
easily seen to be continuous (in fact dependent only on
d(x, a)) and positive, with 1':1'[3: Y(a) = 2.sin(e/2), and so has
some positive minimum § on E(x, 1. This proves part a), and

the proof of part b) is similar,

Lemma 3. Suppose B = B(p, r) is a region of curvature z k
in X. Let {'yi) and {’71} be Cauchy sequences in Sp' For any
positive s, —> 0 and ti — (0 such that s, =< C(-yi), z:i =< C(ni),
and c, < si/!:i < c2 for some cl, c, e (0, =), if a’i -

d(’Yi(Si) R vi(ti)) , then

. -1 2 2 2
%‘.L?m a(—yi, ni) - {L!.z:z_rm cos [(si + r:1 - di) / 2siti].

Proof. For any positive s =< C('yi) and t =< T(ni), define
d (s, t) = d(y (s), 5 (t)) and
qoi(s, t) = cos [(sz + t2 - di(s, t))z) / 2st].

It ®, is continuously extended to (0, 0), then (pi(O, 0) =



a(yi, "1)' We have cos (pj(s, t) - cos ‘px(s’ t) =
[(di(s, t) - dd(s, t))(di(s, t) + dj(s, t)] / 2st.

Assuming 0 < c, < s/t =< c2 < o, we have (di(s, t) - dj(s, t)) / s

< d(y,(s), v,(s)) / s + d(n (£), n,(€)) /s

< d(v,(s), 7, (s)) / s + dln (t), n(€)) / ct.
By Lemma 2.b) and T2, the last quantity is arbitrarily small for
sufficiently large i and j, independent of s and t. By a similar
argument we obtaln that (di(s, t) + dj(s, t)) / t 1s bounded, and
conclude that for any ¢ > O there exists an m such that for all
i, j > m, |qoi(s, t) - ‘Pj(s’ t)| = ¢/2. If m is also chosen large
enough that | (0, 0) - lim_ a(y,, n )| s ¢/2 for all j > m, then
for s =< C(7J), t = C(ﬂd)' |cpj(s, t) - }j__r;lw a('yi, ni)| < ¢, and

the lemma follows. m}

Notation. For results 4-8, 10-15, and 17 below, let B =
B(p, r) be a geodesically complete region of curvature = k in X.

Lemma 4. For every distinct ;1, n, € S and a, €
. p
[0(51' ;2), w], there exists a unique ;3 € S such that ;2 is
P

between ;1 and ;;-3, and a(ga, ;1) - o,

Proof. For the proof of the exlstence, see the Addendum at

the end of this paper.



- ™~ n - - . t
Let a a(nl, r)z) and a, a a Suppose, contrary to
uniqueness, there exist sequences {111} and {121} in Sp of unit

minimal curves such that a(-yu, 721) > 6§ > 0 for all i, and, for

k=1, 2,
— -1
taCn,, v, ) - | =27, and
— -1
- =
laCn , v ) - el =2
-> 9 d - n. In t
Let N Ty € Sp such that ", > n, and 7 n, n the

plane, choose points X, A, B, and T such that A, B, and T are
collinear, XA = 1, XB = 1, a(ﬁ, ﬁ) - a and a(XB, XT) = a.
Choose 1:i —> 0 such that t:i < nin {C(-yn), C('yu)], r. -

ti- XA / XT = C("u)’ and s, = ti- XB / XT = C(qu). Let ﬁi,

g'n, and §21 be a minimal curves from nZi(si) to nli(ri),
711(1‘.1), and 121(ti), respectively. By Lemma 3 for k = 1, 2 and
any A > 0 there exists a j such that for all 1 > j,
L(ﬂi) +L(§'n) = (1+A)-d(qn(ri), -yn(ti)); it follows that the
angle of a wedge Wl in Sx representing the wedge formed by ,Bi and
g‘ki tends to . Tl then implies that ]1'!"3ao a(ﬂl, ;'n) - . On
the other hand, if ,t'i’i is a minimal curve beginning at "21(51) and
extending ﬂi as a geodesic beyond "21(51)’ then }}lllm a(ﬁi, gki) -
0. This, in turn, implies lim a({ , ¢ ) = 0. Let Z , Z Dbe
i->m 1 21 1 21
unit minimal curves in Sx' with common endpoint y and other
endpoints z, and z,. respectively, such that L(Zu) - L(g‘n),
L(Zm) - L(g'Zi), and a(Zn, 221) - a(g'n, g'u). Then

0 = Iilj.gnm d(zn, zu) / L(Zn)

z lim d(y (t), 721(t1)) / L(Cu)



= M, d(y,,(£), 7,/(£)) - (XI/BT) / €.
This last 1limit being 0 implies that ]i.:l.lllm a(-yn, 721) - 0, a

contradiction.

Lemma 5. For -1;1, 53 € S and a e [0, a(;;Fl, ;3)], there
P

exists an ;z € S such that ;2 is between -51 and ;3, and
P
cz(ﬁl, ;3—2) - o Furthermore, if a(;l, ;3) < w, then Ez is the

unique such element.

Proof. The ‘existence part of the proof 1s again contained
in the proof of Lemma 3.4 in [Pl]. If a(;l, '53) < m, then
the element Ea € §p such that a(ﬁl, Eﬁ) = v is distinct from 53,
and uniqueness follows from uniqueness in Lemma 4 (applied to ;a

and ;3 to obtain ;2) .

Lemma 6. Let ;1, N ;4 € S be distinct and, setting
P

- ¥ ’ ¥ » oS - < . i
o:ij 0(71 -yj) suppose a  + o a. n Then there exist

. 3
unit vectors v, € R such that a(vi, vJ) - aij, and a choice of

v, any two of Vi Vo v, determines the remaining v,

Proof. The lemma is trivial if ;“ € sp {;1, ;2}; assume the
contrary. There exist X1 € R3\ 0 such that Xl, Xz' and Xa are

colinear, with a(ﬁ , Bi) - o, a(ﬁ s ﬁ) -
1 2 12 2 3

3

a
23

a(b“il, ﬁ‘) - o , and a(O—Xa, ﬁ&) - a . The lemma will be

14 34

proved 1if it 1s shown that a, - a(ﬁz, ﬁ#); the proof beglns

with the inequality aZ* > a(ﬁiz, ﬁ—,,)-

Choose v € S such that v —> vy, 1 =1, ..., 4, and
i) P 1} i



it —=> 0 such that s = t ‘X = C . Let
positive t‘j 0 I ; i" (Tij)

J hanad - -
ﬁik : [0, 1] > B be minimal from xij 713(513) to xk‘j
’ ’ - ‘j
Tid(skj)' let 723 be minimal from p to xzj ﬁla(alz/ala), and
let ﬁli be minimal from X, to x;d. To prove the above

inequality, it suffices, by Lemma 3 and the uniqueness of Lemma

4, to show that lima(e’,, a ) 2= a(0X, OX); 1i.e
23 43 2 4

lim d(x;j, xkj) / tJ = szﬁ. Let Tj denote the representative in

J

3
SK of the triangle formed by ﬁ13' ﬂl‘,

and ﬂi“. By Lemma 3 and

the definition of angle (applied to a(xlxa, XIX&)), the angle in
]

J 3 T v
Td corresponding to a(ﬁ13, ﬂlé) tends to a(XlX , X1X4)' In

3
particular, 'I"j could be chosen so that the sides corresponding to
ﬁia' and those corresponding to ﬂi#, both are Cauchy sequences.
Lemma 3 now implies that, if D‘j is the distance in SK from the
point corresponding to x;d to that corresponding to x“j
lim DJ / tj - sza' But by the definition of curvature = k,

lim d(x;d, xkj) / tJ = lim Dd / td'

To complete the proof of the lemma, note that the above
argument can be applied to ;1, ;;, ;; and ;‘, where a(;l, ;i) -
nw, for i = 1, 2, 3. One then obtains that both a(;;, ;4) and
a(;z, ;ﬁ) must be 2= thelr Euclidean counterparts. Since
a(;;, ;&) + a(;z, ;k) = 7, this is only possible 1f both equal
their Euclidean counterparts. The last part of the lemma is
elementary linear algebra.

Lemmas &4, 5, and 6 correspond exactly to Lemmas 3.5, 3.4, and

3.6 in [Pl]; the proof of the next proposition Is similar to that

10



of Proposition 3.7, [Pl].

Proposition 7. If ;1,..., ;; € Sp are independent, then
sp (;1, e, ;n) is isometric to R".
Sp {;1, cee ; } will now be identified with R . Any
n

infinite independent subset of Sp has no convergent subsequence;

in other words:

Corollary 8. If S is precompact, then T is isometric to
P P

n
R for some n.

Definition 9. A minimal curve is called strictly minimal if

it is the unique minimal curve between its endpoints.

Lemma 10. Let b, ¢ € B such that 7 and vy are strictly
P pe
minimal. Then for any ¢ > 0 there exists a § > 0 such that for

all a € B(p, §) and minimal curves L and vy ,
ac

Ia(vpb, *rpc) - a('r‘b, 1.1 < €

Proof. Let a —>p and suppose v, and n, are minimal curves
from a to b and c, respectively; we will show first that
}égw a(vi, ni) = a(vﬂf 'Hm)' Let ¢ > 0. Choose T > 0 so that
if L are minimal curves in Sk with d(P, B) = d(P, C) = T
and d(B, C) = d('rpb(T), WPQ(T)), then a(vpb. ‘YPU) -aly ) =

. S i -
¢ ince 1bp and ch are strictly minimal, };Tm a(yi, 1bp)

Mo, aln, v) = 0 by T2, Lm  d(y (D), 7,(1)

>0

11



H‘an d(‘ypo(T), qi(T)) - 0. If Ci is the point closest to C in Sk
such that d(P, Ci) = T and d(B, Ci) - d('yi(T), ni(T)), then

applying Tl and Lemma 2, we obtain }grgw a(yi, ’71)

v

lim a(y,, 7""1) = eV V) = oaly . v ) - . Since { was
arbitrary, the first inequality follows.

Let d be a point on the geodesic extension of Top beyond p
such that 7o is strictly minimal. If Bi is a minimal curve from
a to d, and v, is minimal starting at a, such that a('yi, Vl) -
n, then by the above argument, :H]Em n:(-yi, ,81) = m, hence
1.:1.1;100 cx(,Bi, vi) = 0. Also by the above argument, ]i.:_Lrlloo a(ﬂi. '71) =
a(-ypd, 7pc) - T - o:('ypb, -ypc). By the triangle inequality,
0(71' ni) <= x - a(ni, ﬂi) + a(ﬁl, ui), and we obtaln the

desired inequality by passing to the limit.

Lemma 11. Let A, B, € € S, with A, C distinct,
i i 1 k i i

lim d(A, €) = 0, and d(A, B) =2 D for some D > O and all 1.
1-»mo i i i i

Suppose 7, is minimal from A1 to Bi and ﬂi ls minimal from Ai to
Ci. Then ¢ = '1"1'1;1.10; a(-yi, ﬂi) exists if and only if L =
%.1‘.1;100 [d(Al, Bi) - d(Bi, Ci)] / d(Ai, Ci) exists. If ¢ and L

exist, L = sin (n/2 - ¢).

Proof. 1If d(Ai, Bl) - d(Bi, Ci) for all 1, ]i.}l;lm a('yi, ,Bi) -
n/2 follows from the Cosine Laws for Sk. In the general case,

let cr’i be unit minimal of Ilength max {d(Al, Bi), d(Ai, Ci)}

starting at Bi and containing the point Ci; let D =

i

ai(d(Ai, Bi)) and @ be the segment of o from Di to Bi. If Di -

12



Ai for all large i, then a and 7, coincide, and the lemma is

trivial. Otherwlse, applying the above speclal case we obtain

that 1f ¢ is minimal from D to A, 1lim al(¢, B =
i i i i ->0 i i

}1@w a(gi, 11) = n/2. The Lemma now follows from the Cosine Laws

and the definition of angle.

Lemma 12. Suppose B(p, r) is a geodesically complete region
of curvature 2 k, and let Ty o N € T be independent. Then
2

for every small € > (0 there exists a p > 0 such that for all v €

sp (11, ce, 1k) n Sp and t < p, 1-¢ < d(p, v(t)) / £ s 1.
Proof. 1let § = sind(l - €/2), @, oo € Sp be §-dense
in sp {71, ey 1k] N Sp, and R > 0 be small enough that ailw.m

is strictly minimal for all 1i. Let I;b be minimal in Sk of
length R and Fnc be unit minimal, with a(I}b, Fac) = §. Then by
Lemma 11, %}QO (R - d(b, Fac(t)) / t=1-¢/2; let p > 0 be such
that for all t < p, (R - d(b, F“(t)) / t =2 l-¢. For any vy €

sp {vf Ceey 7k) n Sp' there exists some a such that a(vy, ai) <

§. By the trilangle inequality, d(p, y(t)) =2 R - d(vy(t), ai(R)),

and the lemma follows from T2.

13



Lemma 13. Suppose B(p, r) is a geodesically complete region
of curvature z k, and let Vo Y, [ Tp be independent. Then
there exists an L > 0 such that

exp:(p) NB(O, L) nsp (v, ..., vJ = (0).
In particular, there are not arbitrarily small geodesic loops

at p in expp(sp {—11, R 7k} N SP).

Proof. By Lemma 12 there exists an L > 0 such that for all
Y € sp {71, ey 7)‘} N Sp and t < L, d(p, y(t)) / t > 1/2. Now
suppose there exists some v € exp;l(p) N sp {'yl, ce e 'yk} with
0 < |vl =L <L. Then there are v, € Tp with v, > V. But then
the continulty of the exponential map Implies that

d(expp(L’ -vi), p) —> 0, a contradiction.

Lemma 14. Suppose B(p, r) is a geodesically complete region
of curvature = k, and let LA A € Tp be independent. Then
for any € > 0 there exist 6§, R > 0 such that if a, B €
sp {'71, Cees 'yk} N Sp and d(a(t), B(s)) / s < § for some 0 < s <

t < R, then a(a, B8) < €.

Proof. Suppose, to the contrary, there exist @, ‘81 €
-1
sp [71, R -yk} n Sp and 0 < s < ti < 27, with a(ai, ‘61) > €
-i
and, letting di - d(ai(si), ﬂi(ti)), di / s, < 2. Choosing a
subsequence if necessary, we can assume that both {ai] and {ﬁi]

are Cauchy. Let ¢, n € Sp be such that for all sufficlently

large 1, a(ai, ) < €¢/4 and a(ﬁi, n) < ¢/4. 1In Sk, let I‘xa, I‘xb,

14



I'' be unit minimal such that a(Fxf I;b) - “(Fﬂ; I;c) = ¢/4 and

xc

a(l' , T ) = ¢/2. Define
xa xc

o
1

= AT (s). T, (s)),

o
i
]

d(r (£, T (£)),

¢, = d(s), n(t)), and

o]
]

’ d(r (s), T (£)).
xa 1 xc i
By T2 and the triangle inequality,
c <=8 +b +d =¢ +(t -3) +d.
1 1 i i i 1 i
Lemma 12 implies that if § > 0, then for all sufficiently
large 1,
* -
1 § < d(p, ﬁi(ti) / t:is (s1 + di) / t:1
& ti - s, < S-ti + d1 < 6-(51 + (t1 - si)) + di
@ (ti - si) / s, S (5 + di/si) / (1 - &),
Combining these inequalities we obtain }}Em (c; - ci) / s, 2 0.
From * we obtain that }ggm si/ti = 1. By Lemma 3,
cos af ) = lim (s2 + 2 cz) / 2s t
& i->® 1 i i 11
2 2 , 2 ,2 2
= lim [(si +t - ) + (ci ci)] / 251t1
= cos(e/2) + }}Qm (c1 + ci)(c; - ci) / 251ti
= cos{e/2),
since };Ew c’i/ti is bounded. From the triangle inequality we
have, for all sufficiently large 1, a(ai, ﬂi) < €, a

contradiction.

15



Proposition 15. Suppose B(p, R) is a geodesically complete
region of curvature z k, and let Voo Ty € I; be independent.
Then B(p, r) n exp (sp {71, e, 7m}) has dimension m for all

sufficiently small r > 0.

Proof. We first prove that dim B(p, R) = m. let B =
B(O, 1) c sp {71, N ym} = R" and consider the maps
v : B> B(p, r) N exp (sp & FE R 7m}) glven by @r(v) -
expp(rv). We claim that for any ¢ > O there exists an r > 0 such
that e is an e-mapping; 1.e., for all x € B(p, 1),
dia (w?(x)) < €, Let { = cosd(l - 62/2) and choose r, § > 0 by
Lemma 14 for the number ¢/3, and choose r even smaller, if
necessary, to satisfy the conclusion of Lemma 12 for the number
¢/4. Let x € B(p, r) and suppose Vv, W € w:(x), with, say, “v" =<

= el el = el

a(v, v) < ¢/3, a(w, wi) < ¢/3, and both d(exppﬁﬁ), X)) and

[w]. Choose v/, w € B n T such that |

V’I

d(expp(wi), x)) are < min (§|v|/2, er/8). By Lemma 14 and the
triangle inequality, a(v, w) < {. On the other hand, we have by
Lemma 12 and the triangle inequality,
”v" - "w” =< (c/é)"v” + (d(expp(vi), x)) + d(expp(wi), X)) /¢
< e/2.

We now apply the triangle inequality to the points v, (|w|/|v|)v,
and w to obtain d{v, w) < ¢.

Since B has dimension m and there exist e¢-maps from B onto

B(p, r) for arbitrarily small ¢ > 0, it follows (cf. [Na], IV.5.

16



A) that B(p, r) has dimension =z m.

On the other hand for ¥ < «/JE, the set B = B(0, r) C
sp {11, R 1m} possesses a metric with which it 1Is isometric to
an open ball of radius r in S:. If

K= (veB nT :CVv) = vl
then expp|K is surjective onto B(p, r) and distance decreasing by
T2. Since K is a closed subset of B°, K has Hausdorff dimension
< m, and since a distance decreasing map cannot increase

Hausdorff dimension, dim B{(p, r) =< m.

Corollary 16. If X is geodesically complete, the following
are equivalent:

a) X has dimension n < «,

b) at one point p € X, Sp is precompact, with dim fp = n,

c) at every point g € X, dim T = n.
P

Proof. By Proposition 15, we need only show that the

mapping q —> dim Tq is uppersemlicontinuous. Let (11, s Y ) E
m

Sq be independent. If R > 0 is such that Ti“DR] is minimal

for all i, then by Lemma 10, for all z sufficiently close to q,

if a is minimal from =z to 71(R), then {al, ..., a} 1is

m

independent in Tz, and it follows that dim T = dim T .
z q
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Lemma 17. Let B = B(p, r) be a geodesically complete region
of curvature z k, ¥ be strictly minimal in B from x to 2z, and xj,
Yy € B with x, —-> x. If @, is minimal from X, to z and ﬂj is
minimal from x‘j to yJ then ¢ = .};Ew a(aj, '6_1) exists if and only
if L = j’_{gzm [d(z, xj) - d(z, yJ)] / d(xd, yj) exists. If L and ¢

exist, then L = sin (n/2 - ¢).

Proof. Let q lie on an extension v of v as a minimal curve

past x, and define A13. - d(xj, z), A = d(xJ, q), B = d(yj, zy,

23 13

sz - d(yd, q), and C.j - d(xj, yj). We relabel a.-l as an’ let

a_ be minimal from x to q, ¢.  be minimal from y to z and ¢

23 3 13 3 23

be minimal from y to q. Since v is minimal, lim a(a , a ) =
3 j-> 1 25

n, and Tl and Lemma 11 imply, for i = 1, 2, and *i =

(1 - 2%+ 1.

v

}:_LTajanf (Aid - Bid) / CJ }j.[)l‘loianf sin (n/2 - a(aid, ﬁd))
= gin (}:I'E‘},“f a(a.ij, BJ) - n/2)
= -sin (/2 - }!.l;loianf a(aqd, ﬂj)).
z -};@gup (A‘,iJ - B*ij) / CJ),
since by Tl and Lemma 11,
lininf a(a,,, B) = ©/2 - sin'l(};ggup (A, - B/ C).

By a similar argument, we obtailn

}!.[Bsup (Aij - Bij) / C:I -}}E\uiénf (Bij - Aij) / Cj

A

-};;Euiénf sin (n/2 - a(g'ij, ﬁj))

-sin (lmgnf a(s, , B) - 7/2)

1A

-lininf (A, - B, ) / C).

18



In particular, {(Aij - Bid) / Cj} is a bounded. If L =
}1.1;10 (Al‘j - Blj) / C.j exists, then L' = ?j.:l.I;lm (AZJ - BZJ) / C‘j

also exists, and L’ = -1, with
-1
‘]j.i.rfoianf a(ald, ,Bj) 2 x/2 - sin (L)
- n/2 + sin Y(L")
z2m - }ygaianf a(azj, ﬂj)
- }}Iggup (- cx(azj. ﬁd))
= 11 , .
Timgup °(°‘1.~1 ﬁj))
On the other hand, 1f ¢ = lim a(x , B ) exists, and the
j->® 13 3
above computation 1s applied to any convergent subsequences of
l(Aij - Bij) / CJ}, i - 1, 2, then the 1limit 1is always
sin (/2 - ). Since [(Ai.j - Bij) / CJ} is bounded, 1t follows
that L exlsts and has the required wvalue,
Proof of Theorem 1. Suppose dim X = n, let p € X be
arbltrary, and LEREEE R e TP be a basis for Tp. Choose R > O

small enough that 71‘ is strictly minimal for all i, and

[-R,R}
B(p, 3R) is a region of curvature > k. Define u : X —> R" by
ui(x) = d(x, zl), where z, = -11(R) (cf. [Bel). We will show
first that u 1s injective, and hence a homeomorphism, near p,.
Suppose, to the contrary, there exist points xj, Yy —> p in B
such that u(xd) - u(yj). Let r;j be minimal from XJ to yj, and
713 be minimal from xJ to z, . By Lemma 17, }1_.9@ a(ryd, 113) - x/2
for all i, By Lemma 10, if j is large, ’7_1 ¢ sp {713, ceey Y )

nj

but Lemma 10 and Corollary 16 alsoc imply sp {-ylj, cees 'ynJ} -

T , a contradiction.
b 4
3
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let B = B(0, R) ¢ T and define functions ¢, ¥ : B > R” by
P
p(v) = u(eXPp(V)) - u(p), and

pv) = (v - Ry |7

o B S A OF

Since R" can be identified with its own tangent space,
Invariance of Domain and the above argument that u 1is a
homeomorphism imply  that, for small r, ¢|Bw,r) is =a
homeomorphism onto a nelghborhood of 0 in R". Let S(0, ¢) denote
the sphere of radius ¢ > 0 in R", and P, R” \ {0} —> S(0, €) be

the radial projection. Then

we -Pp, ° ¢|sw,e) : S(0, €)Y = S(0, ¢€)
is defined and has degree * 1 for small e¢. On the other hand,
Lemma 13 implies that, for small e, wq(O) N B(O, 2¢) = {0}, and

the map

P, P, ° QOIS(U'E) : 8(0, €) —> 8(0, ¢)
is defined. If we suppose @(B(0, 2¢)) contains no neighborhood
of 0, 0 must be a topological boundary point of ¢(B(0, €¢)). But
then P, has a continuous extension over B(O, e€) (cf. [HW], p.
96), and so deg(¢€) = 0. Therefore, to obtain a contradiction we
need only show that for gmall ¢ > O, ?, and ¢E are homotopic,
Choose 6§ > 0 such that for all v € T;, there 1s some T, with
fa(v, 11) - n/2] > 6. By Lemma 11 (with ¢ = n/2 - §) and T2,
there exists a p > 0 such that for any v € Sp' € < p, and 1 as

1/2
/ are elther both <

above, d(expp(ev), 7,(R)) and ev - (R)-yi”
R - ¢ or both > R + ¢, where { = (¢/2):s51n §. Since w(E(O, €))

and ¢(E(0, €)) are both bounded, we obtain that a(¢e(ev), ¢e(ev))

20



<= x - v, for some v > O, Since Sp is dense in Ep, the same
inequality holds on §P, and ®, and ¢€ are homotopic. This
completes the proof that X 1s a manifold. The remainder of
Theorem 1 follows from the discussion of the tangent space at the

beginning of the paper and Proposition 7.

Remark 18. If an almost Rlemannian space X 1Is locally
convex in the sense that each point 1s contained In a strictly
convex ball ([Pl]), then if we let TX be the set X x R" and
identify p x X with Tp, TX can be glven the structure of a c®
vector bundle as follows: let = : TX -> X be the projection. For
any p € X, let B(p, R) be strictly convex and small enough that
it is contained in a region of curvature = k and homeomorphic to
an open subset of R". let Yoo Y, € Tp be a basis for T;;

then by strict convexity « |

is strictly minimal for all 1i.
i (0,R)

By Lemma 10 we can choose r > 0 small enough that for all q €
B(p, ), 1if 1? is minimal from q to 71(R) then 7?, ey 7: lie in
B(p, R) and form a basis for Tq. We define

© : n (B(p, T)) = B(p, 1) X T =B(p, r) X &'

by @} C17? ) = (q, ) civi), and obtain a vector bundle atlas for

TX.

Example 19. The "squashed sphere," Q, due to K. Grove and
P. Petersen, 1is obtained as a 1limit of Rlemannian manifolds of
positive curvature by flattening the upper and lower hemispheres

of Sz, while allowing curvature along the equator to go to
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infinity. Q may also be obtalned by gluing together flat disks
along their boundaries. Q 1s easily verified to be almost
Riemannian., If p € Q lies on the interior of either disk, Tp -
R® and expp is an 1sometry on B(0O, r) for small r. If p lies on
the equator, T can be identified with R\ {(t, 0) : t = 0);
i.e., Sp is s' minus two antipodal points. The missing peoints
correspond to the two "directlons" of the equator, which is not a
geodeslc (but is a limit of geodesics). Points along the equator
are joined by pairs of minimal curves, Euclidean segments
crossing each disk. The space X = Q X s' can be given a natural
"product" inner metric so that geodeslics are "products" of
geodesics in Q and s'. If p € Q is on the equator, then at x =
(p, z) € X, Tp consists R® with two coplanar open half-planes
removed. The cut locus map C is not continuous at the two points

in Sp corresponding to the $'-directions.
I would like to thank Adam Parusinskl for his interest in,

and several useful conversations about, the results in this

paper.
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Addendum

Proof of existence in Lemma 4. Since Sp is dense in Sp, we
can assume ;1 -, S Sp for all i. The case a, = ® is simply
geodesic completeness; assume now that @, < m. Let ", € Sp be
such that a(nl, nh) = x; then a = a(r;a, n") > 0. By taking

successive approximations we can reduce to the case a, - a =

a/2; in other words, given any ¢ > 0, we need only find some y €

S such that

p
jee(y, rpz) - a/2] < € and
laCy, n,) - a/2] < e.

Let B : [0, 1] —> B be minimal from n&(2'1> to r)z(2-i), q, =

B1(1/2), and 7, be minimal from p to q,- Choose T > 0 small

enough that ;71|[OT n | together form a minimal curve

and
] 4'(0,T)

and let a be minimal from q = nl(T) to q,- let v, v, v, v

1 2 3 4

be unit minimal curves in Sk such that a(ui, Vd) - a(ni, '73) for
all i, j = 3, and a(uz, Va) - a(ua, u‘) - a/2. Finally, let
¢, : [0, 1] —> s be minimal from v4(2-i) to yz(z'*). By
-1 . -1
definition of the angle, H‘Elm 2 -L(ﬁi) - ]i.'.l_l:].lw 2 .L(gi) -
2-sin(a/2), and Tl 1implies }y;laionf a(,Bi, r)“) = Iilgr:gm a((i, Ue.)'

Therefore, Lemma 2 and Tl applied to the wedge (77“. ﬂiI[O 112])

implies limsup L(v) s lim_ d(v,(0), ¢ (1/2)). On the other
hand, Lemma 2 and the definition of curvature = k (applied

to the wedge (r;“, ﬁi)) implies that }:I.Enjanf L(ai) =



};Em d(vl(T), §i(1/2)). These last inequalities Iimply (via the
elementary geometry of Sx) that }gggnf a("1' 11) = a(ul, us) -
m - a/2. It now follows that }gggup a(n“, 71) < a/2. By a
similar argument one can show }%TEUP a(nz, 71) < a/2. From the
triangle inequality we get }}@m a(nz, 71) - }ggwa(nﬁ, 7i) = a/2,

and the proof of existence w is complete.

Correction. The existence part of the proof of Lemma 5 is

contained in the above proof, not in [P1l].
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