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Almost Riemannian Spaces

by

Conrad Plaut

A complete metric space (X, d) is called almose Riemannian

if X is finite dimensional and d is a geodesically cornplete inner

metric of (metric) curvature locally bounded below.

result is the following:

Gur main

Theorem 1. If (X, d) is almost Riemannian, then X is a

eopological manifold. For each p E X there exist an

n-dimensional vector space T (n
p

dirn X) with inner product

<. , .>.. a function exp
p p

T -> X which is continuous in a
p

neighborhood of 0;

fo11owing properties:

and a dense subset T of T, having ehe
p p

a) if v E T , then tv E T for all t E R,
p p

b) the restriction exp : T -> X is surJective,
p p

c) the correspondence v <-> 1 (t)
v

exp (tv) is a one-to-one
p

correspondence between unit vectors in (T, <','» and unit
p p

geodesics starting at p.

Exp need not be locally one-to-one (so there may not be
p

"normal coordinates"), but very short geodesics are lIalmost

minimal" in the sense that the ratio of their length to the

distance between p and their endpoint is uniform1y close to 1

(Lemma 12). In particular, there are not arbitrari1y short

geodesie loops starting at p.



Theorem 1 represents the last "manifold theorem ll having as

its hypothesis only finite dimensionality and some combination of

the three fundamental metric conditions, 1) geodesie

completeness, 2) curvature locally bounded below, and 3)

curvature locally bounded above. In [Be] and [NI] (cf. also

[ABN]) it is shown that aspace satisfying 1), 2), and 3) is a

smooth manifold with a C1,a Riemannian metric. This theorem

leads to a short, entirely lI metric" proof of the Convergence

Theorem for Riemannian manifolds ([P], [GW]). The main theorem

of [PI] is that aspace satisfying 2) and 3) is a smooth manifold

with boundary, wi th failure of geodesie completeness occuring

precisely on the boundary. Theorem 1 covers the case of 1) and

2), and examples show that there are finite dimensional

non-manifolds satisfying any other combination of the above

properties.

Theorem 1 1s also a little progress toward solving the

conjecture that limits in the Grove-Petersen·Wu class of

Riemannian manifolds ([ GPWJ) are topological manifo1ds. These

spaces have curvature bounded below, but are not geodesically

to cons idering

where geodesie

Theorem 1 reduces the problemcomp1ete;

neighborhoods of "geodesie terminals" (points

comp1eteness fai1s).

Fina11y, Theorem 1 gives rise to the question of whether

almost Riemannian spaces admi t smooth struceures. If some do

not, then one must ask how large the class of topo1ogical
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manifolds admitting an almost Riemannian structure is, and

whether the structure produced in Theorem I has useful

topological applications.

For basic definitions, see [PI] or [R]. We confine

ourselves to a few background comments. Since a finite

dimensional, metrically complete metric space is locally compact.

we will assume, for the remainder of this paper, that (X, d) is a

metrically complete, locally compact inner metric space having

curvature locally bounded below. Then every pair of points in X

i5 j oined by a minimal curve and there is a notion of angle

between geodesics. We denote the angle between geodesics ~, ß by

a(~, ß). Every sufficiently small (open) ball B - B(x, r) is a

region of curvature ~ k for some k, in which the following hold:

Tl. For any geodesic triangle (~ab' ~ ~) in B such
ac bc

that ~ lilld ~ are minimal and L(~ ) :S 'Tr/./k, there exists a
ab bc llC

representative trilillgle (r ,
AB

r , r) in S ( i . e., w i th
Ar; Be k

same side lengths), snd a((r ,
AB

:S a(~ , ~ ).
ab ac

T2. For any geodesic wedge (~ , ~ ) in B such that ~"b is
ab AC ..

minimal and L(~ ) :S ~/jk, there is a representative wedge
AC

(rAB' r AC) in Sk (i. e., with S8me side lengths 8nd angle), 8nd

d(B, G) ~ d(b, c).

The above comparison5 for minimal wedges and triangles

follow easily from the definition of bounded curvature (cf.
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[PI]); the more general Tl and T2 can then be proved as in the

final step in the proof of Toponogov's Theorem ([CE]).

The spBce of directions at a point p E X is the metric space

(S , Q) of all unit geodesics starting at p.
p

If S has at most
p

two points, it is easy to show that X is homeomorphic to an

interval or a circle. Some of the lemmas below fail for this

necessary, to have at least three elements.

trivial case, and to avoid special exceptions in the statements,

the direction space at each point will be assumed, when

The tangent space T
p

+at a point p E X is the metric space obtained from S x R by
p

identifying all points of the form (1, 0) (and denoting the

resulting point by 0) with the following metric, where the class

of (1, t) in the identification space is denoted t1:

2 2 1/2
eS ( t1, s ß) - ( t + s - 2s t . co S Q ( "y, ß» .

The exponential mBp i5 defined by exp (S'1) - 1(S); if X is
p

geodesically comp1ete, then exp is defined on all of T , and is,
p p

by T2, continuous on any B(O, r) such that exp (B(O, r»
p

is

contained in a region of curvature ~ k. Exp then has a
p

continuous extension to the metric completion T of T,
p p

Furthermore, exp 1s (locally) a radial isometry, and preserves
p

ehe angle between radial geodesics (i. e., starting at p). The

cut radius msp C : S -> R+ U ~ is defined by
p

C(1) - 5UP (t : 11 is minimal),
CO,tl

C 1s clearly upper semicontinuous.

C(v/llvll) .

4

Für v E T, we 1e t C(v) 
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Let S be the metric completion of S . then elements of T,
p p p

- +
can clearly be written in the form t1', where l' ES, t ER, and

p

01' - O. For any 1'1' l'2 ' 1'3 E S , 1'2 is said to be between "Y and
p 1

1'3 if a( l' , l'3) - a( l' , l'2) + a(1'2' 1 ). For any distinct
1 1 3

1'1,1'2 E Sp' the span sp (1'1' 1 2) " Tpof 1'1' 1'2 is the set of all

t1' such that one of 1
1

, 1
2

, l' is between the other two. In

general, given distinct l' , ... , l' ES, k > 1,
1 k p

the span of

is the sma11est subset sp {~
/1' ... , C T

p

containing l' , ... , l' such that if a, l' E sp {1'1' "', 1'}, then
1 k k

sp {a, 1'} C sp {1'1' ... I 1'k}' The elements 11, ... , 1'k are said

to be independent if l' does not 1ie in sp {1', ... , 1'} for
j+1 1 j

any j. The notions of angle (not as ametrie!), betweeness,

etc., can be generalized to the space T in the obvious way;
p

e.g. , for

. . . ,

t ,
1

l' } .
k

... , t > 0,
k

sp ... , t l' }
k k

Finally, a geodesie terminal i5 a point in X beyond which

some geodesie cannot be extended. An open subset U of X is

geodesicBlly complete if U has no geodesie terminals.
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Lemma 2. Let e > 0 and k be arbitrary. Then

a) ehere exists a number 6 > 0 such that if -y , "I are
Xl!. xb

minimal curves in S of length L ~ 1 with dCa, b) I L < 5, then
k

a ( -y , "I ) ::s e, and
Xl!. xb

b) there exists S 11 > 0 such ths t if 'Y , "I
XII xb

are minimal

curves in S of 1ength L :5 1 with a(-y , "I
xb

) :5:: 11, then
k xa

dCa, b) I L < e.

Proof. For a ~ x, let ~(a) be the smallest number such that

if d(a, b) / d(a, x) - ~(a), Q('Y , -y) - e.
xe xb

The map 1J' i s

easily seen to be continuous (in fact dependent only on

d(x, a)) and positive, with 1im ~(a) - 2'sin(e/2), and so has
e - >x

some positive minimum 5 on B(x, 1).

the proof of part b) is similar.

This proves part a), and

Lemma 3. Suppose B - B(p, r) is a region of curvature ~ k

in X. Let (-y) and (,,) be Cauchy sequences in S .
i i P

For any

positive s -> 0 and t -> 0 such thst s S C(-Yi) , t s C("i)'i i i i

and c :S s It ~ c for some Cl' c E (0, co), if d
1 1 i 2 2 i

d(-y(s), "i(ti )), then
1 i

1im a(-y , "1) 1im
-1 2 2

d
2

) / 2s t } .- cas [(s + t -
i->Q) 1 1->co 1 1 i i i

Proof. For any positive S :$ C(')') and t ::s T(" ), define
1 i

d (s, t) - d(-y (s), " (t)) and
i i 1

l"I'i(S' t) lCIl COs-
1

[(s2 + t
2

- di(s, t))2) / 2st].

It ~ i5 continuously extended to (0, 0), then ~ (0, 0)
i i
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0(1 , ~). We have cos ~ (s, t) - cos ~ (s, t) -
1 1 j 1

[(d (S, t) - d (S, t»(d (5, t) + d (S, t») I 2st.
1 j 1 j

Assuming 0 < Cl ~ s/t ~ C
2

< 00, we have (d1(9, t) - dj(s, t» I s

S d(11(S), 1 j (S» I 9 + d(~1(t), ~j(t» I s

S d(11(S), 1 j (5» I s + d(~1(t), ~j(t» I cit.

By Lemma 2.b) and T2, the last quantity is arbitrarily small for

sufficiently large i and j, independent of sand t. By a similar

argument we obtain that (d (s, t) + d (s, t» I t i5 bounded, and
1 j

conc1ude that for any r > 0 there exists an m such that for all

i, j > m, I~ (s, t) - ~ (9, t)1 S r/2. If m is also chosen 1arge
1 j

enough that I~ (0, 0) - 1im 0(1, ~1)1 S r/2 for all j > m, thenj 1->00 1

for s S C(1j ), t :5 C('1 j ) ,

the lemma foliows.

I~j(s, t) - 1im 0(1, '1 ) I :5 r, and1->00 1 i

o

Notation. For results 4-8, 10·15, and 17 below, let B -

B(p, r) be a geodesically complete region of curvature ~ k in X.

Lemma 4. For every distinct E s
p

and o
3

E

ehere exises B unique '1 E S such ehBt '1
2

1s
3 P

beeween ~ and ~ , and 0('1 , '1) - 0 •
1 3 3 I 3

Proof. For the proof of the existence, see the Addendum at

the end of this paper.
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- a 3
~ a .

1
Suppose, contrary to

uniqueness, there exist sequences {'"'( } and {'"'( } in S of uni t
11 2i P

minimal curves such that a('"'( , '"'( ) > S > 0 for all i, and, for
11 21

k - I, 2,

la('72 , '"'( ki) al
-i

snd- :S 2 ,
2

la('7
1

, '"'(kl) al
-i

- :5 2 ,
3

Let '1 li , '1 2i
E S such that '1 11

-> '1
1

and f'J 2i
-> '12 ' In the

p

plane, choose points X, A, B, and T such that A, B, and T are

co11inear, XA - 1, XB - 1, a(XA, XB) - a and a(XB, XT) - a ,
1 2

Choose t -> 0 such that t :S min {C("V )
i i'11 '

r
i

and s - t· XB / XT :S C( TJ ).i 1 2i Let ß ,
1

r
li

, and" be a minimal curves from n (s):. 21 'f 2i 1

'"'(11(ti ) , and '"'( (t), respectively. By Lemma 3 for k - 1, 2 and
2i i

any ). > 0 there exists a j such that for all i > j ,

L(ß ) + L(r ) :S (1+),) ·d(,] (r), '"'(kl(ti»; it follows that the
i ki 11 i

angle of a wedge W in S representing the wedge formed by ß and
i K i

,. tends to 1l'.:. ki Tl then implies that lim acß, r ) - 1[',
i - >co i kl On

the other hand, if ß' i5 a minimal curve beginning at f'J (5) and
1 21 1

extending ß as a geodesie beyond '] (s), then 1im a(ß', r~1) -1 21 1 1- >co 1 ...

o. This, in turn, imp1ies 1im Q(r , r ) - O.1->co 11 21
Let Z Z be

li' 21

unit minimal curves in S, with common endpoint y and other
K

endpoints z and z , respective1y, such that L(Z ) - L(r ),
11 21 11 li

L(Z21) - L(r 21)' and Q(Z11' Z21) - Q(r 11' r21) . Then

o - t!~co d(Z11' Z2i) / L(Zli)

~ t!~co d ('"'(11 ( t
i
), '"'(21 (t1» / L (r li)
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l!t;lco d(1
11

(t
i
L "f

2i
(t

i
»·(XT/BT) / t

i
,

This last limit being 0 implies that 11m a(..... , ""( ) - 0, a
i - >co '11 21

contradict1on.

Lemma 5. For '1 1 ' "3 E S and Q: E [G, Q:(;j , "3) ] , there
p 1 1

exists an
"2

E S such that '1 2
is between 1}1 and 1}3' and

p

a (1) , 1}2) - Q:. Furthermore, if a(,., , 1}3) < 11'", then
"'2

is the
1 1 1

unique such element.

Proof. The existence part of the proof is again contained

in the proof of Lemma 3.4 in [PI].

- -
the element '7 E S such that Q:('" I '7)

4 p 1 4

If 12(;], 1}) < 11'", then
1 3

11'" is dis tinc t from ;; ,
3

and uniqueness follows from uniqueness in Lemma 4 (applied to '7
4

and 1) to obtain 1} ).
3 2

Lemma 6, Let "Y 1 '
..... , 1 4

E S be distinct and, setting
p

Q: a("Y , "Y j) , suppose Q: + 12 a < 11'". Then there exist
ij i 12 23 13

unit vectors v E R3
such that a(v , v ) - 12

ij'
and a choice of

i i j

v any two of v , v , v determines the remaining v .
4 123 i

Proof. The lemma is trivial if ""(4 E sp {"Y
1

' ""(2}; assurne the

contrary. There exist X E R3
, 0 such that X, X

2
, and X are

i 1 3

colinear, with Q:(OX , OX ) 12
12 '

Q:(OX , OX ) 12
23 '1 2 2 3

a(OX , OX ) a
14 '

and a(OX , OX ) - 0: The lemma will be
1 4 3 4 34

Proved if it 1s shown that Q: - o:(OX , OX)· the proof begins
24 2 4'

with the 1nequality Q ~ a(OX , OX).
24 2 4

Choose "Y E S such that "Y -> "Y
i

'
ij P ij

9
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positive t -> 0 such that s Iit ·X 11 :S C(-y ). Let
j ij j i ij

ßj [0, 1] -> B be minimal from x )' ij (s ij) to X
ik ij kj

)'kj (skj) , let 'Y;j be minimal from x'
j

andp to ß13 (a12/a: 13 ) ,2j

let ß,j be minimal from x to x' To prove the above
12 1j 2j

inequality, it suffices, by Lemma 3 and the uniqueness of Lemma

4, to show that 1im Q(Q' ,
2j ~ Q(OX, OX );

2 4
i.e. ,

lim d(x' x) / t ~ X X. Let T denote the representative in2j' 4j j 2 4 j

S of the triangle formed by pj , ßj , and ßj. By Lemma 3 and
K 13 14 34

the definition of angle (app1ied to Q(X X, X X», the angle in
1 3 1 4 I

Tj corresponding to Q(ß~3' tends to a (X X , X X ) .
1 3 1 4

In

particular, T could be chosen so that the sides corresponding to
j

pj , and those corresponding to ßj , both are Cauchy sequences.
13 14

Lemma 3 now implies that, if D is the distance in S from the
j K

point corresponding to x' to that corresponding to x4j ,2j

lim D / t - XX. But by the definition of curvature ~ k,j j 2 4

1im d(x' x4j ) / t ~ lim D / t .2j' j j j

To complete the proof of the lemma, note that the above

argument can be applied to ~'
' 1 '

)" and )' , where a(~', 'Y) -
3 4 i i

~, for i-I, 2, 3. One then obtains that both a(-y', )') and
2 4

Q(-Y2' '1
4

) must be ~ their Euclidean counterparts. Since

Q('Y; J ~4) + Q(~2' 1
4

) - 1t', this is only possible if both equal

their Euclidean counterparts.

elementary linear algebra.

The last part of the lemma is

Lemmas 4, 5, and 6 correspond exactly to Lemmas 3.5, 3.4, and

3.6 in [PI]; the proof of the next proposition i5 similar to that
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of Proposition 3.7, [PI].

Proposition 7. Jf "" "'(n
E S

p
are independent I chen

sp ("'( , .. ", "'() is isometric to Rn.
1 n

"'(} will now be identified with Rn.
n

Any

infinite independent subset of S has no convergent subsequence;
p

in other words:

Coro11ary 8.

Rn for some n.

Jf S is preeomp8ct, chen T is isometrie to
p p

Definition 9. A minimal curve is ca11ed strictly minimal if

it is the unique minimal curve between its endpoints.

Lemma 10. Let b, e E B such th8t 'Y and "'( are s Crict1y
pb pe

minimal. Then for any E > 0 there exists a 5 > 0 sueh that for

811 a E B (p, 5) and minimal eurves "'( and "'( ,
ab 8e

Proof. Let a -> p and suppose "'( and ~ are minimal curves
i i i

from a to band c, respectively; we will show first that
i

1 im Q ("'( I ~) ~ Q ( "'( , "'( ).
i - >co i i pb pe

Let r > O. Choose T > 0 so that

if "'( ,"'( are minimal curves in S with d(P, B)
~ ~ k d(P I C) - T

and d(B, C) - d("'( (T), "'( (T», then Q("'( , "'( ) - Q( "'(PB' "'(~) S
pb po pb po

r. Since
"'(hp

and "'( are strict1y minimal, 11m a("'(, "'(bP)ep i->CO i

11m Q(~ , "'( ) O· by T2, 1im d("'( (T), "'(i (T) ),
i->CO i ep i->CO pb

11



1im d()' (T), '1
1

(T» - O. If C is the point closest to C in S
1->1Xl po 1 k

such that d(P, C ) - T and d(B, C ) - d()' (T), '1
1
(T)), then

1 1 1

app1ying Tl and Lemma 2, we obtain 1im o.()' , '1) ~
1->1Xl 1

1im 0. ()' , )'PC ) - o.()' , )'pc) ~ o.()' , )' ) - r· Since r was
1 - >CXI PB PB pb pe

1

arbitrary, the first inequa1ity follows.

Let d be a point on the geodesic extension of)' beyond p
bp

such that)' is strict1y minimal. If ß is a minimal curve from
~ 1

a to d, and 11 is minimal starting at a such that o.()' , 11) -
1 1 1 1 1

~, then by the above argument, 1im 0. ()', ß)
1 - >co 1 1

11'", henee

lim a(ß, 11) - O. Also by the above argwnent, 1im a(ß, '7) ~
1->1Xl 1 1 l->CXI 1 i

o.()' , )' )
pd pe

7f-a()' ,)').
pb pe

By the triangle inequality,

a()' ,
1

:5 1f a( '1 ,
i

+ o.(ß,
i

11 ),
i

and we obtain the

desired inequality by passing to the limit.

Lemma 11. Let A, B, G ES, with A, G distinct,
1 i i k i i

lim d(A, G) - 0, and d(A, B) ~ D for some D > 0 and all i.
1->CXI 1 1 1 1

Suppose)' is minimal from A to B and ß is minimal from A to
1 i 1 1 1

C. Then rp lim o.()' , ß
1

) exists if and only if L
1 1->co 1

1im [dCA , B ) - d(B C )] / dCA , C ) exists. Jf cp and L
1->1Xl 1 1 1 ' 1 1 1

exist, L - sin (1f/2 - cp).

Proof. If d(A, B) - d(B , C) for all i, 1im o:()', ß) -
i 1 1 1 i - >co i i

1f/2 fol1ows from the Cosine Laws for S .
k

In the general ease,

let a' be unit minimal of length max {d(A, B), d(A, C)}
1 1 i i 1

starting at B
1

and eontaining the point C .
i'

let D
i

a' (d(A , B ») and 0: be the segment of 0.' from D to B. If D -
i i i 1 1 i 1 1

12



A for all large i, then Q and 'Y coincide, and the lemma is
i 1 1

trivial. Otherwise. applying the above special case we obtain

that if is minimal from D
i

to A,
i

lim Q(!:.
1->00 i

lim Q(!:. 'Y ) - ~/2. The Lemma now follows from the eosine Laws
1->00 i i

and the definition of angle.

Lemma 12. Suppose B(p, r) is a geodesically complete region

of curvature ~ k, and let 'Y, "" 'Y E T be independent. Then
1 k P

for every smal1 e > 0 there exists a p > 0 such that for all 'Y E

Proof. Let 6 - sin-
I
(l - e/2), Q ,

1
E S be 6 -dense

p

in sp {'Y, •••• 'Y } n S , and R > 0 be sroa1l enough that Q I
1 k p i (O,R]

1s strictly minimal for all i. Let r be minimal in S of
ab k

1ength Rand r be unit minimal, with Q(r , r ) - O. Then by
ac ab 8C

Lemma 11, 1im (R - d(b, r (t» / t - 1 - e/2; let p > 0 be such
t - >0 ac

tha t f 0 r all t < P. (R - d (b , r (t) ) / t ~ 1- e .
ao

For any 'Y E

... , 'Y } n S , there exists some Q such that Q('Y, Q) <
k P i i

5. By the triangle inequality, d(p, 'Y(t» ~ R - d(~(t), Q (R»,
i

and the lemma fol1ows from T2.

13



Lemma 13. Suppose B(p, r) 15 a geodes1cslly complete region

oE curvature ~ k, and let ~, ... , ~ E T be independent. Then
1 k p

there exists an L > 0 such that

exp-1(p) n B(O, L) n sp (1, ... , ~) - (O).
P 1 k

In particulsr, there are not arbitrarily small geodesic loops

st p in exp (sp (1 , ... , ~ ) n S ) .
P 1 k p

Proof. By Lemma 12 there exists an L > ° such that for all

~ E sp {~l' ••• I ~k} n S and t < L, d(p, ~(t)) / t > 1/2. Now
p

there exists
-1

{~1 ' ~k} withsuppose some v E exp (p) n sp ... ,
p

°< [lvII - L' < L. Then there are v E T with v -> v. But then
1 p i

the continuity of the exponential map implies that

d(exp (L'·v), p) -> 0, a contradiction.
p i

Lemma 14. Suppose B(p, r) is a geodesically compleCe region

oE curvature ~ k, and let ~, "', ~ E T be independent. Then
1 k P

for any € > 0 ehere ex1st 5, R > 0 such that if 0:, ß E

sp (~, ... , l) n S and d(o:(t), ß(s)) / s < 5 for some 0 < s <
1 k P

t < R, then 0:(0:, ß) < €.

ProoE. Suppose, to the contrary I there exist

and, letting d
i

sp {'V ..." } n Sand 0 < s < t < 2-1
, with Cl (a , ß) > €

'1' ""'k p 1 1 i i

d(a/s
1
), ßi(ti)), di / si< 2-

i
. Choosing a

subsequence if necessary, we can assume that both {a } and {ß }
i i

are Cauchy. Let r, '1 E S be such that for all sufficiently
p

large i, a(a , r) < €/4 and a(ß , ,.,) < €/4. In Sk' let r , r ,
1 i XI!. xb

14



r be unit minimal such that a:(r , f ) - a:(r , r ) - e/4 and
xc XII. xb xb xc

a:(f , r ) - e/2. Define
xa xc

a' - der (s), r (s)),
i XII. i xb i

b' - der (t), r (t )),
i xb i xo i

c -d(r(s), 'l(t
i
)), and

i i

c' - der (s), r (t)).
i XII. i xc i

By T2 and the trlangle inequa1ity,

c S a' + b' + d :S c' + (t . s ) + d .
i i i i i i i i

Lemma 12 implies that if 6 > 0, then for all sufficient1y

large i,

* 1 • 5 :S d(p, ß (t ) / t:S (s + d ) / t
i i i i i i

~ t . s :S 5· t + d :S 5· (s + (t - s )) + d
i i i i i i i i

~ ( t • s ) / s :S (5 + d
i
/ si) / (1 - 5).

i i i

Combining these inequa1ities we obtain 1im (c' - ci) / Si ~ O.
i->co i

From * we obtain that 1im s /t - 1. By Lemma 3,
i - >co i i

COS Q({", 1]) - 1im
2 2 c2

) / 2s t(s + t -i->co i i i i i

- 1im
2 2 C' 2) (c' 2 c2

)] / 2s t[es + t • + .
i->co i i i i i i i

- cos ( f /2) + 1 im ( c' + c ) (c' - c ) / 2s t
i - ><0 i i i i i i

~ cos(e/2),

since 1im c' /t is bounded.
i - >co i i

From the triangle inequali ty we

have, for all sufficient1y 1arge i, a:(Q ,
i

< ~, a

contradiction.
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Proposition 15. Suppose B(p, R) is a geodesically complete

region of curvature ~ k, and let 1, ... , 1 E T be independent.
1 m p

Then B(p, r) n exp (sp (1
1

,

sufficiently 8mall r > O.

... , 1 )) has dimension m for all
m

Proof. We first prove that dirn B(p, R) ~ m. Let B -

B(0, 1) c sp {1
1

' ... , 1 }
m

R
m

and consider the rnaps

cp
r

B -> B(p, r) n exp (sp {1
1

, ... , 1 }) given by cp (v)
m r

exp (rv). We claim that for any E > ° there exists an r > 0 such
p

that cp is an E·mapping; i.e., for all x E B(p, r),
r

-1 2
Let r - cos (1 - E /2) and choose r, 6 > 0 by

Lemma 14 for the number r /3, and choose r even smaller, if

necessary, to satisfy the conc1usion of Lemma 12 for the nurnber

E/4.

llwll·

Let x E B(p, r) and suppose v, W E cp-1(x) , with, say, llvll :s
r

Choose v', w' E B n T such that Ilv' II - Ilvll, Ilw' 11 - Ilwll,
p

o:(v, o:(w, w) < r /3,
i

and both d(exp (v ), x))
P i

and

d(exp (w), x)) are :s min {Sllvll/2, Er/a}.
p i

By Lemma 14 and the

triangle inequa1ity, o:(v, w) < r. On the other hand, we have by

Lemma 12 and the triangle inequa1ity,

Ilvll - llwll :s (E/4) llvll + (d(exp (v ), x)) + d(exp (w ), x)) / r
p i P i

:S E/2.

We now app1y the triangle inequality to the points v, (1Iwll/llvll)v,

and w to obtain d(v, w) :S E.

Since B has dimension m and there exist E-maps from B onto

B(p, r) for arbitrarily sma!l E > 0, it fo11ows (cf. (Na], IV.5.

16



A) that B(p, r) has dimension ~ m.

On the other hand for r < 1r/./k, the set B' - B(O, r) C

sp {'Y 1 ' ...... " , 'Y } possesses a metrie with whieh it is isometrie to
m

an open ball of radius r in Sm. If
k

K - (v E B' n T
p

C(v) ~ Ilvll)}

then exp I is surjeetive onto B(p, r) and distanee decreasing by
p K

T2. Since K is a closed subset of B', K has Hausdorff dimension

~ rn, and since a distanee deereasing map eannot increase

Hausdorff dimension, dirn B(p, r) ~ m.

Corollary 16. If X 1s geodesically complete, the fol1owing

are equivalent:

a) X has dimension n < ~J

b) at one point p EX, S is precompact, with dim T n ,
p p

c) at every point q E X, dirn T - n.
p

Proof. By Proposition 15, we need only show that the

rnapping q ~> dim T is uppersemicontinuous.
q

Let (-v
, l' ... , )' } E

m

S be independent.
q

If R > ° is such that )' I is minimal
i tO,Rl

for all i, then by Lemma 10, for all z suffieiently e10se to q,

then {a,
1

a}
m

is

independent in T , and it fo11ows that dirn T ~ dirn T .
z z q

17



Lemma 17. Let B - B(p, r) be 8 geodesically complete region

of curvature ~ k, ~ be strictly minimal in B from x to z, and x ,
j

y , E B with x -> x. If a is minimal from x to z and ß is
j j j j j

minimal from x to y then q; - lim a(a, ß) exists if and only
j j j - >co j j

if L - lim [dez, x) - dez, y)] / d(x , y) exists. If Land rp
j - >co j j j j

exist, then L - sin (~/2 - ~).

Proof. Let q lie on an extension l' of 1 as a minimal curve

past x, and define A - d(x, z), A - d(x, q), B - d(y
j

, z),
Ij j 2j j Ij

B - d(y, q), snd C - d(x , y). We relabel a as 0 , let
2j j j j j j Ij

a be minimal from x to q, r be minimal from Y to Z and r
2j j Ij j 2j

be minimal from y to q. Since l' is minimal, lim a(a , a ) -
j j - >co Ij 2j

~, and Tl and Lemma 11 imply, for i

(i - 2)2 + 1.

I, 2, and *i

liminf (A - B ) / C
j - >co ij ij j

since by Tl and Lemma 11,

~ liminf sin (~/2 - a(o , ß »
j - >co ij j

- sin (liminf a(a ß) - ~/2)
j->CO ""ij' j

- -sin (~/2 - liminf a(a ,ß ».
j->CO ""ij j

~ -limsup (A - B ) / C ),
j->CO ""ij ""ij j

liminf a(a , ß ) ~ ~/2 -
j - >co ij j

-1
sin (limsup (A - B ) / C).

j - >co ij ij j

By a similar argument, we obtain

1imsup (A - B ) / C
j - >co ij ij j

- -liminf (B - A ) / c
j - >co ij ij j

::5 -liminf sin (~/2 - a(r , ß»
j - >co :> ij j

- -sin (liminf a(r ,ß
j

) - tr/2)
j->co -ij

::5 -liminf (A B) / C )
j - >co ""ij - ""ij j .

18



In particu1ar, { (A
ij - B ) / c } is a bounded. If L

ij j

1im (A
1j - B

1j
) / c exists, then L' - 1im (A - B ) / C

j-><:O j j - >co 2j 2j j

also exists, and L' - -L, with

1iminf 0(0 , ß
j

) 1r/2
-1

~ sin (L)j-><Xl 1j

~ 1r - 1 iminf 0 (0 , ß )j - ><:0 2j j

- 1imsup (1r - 0(0 , ß»j - ><Xl 2j j

- 1imsup 0(0 , ß ».j - >co 1j j

On the other hand, if rp - 1im 0(01j' ß
j

) exists,j->CO and the

above computation is app1ied to any eonvergent subsequenees of

{(Aij - B
ij

) / c }, i 1, 2, then the limit is a1waysj

sin (1r/2 - cp). Sinee ( (A
ij - Bij) / c } is bounded, it fo110wsj

that L exists and has the required va1ue.

Proof of Theorem 1. Suppose dirn X - n, let p E X be

arbitrary, and 1'1' ... , "( E T be a bas is for T .
n p p

Choose R > 0

smal1 enough that l' I is strietly minimal for all i, and
i [-R, R]

B(p, 3R) is a region of eurvature ~ k. Define u X -> Rn by

Z ), where z - l' (R)
i i i

(cf. [Be]). We will show

first that u i5 inj ee tive, and henee a homeomorphi5rn, near p.

Suppose, to the eontrary, there exist points xj ' Yj -> P in B

such that u(xj ) - u(Yj)' Let '7 j be minimal from xj to Yj ' and

"( be minimal from x to z. By Lemma 17, lim 0('7, "V ) - 1r/2ij j i j - >co j I ij

for all i. By Lemma 10, if j is large, '7
j

fl sp (1'1j' ... , l' );
nj

but Lemma 10 and Corollary 16 also imply sp (1'1j ,

T , a contradietion.
x

j

19
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Let B - B(O, R) c T and define funetions ~, ~
p

~(v) - u(exp (v» - u(p), and
p

n
B -> R by

~(v) ( 11 v - R'1 11
1

/
2

- R , ..., 11 V • R'1 111/
2

- R).
1 n

Sinee Rn ean be identified with its own tangent space,

Invarianee of Domain and the above argument that u is a

homeomorphism imply that, for small r, is a

homeomorphism onto a neighborhood of 0 in Rn. Let S(O, E) denote

the sphere of radius E > 0 in Rn, and p : Rn \ {O} -> S(O, E) be
E

the radial projeetion. Then

~ - p 0 ~ I : S (0, E) -> S (0, €)
E E 5(0,0

is defined and has degree ± 1 for small E. On the other hand,

-1
Lemma 13 implies that, for small E, ~ (0) n B(O, 2E) - {O}, and

the map

qJL - P 0 ~l : S(O, E) -> S(O, E)
" E S(O,E)

is defined. If we suppose rp(B(O, 2E» contains no neighborhood

of 0, 0 must be a topo10gical boundary point of ~(B(O, E». But

then cP E has a continuous extension over B(O, E) (cf. (HW], p.

96), and so deg(cp ) - O. Therefore, to obtain a contradiction we
E

need only show that for sma11 E > 0, qJ and ~ are homotopic.
E f

Choose 6 > 0 such that for all v E T I there is same '1 with
p i

ICl: (v , '1 i ) - 1f/2 I > 6. By Lemma 11 (wi th ~ - 1r/2 - 5 ) and T2,

there exists a p > 0 such that for any v ES, E < P, and i as
p

above I d( exp (EV), '1 (R» and I1 EV - (R) ')' 11
1

/
2

are either both <
p i i

R . r or both > R + r, where r - (e/2)'sin 5. Sinee ~(B(O, e»

and ~(B(O, f» are both bounded, we obtain that a(cp (fV), ~ (EV»
f f

20



=:; 1f - II I f 0 r s ome II > O. 8 ince 8 is dense in 8, the same
p p

inequality holds on 8 I

P
and cp

e
and ~J.

'f'€
are homotopic. This

completes the proof that X is a manifold. The remainder of

Theorem 1 follows from the discussion of the tangent space at the

beginning of the paper and Proposition 7.

Remark 18. If an almost Riemannian space X is locally

convex in the sense that each point is contained in a strictly

convex ball ([ PI] ) I then if we let TX be the set X x Rn and

identify p X X with T I TX can be given the structure of a CO
p

vector bundle aß foliows: let 1f : TX -> X be the projection. For

any p E X, let B(p, R) be strictly convex and small enough that

it is contained in a region of curvature ~ k and horneomorphic to

an open subset of Rn. Let -y1 I • .• , -y E T be a basis for T ;
n p p

then by strict convexity -y 1 is strictly minimal for all i.
i (O,R]

By Lemma 10 we can choose r > 0 small enough that for all q E

B(p, r), if -yq is minimal from q to "Y (R) then
q

"Y
q lie in"Y 1 I

••• Ii i n

B(p, R) and form a basis for T We define
q

-1
r» B(p, r) X T B(p, r) X Rncp 71' (B(p I ->

p

by cp(I ci"Y~ ) - (q, I Ci"Y
i

) I and obtain a vector bundle atlas for

TX.

Example 19. The 11 squashed sphere," Q, due to K. Grove and

P. Petersen, is obtained as a limit of Riemannian manifolds of

positive curvature by flattening the upper and lower hemispheres

of 8
2

, while allowing curvature along the equator to go to

21



infinity. Q mayaiso be obtained by gluing together flat disks

along their boundaries. Q is easily verified to be almost

Riemannian. If P E Q lies on the interior of either disk, T
p

2
Rand exp is an isometry on B(O, r) for small r. If p lies on

p

2
the equator I T can be identified with R \ {(t, 0) t Jd O};

p

i. e., S is SI minus two antipodal points. The missing points
p

correspond to the two "directionsll of the equator, which is not a

geodesic (but is a limit of geodesics). Points along the equator

are joined by pairs of minimal curves, Euclidean segments

crossing each disko
1

The space X - Q x S can be given a natural

o

"product ll inner metric so that geodesics are "products" of

geodesics in Q and SI. If P E Q is on the equator, then at x 

(p, Z) E X, T consists R
3

with two coplanar open half-planes
p

removed. The cut locus wap C is not continuous at the two points

1
in S corresponding to the S -directions.

p

I would like to thank Adam Parusinski for his interest in,

and several useful conversations about, the results in this

paper.
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Addendum

Proof of existence in Lemma 4. Sinee S is dense in S , we
p p

ean assume '1! - '1! E S for all i. The ease Q: - 1'(" is simply
p 3

geodesie eompleteness; assume now that a < 1t', Let '1 4
E S be

3 p

such that a ('1 , '1
4

) - 1'("' then a - a{'1 , '1
4

) > 0. By taking
1

,
3

suceessive approximations we ean reduee to the ease Q: - Q:
3 1

a/2; in other words, given any e > 0, we need only find some ~ E

S such that
p

la{~, '1
2

) - a/21 < e and

!a:{1', '1) . a/21 < e.

Let ß! [0 t 1] B be minimal from '1
4
(2-1

)
-!-> to '1

2
{2 ), q1 -

ß (1/2), and "Y
1

be minimal fram p to q , Choose T > ° small
1 1

enough that " I and" I together form a minimal curve
"I (O,T] -'4 (O,T]

and let a be minimal from q - '1 (T) to q .
1 1 1

Let

be unit minimal eurves in S such that a{v , v) - a{" ") for
k 1 j "1' " j

all i, j "" 3, and a{v , v ) a{v , v ) - a/2. Finally, let
2 3 3 4

r1
[0, 1] -> S be minimal from v (2 -1) -1 Byto v (2 ),

k 4 2

definition of the angle, 1im 2-1
, L{ß ) lim 2-1 .L{r )

i-:>Q) i 1-:>CO !

2'sin{a/2), and Tl implies liminf a{ß ,
i->Q) i

'1
4

) ~ 1 im a ( r , v).
1 - :>co i 4

Therefore, Lemma 2 and Tl applied to the wedge (" ß 1 )
-'4' 1 [0,1/2]

implies limsup L{)') :s lim d{v (O), r (1/2)).
i - :>Q) 1 1 - >Q) 4 1

On the other

hand, Lemma 2 and the definition of eurvature ~ k (applied

to the wedge implies

2"5

that liminf
1->CO

L{a )
1



1im d(v (T), r (1/2».
i - >co 1 i

These last inequa1ities irnp1y (via the

elementary geometry of S) that liminf 0(1] , "'() ~ 0(11, v) -
k i - >co 1 i 1 3

1f - a/2. It now fo1lows that limsup o(n, "V) ::S a/2'/ 'i .i->CO 4
By a

similar argument one can show limsup 0(1] , "'() ~ a/2.
i - >co 2 i

From the

triangle inequality we get lim 0(1], "'() - lim 0(1] , "'() - a/2,
i - >co 2 i i - >co 4 i

and the proof of existence 1f is complete.

Correction. The existence part of the proof of Lemma 5 is

contained in the above proof, not in [PI].
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