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2-TRACK ALGEBRAS AND THE ADAMS SPECTRAL SEQUENCE

HANS-JOACHIM BAUES AND MARTIN FRANKLAND

Abstract. In previous work of the first author and Jibladze, the E3-term of the Adams
spectral sequence was described as a secondary derived functor, defined via secondary
chain complexes in a groupoid-enriched category. This led to computations of the E3-
term using the algebra of secondary cohomology operations. In work with Blanc, an
analogous description was provided for all higher terms Em. In this paper, we introduce
2-track algebras and tertiary chain complexes, and we show that the E4-term of the
Adams spectral sequence is a tertiary Ext group in this sense. This extends the work
with Jibladze, while specializing the work with Blanc in a way that should be more
amenable to computations.
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1. Introduction

A major problem in algebraic topology consists of computing homotopy classes of maps
between spaces or spectra, notably the stable homotopy groups of spheres πS∗ (S0). One
of the most useful tools for such computations is the Adams spectral sequence [1] (and
its unstable analogues [7]), based on ordinary mod p cohomology. Given finite spectra X
and Y , Adams constructed a spectral sequence of the form:

Es,t
2 = Exts,tA (H∗(Y ;Fp), H∗(X;Fp))⇒ [Σt−sX, Y ∧p ]

where A is the mod p Steenrod algebra, consisting of primary stable mod p cohomology
operations, and Y ∧p denotes the p-completion of Y . In particular, taking sphere spectra

X = Y = S0, one obtains a spectral sequence

Es,t
2 = Exts,tA (Fp,Fp)⇒ πSt−s(S

0)∧p
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abutting to the p-completion of the stable homotopy groups of spheres. In [8], Novikov
introduced an analogue of the Adams spectral sequence based on the complex cobordism
spectrum MU instead of the Eilenberg-MacLane spectrum HFp. The Adams-Novikov
spectral sequence has played a major role in chromatic homotopy theory and computations
of stable homotopy groups of spheres [9].

Another approach to the Adams spectral sequence makes use of higher mod p cohomol-
ogy operations to compute past the E2-term. Secondary cohomology operations determine
the differential d2 and thus the E3-term. The algebra of secondary operations was studied
in [2]. In [3], the first author and Jibladze developed secondary chain complexes and sec-
ondary derived functors, and showed that the Adams E3-term is given by secondary Ext
groups of the secondary cohomology of X and Y . They used this in [5], along with the
algebra of secondary operations, to construct an algorithm that computes the differential
d2.

Primary operations in mod p cohomology are encoded by the homotopy category Ho(K)
of the Eilenberg-MacLane mapping theory K, consisting of finite products of Eilenberg-
MacLane spectra of the form Ωn1HFp× · · · ×ΩnkHFp. More generally, the nth Postnikov
truncation PnK of the Eilenberg-MacLane mapping theory encodes operations of order
up to n + 1. These in turn determine the Adams differential dn+1 and thus the En+2-
term [4]. However, PnK contains too much information for practical purposes. In [6], the
first author and Blanc extracted from PnK the information needed in order to compute
the Adams differential dn+1. The resulting algebraic-combinatorial structure is called an
algebra of left n-cubical balls.

In this paper, we specialize the work of [6] to the case n = 2. Our goal is to provide
an alternate structure which encodes an algebra of left 2-cubical balls, but which is more
algebraic in nature and better suited for computations. The combinatorial difficulties in
an algebra of left n-cubical balls arise from triangulations of the sphere Sn−1 = ∂Dn. In
the special case n = 2, triangulations of the circle S1 are easily described, unlike in the
case n > 2. Our approach also extends the work in [3] from secondary chain complexes
to tertiary chain complexes.

Organization and main results. We define the notion of 2-track algebra (Definition
5.1) and show that each 2-track algebra naturally determines an algebra of left 2-cubical
balls (Theorem 9.3). Building on [6], we show that higher order resolutions always exist
in a 2-track algebra (Theorem 8.11). We show that a suitable 2-track algebra related to
the Eilenberg-MacLane mapping theory recovers the Adams spectral sequence up to the
E4-term (Theorem 7.3). We show that the spectral sequence only depends on the weak
equivalence class of the 2-track algebra (Theorem 7.5).

Remark 1.1. This last point is important in view of the strictification result for secondary
cohomology operations: these can be encoded by a graded pair algebra B∗ over Z/p2

[2, §5.5]. The secondary Ext groups of the E3-term turn out to be the usual Ext groups
over B∗ [5, Theorem 3.1.1], a key fact for computations. We conjecture that a similar
strictification result holds for tertiary operations, i.e., in the case n = 2.

2. Cubes and tracks in a space

Definition 2.1. Let X be a topological space.
An n-cube in X is a map a : In → X, where I = [0, 1] is the unit interval. For example,

a 0-cube in X is a point of X, and a 1-cube in X is a path in X.
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An n-cube can be restricted to (n− 1)-cubes along the 2n faces of In. For 1 ≤ i ≤ n,
denote:

d0
i (a) = a restricted to I × I × . . .×

i︷︸︸︷
{0} × . . .× I

d1
i (a) = a restricted to I × I × . . .×

i︷︸︸︷
{1} × . . .× I.

An n-track in X is a homotopy class, relative to the boundary ∂In, of an n-cube. If
a : In → X is an n-cube in X, denote by {a} the corresponding n-track in X, namely the
homotopy class of a rel ∂In.

In particular, for n = 1, a 1-track {a} is a path homotopy class, i.e., a morphism in the
fundamental groupoid of X from a(0) to a(1). Let us fix our notation regarding groupoids.

Notation 2.2. A groupoid is a category in which every morphism is invertible. Denote
the data of a (small) groupoid by G =

(
G0, G1, δ0, δ1, id

� ,� , (−)op
)
, where:

• G0 = Ob(G) is the set of objects of G.
• G1 = Hom(G) is the set of morphisms of G. The set of morphisms from x to y is

denoted G(x, y). We write x ∈ G and deg(x) = 0 for x ∈ G0, and deg(x) = 1 for
x ∈ G1.
• δ0 : G1 → G0 is the source map.
• δ1 : G1 → G0 is the target map.
• id� : G0 → G1 sends each object x to its corresponding identity morphism id�

x .
• � : G1 ×G0 G1 → G1 is composition in G.
• f� : y → x is the inverse of the morphism f : x→ y.

Groupoids form a category Gpd, where morphisms are functors between groupoids.
For any object x ∈ G0, denote by AutG(x) = G(x, x) the automorphism group of x.
Denote by Comp(G) = π0(G) the components of G, i.e., the set of isomorphism classes

of objects G0/ ∼.
Denote the fundamental groupoid of a topological space X by Π(1)(X).

Definition 2.3. Let X be a pointed space, with basepoint 0 ∈ X. The constant map
0: In → X with value 0 ∈ X is called the trivial n-cube.

A left 1-cube or left path in X is a map a : I → X satisfying a(1) = 0, that is,
d1

1(a) = 0, the trivial 0-cube. In other words, a is a path in X from a point a(0) to the
basepoint 0. We denote δa = a(0).

A left 2-cube in X is a map α : I2 → X satisfying α(1, t) = α(t, 1) = 0 for all t ∈ I,
that is, d1

1(α) = d1
2(α) = 0, the trivial 1-cube.

More generally, a left n-cube in X is a map α : In → X satisfying α(t1, . . . , tn) = 0
whenever some coordinate satisfies ti = 1. In other words, for all 1 ≤ i ≤ n we have
d1
i (α) = 0, the trivial (n− 1)-cube.
A left n-track in X is a homotopy class, relative to the boundary ∂In, of a left n-cube.

The equality Im+n = Im × In allows us to define an operation on cubes.

Definition 2.4. Let µ : X × X ′ → X ′′ be a map, for example a composition map in a
topologically enriched category C. For m,n ≥ 0, consider cubes

a : Im → X

b : In → X ′.

The ⊗-composition of a and b is the (m+ n)-cube a⊗ b defined as the composite

(2.1) a⊗ b : Im+n = Im × In a×b−−→ X ×X ′ µ−→ X ′′.
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For m = n, the pointwise composition of a and b is the n-cube defined as the
composite

(2.2) ab : In
(a,b)−−→ X ×X ′ µ−→ X ′′.

The pointwise composition is the restriction of the ⊗-composition along the diagonal:

In
∆ //

ab

::In × In a⊗b // X ′′.

Remark 2.5. For m = n = 0, the 0-cube x⊗y = xy is the composition. For higher dimen-
sions, there are still relations between the ⊗-composition and the pointwise composition.
In suggestive formulas, pointwise composition of paths is given by (ab)(t) = a(t)b(t) for all
t ∈ I, whereas the ⊗-composition of paths is the 2-cube given by (a⊗ b)(s, t) = a(s)b(t).

Assume moreover that µ satisfies

µ(x, 0) = µ(0, x′) = 0

for the basepoints 0 ∈ X, 0 ∈ X ′, 0 ∈ X ′′. For example, µ could be the composition map
in a category C enriched in (Top∗,∧), the category of pointed topological spaces with the
smash product as monoidal structure. If a and b are left cubes, then a⊗ b and ab are also
left cubes.

3. 2-track groupoids

We now focus on left 2-tracks in a pointed space X, and observe that they form a
groupoid. Define the groupoid Π(2)(X) with object set:

Π(2)(X)0 = set of left 1-cubes in X

and morphism set:
Π(2)(X)1 = set of left 2-tracks in X

where the source δ0 and target δ1 of a left 2-track α : I × I → X are given by restrictions

δ0(α) = d0
1(α)

δ1(α) = d0
2(α)

and note in particular δδ0(α) = δδ1(α) = α(0, 0). In other words, a morphism α from a
to b looks like this:

0

0

δa = δb

OOa=δ0(α)

//
b=δ1(α)

� 
α

Remark 3.1. Up to reparametrization, a left 2-track α : a ⇒ b corresponds to a path
homotopy from a to b, which can be visualized in a globular picture:

δa = δb

a

��

b

BB�� α 0.
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However, the ⊗-composition will play an important role in this paper, which is why we
adopt a cubical approach, rather than globular or simplicial.

Composition β�α of left 2-tracks is described by the following picture:

(3.1)
0

0

��c

OOa

//
b

�#
α

{� β 0

0

Remark 3.2. To make this definition precise, let α : a ⇒ b and β : b ⇒ c be left 2-tracks

in X, i.e., composable morphisms in Π(2)(X). Choose representative maps α̃, β̃ : I2 → X.
Consider the map fα,β : [0, 1]× [−1, 1]→ X pictured in (3.1). That is, define

f(s, t) =

{
α̃(s, t) if 0 ≤ t ≤ 1

β̃(−t, s) if − 1 ≤ t ≤ 0.

Now consider the reparametrization map w : I2 → [0, 1]× [−1, 1] whose restriction w|∂I2
to the boundary is the piecewise linear map satisfying

w(0, 0) = (0, 0)

w(0, 1) = (0, 1)

w(1
2
, 1) = (1, 1)

w(1, 1) = (1, 0)

w(1, 1
2
) = (1,−1)

w(1, 0) = (0,−1)

and defined for points x ∈ I2 in the interior as follows. Write x = k(0, 0) + ly as a
unique convex combination of (0, 0) and a point y on the boundary ∂I2. Then define
w(x) = kw(0, 0) + lw(y) = lw(y). Finally, the composition β�α : a⇒ c is {fα,β ◦w}, the
homotopy class of the composite

I2 w // [0, 1]× [−1, 1]
fα,β // X

relative to the boundary ∂I2.
In other notation, we have inclusions d0

2 : I1 ↪→ I2 as the bottom edge I × {0} and
d0

1 : I1 ↪→ I2 as the left edge {0} × I, our w is a map w : I2 → I2 ∪I1 I2, and β�α is the
homotopy class of the composite

I2 w // I2 ∪I1 I2
[α β]

// X.
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Given a left path a in X, the identity of a in the groupoid Π(2)(X) is the left 2-track is
pictured here:

0

0OOa GGa ??

77
a

//
a

�#id�
a

More precisely, for points x ∈ I2 in the interior, write x = k(0, 0) + ly as a unique convex
combination of (0, 0) and a point y on the boundary ∂I2. Then define id�

a (x) = a(l).
The inverse α� : b⇒ a of a left 2-track α : a⇒ b is the homotopy class of the composite

α ◦ T , where T : I2 → I2 is the map swapping the two coordinates: T (x, y) = (y, x).

Lemma 3.3. Given a pointed topological space X, the structure described above makes
Π(2)(X) into a groupoid, called the groupoid of left 2-tracks in X.

Proof. Standard. �

Definition 3.4. A groupoid G is abelian if the groups AutG(x) are abelian for all objects
x ∈ G0.G is strictly abelian if it is pointed (with basepoint 0 ∈ G0), and is equipped
with a family of isomorphisms

ψx : AutG(x)
'−→ AutG(0)

indexed by all objects x ∈ G0, which are moreover compatible with all “change of base-
point” isomorphisms

ϕf : AutG(y)
'−→ AutG(x)

α 7→ ϕf (α) = f��α� f

for any map f : x→ y in G. More precisely, the diagrams

(3.2) AutG(y)

ψy &&

ϕf // AutG(x)

ψx
��

AutG(0)

commute.

Remark 3.5. A strictly abelian groupoid is automatically abelian. Indeed, the com-
patibility condition (3.2) applied to automorphisms f : 0 → 0 implies that conjugation
ϕf : AutG(0)→ AutG(0) is the identity.

Definition 3.6. A groupoid G is pointed if it has a chosen basepoint, i.e., an object
0 ∈ G0. Here 0 is an abuse of notation: the basepoint is not assumed to be an initial
object for G.

The star of a pointed groupoid G is the set of all morphisms to the basepoint 0, denoted
by:

Star(G) = {f ∈ G1 | δ1(f) = 0} .
For a morphism f : x→ 0 in Star(G), we write δf = δ0f = x.
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If G has a basepoint 0 ∈ G0, then we take id�
0 ∈ G1 as basepoint for the set of

morphisms G1 and for Star(G) ⊆ G1; we sometimes write 0 = id�
0 . Moreover, we take

the component of the basepoint 0 as basepoint for Comp(G), the set of components of G.

Proposition 3.7. Π(2)(X) is a strictly abelian groupoid, and it satisfies Comp Π(2)(X) '
Star Π(1)(X).

Proof. Let a ∈ Π(2)(X)0 be a left path in X. To any automorphism α : 0⇒ 0 in Π(2)(X),
one can associate the well-defined left 2-track indicated by the picture

(3.3) 0

0

0

��
α

0
0

0

δa

OOa

//
a

�#id�
a

0

0

which is a morphism a⇒ a. This assignment defines a map AutΠ(2)(X)(0)→ AutΠ(2)(X)(a)
and is readily seen to be a group isomorphism, whose inverse we denote ψa. One readily
checks that the family ψa is compatible with change-of-basepoint isomorphisms.

The set Comp Π(2)(X) is the set of left paths in X quotiented by the relation of being
connected by a left 2-track. The set Star Π(1)(X) is the set of left paths in X quotiented
by the relation of path homotopy. But two left paths are path-homotopic if and only if
they are connected by a left 2-track. �

The bijection Comp Π(2)(X) ' Star Π(1)(X) is induced by taking the homotopy class
of left 1-cubes. Consider the function q : Π(2)(X)0 → Π(1)(X)1 which sends a left 1-cube
to its left 1-track q(a) = {a}. Then the image of q is Star Π(1)(X) ⊆ Π(1)(X)1 and q is
constant on the components of Π(2)(X)0. We now introduce a definition based on those
features of Π(2)(X).

Definition 3.8. A 2-track groupoid G = (G(1), G(2)) consists of:

• Pointed groupoids G(1) and G(2), with G(2) strictly abelian.
• A pointed function q : G(2)0 � StarG(1) which is constant on the components of

G(2), and such that the induced function q : CompG(2)
'−→ StarG(1) is bijective.

We assign degrees to the following elements:

deg(x) =


0 if x ∈ G(1)0

1 if x ∈ G(2)0

2 if x ∈ G(2)1

and we write x ∈ G in each case.
A morphism of 2-track groupoids F : G→ G′ consists of a pair of pointed functors

F(1) : G(1) → G′(1)

F(2) : G(2) → G′(2)

which are compatible with the additional structure, as described in the following two
conditions.
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(1) (Structural isomorphisms) For every object a ∈ G(2)0, the diagram

AutG(2)
(a)

ψa

��

F(2) // AutG′
(2)

(F(2)a)

ψF(2)a

��
AutG(2)

(0)
F(2)

// AutG′
(2)

(0′)

commutes.
(2) (Quotient functions) The diagram

G(2)0

q
����

F(2) // G′(2)0

q′

����
StarG(1)

F(1)

// StarG′(1)

commutes.

Let Gpd(1,2) denote the category of 2-track groupoids.

Remark 3.9. If α : a ⇒ b is a left 2-track in a space, then the left paths a and b have
the same starting point δa = δb. This condition is encoded in the definition of 2-track
groupoid. Indeed, if α : a ⇒ b is a morphism in G(2), then a, b ∈ G(2)0 belong to the
same component of G(2). Thus, we have q(a) = q(b) ∈ StarG(1) and in particular δq(a) =
δq(b) ∈ G(1)0.

Definition 3.10. The fundamental 2-track groupoid of a pointed space X is

Π(1,2)(X) :=
(
Π(1)(X),Π(2)(X)

)
.

This construction defines a functor Π(1,2) : Top∗ → Gpd(1,2).

Remark 3.11. The grading on Π(1,2)(X) defined in 3.8 corresponds to the dimension of
the cubes. For x ∈ Π(1,2)(X), we have deg(x) = 0 if x is a point in X, deg(x) = 1 if x is
a left path in X, and deg(x) = 2 if x is a left 2-track in X. This 2-graded set is the left
2-cubical set Nul2(X) [6, Definition 1.9].

Definition 3.12. Given a 2-track groupoid G, its homotopy groups are

π0G = CompG(1)

π1G = AutG(1)
(0)

π2G = AutG(2)
(0).

Note that π0G is a priori only a pointed set, π1G is a group, and π2G is an abelian group.
A morphism F : G → G′ of 2-track groupoids is a weak equivalence if it induces an

isomorphism on homotopy groups.

Remark 3.13. Let X be a topological space with basepoint x0 ∈ X. Then the homotopy
groups of its fundamental 2-track groupoid G = Π(1,2)(X, x0) are the homotopy groups of
the space πiG = πi(X, x0) for i = 0, 1, 2.

Lemma 3.14. Gpd(1,2) has products, given by G×G′ =
(
G(1) ×G′(1), G(2) ×G′(2)

)
, and

where the structural isomorphisms

ψ(x,x′) : AutG(2)×G′(2) ((x, x′))
'−→ AutG(2)×G′(2) ((0, 0′))
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are given by ψx × ψx′, and the quotient function

(G×G′)(2)0 = G(2)0 ×G′(2)0

q×q′
����

Star(G×G′)(1) = StarG(1) × StarG′(1)

is the product of the quotient functions for G and G′.

Lemma 3.15. The fundamental 2-track groupoid preserves products:

Π(1,2)(X × Y ) ∼= Π(1,2)(X)× Π(1,2)(Y ).

4. 2-tracks in a topologically enriched category

Throughout this section, let C be a category enriched in (Top∗,∧). Explicitly:

• For any objects A and B of C, there is a morphism space C(A,B) with basepoint
denoted 0 ∈ C(A,B).
• For any objects A, B, and C, there is a composition map

µ : C(B,C)× C(A,B)→ C(A,C)

which is associative and unital.
• Composition satisfies

µ(x, 0) = µ(0, y) = 0

for all x and y.

We write x ∈ C if x ∈ C(A,B) for some objects A and B. For x, y ∈ C, we write
xy = µ(x, y) when x and y are composable, i.e., when the target of y is the source of x.
From now on, whenever an expression such as xy or x⊗ y appears, it is understood that
x and y must be composable.

By Definition 2.4, we have the ⊗-composition x ⊗ y for x, y ∈ Π(1)C and deg(x) +
deg(y) ≤ 1. For deg(a) = deg(b) = 1, we have:

ab = (a⊗ δ1b)� (δ0a⊗ b)
= (δ1a⊗ b)� (a⊗ δ0b) .

This equation holds in any category enriched in groupoids, where ab denotes the (point-

wise) composition. Note that for paths ã and b̃ representing a and b, the boundary of the

2-cube ã⊗ b̃ corresponds to the equation.
Conversely, the ⊗-composition in Π(1)C is determined by the pointwise composition.

For deg(x) = deg(y) = 0 and deg(a) = 1, we have:

(4.1)


x⊗ y = xy

x⊗ a = id�
x a

a⊗ x = aid�
x .

We now consider the 2-track groupoids Π(1,2)C(A,B) of morphism spaces in C, and we
write x ∈ Π(1,2)C if x ∈ Π(1,2)C(A,B) for some objects A, B of C. By Definition 2.4,
composition in C induces the ⊗-composition:

x⊗ y ∈ Π(1,2)C
if x and y satisfy deg(x) + deg(y) ≤ 2. For deg(x) = deg(y) = 1, x and y are left paths,
hence x⊗ y is well-defined. The ⊗-composition satisfies:

deg(x⊗ y) = deg(x) + deg(y).
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The ⊗-composition is associative, since composition in C is associative. The identity
elements 1A ∈ C(A,A) for C provide identity elements 1 = 1A ∈ Π(1,2)C(A,A), with
deg(1A) = 0, and x⊗ 1 = x = 1⊗ x.

Let us describe the ⊗-composition of left paths more explicitly. Given left paths a and
b, then a⊗ b is a 2-track from δ0(a⊗ b) = (δa)⊗ b to δ1(a⊗ b) = a⊗ (δb), as illustrated
here:

δ0(a⊗b)=δa⊗b

0

0

δ1(a⊗b)=a⊗δb

�#a⊗b

Definition 4.1. The 2-track algebra associated to C, denoted
(
Π(1)C,Π(1,2)C,� ,⊗

)
,

consists of the following data.

• Π(1)C is the category enriched in pointed groupoids given by the fundamental

groupoids
(
Π(1)C(A,B),�

)
of morphism spaces in C, along with the⊗-composition,

which determines (and is determined by) the composition in Π(1)C.
• Π(1,2)C is given by the collection of fundamental 2-track groupoids

(
Π(1,2)C(A,B),�

)
together with the⊗-composition x⊗y for x, y ∈ Π(1,2)C satisfying deg(x)+deg(y) ≤
2.

Proposition 4.2. Let x, α, β ∈ Π(1,2)C with deg(x) = 0 and deg(α) = deg(β) = 2. Then
the following equations hold:

{
x⊗ (β�α) = (x⊗ β)� (x⊗ α)

(β�α)⊗ x = (β ⊗ x)� (α⊗ x).

Proof. This follows from functoriality of Π(2) applied to the composition maps µ(x,−) : C(A,B)→
C(A,C) and µ(−, x) : C(B,C)→ C(A,C). �

Proposition 4.3. Let c, α ∈ Π(1,2)C with deg(c) = 1 and deg(α) = 2. Then the following
equations hold: {

δ1α⊗ c = (α⊗ δc)� (δ0α⊗ c)
c⊗ δ0α = (c⊗ δ1α)� (δc⊗ α) .

Proof. Write a = δ0α and b = δ1α, i.e., α is a left 2-track from a to b:

a

0

0

b

�#
α
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and note in particular δa = δb. Let α̃ be a left 2-cube that represents α and consider the
left 3-cube α̃⊗ c:

{�̃α⊗δc

0oob⊗δc

�� δa⊗c

??a⊗δc

[c
b⊗c

;Ca⊗c

0

0

Its boundary exhibits the equality of 2-tracks:

top face � right face = front face

(α⊗ δc)� (a⊗ c) = b⊗ c
(α⊗ δc)� (δ0α⊗ c) = δ1α⊗ c.

Likewise, for second equation, consider the left 3-cube c⊗ α̃:

{�c⊗b

0ooc⊗δa

�� δc⊗a

??δc⊗b

[c
c⊗a

;Cδc⊗α̃

0

0

Its boundary exhibits the equality of 2-tracks:

top face � right face = front face

(c⊗ b)� (δc⊗ α) = c⊗ a
(c⊗ δ1α)� (δc⊗ α) = c⊗ δ0α.

�
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5. 2-track algebras

We now collect the structure found in
(
Π(1)C,Π(1,2)C,� ,⊗

)
into the following definition.

Definition 5.1. A 2-track algebra A =
(
A(1),A(1,2),� ,⊗

)
consists of the following

data.

(1) A categoryA(1) enriched in pointed groupoids, with the ⊗-composition determined
by Equation (4.1).

(2) A collection A(1,2) of 2-track groupoids
(
A(1,2)(A,B),�

)
for all objects A,B of

A(1), such that the first groupoid in A(1,2)(A,B) is equal to the pointed groupoid
A(1)(A,B).

(3) For x, y ∈ A(1,2), the ⊗-composition x⊗ y ∈ A(1,2) is defined. For deg(x) = 0 and
deg(y) = 1, the following equations hold in A(1):{

q(x⊗ y) = x⊗ q(y)

q(y ⊗ x) = q(y)⊗ x.

The following equations are required to hold.

(1) (Associativity) ⊗ is associative: (x⊗ y)⊗ z = x⊗ (y ⊗ z).
(2) (Units) The units 1 ∈ A(1), with deg(1A) = 0, serve as units for ⊗, i.e., satisfy

x⊗ 1 = x = 1⊗ x for all x ∈ A(1,2).
(3) (Pointedness) ⊗ satisfies x⊗ 0 = 0 and 0⊗ y = 0.
(4) For x, y, α, β ∈ A(1,2) with deg(x) = deg(y) = 0 and deg(α) = deg(β) = 2, we

have: {
δi(x⊗ α⊗ y) = x⊗ (δiα)⊗ y for i = 0, 1

x⊗ (β�α)⊗ y = (x⊗ β ⊗ y)� (x⊗ α⊗ y)

(5) For a, b ∈ A(1,2) with deg(a) = deg(b) = 1, we have:{
δ0(a⊗ b) = δa⊗ b
δ1(a⊗ b) = a⊗ δb.

(6) For c, α ∈ A(1,2) with deg(c) = 1 and deg(α) = 2, we have:{
δ1α⊗ c = (α⊗ δc)� (δ0α⊗ c)
c⊗ δ0α = (c⊗ δ1α)� (δc⊗ α) .

Definition 5.2. A morphism of 2-track algebras F : A → B consists of the following.

(1) A functor F(1) : A(1) → B(1) enriched in pointed groupoids.
(2) A collection F(1,2) of morphisms of 2-track groupoids

F(1,2)(A,B) : A(1,2)(A,B)→ B(1,2)(FA, FB)

for all objects A,B of A, such that F(1,2)(A,B) restricted to the first groupoid in
A(1,2)(A,B) is the functor F(1)(A,B) : A(1)(A,B)→ B(1)(FA, FB).

(3) (Compatibility with ⊗) F commutes with ⊗:

F (x⊗ y) = Fx⊗ Fy.
Denote by Alg(1,2) the category of 2-track algebras.

Definition 5.3. Let A be a 2-track algebra. The underlying homotopy category of A
is the homotopy category of the underlying track category A(1), denoted

π0A := π0A(1) = CompA(1).

We say that A is based on the category π0A.
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Definition 5.4. A morphism of 2-track algebras F : A → B is a weak equivalence if
the following conditions hold:

(1) For every objects A and B of A, the morphism

F(1,2) : A(1,2)(A,B)→ B(1,2)(FA, FB)

is a weak equivalence of 2-track groupoids (Definition 3.12).
(2) The induced functor π0F : π0A → π0B is an equivalence of categories.

6. Higher order chain complexes

In this section, we construct tertiary chain complexes, extending the work of [3] on
secondary chain complexes. We will follow the treatment therein.

Definition 6.1. A chain complex (A, d) in a pointed category A is a sequence of objects
and morphisms

· · · // An+1
dn // An

dn−1 // An−1
// · · ·

in A satisfying dn−1dn = 0 for all n ∈ Z. The map d is called the differential.
A chain map f : (A, d)→ (A′, d′) between chain complexes is a sequence of morphisms

fn : An → A′n commuting with the differentials:

· · · // An+1

fn+1

��

dn // An

fn
��

dn−1 // An−1

fn−1

��

// · · ·

· · · // A′n+1

d′n // A′n
d′n−1 // A′n−1

// · · ·

i.e., satisfying fndn = d′nfn+1 for all n ∈ Z.

Definition 6.2. [3, Definition 2.6] Let B be a category enriched in pointed groupoids. A
secondary pre-chain complex (A, d, γ) in B is a diagram of the form:

· · · //
>>

0

��

An+2

dn+1 //

0

  
KS

γn

An+1
dn //

??

0

�� γn−1

An
dn−1 //

0

��

KS

An−1
// · · ·

More precisely, the data consists of a sequence of objects An and maps dn : An+1 → An,
together with left tracks γn : dndn+1 ⇒ 0 for all n ∈ Z.

(A, d, γ) is a secondary chain complex if moreover for each n ∈ Z, the tracks

dn−1dndn+1

dn−1⊗γn+3 dn−10
id�

0 +3 0

and

dn−1dndn+1

γn−1⊗dn+1+3 0dn+1

id�
0 +3 0

coincide. In other words, the track

O(γn−1, γn) := (γn−1 ⊗ dn+1)� (dn−1 ⊗ γn)� : 0⇒ 0

in the groupoid B(An+2, An−1) is the identity track of 0.
We say that the secondary pre-chain complex (A, d, γ) is based on the chain complex

(A, {d}) in the homotopy category π0B.
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Remark 6.3. One can show that the notion of secondary (pre-)chain complex in B coin-
cides with the notion of 1st order (pre-)chain complex in Nul1 B described in [6, §4, c.f.
Example 12.3].

Definition 6.4. A tertiary pre-chain complex (A, d, δ, ξ) in a 2-track algebra A is a
sequence of objects An and maps dn : An+1 → An in the category A(1)0, together with left
paths γn : dndn+1 → 0 in A(1,2), as illustrated in the diagram

· · · //

0

��
An+3

OO

dn+2 //

0

@@
An+2

γn+1��

dn+1 //

0

��
An+1

γn
OO

dn //

0

BB
An
γn−1��

dn−1 //

0

��
An−1

OO

// · · ·

along with left 2-tracks ξn : γn ⊗ dn+2 ⇒ dn ⊗ γn+1 in A(1,2), for all n ∈ Z.
(A, d, γ, ξ) is a tertiary chain complex if moreover for each n ∈ Z, the left 2-track:

dn−1 ⊗ γn ⊗ dn+2

dn−1⊗ξn+3 dn−1dn ⊗ γn+1

γn−1⊗γn+1+3 γn−1 ⊗ dn+1dn+2

ξn−1⊗dn+2+3 dn−1 ⊗ γn ⊗ dn+2

is the identity of dn−1 ⊗ γn ⊗ dn+2 in the groupoid A(2)(An+3, An−1). In other words, the
element:

O(ξn−1, ξn) := ψdn−1⊗γn⊗dn+2 ((ξn−1 ⊗ dn+2)� (γn−1 ⊗ γn+1)� (dn−1 ⊗ ξn)) ∈ π2A(1,2)(An+3, An−1)

is trivial. Here, ψ is the structural isomorphism in the 2-track groupoidA(1,2)(An+3, An−1),
as in Definitions 3.4 and 3.8.

We say that the tertiary pre-chain complex (A, d, γ, ξ) is based on the chain complex
(A, {d}) in the homotopy category π0A.

6.1. Toda brackets of length 3 and 4. Let C be a category enriched in (Top∗,∧). Let
π0C be the category of path components of C (applied to each mapping space) and let

Y0 Y1
y1oo Y2

y2oo Y3
y3oo Y4

y4oo

be a diagram in π0C satisfying y1y2 = 0, y2y3 = 0, and y3y4 = 0. Choose maps xi in C
representing yi. Then there exist left 1-cubes a, b, c as in the diagram

Y0 Y1x1
oo Y2x2

oo
~~

0
KS

a

Y3x3
oo

0

``
�� b

Y4.x4
oo

~~

0
KS

c

Definition 6.5. The Toda bracket of length 3, denoted 〈y1, y2, y3〉 ⊆ π1C(Y3, Y0), is the
set of all elements in Aut(0) = π1C(Y3, Y0) of the form

O(a, b) := (a⊗ x3)� (x1 ⊗ b)�

as above.
Assume now that we can choose left 2-tracks α : a⊗x3 ⇒ x1⊗ b and β : b⊗x4 ⇒ x2⊗ c

in Π(1,2)C. Then the composite of left 2-tracks

(α⊗ x4)� (a⊗ c)� (x1 ⊗ β)



2-TRACK ALGEBRAS AND THE ADAMS SPECTRAL SEQUENCE 15

is an element of Aut(x1 ⊗ b⊗ x4), to which we apply the structural isomorphism

ψx1⊗b⊗x4 : Aut(x1 ⊗ b⊗ x4)
∼=−→ π2C(Y4, Y0).

The set of all such elements is the Toda bracket of length 4, denoted 〈y1, y2, y3, y4〉 ⊆
π2C(Y4, Y0).

Note that the existence of α, resp. β, implies that the bracket 〈y1, y2, y3〉, resp.
〈y2, y3, y4〉 contains the zero element.

Remark 6.6. For a secondary pre-chain complex (A, d, γ), we have

O(γn−1, γn) ∈ 〈dn−1, dn, dn+1〉
for every n ∈ Z. Likewise, for a tertiary pre-chain complex (A, d, γ, ξ), we have

O(ξn−1, ξn) ∈ 〈dn−1, dn, dn+1, dn+2〉
for every n ∈ Z. However, the vanishing of these Toda brackets does not guarantee the
existence of a tertiary chain complex based on the chain complex (A, {d}).

7. The Adams differential d3

Consider the topologically enriched category of spectra and mapping spaces between
spectra, denoted Spec. (To make this precise, one can start from a simplicial model
category of spectra, and take Spec to be the full subcategory of fibrant-cofibrant objects,
c.f. [6, Example 7.3].)

Let H := HFp be the Eilenberg-MacLane spectrum for the prime p and let A = H∗H
denote the mod p Steenrod algebra. Consider the collection EM of all mod p generalized
Eilenberg-MacLane spectra that are bounded below and of finite type, i.e., degreewise
finite products A =

∏
i Σ

niH with ni ∈ Z and ni ≥ N for some integer N for all i. Since
the product is degreewise finite, the natural map

∨
i Σ

niH →
∏

i Σ
niH is an equivalence,

so that the mod p cohomology H∗A is a free A-module. Moreover, the cohomology
functor restricted to the full subcategory of Spec with objects EM yields an equivalence
of categories in the diagram:

π0Specop H∗ // ModA

π0EMop
?�

OO

H∗

∼=
// Modfin

A

?�

OO

where Modfin
A denotes the full subcategory consisting of free A-modules which are bounded

below and of finite type.
Given spectra Y and X, consider the Adams spectral sequence:

Es,t
2 = Exts,tA (H∗X,H∗Y )⇒

[
Σt−sY,X∧p

]
.

Assume that Y is a finite spectrum and X is a connective spectrum of finite type, i.e., X
is equivalent to a CW-spectrum with finitely many cells in each dimension and no cells
below a certain dimension. Then the mod p cohomology H∗X is an A-module which is
bounded below and degreewise finitely generated (as an A-module, or equivalently, as an
Fp-vector space). Choose a free resolution of H∗X as an A-module:

· · · // F2
e1 // F1

e0 // F0
λ // H∗X

where each Fi is a free A-module of finite type and bounded below. This diagram can be
realized as the cohomology of a diagram in the stable homotopy category π0Spec:

· · · A2
oo A1

d1oo A0
d0oo A−1 = X

εoo
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with each Ai in EM (for i ≥ 0) and satisfying H∗Ai ∼= Fi. We consider this diagram as
a diagram in the opposite category π0Specop of the form:

· · · // A2
d1 // A1

d0 // A0
ε // A−1 = X

Since A• → X is an EM-resolution of X in π0Specop, there exists a tertiary chain complex
(A, d, γ, ξ) in Π(1,2)Specop based on the resolution A• → X, by Theorem 8.11.

Notation 7.1. Given spectra X and Y , let EM{X, Y } denote the topologically enriched
subcategory of Spec consisting of all spectra in EM and mapping spaces between them,
along with the objects X and Y , with the mapping spaces Spec(X,A) and Spec(Y,A)
for all A in EM; c.f. [3, Remark 4.3] [6, Remark 7.5]. We consider the 2-track alge-
bra Π(1,2)EM{X, Y }op, or any 2-track algebra A weakly equivalent to it. In the follow-
ing construction, everything will take place within Π(1,2)EM{X, Y }op, but we will write
Π(1,2)Specop for notational convenience.

Start with a class in the E2-term:

x ∈ Es,t
2 = Exts,tA (H∗X,H∗Y ) = Exts,0A (H∗X,ΣtH∗Y )

represented by a cocycle x′ : Fs → ΣtH∗Y , i.e., a map of A-modules satisfying x′ds = 0.
Realize x′ as the cohomology of a map x′′ : As → ΣtY in Specop. The equation x′ds = 0
means that x′′ds is null-homotopic; let γ : x′′ds → 0 be a null-homotopy. Consider the
diagram in Specop:

· · · // As+2

ds+1 // As+1
ds // As

x′′

��

ds−1 // As−1
// · · · // A0

ε // X

ΣtY

Now consider the underlying secondary pre-chain complex in Π(1)Specop:

(7.1) · · · //

0

  
As+3

ds+2 //
>>

0

�� γs+1

As+2

ds+1 //

0

��
KS

γs

As+1
ds //

@@

0

�� γ
As

x′′ // ΣtY

in which the obstructions O(γi, γi+1) are trivial, for i ≥ s.

Theorem 7.2. The obstruction O(γ, γs) ∈ π1Specop(As+2,Σ
tY ) = π0Specop(As+2,Σ

t+1Y )
is a (co)cycle and does not depend on the choices, up to (co)boundaries, and thus defines
an element:

d(2)(x) ∈ Exts+2,t+1
A (H∗X,H∗Y ).

Moreover, this function

d(2) : Exts,tA (H∗X,H∗Y )→ Exts+2,t+1
A (H∗X,H∗Y )

is the Adams differential d2.

Proof. This is [3, Theorems 4.2 and 7.3], or the case n = 1,m = 3 of [6, Theorem 15.11].
Here we used the natural isomorphism:

Exti,jπ0EMop(H∗X,H∗Y ) ∼= Exti,jA (H∗X,H∗Y )



2-TRACK ALGEBRAS AND THE ADAMS SPECTRAL SEQUENCE 17

where the left-hand side is defined as in Example 8.8. Using the equivalence of categories

H∗ : π0EMop ∼=−→Modfin
A , this natural isomorphism follows from the natural isomorphisms:

π0Specop(As+2,Σ
t+1Y ) = HomA

(
Fs+2, H

∗Σt+1Y
)

= HomA

(
Fs+2,Σ

t+1H∗Y
)
.

Cocycles modulo coboundaries in this group are precisely Exts+2,t+1
A (H∗X,H∗Y ). �

Now assume that d2(x) = 0 holds, so that x survives to the E3-term. Since the ob-
struction

O(γ, γs) = (γ ⊗ ds+1)� (x′′ ⊗ γs)�

vanishes, one can choose a left 2-track ξ : γ ⊗ ds+1 ⇒ x′′ ⊗ γs, which makes (7.1) into a
tertiary pre-chain complex in Π(1,2)Specop. Since (A, d, γ, ξ) was a tertiary chain complex
to begin with, the obstructions O(ξi, ξi+1) are trivial, for i ≥ s.

Theorem 7.3. The obstruction O(ξ, ξs) ∈ π2Specop(As+3,Σ
tY ) = π0Specop(As+3,Σ

t+2Y )
is a (co)cycle and does not depend on the choices up to (co)boundaries, and thus defines
an element:

d(3)(x) ∈ Es+3,t+2
3 (X, Y ).

Moreover, this function

d(3) : Es,t
3 (X, Y )→ Es+3,t+2

3 (X, Y )

is the Adams differential d3.

Proof. This is the case n = 2,m = 4 of [6, Theorem 15.11]. More precisely, by Theorem
9.3, the tertiary chain complex (A, d, γ, ξ) in Π(1,2)Specop yields a 2nd order chain complex
in Nul2 Specop based on the same EM-resolution A• → X in π0Specop. The construction
of d(3) above corresponds to the construction d3 in [6, Definition 15.8]. �

Remark 7.4. The groups Es,t
3 (X, Y ) are an instance of the secondary Ext groups defined

in [3, §4]. Likewise, the next term Es,t
4 (X, Y ) = ker d(3)/ im d(3) is a higher order Ext

group as defined in [6, §15].

Theorem 7.5. A weak equivalence of 2-track algebras induces an isomorphism of higher
Ext groups, compatible with the differential d(3). More precisely, let F : A → A′ be
a weak equivalence between 2-track algebras A and A′ which are weakly equivalent to

Π(1,2)EM{X, Y }op. Then F induces isomorphisms Es,t
3,A(X, Y )

∼=−→ Es,t
3,A′(FX,FY ) making

the diagram

Es,t
3,A(X, Y )

∼=
��

d(3),A // Es+3,t+2
3,A (X, Y )

∼=
��

Es,t
3,A′(FX,FY )

d(3),A′ // Es+3,t+2
3,A′ (FX,FY )

commute. Here the additional subscript A or A′ denotes the ambient 2-track category in
which the secondary Ext groups and the differential are defined.

Proof. This follows from the case n = 2 of [6, Theorem 15.9], or an adaptation of the
proof of [3, Theorem 5.1]. �

8. Resolutions

In this section, we recall some background from [3] and specialize some results of [6]
about higher order resolutions to the case n = 2. We use the fact that a 2-track algebra
has an underlying algebra of left 2-cubical balls, which is the topic of Section 9.
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8.1. Relative homological algebra. In this subsection, let A be an additive category
and a ⊆ A a full additive subcategory. An example to keep in mind is the category
A = ModR of R-modules for some ring R, and the subcategory a of free (or projective)
R-modules.

Definition 8.1. Given chain maps f, g : (A, d)→ (A′, d′), a chain homotopy h from f
to g is a sequence of morphisms hn : An−1 → A′n satisfying gn− fn = d′nhn+1 + hndn−1 for
all n ∈ Z. In graded notation: g − f = dh+ hd.

A chain complex (A, d) is a-exact if for every object X of a the chain complex
HomA(X,A•)

· · · // HomA(X,An+1)
HomA(X,dn)

// HomA(X,An)
HomA(X,dn−1)

// HomA(X,An−1) // · · ·

is an exact sequence of abelian groups.
A chain map f : (A, d) → (A′, d′) is an a-equivalence if for every object X of a, the

chain map HomA(X, f) is a quasi-isomorphism.

Definition 8.2. For an object A of A, an A-augmented chain complex Aε• is a chain
complex of the form

· · · // A1
d0 // A0

ε // A // 0 // · · ·
i.e., with A−1 = A and An = 0 for n < −1. Such a complex can be viewed as a chain
map ε : A• → A where A is a chain complex concentrated in degree 0. The map ε = d−1

is called the augmentation.
An a-resolution of A is an A-augmented chain complex Aε• which is a-exact and such

that for all n ≥ 0, the object An belongs to a. In other words, an a-resolution of A is a
chain complex A• in a together with an a-equivalence ε : A• → A.

Lemma 8.3. Assume that a satisfies the following:

• The coproduct of any set of objects of a exists in A and belongs to a again.
• There is a small subcategory g of a such that every object of a is a retract of a

coproduct of a set of objects from g

Then every object of A admits an a-resolution.

Example 8.4. Consider A = ModR and a the full subcategory of free R-modules. Then
the full subcategory g = {R} on the free R-module on one generator satisfies the assump-
tions of the lemma. Likewise, if a is the full subcategory of projective R-modules, then
the same subcategory g = {R} satisfies the assumptions of the lemma.

Lemma 8.5. Let ε : A• → A and ε′ : A′• → A be A-augmented chain complexes. If each
An is in a for n ≥ 0 and A′• is a-exact, then there exists a chain map f : A• → A′• over
A, which is unique up to chain homotopy over A.

Corollary 8.6. Any two a-resolutions A• and A′• of an object A are chain homotopy
equivalent.

Definition 8.7. Let A be an abelian category and F : A→ A an additive functor. The
a-relative left derived functors of F are the functors La

nF : A→ A for n ≥ 0 defined
by

(La
nF )A = Hn (F (A•))

where A• → A is any a-resolution of A.
Likewise, if F : Aop → A is a contravariant additive functor, its a-relative right

derived functors of F are defined by

(Rn
aF )A = Hn (F (A•)) .
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Example 8.8. The a-relative Ext groups are given by

Extna(A,B) := (Rn
a HomA(−, B)) (A) = Hn HomA(A•, B).

8.2. Higher order resolutions.

Proposition 8.9 (Correction of 1-tracks). Let B be a category enriched in pointed groupoids,
such that its homotopy category π0B is additive. Let a ⊆ π0B be a full additive subcat-
egory. Let (A, d, γ) be a secondary pre-chain complex in B based on an a-resolution
A• → X of an object X in π0B. Then there exists a secondary chain complex (A, d, γ′)
in B with the same objects Ai and differentials di. In particular (A, d, γ′) is also based on
the a-resolution A• → X.

Proof. This follows from an adaptation of the proof of [3, Lemma 2.14], or the case n = 1
of [6, Theorem 13.2]. �

Proposition 8.10 (Correction of 2-tracks). Let A be a 2-track algebra such that its
homotopy category π0A is additive. Let a ⊆ π0A be a full additive subcategory. Let
(A, d, γ, ξ) be a tertiary pre-chain complex in A based on an a-resolution A• → X of an
object X in π0A. Then there exists a tertiary chain complex (A, d, γ, ξ′) in A with the
same objects Ai, differentials di, and left paths γi. In particular, (A, d, γ, ξ′) is also based
on the a-resolution A• → X.

Proof. This follows from the case n = 2 of [6, Theorem 13.2]. �

Theorem 8.11 (Resolution Theorem). Let A be a 2-track algebra such that its homotopy
category π0A is additive. Let a ⊆ π0A be a full additive subcategory. Let A• → X be
an a-resolution in π0A. Then there exists a tertiary chain complex in A based on the
resolution A• → X.

Proof. This follows from the resolution theorems [6, Theorems 8.2 and 14.5]. �

9. Algebras of left 2-cubical balls

Proposition 9.1. Every left cubical ball of dimension 2 is equivalent to Ck for some
k ≥ 2, where Ck = B1 ∪ · · · ∪ Bk is the left cubical ball of dimension 2 consisting of
k closed 2-cells going cyclically around the vertex 0, with one common 1-cell ei between
successive 2-cells Bi and Bi+1, where by convention Bk+1 := B1.

See Figure 1, which is taken from [6, Figure 3].

Proof. Let B be a left cubical ball of dimension 2. For each closed 2-cell Bi, equipped

with its homeomorphism hi : I
2
∼=−→ Bi, the faces ∂1

1Bi and ∂1
2Bi are required to be 1-cells

of the boundary ∂B ∼= S1, while the faces ∂0
1Bi and ∂0

2Bi are not in ∂B, and therefore
must be faces of some other 2-cells. In other words, we have ∂0

1Bi = ∂0
1Bj or ∂0

1Bi = ∂0
2Bj

for some other 2-cell Bj, in fact a unique Bj, because B is homeomorphic to a 2-disk.
Pick any 2-cell of B and call it B1. Then the face e1 := ∂0

2B1 appears as a face of
exactly one other 2-cell, which we call B2. The remaining face e2 of B2 appears as a
face of exactly one other 2-cell, which we call B3. Repeating this process, we list distinct
2-cells B1, . . . , Bk, and Bk+1 is one of the previously labeled 2-cells. Then Bk+1 must
be B1, with ek = ∂0

1B1, since a 1-cell cannot appear as a common face of three 2-cells.
Finally, this process exhausts all 2-cells, because all 2-cells share the common vertex 0,
which has a neighborhood homeomorphic to an open 2-disk. �

Proposition 9.2. A left 2-cubical ball ([6, Definition 10.1]) in a pointed space X corre-
sponds to a circular chain of composable left 2-tracks:

a = a0

α
ε1
1−−→ a1

α
ε2
2−−→ · · · → ak−1

α
εk
k−−→ ak = a
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0
0 0

Figure 1. The left cubical balls C2, C3, and C4.

where the sign εi = ±1 is the orientation of the 2-cells in the left cubical ball ([6, Defi-
nition 10.8]). Moreover, such an expression (α1, . . . , αk) of a left 2-cubical ball is unique
up to cyclic permutation of the k left 2-tracks αi. For example, (α1, α2, . . . , αk) and
(α2, . . . , αk, α1) represent the same left 2-cubical ball. See Figure 2.

Proof. By our convention for the � -composition, a left 2-track α defines a morphism be-
tween left paths α : d0

1α⇒ d0
2α. The gluing condition for a left 2-cubical ball (α1, . . . , αk)

based on a left cubical ball B = B1∪ · · · ∪Bk as in Proposition 9.1 is that the restrictions
αi|ei and αi+1|ei agree on the common edge ei ⊂ Bi ∩ Bi+1. This is the composability
condition for α

εi+1

i+1 �αεii . Indeed, up to a global sign, the sign of Bi is

εi =

{
+1 if ei = ∂0

2Bi

−1 if ei = ∂0
1Bi

so that we have αεii : αi|ei−1
⇒ αi|ei and we may take ai = αi|ei . �

ak = a0

α
ε1
1 +3 a1

α
ε2
2

�$
ak−1

α
εk
k

5=

a2

α
ε3
3z�

a4

···

ai

a3
α
ε4
4

ks

Figure 2. A left 2-cubical ball.

Theorem 9.3. (1) A 2-track algebra A yields an algebra of left 2-cubical balls ([6, Def-
inition 11.1]) in the following way. Consider the system Θ(A) :=

(
(A(1,2),⊗), π0A, D,O

)
,

where:
• (A(1,2),⊗) is the underlying 2-graded category of T (described in Definition

5.1).
• π0A is the homotopy category of A.
• q : (A)0 = A(1)0 � π0A is the canonical quotient functor.
• D : (π0A)op×π0A → Ab is the functor defined by D(A,B) = π2A(1,2)(A,B).
• The obstruction operator O is obtained by concatenating the corresponding

left 2-tracks and using the structural isomorphisms ψ of the mapping 2-track
groupoid:

OB(α1, α2, . . . , αk) = ψa (αεkk � · · ·�αε22 �αε11 ) ∈ AutA(2)(A,B)(0) = π2A(1,2)(A,B)



2-TRACK ALGEBRAS AND THE ADAMS SPECTRAL SEQUENCE 21

where we denoted a = δ0α1 = δ1αk.
(2) Given a category C enriched in pointed spaces, Θ

(
Π(1,2)C

)
is the algebra of left

2-cubical balls
(Nul2 C, π0C, π2C(−,−),O)

described in [6, §11].
(3) The construction Θ sends a tertiary pre-chain complex (A, d, δ, ξ) in A to a 2nd

order pre-chain complex in Θ(A), in the sense of [6, Definition 11.4]. Moreover,
(A, d, δ, ξ) is a tertiary chain complex if and only if the corresponding 2nd order
pre-chain complex in Θ(A) is a 2nd order chain complex.

Proof. Let us check that the obstruction operator O is well-defined. By 9.2, the only
ambiguity is the starting left 1-cube ai in the composition. Two such compositions are
conjugate in the groupoid A(2)(A,B):

α
εi−1

i−1 � · · ·�αε22 �αε11 �αεkk � · · ·�α
εi+1

i+1 �αεii

=
(
α
εi−1

i−1 � · · ·�αε11
)
�αεkk � · · ·�α

εi+1

i+1 �αεii � · · ·�αε11 �
(
α
εi−1

i−1 � · · ·�αε11
)�

=β��αεkk � · · ·�αε11 � β

with β =
(
α
εi−1

i−1 � · · ·�αε11
)�

: ai ⇒ a0. Since A(2)(A,B) is a strictly abelian groupoid,
we have the commutative diagram:

Aut(a0)

ψa0 %%

ϕβ // Aut(ai)

ψai
��

Aut(0)

so that OB(α1, . . . , αk) is well-defined.
The remaining properties listed in [6, Definition 11.1] are straightforward verifications.

�
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