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2-TRACK ALGEBRAS AND THE ADAMS SPECTRAL SEQUENCE
HANS-JOACHIM BAUES AND MARTIN FRANKLAND

ABSTRACT. In previous work of the first author and Jibladze, the Es-term of the Adams
spectral sequence was described as a secondary derived functor, defined via secondary
chain complexes in a groupoid-enriched category. This led to computations of the E3-
term using the algebra of secondary cohomology operations. In work with Blanc, an
analogous description was provided for all higher terms FE,,. In this paper, we introduce
2-track algebras and tertiary chain complexes, and we show that the FEjs-term of the
Adams spectral sequence is a tertiary Ext group in this sense. This extends the work
with Jibladze, while specializing the work with Blanc in a way that should be more
amenable to computations.
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1. INTRODUCTION

A major problem in algebraic topology consists of computing homotopy classes of maps
between spaces or spectra, notably the stable homotopy groups of spheres 79(S%). One
of the most useful tools for such computations is the Adams spectral sequence [1] (and
its unstable analogues [7]), based on ordinary mod p cohomology. Given finite spectra X
and Y, Adams constructed a spectral sequence of the form:

Ey' = Exty' (H*(Y;F,), H*(X;F,)) = [27°X, Y]

where 2[ is the mod p Steenrod algebra, consisting of primary stable mod p cohomology
operations, and Y} denotes the p-completion of Y. In particular, taking sphere spectra
X =Y = S one obtains a spectral sequence

E;t = EXt;ft (Fp, ) = Wf_s(so)ﬁ
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abutting to the p-completion of the stable homotopy groups of spheres. In [8], Novikov
introduced an analogue of the Adams spectral sequence based on the complex cobordism
spectrum MU instead of the Eilenberg-MacLane spectrum HF,. The Adams-Novikov
spectral sequence has played a major role in chromatic homotopy theory and computations
of stable homotopy groups of spheres [9].

Another approach to the Adams spectral sequence makes use of higher mod p cohomol-
ogy operations to compute past the Fo-term. Secondary cohomology operations determine
the differential dy and thus the E3-term. The algebra of secondary operations was studied
in [2]. In [3], the first author and Jibladze developed secondary chain complexes and sec-
ondary derived functors, and showed that the Adams Fs-term is given by secondary Ext
groups of the secondary cohomology of X and Y. They used this in [5], along with the
algebra of secondary operations, to construct an algorithm that computes the differential
dg.

Primary operations in mod p cohomology are encoded by the homotopy category Ho(K)
of the Eilenberg-MacLane mapping theory /C, consisting of finite products of Eilenberg-
MacLane spectra of the form Q™ HF, x - - - x Q" HF,. More generally, the n'" Postnikov
truncation P,/KC of the Eilenberg-MacLane mapping theory encodes operations of order
up to n + 1. These in turn determine the Adams differential d,,y; and thus the E, -
term [4]. However, P, K contains too much information for practical purposes. In [6], the
first author and Blanc extracted from P,/XC the information needed in order to compute
the Adams differential d,,,. The resulting algebraic-combinatorial structure is called an
algebra of left n-cubical balls.

In this paper, we specialize the work of [6] to the case n = 2. Our goal is to provide
an alternate structure which encodes an algebra of left 2-cubical balls, but which is more
algebraic in nature and better suited for computations. The combinatorial difficulties in
an algebra of left n-cubical balls arise from triangulations of the sphere S"~! = 9D". In
the special case n = 2, triangulations of the circle S! are easily described, unlike in the
case n > 2. Our approach also extends the work in |3] from secondary chain complexes
to tertiary chain complexes.

Organization and main results. We define the notion of 2-track algebra (Definition
and show that each 2-track algebra naturally determines an algebra of left 2-cubical
balls (Theorem [9.3). Building on [6], we show that higher order resolutions always exist
in a 2-track algebra (Theorem . We show that a suitable 2-track algebra related to
the Eilenberg-MacLane mapping theory recovers the Adams spectral sequence up to the
Ey-term (Theorem . We show that the spectral sequence only depends on the weak
equivalence class of the 2-track algebra (Theorem .

Remark 1.1. This last point is important in view of the strictification result for secondary
cohomology operations: these can be encoded by a graded pair algebra B, over Z/p?
[2, §5.5]. The secondary Ext groups of the Es-term turn out to be the usual Ext groups
over B, [5, Theorem 3.1.1], a key fact for computations. We conjecture that a similar
strictification result holds for tertiary operations, i.e., in the case n = 2.

2. CUBES AND TRACKS IN A SPACE

Definition 2.1. Let X be a topological space.
An n-cube in X isamap a: I — X, where [ = [0, 1] is the unit interval. For example,
a 0-cube in X is a point of X, and a 1-cube in X is a path in X.
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An n-cube can be restricted to (n — 1)-cubes along the 2n faces of I". For 1 < i < n,
denote:

A~
d?(a) = a restricted to I x I x ... x {0} x...x I

—~
dj(a) = a restricted to I x I x ... x {1} x...x I.

An n-track in X is a homotopy class, relative to the boundary 0I™, of an n-cube. If
a: I — X is an n-cube in X, denote by {a} the corresponding n-track in X, namely the
homotopy class of a rel 9I".

In particular, for n = 1, a 1-track {a} is a path homotopy class, i.e., a morphism in the
fundamental groupoid of X from a(0) to a(1). Let us fix our notation regarding groupoids.

Notation 2.2. A groupoid is a category in which every morphism is invertible. Denote
the data of a (small) groupoid by G = (GO, G4, 00, 6,,1d7, 0, (—)Op), where:
e Gy = Ob(G) is the set of objects of G.
e (G; = Hom(G) is the set of morphisms of G. The set of morphisms from z to y is
denoted G(x,y). We write x € G and deg(z) = 0 for x € Gy, and deg(z) = 1 for
x € Gl-
e 0y: G1 — Gy is the source map.
e 01: G — (Y is the target map.
e id”: Gy — Gy sends each object z to its corresponding identity morphism idE.
e [1: G xXg, G1 — G is composition in G.
e f&: 9y — x is the inverse of the morphism f: z — v.
Groupoids form a category Gpd, where morphisms are functors between groupoids.
For any object z € Gy, denote by Autg(z) = G(x,x) the automorphism group of z.
Denote by Comp(G) = my(G) the components of G, i.e., the set of isomorphism classes
of objects Go/ ~.
Denote the fundamental groupoid of a topological space X by II1)(X).

Definition 2.3. Let X be a pointed space, with basepoint 0 € X. The constant map
0: I — X with value 0 € X is called the trivial n-cube.

A left 1-cube or left path in X is a map a: I — X satisfying a(1) = 0, that is,
di(a) = 0, the trivial 0-cube. In other words, a is a path in X from a point a(0) to the
basepoint 0. We denote da = a(0).

A left 2-cube in X is a map a: I? — X satisfying a(1,t) = a(t,1) =0 for all t € I,
that is, d}(a) = di(a) = 0, the trivial 1-cube.

More generally, a left n-cube in X is a map a: I" — X satisfying a(ty,...,t,) =0
whenever some coordinate satisfies t; = 1. In other words, for all 1 < ¢ < n we have
d}(a) = 0, the trivial (n — 1)-cube.

A left n-track in X is a homotopy class, relative to the boundary 91", of a left n-cube.

The equality I"™+" = "™ x I™ allows us to define an operation on cubes.

Definition 2.4. Let u: X x X’ — X” be a map, for example a composition map in a
topologically enriched category C. For m,n > 0, consider cubes

a: I — X

b: I" — X',
The ®-composition of a and b is the (m + n)-cube a ® b defined as the composite

axb

(2.1) a@b: I =T x " 5 X x X' B X
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For m = n, the pointwise composition of a and b is the n-cube defined as the
composite

(2.2) ab: 1" YU x o x7 B X

The pointwise composition is the restriction of the ®-composition along the diagonal:

[ o 2 X

~_ 7

ab

Remark 2.5. For m = n = 0, the O-cube z ® y = zy is the composition. For higher dimen-
sions, there are still relations between the ®-composition and the pointwise composition.
In suggestive formulas, pointwise composition of paths is given by (ab)(t) = a(t)b(t) for all
t € I, whereas the ®-composition of paths is the 2-cube given by (a ® b)(s,t) = a(s)b(t).

Assume moreover that p satisfies

/L(:L‘, 0) = :u(()? :L“,) =0
for the basepoints 0 € X,0 € X’,0 € X”. For example, p could be the composition map
in a category C enriched in (Top,, A), the category of pointed topological spaces with the
smash product as monoidal structure. If a and b are left cubes, then a ® b and ab are also
left cubes.

3. 2-TRACK GROUPOIDS

We now focus on left 2-tracks in a pointed space X, and observe that they form a
groupoid. Define the groupoid II9)(X) with object set:
2y (X)o = set of left 1-cubes in X

and morphism set:
2y (X)1 = set of left 2-tracks in X

where the source §y and target d; of a left 2-track av: I x I — X are given by restrictions
do(a) = dy()
01(a) = dy(a)

and note in particular ddy(a) = 001(«) = «(0,0). In other words, a morphism « from a

to b looks like this:
0

a:60(a) Na 0

da = b

b=61(a)

Remark 3.1. Up to reparametrization, a left 2-track a: a = b corresponds to a path
homotopy from a to b, which can be visualized in a globular picture:
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However, the ®-composition will play an important role in this paper, which is why we
adopt a cubical approach, rather than globular or simplicial.

Composition S0« of left 2-tracks is described by the following picture:

(3.1) 0

a % 0

b

c /ﬁ 0

0

Remark 3.2. To make this definition precise, let a: a = b and : b = ¢ be left 2-tracks

in X, i.e., composable morphisms in II9)(X). Choose representative maps o, E: I’ - X.
Consider the map f, : [0,1] x [-1,1] — X pictured in (3.1). That is, define

fasty  ito<t<1
f(s’t)_{ﬁ(—t,s) if —1<t<0.

Now consider the reparametrization map w: I? — [0,1] x [—1, 1] whose restriction w|s;
to the boundary is the piecewise linear map satisfying

w(0,0) = (0,0)
w(0,1) = (0,1)
w(i 1) =(1,1)
w(l,1) = (1,0)
w(l, %) =(1,-1)
w(1,0) = (0,—1)

\

and defined for points # € I? in the interior as follows. Write z = k(0,0) + ly as a
unique convex combination of (0,0) and a point y on the boundary dI?. Then define
w(z) = kw(0,0) 4+ lw(y) = lw(y). Finally, the composition SO «: a = cis {fasow}, the
homotopy class of the composite

2t 0,1] x [1,1] 225 x

relative to the boundary 9I2.

In other notation, we have inclusions d3: I' < I? as the bottom edge I x {0} and
dY: I' — I? as the left edge {0} x I, our w is a map w: I* — I[*Up I?, and S0« is the
homotopy class of the composite

ooy, ey
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Given a left path a in X, the identity of a in the groupoid I(5)(X) is the left 2-track is
pictured here:

0

More precisely, for points z € I? in the interior, write z = k(0,0) + ly as a unique convex

combination of (0,0) and a point y on the boundary dI%. Then define id} (z) = a(l).
The inverse a=: b = a of a left 2-track o: @ = b is the homotopy class of the composite

aoT, where T: I? — I? is the map swapping the two coordinates: T'(z,y) = (y, r).

Lemma 3.3. Given a pointed topological space X, the structure described above makes
5y (X) into a groupoid, called the groupoid of left 2-tracks in X.

Proof. Standard. O

Definition 3.4. A groupoid G is abelian if the groups Autg(z) are abelian for all objects
xr € Gy.G is strictly abelian if it is pointed (with basepoint 0 € Gy), and is equipped
with a family of isomorphisms

2/1302 AutG(a:) i Autg<0)

indexed by all objects © € G, which are moreover compatible with all “change of base-
point” isomorphisms

o' Autg(y) = Autg(x)
a— pl(a) = fFOaOf

for any map f: x — y in G. More precisely, the diagrams

(3.2) Aute(y) 2= Auta()
k lwz
Autg(())
commute.

Remark 3.5. A strictly abelian groupoid is automatically abelian. Indeed, the com-
patibility condition (3.2)) applied to automorphisms f: 0 — 0 implies that conjugation
o/ Autg(0) — Autg(0) is the identity.

Definition 3.6. A groupoid G is pointed if it has a chosen basepoint, i.e., an object
0 € Gy. Here 0 is an abuse of notation: the basepoint is not assumed to be an initial
object for G.
The star of a pointed groupoid G is the set of all morphisms to the basepoint 0, denoted
by:
Star(G) = {f € Gy | 0:(f) = 0}.
For a morphism f: x — 0 in Star(G), we write 0f = §of = x.
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If G has a basepoint 0 € Gg, then we take idE € (1 as basepoint for the set of
morphisms G and for Star(G) C G1; we sometimes write 0 = idE. Moreover, we take
the component of the basepoint 0 as basepoint for Comp(G), the set of components of G.

Proposition 3.7. 15 (X) is a strictly abelian groupoid, and it satisfies Comp I1()(X) ~
Star H(l) (X)

Proof. Let a € I1(5y(X)o be a left path in X. To any automorphism a: 0 = 0 in I (X),
one can associate the well-defined left 2-track indicated by the picture

(3.3) 0

e}

da 0

a

which is a morphism a = a. This assignment defines a map Autyy,( x)(0) — Auty, ( x)(a)
and is readily seen to be a group isomorphism, whose inverse we denote 1,. One readily
checks that the family v, is compatible with change-of-basepoint isomorphisms.

The set Comp II(2)(X) is the set of left paths in X quotiented by the relation of being
connected by a left 2-track. The set Star II(;)(X) is the set of left paths in X quotiented
by the relation of path homotopy. But two left paths are path-homotopic if and only if
they are connected by a left 2-track. 0

The bijection Comp II(5)(X) ~ Starll)(X) is induced by taking the homotopy class
of left 1-cubes. Consider the function ¢: II(2)(X)o — IL(1)(X); which sends a left 1-cube
to its left 1-track g(a) = {a}. Then the image of ¢ is StarIL)(X) C Il)(X), and q is
constant on the components of II(5)(X)o. We now introduce a definition based on those
features of () (X).

Definition 3.8. A 2-track groupoid G = (G(1), G(2)) consists of:
e Pointed groupoids G(;y and G(y), with G 9y strictly abelian.
e A pointed function q: G()0 — Star G(;) which is constant on the components of

G'(2), and such that the induced function ¢: Comp G/y) = Star G(1) is bijective.
We assign degrees to the following elements:
Oif x € G(I)O
deg(z) = 1 if z € G20
2ifx € G(g)l

and we write z € GG in each case.
A morphism of 2-track groupoids F': G — G’ consists of a pair of pointed functors

F(1)2 G(l) — Gl(l)
Fay: Gy — Gy

which are compatible with the additional structure, as described in the following two
conditions.
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(1) (Structural isomorphisms) For every object a € G2y, the diagram

Flo)
Autg, (@) — Aut(;zz) (Fl2)a)

z/)al/ ij@)a

AUtG<2) (O) 7 Aut(;/(z) (0’)

commutes.
(2) (Quotient functions) The diagram

Flo

G(2)0 Gl(z)o

Star Gy T; Star G’(l)

commutes.
Let Gpd(; 2) denote the category of 2-track groupoids.
Remark 3.9. If a: a = b is a left 2-track in a space, then the left paths a and b have
the same starting point da = 0b. This condition is encoded in the definition of 2-track
groupoid. Indeed, if o: @ = b is a morphism in G(y), then a,b € G(9)0 belong to the

same component of G(z). Thus, we have g(a) = ¢(b) € Star G(1) and in particular dq(a) =
(5(](1)) € G(I)O-

Definition 3.10. The fundamental 2-track groupoid of a pointed space X is
H(Lg) (X) = (H(l) (X), H(Q) (X)) .
This construction defines a functor Il 5): Top, — Gpd(y,2).

Remark 3.11. The grading on II(;2)(X) defined in corresponds to the dimension of
the cubes. For x € Il 2)(X), we have deg(x) = 0 if = is a point in X, deg(x) = 1 if z is
a left path in X, and deg(z) = 2 if x is a left 2-track in X. This 2-graded set is the left
2-cubical set Nuly(X) [6 Definition 1.9].

Definition 3.12. Given a 2-track groupoid G, its homotopy groups are
oG = Comp Gy
mG = Autg,,, (0)
TG = Autg, (0).
Note that myG is a priori only a pointed set, ;G is a group, and myG is an abelian group.

A morphism F: G — G’ of 2-track groupoids is a weak equivalence if it induces an
isomorphism on homotopy groups.

Remark 3.13. Let X be a topological space with basepoint o € X. Then the homotopy
groups of its fundamental 2-track groupoid G' = IL(; 2)(X, ) are the homotopy groups of
the space ;G = m;(X, xo) for i = 0,1, 2.

Lemma 3.14. Gpdy 2y has products, given by G x G' = (G(l) X Gl(l),G(Q) X G”(g)), and
where the structural isomorphisms

77b(:rz,x’): AUtG@)XG&) ((l’, ZE,)) i> AUtG(z)XG/@) ((07 0/>>
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are given by ¥, X V., and the quotient function

(G x G20 = G20 X Glayg

iqxw

Star(G' x G')1) = Star G1) x Star G{,
is the product of the quotient functions for G and G'.

Lemma 3.15. The fundamental 2-track groupoid preserves products:
H(LQ)(X X Y) = H(LQ)(X) X H(1,2)(Y)-

4. 2-TRACKS IN A TOPOLOGICALLY ENRICHED CATEGORY

Throughout this section, let C be a category enriched in (Top,, A). Explicitly:

e For any objects A and B of C, there is a morphism space C(A, B) with basepoint
denoted 0 € C(A, B).
e For any objects A, B, and C, there is a composition map

p: C(B,C) x C(A, B) — C(A,C)

which is associative and unital.
e Composition satisfies

pu(x,0) = p(0,y) =0
for all = and .

We write x € C if x € C(A, B) for some objects A and B. For z,y € C, we write
xy = p(x,y) when = and y are composable, i.e., when the target of y is the source of x.
From now on, whenever an expression such as xzy or x ® y appears, it is understood that
x and y must be composable.

By Definition , we have the ®-composition =z ® y for z,y € II1)C and deg(x) +
deg(y) < 1. For deg(a) = deg(b) = 1, we have:

ab = (a® §;b) O (dpa ® b)
= ((51(1 ® b) D (CL ® (50b) .

This equation holds in any category enriched in groupoids, where ab denotes the (point-
wise) composition. Note that for paths @ and b representing a and b, the boundary of the
2-cube 4 ® b corresponds to the equation.

Conversely, the ®-composition in II;)C is determined by the pointwise composition.
For deg(x) = deg(y) = 0 and deg(a) = 1, we have:

rTRY=2xY
(4.1) r®a=idYa
a®x = aidy .
We now consider the 2-track groupoids II(1,9)C(A, B) of morphism spaces in C, and we

write x € I9)C if € TI12C(A, B) for some objects A, B of C. By Definition ,
composition in C induces the ®-composition:

T (TS H(LQ)C

if x and y satisfy deg(x) + deg(y) < 2. For deg(z) = deg(y) = 1, x and y are left paths,
hence r ® y is well-defined. The ®-composition satisfies:

deg(z ® y) = deg(z) + deg(y).
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The ®-composition is associative, since composition in C is associative. The identity
elements 14, € C(A,A) for C provide identity elements 1 = 14 € Il 9C(A, A), with
deg(ly)=0,andz®@1=z=1®x.

Let us describe the ®-composition of left paths more explicitly. Given left paths a and
b, then a ® b is a 2-track from dp(a ® b) = (da) ® b to 61(a ® b) = a ® (§b), as illustrated
here:

50(a@b)=5a@b € o

01(a®b)=a®db

Definition 4.1. The 2-track algebra associated to C, denoted (H(l)C, II12C, 0, ®),
consists of the following data.

e 1I)C is the category enriched in pointed groupoids given by the fundamental
groupoids (H(l)C (A, B),O ) of morphism spaces in C, along with the ®-composition,
which determines (and is determined by) the composition in II)C.

e 111 9)C is given by the collection of fundamental 2-track groupoids (H(I’Q)C (A, B),O )
together with the ®-composition 2®y for x,y € Il 2)C satisfying deg(z)+deg(y) <
2.

Proposition 4.2. Let z,a, 3 € l1(1,9C with deg(x) = 0 and deg(o) = deg(B) = 2. Then
the following equations hold:

r®(Pla) = (z® /U (r ® )
(fe) @z = (f@z)d(a® ).

Proof. This follows from functoriality of I1(5) applied to the composition maps u(z, —): C(A, B) —
C(A,C) and u(—,x): C(B,C) — C(A,C). O

Proposition 4.3. Let ¢, a € 111 9C with deg(c) =1 and deg(a) = 2. Then the following
equations hold:

ha®c=(a®dc)0d (dha @ c)
c® = (c®da)d (dc®a).

Proof. Write a = dpax and b = 01, i.e., a is a left 2-track from a to b:
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and note in particular da = db. Let a be a left 2-cube that represents a and consider the
left 3-cube a ® c:

a®dc
%se /
bRdc
0
<
b®§ fa®c

N

0

Its boundary exhibits the equality of 2-tracks:

top face I right face = front face
(a®dc)d(a®@c)=b®c
(a®dc)d (o ® c) = ha® c.

Likewise, for second equation, consider the left 3-cube ¢ ® a:

dc®b

o)
&
>

c®da

60%

c®§ dc®a

N

0
Its boundary exhibits the equality of 2-tracks:

top face J right face = front face
(c@bd (ca)=c®a
(c® o) 0 (be® @) = ¢ ® Jpar.
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5. 2-TRACK ALGEBRAS

We now collect the structure found in (H(l)C I a2C, 0, ®) into the following definition.

Definition 5.1. A 2-track algebra A = (A(l),.A(l,g),D,Q@) consists of the following
data.

(1) A category A enriched in pointed groupoids, with the ®-composition determined
by Equation (4.1)).

(2) A collection A9 of 2-track groupoids (A(1,2) (A, B), D) for all objects A, B of
Ay, such that the first groupoid in A ,2)(A, B) is equal to the pointed groupoid
Aaqy(4, B).

(3) For z,y € A(1,2), the ®-composition  ® y € A(y9) is defined. For deg(z) = 0 and
deg(y) = 1, the following equations hold in A):

9z @y) = r©q(y)
q(y @) = qly) @ .
The following equations are required to hold.
(1) (Associativity) ® is associative: (z®y)® 2z =2® (y ® 2).
(2) (Units) The units 1 € A, with deg(14) = 0, serve as units for ®, i.e., satisfy
r@l=x=1®xforal z € Ay ).
(3) (Pointedness) ® satisfies t®0=0and 0®y = 0.
(4) For x,y, o, 8 € Apg) with deg(z) = deg(y) = 0 and deg(a) = deg(8) = 2, we
have:
Jilz®@a®y)=r® (§a)®y fori=0,1
@ BO)ey=(Fefey)dreaey)

(5) For a,b € Ap 9y with deg(a) = deg(b) = 1, we have:
do(a®@b) =0a®b
d1(a®b) =a® db.

(6) For c,a € A1 2) with deg(c) = 1 and deg(a) = 2, we have:

ha®ce=(a®dc)0d (fa® c)
c® o= (c®da)d (be®a).

Definition 5.2. A morphism of 2-track algebras F': A — B consists of the following.
(1) A functor F(y): Any — B enriched in pointed groupoids.
(2) A collection F{y 9) of morphisms of 2-track groupoids

Fa 2 (A, B): A(1,2) (A,B) — B(LQ)(FA, FB)

for all objects A, B of A, such that F{; (A, B) restricted to the first groupoid in
Aq,2)(A, B) is the functor Fi1y(A, B): Any(A, B) = Bay(FA, FB).
(3) (Compatibility with ®) F commutes with ®:

Fx®y)=Fr® Fy.
Denote by Alg; 2y the category of 2-track algebras.

Definition 5.3. Let A be a 2-track algebra. The underlying homotopy category of A
is the homotopy category of the underlying track category A, denoted

oA 1= mo Ay = Comp A(y).
We say that A is based on the category my.A.
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Definition 5.4. A morphism of 2-track algebras F': A — B is a weak equivalence if
the following conditions hold:

(1) For every objects A and B of A, the morphism
Faay: Aaa(A, B) = Baao(FA, FB)

is a weak equivalence of 2-track groupoids (Definition [3.12]).
(2) The induced functor 7o F': mp. A — w83 is an equivalence of categories.

6. HIGHER ORDER CHAIN COMPLEXES

In this section, we construct tertiary chain complexes, extending the work of [3] on
secondary chain complexes. We will follow the treatment therein.

Definition 6.1. A chain complex (A, d) in a pointed category A is a sequence of objects
and morphisms
dn
AnJrl o An - Anfl -
in A satistying d,,_1d,, = 0 for all n € Z. The map d is called the differential.
A chain map f: (A,d) — (A’,d') between chain complexes is a sequence of morphisms
fn: Ap — Al commuting with the differentials:

dn dnfl
An+1 A, Ap g ——---

fn+1L fn\j fnll
d, d,

/ n / n—1 4y
An—l—l An An—l e

i.e., satisfying f.d, = d,, fn41 for all n € Z.

Definition 6.2. 3| Definition 2.6] Let B be a category enriched in pointed groupoids. A
secondary pre-chain complex (A,d,v) in B is a diagram of the form:

0 0
m T

More precisely, the data consists of a sequence of objects A,, and maps d,,: A1 — Ay,
together with left tracks v, : d,d,+1 = 0 for all n € Z.
(A,d,v) is a secondary chain complex if moreover for each n € Z, the tracks

dnfl®"/n ld%]
dy =2 10—

and

Yn—1Qdn 4 idUD
dy_1dpdy iy —=0d, g —= 0

coincide. In other words, the track
O(’Yn—la ’771) = (’Yn—l b2y dn—i—l) l (dn—l & ’Yn)E :0=0

in the groupoid B(A, 2, A,,_1) is the identity track of 0.
We say that the secondary pre-chain complex (A, d, ) is based on the chain complex
(A, {d}) in the homotopy category myB.
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Remark 6.3. One can show that the notion of secondary (pre-)chain complex in B coin-
cides with the notion of 1% order (pre-)chain complez in Nul; B described in [6, §4, c.f.
Example 12.3].

Definition 6.4. A tertiary pre-chain complex (A4,d,6,&) in a 2-track algebra A is a
sequence of objects A,, and maps d,,: A,41 — A, in the category A1), together with left
paths v, : dpd, 1 — 0 in Ay 9), as illustrated in the diagram

0 0 0
e ——> An+3 ~dn+2- An+2 ~dn 4~ An+1 —dp—> An —dn—r Anfl —_—

W W
0 0

along with left 2-tracks &,: v, ® dy42 = dp @ Vg1 in A9, for all n € Z.
(A,d,v,&) is a tertiary chain complex if moreover for each n € Z, the left 2-track:
d’VLf ®£n n— ® n £7L7 ®d7L
dn—l ® Tn ® dn+2 é dn—ldn ® ’yn—i:yl 1=’y+’}l/n—l X dn-i—ldn—i-? 1=>+én—1 X Tn 02y dn+2
is the identity of d,,—1 ® v, ® dy42 in the groupoid A(z)(An+s, An—1). In other words, the
element:

O(Sn—la €n> = wdn_1®’yn®dn+2 ((gn—l ® dn—i—?) D (7n—1 & ’Yn-‘,-l) |:| (dn—l X €n>> S 7r2~’4(1,2) (An+3a An—l)

is trivial. Here, ¢ is the structural isomorphism in the 2-track groupoid A(; 2)(An+3, An-1),
as in Definitions 3.4l and 3.8

We say that the tertiary pre-chain complex (A, d,, &) is based on the chain complex
(A, {d}) in the homotopy category m.A.

6.1. Toda brackets of length 3 and 4. Let C be a category enriched in (Top,, A). Let
moC be the category of path components of C (applied to each mapping space) and let

v Y2 Y3

Yo<2v, R L

be a diagram in mC satisfying y1y2 = 0, yoy3 = 0, and y3ys = 0. Choose maps x; in C
representing ;. Then there exist left 1-cubes a, b, ¢ as in the diagram

0 0
m m
Yo Yy Ya Y3 Y.

Definition 6.5. The Toda bracket of length 3, denoted (y1, y2, y3) € mC(Y3,Yp), is the
set of all elements in Aut(0) = mC(Y3,Yy) of the form

O(a,b) == (a ® x3)0 (z; @ b)~

as above.
Assume now that we can choose left 2-tracks a: a®x3 = r1®band f: bRxys = 2R ¢
in IT(; 2)C. Then the composite of left 2-tracks

(a®@z)(a®@c)O(x; @ P)
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is an element of Aut(z; ® b ® z4), to which we apply the structural isomorphism

Qsz(X)béb:m : AUt(xl ®Rb® {L‘4) i WQC(YZL, Yb)

The set of all such elements is the Toda bracket of length 4, denoted (y1,y2, y3, y4) C
WQC (}/47 }/0) .

Note that the existence of «, resp. [, implies that the bracket (yi,ys,ys), resp.
(Y2, Y3, y4) contains the zero element.

Remark 6.6. For a secondary pre-chain complex (A, d, ), we have

O(fynfla 771) S <dn717 dn7 dn+1>

for every n € Z. Likewise, for a tertiary pre-chain complex (A, d,~, &), we have

O(fn*h fn) € <dn*17 dn7 dnJrla dn+2>

for every n € Z. However, the vanishing of these Toda brackets does not guarantee the
existence of a tertiary chain complex based on the chain complex (A, {d}).

7. THE ADAMS DIFFERENTIAL d3

Consider the topologically enriched category of spectra and mapping spaces between
spectra, denoted Spec. (To make this precise, one can start from a simplicial model
category of spectra, and take Spec to be the full subcategory of fibrant-cofibrant objects,
c.f. |6, Example 7.3].)

Let H := HF), be the Eilenberg-MacLane spectrum for the prime p and let A = H*H
denote the mod p Steenrod algebra. Consider the collection EM of all mod p generalized
Eilenberg-MacLane spectra that are bounded below and of finite type, i.e., degreewise
finite products A = [[, ¥ H with n; € Z and n; > N for some integer N for all 7. Since
the product is degreewise finite, the natural map \/, ¥ H — [[, £ H is an equivalence,
so that the mod p cohomology H*A is a free 2A-module. Moreover, the cohomology
functor restricted to the full subcategory of Spec with objects EM yields an equivalence
of categories in the diagram:

ToSpec® =, Mody

H*
ToEM® —— Mod"

where ModA" denotes the full subcategory consisting of free 2-modules which are bounded
below and of finite type.
Given spectra Y and X, consider the Adams spectral sequence:

Ey' = Exty' (H*X, H'Y) = [S"°Y, X} .

Assume that Y is a finite spectrum and X is a connective spectrum of finite type, i.e., X
is equivalent to a CW-spectrum with finitely many cells in each dimension and no cells
below a certain dimension. Then the mod p cohomology H*X is an 2-module which is
bounded below and degreewise finitely generated (as an 2l-module, or equivalently, as an
[F,-vector space). Choose a free resolution of H*X as an 2-module:

€1

F F -2y 2

where each Fj is a free 2-module of finite type and bounded below. This diagram can be
realized as the cohomology of a diagram in the stable homotopy category mySpec:

H*X

d1 do

Ay

Al Ao ‘ A_l =X
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with each A; in EM (for ¢ > 0) and satisfying H*A; = F;. We consider this diagram as
a diagram in the opposite category moSpec® of the form:

dy do

As

Al AO < A_l - X

Since A, — X is an EM-resolution of X in mySpec®?, there exists a tertiary chain complex
(A, d,v,§) in I 2)Spec® based on the resolution A, — X, by Theorem m

Notation 7.1. Given spectra X and Y, let EM{X, Y} denote the topologically enriched
subcategory of Spec consisting of all spectra in EM and mapping spaces between them,
along with the objects X and Y, with the mapping spaces Spec(X, A) and Spec(Y, A)
for all A in EM; cf. [3, Remark 4.3] [6, Remark 7.5]. We consider the 2-track alge-
bra II o) EM{X, Y }°P, or any 2-track algebra A weakly equivalent to it. In the follow-
ing construction, everything will take place within II o) EM{X, Y }°P, but we will write
I1(; 2)Spec® for notational convenience.

Start with a class in the Es-term:
v e Ey' = Exty (H*X, H'Y) = Exty"(H* X, S H*Y)

represented by a cocycle 2': F, — X'H*Y, i.e., a map of 2A-modules satisfying z'd, = 0.
Realize 7' as the cohomology of a map z”: A, — X'Y in Spec®. The equation 2'd, = 0
means that z”d, is null-homotopic; let v: 2”d;, — 0 be a null-homotopy. Consider the
diagram in Spec°®:

ds ds—l €

As As—l e AO

ds+1

Asta Asia X

0 0

(71) e AS+3 A5+2 A8+1 és AS — EtY

in which the obstructions O(;, y:41) are trivial, for i > s.

Theorem 7.2. The obstruction O(7,~,) € mSpec® (A, 2, XY) = mySpec®™ (A, 2, XY
is a (co)cycle and does not depend on the choices, up to (co)boundaries, and thus defines
an element:

de(v) € Exty > (H* X, H'Y).
Moreover, this function
dipy: Exty' (H*X, H'Y) — ExtyP>" " (H* X, H'Y)
1s the Adams differential ds.

Proof. This is |3, Theorems 4.2 and 7.3], or the case n = 1,m = 3 of |6, Theorem 15.11].
Here we used the natural isomorphism:

Extt pnvpor (H* X, H*Y) 2 Exty! (H* X, H*Y)
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where the left-hand side is defined as in Example |8.8] Using the equivalence of categories
H*: mfEM* = Modgn, this natural isomorphism follows from the natural isomorphisms:

WOSpeCOP(AS+2, ZtJrlY) = HOHlQl (Fs+2, H*Zt+1Y)
= Homy (Fyy0, X" H'Y) .
Cocycles modulo coboundaries in this group are precisely Ext;”’tﬂ(H *X,H*Y). O

Now assume that dy(z) = 0 holds, so that = survives to the Fj-term. Since the ob-
struction
O(,7s) = (Y®dsy1) O (2" @ %)EI
vanishes, one can choose a left 2-track £: v ® dsy1 = =" ® 5, which makes into a
tertiary pre-chain complex in Il 9)Spec™. Since (A, d, v, ) was a tertiary chain complex
to begin with, the obstructions O(&;, ;1) are trivial, for ¢ > s.

Theorem 7.3. The obstruction O(€, &) € maSpec™(Aq s, X1Y) = mySpec™ (A, 3, 2IT2Y)
is a (co)cycle and does not depend on the choices up to (co)boundaries, and thus defines
an element:
d)(z) € B3P (X,Y).
Moreover, this function
dy: B5N(X,Y) — B3P (X,Y)
1s the Adams differential ds.

Proof. This is the case n = 2,m = 4 of [6, Theorem 15.11]. More precisely, by Theorem
m, the tertiary chain complex (4, d,~,§) in IL(; »)Spec®™ yields a 2 order chain complex
in Nul, Spec® based on the same EM-resolution A, — X in mpSpec®. The construction
of d(3y above corresponds to the construction dsz in [6, Definition 15.8]. O

Remark 7.4. The groups F5'(X,Y) are an instance of the secondary Ext groups defined
in [3, 64]. Likewise, the next term E;‘(X,Y) = ker dey/imds) is a higher order Ext
group as defined in [6, §15].

Theorem 7.5. A weak equivalence of 2-track algebras induces an isomorphism of higher
Ext groups, compatible with the differential d(s). More precisely, let F': A — A" be
a weak equivalence between 2-track algebras A and A’ which are weakly equivalent to
9 EM{X,Y}°P. Then F induces isomorphisms E;:i\(X, ) S E;:Z,(FX, FY') making
the diagram

d3),a

E5L(X.Y) B3 (XY)

gl gl

d ’
Bt (FX,FY) 22 BV (FX FY)

commute. Here the additional subscript A or A" denotes the ambient 2-track category in
which the secondary Ext groups and the differential are defined.

Proof. This follows from the case n = 2 of |6, Theorem 15.9], or an adaptation of the
proof of [3, Theorem 5.1]. O

8. RESOLUTIONS

In this section, we recall some background from [3] and specialize some results of [0
about higher order resolutions to the case n = 2. We use the fact that a 2-track algebra
has an underlying algebra of left 2-cubical balls, which is the topic of Section [9]



18 HANS-JOACHIM BAUES AND MARTIN FRANKLAND

8.1. Relative homological algebra. In this subsection, let A be an additive category
and a C A a full additive subcategory. An example to keep in mind is the category
A = Modg of R-modules for some ring R, and the subcategory a of free (or projective)
R-modules.

Definition 8.1. Given chain maps f,g: (A,d) — (A, d'), a chain homotopy h from f
to g is a sequence of morphisms h,,: A,,_y — A, satisfying g, — f, = d,hp+1 + hpd,—1 for
all n € Z. In graded notation: g — f = dh + hd.

A chain complex (A,d) is a-exact if for every object X of a the chain complex
Homa (X, A,)

-+ —— Homp (X, An+10mA—>(X’dﬁomA /an nHlomA X, A, 1) —

is an exact sequence of abelian groups.

A chain map f: (A,d) — (A’,d’) is an a-equivalence if for every object X of a, the
chain map Homy (X, f) is a quasi-isomorphism.
Definition 8.2. For an object A of A, an A-augmented chain complex A{ is a chain
complex of the form

do

Ay Ay —— A 0

ie, with A_; = A and A, = 0 for n < —1. Such a complex can be viewed as a chain
map €: A, — A where A is a chain complex concentrated in degree 0. The map ¢ = d_;
is called the augmentation.

An a-resolution of A is an A-augmented chain complex AS which is a-exact and such
that for all n > 0, the object A, belongs to a. In other words, an a-resolution of A is a
chain complex A, in a together with an a-equivalence e¢: A, — A.

Lemma 8.3. Assume that a satisfies the following:

e The coproduct of any set of objects of a exists in A and belongs to a again.
e There is a small subcategory g of a such that every object of a is a retract of a
coproduct of a set of objects from g

Then every object of A admits an a-resolution.

Fxample 8.4. Consider A = Modpg and a the full subcategory of free R-modules. Then
the full subcategory g = { R} on the free R-module on one generator satisfies the assump-
tions of the lemma. Likewise, if a is the full subcategory of projective R-modules, then
the same subcategory g = { R} satisfies the assumptions of the lemma.

Lemma 8.5. Let e: A, — A and ¢': A, — A be A-augmented chain complexes. If each
A, isin a forn > 0 and A, is a-exact, then there exists a chain map f: Ay — Al over
A, which is unique up to chain homotopy over A.

Corollary 8.6. Any two a-resolutions As and A, of an object A are chain homotopy
equivalent.

Definition 8.7. Let A be an abelian category and F': A — A an additive functor. The
a-relative left derived functors of F' are the functors L2F: A — A for n > 0 defined
by
(LR F)A = H, (F(A.))
where A, — A is any a-resolution of A.
Likewise, if F': A°® — A is a contravariant additive functor, its a-relative right
derived functors of F' are defined by

(RoF)A = H" (F(A,)).
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Example 8.8. The a-relative Ext groups are given by
Exty (A, B) := (R, Homa (—, B)) (A) = H" Homy (A, B).
8.2. Higher order resolutions.

Proposition 8.9 (Correction of 1-tracks). Let B be a category enriched in pointed groupoids,
such that its homotopy category moB s additive. Let a C moB be a full additive subcat-
egory. Let (A,d,7y) be a secondary pre-chain complex in B based on an a-resolution
Ae — X of an object X in myB. Then there exists a secondary chain complex (A,d,~")
in B with the same objects A; and differentials d;. In particular (A, d,~") is also based on
the a-resolution Ay — X.

Proof. This follows from an adaptation of the proof of |3, Lemma 2.14], or the case n = 1
of [6, Theorem 13.2]. O

Proposition 8.10 (Correction of 2-tracks). Let A be a 2-track algebra such that its
homotopy category moA is additive. Let a C myA be a full additive subcategory. Let
(A,d,~,&) be a tertiary pre-chain complex in A based on an a-resolution Ay — X of an
object X in moA. Then there exists a tertiary chain complex (A,d,~,&") in A with the
same objects A;, differentials d;, and left paths ;. In particular, (A, d,~,£') is also based
on the a-resolution Ay — X.

Proof. This follows from the case n = 2 of |6, Theorem 13.2]. O

Theorem 8.11 (Resolution Theorem). Let A be a 2-track algebra such that its homotopy
category moA is additive. Let a C myA be a full additive subcategory. Let Ay — X be
an a-resolution in moA. Then there exists a tertiary chain complex in A based on the
resolution Ay — X.

Proof. This follows from the resolution theorems [6, Theorems 8.2 and 14.5]. O

9. ALGEBRAS OF LEFT 2-CUBICAL BALLS

Proposition 9.1. FEvery left cubical ball of dimension 2 is equivalent to Cy for some
k > 2, where Cy = By U ---U By is the left cubical ball of dimension 2 consisting of
k closed 2-cells going cyclically around the vertex 0, with one common 1-cell e; between
successive 2-cells B; and B;11, where by convention By, := Bj.

See Figure |1}, which is taken from |6, Figure 3].

Proof. Let B be a left cubical ball of dimension 2. For each closed 2-cell B;, equipped

with its homeomorphism h;: I? = B;, the faces 0} B; and 03 B; are required to be 1-cells
of the boundary OB = S!, while the faces YB; and d9B; are not in OB, and therefore
must be faces of some other 2-cells. In other words, we have 9 B; = 9{B; or &Y B; = 99B;
for some other 2-cell B;, in fact a unique B;, because B is homeomorphic to a 2-disk.
Pick any 2-cell of B and call it B;. Then the face e; := 99B; appears as a face of
exactly one other 2-cell, which we call By. The remaining face e; of By appears as a
face of exactly one other 2-cell, which we call Bs. Repeating this process, we list distinct
2-cells By, ..., By, and By, is one of the previously labeled 2-cells. Then Bj.; must
be By, with e, = 0YBy, since a 1-cell cannot appear as a common face of three 2-cells.
Finally, this process exhausts all 2-cells, because all 2-cells share the common vertex 0,
which has a neighborhood homeomorphic to an open 2-disk. 0J

Proposition 9.2. A left 2-cubical ball (|6, Definition 10.1]) in a pointed space X corre-
sponds to a circular chain of composable left 2-tracks:

€ € €
al a2 ok

1 2 k
a=aqy—>a —> =2 0Ak—1 —> A = Q
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F1GURE 1. The left cubical balls Cy, C5, and Cjy.

where the sign ¢; = £1 is the orientation of the 2-cells in the left cubical ball (6, Defi-
nition 10.8]). Moreover, such an expression (oq,...,qx) of a left 2-cubical ball is unique
up to cyclic permutation of the k left 2-tracks «;. For example, (oq,q,...,qr) and
(g, ..., ap, aq) represent the same left 2-cubical ball. See Figure .

Proof. By our convention for the [J-composition, a left 2-track o defines a morphism be-
tween left paths a: dda = dya. The gluing condition for a left 2-cubical ball (ay, .. ., ag)
based on a left cubical ball B = By U---U By, as in Proposition [9.1]is that the restrictions
aile, and 11|, agree on the common edge e; C B; N Byyy. This is the composability
condition for o;7'0as". Indeed, up to a global sign, the sign of B; is

€ = .
-1 if €; = 8932

so that we have o' : a;l,_, = «;l., and we may take a; = o, .

FIGURE 2. A left 2-cubical ball.

Theorem 9.3. (1) A 2-track algebra A yields an algebra of left 2-cubical balls (|6, Def-

inition 11.1]) in the following way. Consider the system ©(A) := ((Aq,2), ®), m0A, D, O),

where:

o (A12),®) is the underlying 2-graded category of T (described in Definition

N
N/\

e oA is the homotopy category of A.

e q: (A) = Aqyo — moA is the canonical quotient functor.

o D: (mpA)*® x mopA — Ab is the functor defined by D(A, B) = moA1,2)(A, B).
e The obstruction operator O 1is obtained by concatenating the corresponding

left 2-tracks and using the structural isomorphisms v of the mapping 2-track
groupoid:

OB(CY1, 9, ... ,ak) = ’g[)a (Oz;kD cee DO!;QD Olil) € AlltA@)(A’B)(O) = 7T2.A(172)(A, B)
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where we denoted a = dpar; = 010y,

(2) Given a category C enriched in pointed spaces, © (H(LQ)C) 1s the algebra of left

2-cubical balls
(Nulg C, 7r0C, WQC(—, —), O)
described in [6, §11].

(3) The construction © sends a tertiary pre-chain complex (A,d,0,€) in A to a
order pre-chain complex in O(A), in the sense of |6, Definition 11.4]. Moreover,
(A, d,5,€) is a tertiary chain complex if and only if the corresponding 2™ order
pre-chain complex in ©(A) is a 2" order chain compler.

2nd

Proof. Let us check that the obstruction operator O is well-defined. By [0.2] the only
ambiguity is the starting left 1-cube a; in the composition. Two such compositions are
conjugate in the groupoid Ay (A, B):

a0 - Oag0afDag* 0 - Ot Oa
= (Oz?_‘llD ...Dail) DaZkD "'DafffDoz?D .00 (a?__llm ~--Elai1)5
=4F0a0 ---0af0p

with 8 = (a7 -~~Dail)5 :a; = ap. Since A (A, B) is a strictly abelian groupoid,
we have the commutative diagram:

of
Aut(ag) — Aut(a;)

|
Yag
Aut(0)

so that Op(ay, ..., ax) is well-defined.

1]
2]

The remaining properties listed in [6, Definition 11.1] are straightforward verifications.

O
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