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Introduction

The book is devoted to nonlinear Harniltonian perturbations of stable linear Hamiltonian
systems of large and infinite dimension. Such systems arise in physics in many different
ways. As a working hypothesis for theirs study it was postulated in the physicalliterature
after the works of Boltzmann that in a "typical situation" their solutions are stochastic.
This postulate ("ergodie hypothesis") was succesfully used to explain many properties
of matter. 00 the other hand, a lot of numerical experiments starting from the ones
of Fermi-Pasta-Ularn (see [FPU], [UD have showo quite regular recurreot behavior of
many solutioos of the systems under coosideration (see e.g. [ZISD. This effect cannot
be explained by means of the Poincare recurrence theorem [A4] because the Poincare
recurrence time is much larger than the one obtained in the experiments. It seems that
the investigated systems have a lots of quasiperiodic trajectories or trajectories abnormally
elose to the quasiperiodic ones (see [LL], {DEGM],[MoD. These trajectories correspond
to low-frequency oscillations of the underlying physical object. In these oscillations the
energy is frozen in low frequencies for a very long time. So the recurrence effect causes
a low rate of stochasticity (the ergodic hypothesis works now in a slow way). This effect
seemed rather strange to the physicists who observed it.

Our goal is to obtain some general theorem to prove the existence many of quasiperi­
oilic solutions in perturbed linear infinite-dimensional Harniltonian systems corresponding
to conservative physical systems with one spatial dimension. The theorem gives some ex­
planation to the recurrence effect in spatially one-dimensional systems. I t proves that in
some strict sense the one-dimensional world "is not venj ergodie".

The introduction is devoted to a rather expanded discussion of the theorem and its
applications. Sometimes the discussion supplements the results from the main text. We
preface the sUIvey of our results with a survey of the finite dimensional situation.

1 Finite dimensional situation

"Regular" (periodie and quasiperiodie) solutions of 2n-dimensional Hamiltonian systems
are important for classical and celestial mechanies. Some quite general existence theorems
for this dass of solutions have been obtained. Here we are interested in perturbation-type
results only.

1.1 Lyapunov's theorem

The first elassical result in this direction was Lyapunov's thorem (see e.g. (AbM], [AKN],
[SM]). It states that "nonresonant" periodic solutions of a Hamiltonian system survive
under Hamiltonian perturbations. In particular if the unperturbed system is a stable
linear system with the spectrum

and

{±i~j I j = 1, ... , n} (1)

nAj ~ Ak Vj ~ k, Vn E Z,

then the perturbed system has n two-dimensional invariant manifolds and the manifold
number j (j =1,... ,n) is filled with periodic solutions of periods elose to 2;r /)..j.

III



1.2 Kolmogorov's theorem

The second classical result conceming the subject is Kolmogorov's theorem [Kol] which
inspired Arnold and Moser to create a powerful technique to handle nonlinear problems,
weil known nowadays as !(AM (Kolmogorov-Arnold-Moser) theory; see [A2], [A3], [AA],
(Mo], [SM] and bibliographies of the last three books. Kolmogorov's theorem states that
most of the quasiperiodic n-frequency solutions of a nondegenerate integrable analytical
system with n degrees of freedom survive under analytical Hamiltonian perturbations or,
equivalently, Hamiltonian perturbations preserve most of invariant n-tori of a nondegen­
erate integrable system. Here integrability means that in aphase space T n x P (P is an
n-dimensional domain) the system has the form:

q= \lh(p), P= 0, (2)

(i.e. it has a hamiltonian h depending on pEP ooly) and the nondegeneracy means that

Hess h(p) := det{82h(p)/8pi8pi} ~ o.
Invariant tori of the system (2) are of the form

m(p) = T n x {p}, pEP,

(3)

(4)

and most of them survive in the perturbed system with the hamiltonian h(p) + cH(q, p),

q= Yp(h(p) +cH(q,p)),p = -c\lqH(q,p), (5)

if positive c is small enough. That means that there exists a subset Pe C P such that
mes(P \ P~) ~ 0 (e ~ 0), and for p E P~ there exists a map Ep : Tn ~ Tn X P such that
for all q E Tn dist(Ep ( q), (q, p)) < Ce and the cürve

(6)

is a solution of (5).
For other versions and important improvements of the theorem see [AKN], [Brul] ,

[Bru2], [Laz], [Mo], [P3], [Ru], [Zl].

1.3 Melnikov's theorem

Lyapunov's theorem states the preservation of nondegenerate one-dimensional invariant
tori (==periodic solutions) under Hamiltonian perturbations, and Kolmogorov's theorem
states the preservation of most of the invariant n-tori of integrable system with n degrees
of freedom. The natural question is ifmost of invariant tori of an intermediate dimension
k, 1 < k < n, survive under perturbations. For perturbations of a linear Hamiltonian
system the question rneans the following. In the phase space

(7)

the Hamiltonian equations

(8)

IV



are considered. Here J(z+, z_) = (-z_, z+), A. is a symmetrie linear operator in R2m,

sH = eH(q,p, z) is an analytical perturbation and A E A ce Rn is a parameter. For
e = 0 the system (8) has invariant n- tori Tn,m (p) = Tn x {p} x {O}, pEP. The question
is if these tori survive in the system (8) for e > O.

Let us denote the spectrum of the operator JA by Al = {pt, ... , fl2rn}. We have to
consider three cases:

a) (nondegenerate hyperbolic tori) l'v! C C \ iR, flj i= flkVj # k. In this situation a
hyperbolic torus Tn.rn(p) survives for most A. That is, for positive c small enough and
for A E A(s, p), mes A \A(e, p) -+ 0 (e -+ 0), the equation (8) has an invariant torus at a
distance< Ce from Tn,m(p). See (Bil, (Gr], Uviol], (Zl].

bo) (nondegenerate elliptic tori ) 1\1 C iR \ {O}, fl i i= 1J kVj i= k. This situation is
more complicated. The preservation theorem for the elliptic torus Tn,m(p) for most Awas
fonnulated by Melnikov (~-leI], [ivle2]. The complete proof of the theorem was published
only 15 years later by Eliasson [EI], Pöschel [PI] and the author [KI], [K2] (the infinite­
dimensional theorems of the last two works are applicable to equations (8) as weIl). The
proofs given in the papers just mentioned are also valid in the more general situation:

b) (nondegenerate tori) 0 ~ 1\1, fli f. flkVj i= k.
In the degenerate case
c) 0 E 1\tl or Pj = PI. for some j i= k

00 preservation theorem for tori Tn,m(p), formulated in terms of the unperturbed equation
(8) with € = 0 only, is known yet.

Remark. Melnikov's theorem (case bo) ) remains true for m = 0, too. Insuch a case
Y = {O} and the theorem then asserts the preservation of the n-dimensional invariant
torus Tn x {O} of the system with the linear hamiltonian h(p) = A . p,

under small analytical Hamiltonian perturbations for most parameters ,\ E A. This result
implies Kolmogorov~s theorem as it was formulated above via some simple substitution;
see [1\-10], p.171 (and [K5], Part 1 with Y = {O}). Conversely, one can easily extract this
version of wlelnikov's theorem from Kolmogorov's theorem. So these two statement are
equivalent. This equivalence (we had found it in the paper [:r...lo]) was important for our
insigt into infinite-dimensional problems.

Remark. The case c) is important for a better understanding of the situation studied
in Kolmogorov's theorem. Indeed~ if some torus Tn(p) (see (4)) is resonant and

dimQ E(p) = n - 1, E(p) = Q8h/8pt + ... + q8h/8pn

(we treat E(p) C R as a linear space over the field Q here), then the torus rn(p) is a
union of invariant (n - 1)-tori. Near each (n - l)-torus the perturbed system (5) may be
reduced to a system (8) of the type c) with m = 1 and JA equal to Jordan cell with zero
eigenvalue.
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2 Infinite dimensional systems

2.1 The problem

In a Hilbert space Z wi th inner product < ',' > we consider the equation

ü(t) = J'tj~(u(t)), u(t) E Z. (9)

Here J is an antiselfadjoint operator in Z and 'tj~ is the gradient of a functional }C relative
to the inner product < ',' >. In the most interesting situations the linear operator J, or
the nonlinear operator 'l~, or hoth of them are unhounded. So one has to he careful with
the equation and its solutions. For the exact definition of solutions of (9) and for some
their properties see Part 1 of the main text. Equation (9) is Hamiltonian if the phase
space Z is provided with a symplectic structure by means of 2·form - < J-1du, du > (hy
definition, - < J-1du, du > [~, 7]] = - < J-l~, TJ > V~, 7] E Z).

In this book we are most interested in equations of the fonn

it(t) = J(Au(t) + e'lH(u(t))).

This equation is Hamiltonian with the hamiltonian

~~ = ~ < Au, u > +eH{u).

(10)

Here A is a selfadjoint linear operator in Z and H is an analytic functional. The linear
operators J,A and the nonlinear operator V H are assumed to be characterized by their
orders dJ , dA and dH. We suppose that

(11)

In the most important examples Z is the Lrspace of square-summahle functioos 00 a
segment, and J and A are differential operators. In such a case dJ , dA are the orders of
the differential operators and V'H(u) is a variational derivative JHjfJu(x). In particular,
if

H(u) = Jhex, u(x)) dx

then 8H/8u(x) = hu(x, u(x)) and dH = 0; if the density h depends on integral of u(x)
instead of u(x) itself, then dH < O. To define the orders dJ , dA, dH in a general case, we
must include the space Z ioto ascale of Hilbert spaces. See Part 1 below.

The assumption (11) implies that equation (10) is quasilinear. This assumption is
rather natural for the study of long-time behavior of solutions because for some strongly
nonlinear Hamiltoman equations (i.e. ones of the form (10) with dH = dA) it is known
that the equations have no nontrivial solutions existing für all time; see [Lax].

vVe suppose that J and A commute, and that Z admits an ortonormal basis {cpjjj > I}
such that

A ± ,\A" ± ,\J::r \J'
{I,. = . (lr:- JU'J =:r:: .11' J V) > 1
T] ]T]' T I]TJ' -'

VI
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So, in particular, the spectrum of JA is equal to

Let us fix same n ?= 1. The 2n-dimensional linear space

is invariant for the flow of equation (10) and is foliated inta invariant n-töri

Tl

'r = Tn (1) = {L xjepj Ixj2 + xj2 = 21; Vj},
;=1

1 = (/1,.", In) E R~. Every torus Tn is filled with quasiperiodic solutions of equation
(10) with E = O. One can treat (10) with c = 0 as an infinite chain of iree harmonie
oscillatars with frequencies Ab A2' .... The solutions lying on the tori Tn( I) correspand to
oscillations with only the first n oscillators being excited. One can treat these solutions
as low-frequency oscillations.

We study the question: under what assumptions do the tori Tn(I) and the correspond­
ing low-frequency quasiperiodic solutions survive in equation (10) tor € > O?

It is convenient to introduce the angle-action variables (qb.·., qn, Pt, ..., Pn) in the
space ZO,

xj + ixj = jiP; exp(iqj), j = 1, ... , n

(xj are coordinates with respect to the basis {c.pjll ~ j < n}); to denote Y = Z e ZO
(i.e. Y is equal to the closure of span{epj IJ ?= n+ I} ) an~ to pass to the variables (q 1 P, Y),

q = (ql, ... , qn) E T n
, P = (Pb'··' Pn) E R~, y E Y.

Let us denote by EO the imbedding

2;0: T n x R~ -+ Z,(q,p) ~ (q,p;O).

(we use coordinates (13) in Z). The invariant space ZO is the image of this map.
In the new variables (13) equation (10) takes the form:

q= "VpH,p = -'\lqH,if = JY'VyH

with

(13)

(14)

1i = rtt; = W • P + ~ < AY y, y > +€H l ( q, P, y).

Here W = (Al' ... ' An), JY = JIY' AY = AIY. So the operator JY AY has pure imag­
inary spectrum {±iA;1j ;::: n + I} and one can easily recognize in the last equations an
infinite-dimensional analogy t.o the elliptic case of the system (8). The form of Melnikov's
theorem we gave above in Section 1.3 has a natural infinite-dimensional reformulation. It
is remarlcable that this reformulation becomes a true statement after adding essentially
just one infinite-dimensional condition.
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2.2 The result

Keeping in mind the applications, we generalise the situation and suppose that equation
(10) analytically depends on n outer parameters (ab"" an) = a E A, A is a bounded
open domain in Rn. So A = Aa , H = Ha. and Aj = Aj(a). Let us assume that

(15)

and consider a torus Tn(Ib ... , In) such that h, > 0 Vk.
Theorem 1. Let us suppose that the assumptions (12), (15) take place together with
1) (quasilinearity)

dJ > 0 dA > 0 d := dJ + dA > 1 dJ +dH < 0 dJ +dH < d - l'_, _,1 _, _, 1,

2) (spectral asymptotics)

Aj(a) = K 1Jd
l + [(2 + jjj(a)

Ijjj(a)1 + IVjjj(a)1 ~ K3fIl-~

for some I'i. > 1;
3) for some lV 2: n and M 2: 1 depending on the problem (10) nonresonance relations

(16)

hold for a.ll s E ZN such that 1 ~ Isl ~ lvf and 1871+11 + ... + ISNI ~ 2.
Then for positive e small enough there exist a Borel subset Ae(I) C A and analytical

embeddings
(17)

such that
a) mes(A \ A~(I)) --t> 0 (e --t> 0);
b) the map (q, I, a) l---+ E~.I(q) is Lipschitz and is Ce-elose to the map (q, I, a) l---+

bO(q, I);
c) for a E A~ the torus b~,I{Tn) is invariant for the equation (10) and is filied with

quasiperiodie solutions of the form ue{t) = E~,I{q + w~t) with a vector w~ E Rn which
is Ce-elose to w = (Ab' .. , An). All Lyapunov exponents of these solutions are equal to
zero.

Refinement 1. If K- 1 ~ I j ~ [( for all J == 1, ... ,n, then the numbers .1.\1, N in the
assumption 3) and the rate of convergence in the statement a) of the theorem depend on
n, K, K 1 - K 3 , db /\', the radius of analyticity of Hand its norm ooly.

Refinement 2 (see Part 3,-Theorem 1.1). In the variables (13) the unperturbed hamil­
tonian is equal to w· P+ ~ < AY y, Y> and the perturbation is CHI ( q, p, y ). The statememt
of the theorem remains true for perturbations of the more general form

This form of the result is suitable for applications to perturbations of nonlinear problems
(see below).

Remark. The formulations of our results given above are" almost exact". For the
exact statements see the main text.
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Remark. H the first n frequencies (Ab ... ' An) = w are taken for the parameters
ab ... , an and if Aj does not depend on w for j 2: n +1, then the assumption 3) is fulfilled
trivially. H in addition dirn Z < 00, then the assumptions 1), 2) hold trivially, too. So for
finite-dimensional systems (written in the form (14)) Theorem 1 coineides with Melnikov's
theorem.

As another infinite-dimensional version of Melnikov-type theorem we want to mention
the result of Wayne's paper [W1], devoted to the nonlinear-string equation with a random
potential. We discuss the approach the work [W1] is based on, below.

Remark. As the map (17) is Ce-elose to the map q 1-+ EO( q, I), then the solutions
u~(t) are Ce-elose to the curves t 1-+ EO(q + W~ t, I) for all t. The vector We is equal to
w + eWl + e2w2 + ... and the vector Wl may be obtained via some natural averaging
(see [K4]). So Theorem 1 gives an averaging procedure for solutions of equation (10) as a
simple consequence ([K4], [K8]).

Under the assumptions of the theorem an unperturbed torus Tn(I) with

survives in the equation (10) if e ::; co and a belongs to a set A~(I) such that

mes(A \ A(I)) ~ v(e)mesA,

v(c) -+ 0 (e -+ 0)

By Refinement 1 the number co and the function v(e) don't depend on I (but depend on
K). Let us denote

I~(a) = {I E Ila E A~(I)}.

The torus Tn(I) survives if I E I~(a). By Fatou theorem,

(mesA)-l Lmes(I \ I.(a)) da =

= (mesA)-l hmes(A \ Al:(I)) dI ~ mesI v(e) (18)

(the set {Ca, l)ja E A~(I)} is measurable, see the main part of the text). Let us consider
the sets

z2.- = {(q, I) E ZOll E T}

and

Zk == {(q, 1)11 E T~(a)}.

By (18) for a typical a the relative measure of Zk in ZX- is no less then 1 - v(e). The
image of the set Zk under the map

(19)

is invariant for the flow of equation (10) and is filled with quasiperiodic solutions. The
mapping (19) is Lipschitz and Ce-elose to the embedding EO. So the Hausdorf measure
1-l2n (see [Fe]) of the invariant set as above is no less then
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(1 - VI(e)) mes2n~, (20)

with same VI (€) -+ 0 as c -+ O. Taking K large enough and c sufficiently small one can
make (20) as large as desired. So we have seen that under the assumptions of Theorem 1
for typical a and for e small enough the equation (10) has invariant sets of the Hausdorf
measure 7-l2n as large as desir.ed. These sets are filled with quasiperiodic trajectories with
zero Lyapunov exponents. They form obstacles to the fast stochastisation of solutions of
a typical system of form (10). Dur guess is that the recurrence·effect "of FPU type" is
caused by such sets. See Part 2.3 of the main text for some more results concerning this
insight.

Our results leave without any answer the natural question: do the infinite-dimemsional
invariant tori of the system (10) with c = 0 survive under Hamiltonian perturbations?
The answer is affirmative if the following three assmnptions are satisfied:

a) the perturbation H has short range interactions, i.e for u(t) written as L: xt( t)<.pt,
and for some finite N the equation for x; does not depend on x~ with Ik - ml > lV, or
depends on x~ in an exponentially small (with respect to lk - mJ ) way;

b) IH(u)1 =0(11 u II d
) for some d> 2;

c) the coefficients xr decrease for example exponentially when k is growing.
The assumtions a), b) are broken for nonlinear partial differential equations (but they

are fulfiled for some equations from the physics of crystals). For the exact statements see
[FSW), [VB) and [P2], [W2], [AIFS). We want to mention that the works [FSW), [VB)
were the first ones where KA~1 theory was applied to infinite-dimensional Hamiltonian
systems.

Without the assumptions a)-b) the maxiInal rnagnitute of the perturbation which al­
lows one to prove Kolmogorov's theorem (=to prove preservation most of half-dimensional
tori) exponentially decrease with the dimension of the phase-space (see e.g. (P2, p.364J).
We suppose that the exponential estimate is the best possible one. In particular, infinite­
dimensional tori "in general" do not survive under perturbations of infinite-dimensional
systems.

We end this part with the remark that some results concerning the preservation of
infinite-dimensional tori in equation (10) with the spectrum {±i,\j} of a special type may
be obtained via infinite-dimensional versions of Siegel's theorem. See [\Var) , (Z2) and
especially [Nikj.

. 3 Applications

3.1 Perturbations of linear differential equations

As a rule, the assumption 1) of Theorem 1 is fulfiled if J A is a differential operator on a
segment of the line with some self-adjoint boundary conditions. So the theorem is appli­
cable to spatially one-dimensional quasil~near Hamiltonian partial differential equations
depending on a vector parameter.

Example 1 (see [Kl) and Part 2.4). Let us consider nonlinear Schrödinger equation
with a bounded real potential V(x; a) depending on an n-dimensional parameter a:

ü = i( -u" + V(x; a)u + c<p'(x, luj2; a)u),

x



(22)

u = u(t, x), t E R, x E (0, 1I"), (21)

u(t, 0) =u(t, 71") =O.

Here c.p is areal function analytic in lul2 and c.p' = 8cp/8IuI 2
• To apply the theorem one

has to set Z equal to the space of square-summable complex-valued functions on (0, 'Ir)
(and consider it as areal Hilbert space), to set Aa equal to the differential operator
- 82 /8x 2 + Y (x; a) under the Dirichlet boundary coudition, to set J u(x) = i u (x) and

H.(u(x)) = ~f ",,(x, lu(xW;a) dx.

Let us denote by {cpj(Xj a)}, {Aj(a)} a complete system of real eigenfunctions and
eigenvalues of the operator Aa • The invariant n-tori of the unperturbed problem are of
the form

n

T(I) = {2:(aj + iaj)<pj(x;a)laj1 + aj] = 21j > OVj}.
j=1

By the well-known asymptotics of the spectrum of the Stunn-Liouville problem «Ma],
[PT]), Aj(a) = j2+0(1) and the assumption 1) of Theorem 1 is fulfilled with d1 = 2,
/'i, = 3/2. The theorem is applicable to the problem (21); therefore the torus T(I) survives
in the problem (21) for most of a and & small enough if the potential V depends on a
in a nondegenerate way. So for nondegenerate families of potentials {Y('j a)} and for
typical parameters a equation (21) has a lot of quasiperiodic on t solutions, localized in
the phase-space Z in a Ce-neighborhood of the low+frequency tori T(I). One can compare
this frequency-localization result with the spatial Anderson localization for randorn linear
and non-linear Schrödinger equations (see [CFKS], [FS\V], [PasF]).

Example 2 (see [K2] and Part 2.5). Let us consider the equation of oscilIations of a
string with fixed ends in nonlinear-elastic media depending on n-dimensional parameter:

w = w(t, x), 0 ~ x ~ 1I", t E ~

w(t,O) =w(t, 1I") == O.

After same reduction (see Part 2.5) Theorem 1 is applicable to this problem with the
choice dt = 1, K, = 3/2, dH = -1. So in a nondegenerate case quasiperiodic in t solutions
of the unperturbed problem (22) with e = 0 survive in the problem (22) for most of a and
e small enough.

3.2 Perturbations of nonlinear systems

A) Perturbations 0/ Birkhoff-integrable systems (see [K5], Example 1).
We call a Hamiltonian system Birkhoff integrable if it rnay be analytically reduced to

an infinite sequence of Hamiltonian equations of the form

with
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(i.e. it may be reduced to the Birkhoff normal form, see [Mo], [SNl]). The n-tori

T(I) = {Xlxj2 + xj2 = 2pj,j = 1, ... , n; 0 = X;+I = X;+2 = ...}

are invariant for the system. It is convenient to pass to the variables (q, P, y) as in (13)
with P = (PI, . .. Pn), y = (yi, Yl' yt,· .. ), YT = X;+j (j = 1,2, ... ). In these variables the
equations have the form (14) with

'H(q,p, y) = h(p) + ~ < A(p)y, y > +O(lvI3
)

and

h(p) = Ho(Pt, ... ,PTU 0, ... ),

< A(p)y, y >== f(yj2 +y;2)-88 .h(pll"" PM 0, ...).
j;I Pn+J

So the e-perturbed hamiltonian in the new variables is equal to

'He = 'H +CHI = h(p) + ~ < A(p)y, y > +0(11 Y 11
3

) +cHI'

Let us fix for a moment some a E R~ and rewrite He as folIows:

'He = [h(a) -. w(a) . a] +w(a)· p + ~ < A(a)y, y > +

(23)

with w( a) = '\l h(a). The term in the square brackets does not affect the dynamics and
may be neglected. Let us suppose that the system possesses nondegenerate amplitude­
frequency modulation:

Hess h(a) = det{8wj(a}/8ak} 1=- O. (24)

Then one can treat the vector a as a parameter of the problem and apply to the perturbed
problem Theorem 1, taking into account R.efinement 2. So if spectral asymptotics and
nondegeneracy assumptions are fulfilled, then most of invariant tori T( a) survive under
perturbations.

The trick we have just discussed is weil suited to study perturbations of finite-dimensi­
onal integrable systems but not perturbations of integrable partial differential equations
of Hamiltonian form. The reason is that in the last case the transition to the Birkhoff
coordinates (or to the action-angle ones) is not regular. To handle infinite-dimensional
systems one needs more sophisticated approach; see item C) below.

B) Use of the partial Birkhoff normal form.
One can treat the unperturbed linear Hamiltonian system (10) as a Birkhoff integrable

system with the linear hamiltonian Ho = ~ L Aj(xj2 + xj2) and h(p) = AlPt + ... +
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AnPn, W(p) = (Ab"" An)' Now the condition (24) is broken and one can not use an
amplitude-frequency modulation to avoid outer parameters Q. Nevertheless sometimes
one can extract the modulation from the perturbation. This trick was successfully used
in a number of works, starting (as far as we know) with Amold's paper [A3] devoted to
Hamiltoman systems with proper degeneration (see also [AKN]); Pöschel [PI] used the
trick in his investigations of lower-dimensional tori, Wayne [Wl] used similar approach to
prove the existence of quasiperiodic on time salutions of nonlinear string equation. Now
we turn to its discussion.

For the sake of symplicity we restrict ourselves to the perturbations of the fonn H =
H 3 + H 4 with homogeneos of order j functions Hi, j = 3,4. Let us pass to the variables
(13). Then the perturbed hamiltonian is He = Ho +€H1 with 'Ho = h(p) + ~ < Ay, y >
and

Here H I is a vector in Y and H 2 is a selfadjoint operator. So

He = h(p) + ~ < Ay, y > +
+€[HO(q, p)+ < H I

( q, p), Y > +~ < H 2
( q, p)y, Y > +0(11 Y 11

3
)].

1t is known since Birkhoff that with the help of a fonnally-analytic symplectic change of
variables H~ may be put into a partial normal form as fol1ows:

H~ = hI(p) + ~ < A(p)y, y > +€2Ha (q, p, y) + e:O(1I Y 11
3

). (25)

Here h1(p) = h(p) + c1f(p) (the bar means the averaging over q E Tn ) and AI =
A + c:Aa(p) with some operator Aa,(p) constructed in terms of the operator H

2
(p). The

function (25) is of the same form as (23) and in general the assumption (24) is fulfilled
for function h1(p). Now Hess h1 is of order c: and the norm of the inverse map w 1-+ p is
of order c:- 1• Following the scheme of item A) one has to pass to the parameter w. After
tms the perturbation is of order e-1 x e: 2 = c: and Theorem 1 is applicable provided the
change of variables is analytic. The exact formulaes (see e.g. [PI] and Part 3 below) show
that the normal-fonn transformation is defined as aseries with some regular numerators
and with denominators of the form D(s) = 81A1 + ... + SNAN. Here N is an arbitrary
natural number and

So if
ID(s)1 2: C-1 (26)

for all s as above, then the scheme works and one can use it to prove the existence of an
invariant torus of the perturbed equation at a distance of order € from the unperturbed
torus.

The condition (26) is not very restrictive because it holds for typical sequences {Aj}
satisfying assumption 2) of Theorem 1. Now we prove this statement for d1 > 1. Ta do
it let us suppose for a moment that lV ;::: n + 1. Then

Xl11
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-
1 - C2 •

So (26) holds with C = 1 if N is greater than same No. Therefore the inequality (26) holds
if D( s) t= 0 for the finite set of resonance relations consisting of all admissible relations
with N < lVo (one can choose C-1 equal to min{I, min{ID(s)IIN ~ No}}).

This scheme was mostly proposed by Pöschel in his work [PI] devoted to finite­
dimensional systems, where he also conjectured that it may be used to study infinite­
dimensional systems. We have a few doubts that described above infinite-dimensional
realization of the scheme via Theorem 1 may be done without too much efforts, although
this work still has not been done.

C) On the integrable equations o[ mathematical physics
One of the main achievements of mathematical physics during the last decades was

the discovery of theta-integrable nonlinear partial differential equations (see e.g. [DEGN],
[Nov]). Such equations are quasilinear Hamiltonian equations of the form (9). They
possess invariant symplectic 2n-dimensional manifolds T 2 n, such that the restriction of
the system (9) 00 Tln, is integrable. So Tln, is symplectomorphic to T; x Pp, P C Rn,
and in coordinates (q, p) the restrietion of the system onto T'ln, has the form

q= "Vh(p), P= o.
Therefore Tln is foliated ioto invariant n·tori Tn(p) = {(q,p)lp = const} filled with
quasiperiodic salutions uo(t) = (q + t"vh(p), p). The question is if the tori Tn(p) survive
under Hamiltonian perturbations of the equation. To formulate the corresponding result
we have to consider variatiooal equations about the solutions uo(t):

v= J(\7K:(uo( t))). v

and to suppose that all these equations are reducible to constant coefficient linear equa­
tions by means of a quasi-periodic substitutions v = B( t, p)V (B is a linear operator in
Z quasiperiodically depending on t). It is proved (see [K5] and [Kil, [K8]) that under
the reducibility assumption the quasilinear equation (9) near the manifold T 2

n may be
written in the form (14) with

'H = h(p) + ~ < A(p)y, y > +0(11 y 11
3

).

A perturbed equation under this reduction takes exactly the form (23). So as in item
A) one can prove that in a nondegenerate situation most of the tori Tn,(p) survive under
perturbations.

For an exact realization of this scheme for a perturbed Korteweg-de Vries equation see
[K5] and for a perturbed Sine-Gordon equation see the forthcorrung paper of R. Bikbaev
and the author. The finite-dimensional version of trus result is of interest also. One can
treat it as aversion of Kolmogorov's theorem for lower-dimensional invariant tori, see
[Ki].

3.3 Last remark

Above we have proposed as an explanation of the recurrence effect of FPU-type in infini­
te-dimensional Hamiltonian systems, the theorem on the preservation of most of quasi­
periodic solutions under Hamiltonian perturbations. It is well-understood ho\vever that

XIV



long-time regular behavior of solutions may be explained by means of an averaging the­
orem a.s weIl. In a finite-dimensional situation Nekhoroshev's theorem (see [N], [BGG],
[La]) suites this purpose very weIl. For infinite-dimensional systems with discrete spec­
trum versions of this result are known only for systems with short range interactions
([W3],[BFG]). We are rather sceptical that there exists aversion of Nekhoroshev's theo­
rem applicable to all solutions of a nearly-integrable nonlinear partial differential equation
of Hamiltonian form.
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Part 1.

Symplectic structures and Hamiltonian systems

in the scales oI Hilben space8

The following notations are used: for Hilben spaces X, Y, Z the norms are denoted

by I· Ix' I - Iy, I· IZ and inner products by (-,.) X J (-,.)Y' (.,.) Z ; distx ­
distance in the space X; for domains 0x ( X, 0y ( Y the space of k-times Frechet

differentiable mappings 0x ---+ 0y is denoted by Ck(Ox ;Oy) and

o k k V 1C(OX ;Oy} = C (OX ;Oy) , C (OX ;IR) = C (OX) k ~ 0 ; for ; E C (OX ;Oy) the

*tangent (cotangent) mapping is denoted by tP*(; ) (tangent spaces TxOX' T Oy are
* * y

identified with X and Y, cotangent spaces Tx 0X' Ty Gy are identified with X and

y through RieszJs isomorphism). For a mapping G: 0x ---+ Gy we denote by

Lip(G) = Lip(G : 0x ---+ 0X) its Lipschitz constant J

1. Symplectic Hilbert scales and Hamitonian equations

Let Z be a Hilbert space with inner product (-,.) Z and {Zs Is E IR} a scale of

Hilbert spaces (see [RSl] J [RS2] with following properties:

a) the Hilbert space Zs ia densely inclosed in Zs if SI ~ 82 and the linear space
1 2

ZaJ = n Zs ia dense in Zs Vs ;
b} Zo = Z ;
c) the spaces Zs and Z-s are dual with respect to inner product (.,.) Z .

The norm (inner product) in Zs will be denoted by 1I-lIs (. J. ) s) . In particular

11.110 = I - IZ and (-,.) 0 = ( ., · ) Z . The pairing between Zs and Z-s will be

denoted (-,.) 0 or (-,.) Z .

Let J: Z ---+ Z be a linear operator such that J(Z } = Z andaJ aJ m aJ
d) J determines an isomorphism of the scale {Zs} of order dJ ~ 0 , i.e. for every
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s E IR J may be extended to a continuous linear isomorphism J: Zs ---;;;;-+ Zs-d
J

e) the operator J with domain of definition Z is antisymmetrie in Z, Le.I»
(JzI ,z2) Z = -(zi ' Jz2) Z Vzl,z2 E ZI» .

Let us denote by J the isomorphism of order -dJ of scale {Zs}:

J = -{J)-I : Z
s Vs EIR (1.1)

Lemma 1.1. The operator J: Z ---+ Zd C Z is anti selfadjoint in Z.
J

Proof. Let x,y E ZI» and Jx = xl ' Jy = YI . Then JXI = -x, JyI = -y and

The operator J:.z ---+ Z is continuous, and the spare Z is dense in Z, so the lemmaI»
is proved. _

Let UB introduce in every space Zs with 8 ~ 0 a 2-form a = (J dzJdz) z . Here by

definition

(1.2)

The form a is closed and nondegenerate [A,Ch-B].

Definition. The tripIe {Z,{Zsl s E IR}, a = (J dz,dz)} ia called symplectic Hilhert

scale (or SHS for brevity).

Example 1.1. Let Z = !Rn )( !Rn, Z = Z Vs and J: Z ---+ Z, (PJq)~ (-q,p) .
p q s

In this case J2 = -E so J = _J-I = J , dJ = 0 and

a = (J dz,dz)Z = (J dz,dz)Z = dp A dq .
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Properties a)-e) are obvious and we obtain the classical symplectic structure for

even-dimensional spaces [A].

Example 1.2. Let Z = L2(Sl) x L2(Sl)) Si = rR/2rll , be aspace of pairs of

square--fiummable periodie functions (p(x), q(x)) . Let Zs = HS{Sl) )( HS(Sl) . Here

HS(Sl) is the Sobolev space of periodie functions, 8 E rR [Ch-B,RS2]. Let UB take

J : Zs --+ Zs' (p(x),q{x))~ (--q(x),p{x)) .

Then J = J is an isomorphism of scale {Zs} of order zero. Properties a)-e) are evident.

Example 1.3. Let

2'1'"

Zs = H~(Sl) = {u(x) E Hs(Sl) I Ju(x)dx = O} .
o

Let us take J = 0/ 0 x . Then J is an isomorphism of the scale of order one and

J = -(J)-l is an isomorphism of order -1 . Properties a)--e) are evident again and we

have got SHS corresponding to symplectic structure of KdV--equation (see below and [A,

Appendix 13; N] ).

For fE Cl (Os) let Vf E Z--ß be the gradient of f with respect to the inner product

(·,.)Z:

(Vf(u),v)Z = Df(u)(v) =~ f(u+€v) I€=O VV E Os

The mapping Os --+ Z-s' u~ Vf(u) ,is continuous.

For H E Cl (Os) the Hamiltonian vector-field VB is the mapping

VB : V --+ Z = U Z defined by the following relation [A, Ch-B]:
s ~ s s
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or

(J{,VH(U»Z = ({,VH(u»Z V{ E Zm

So VH(u) = JVH(u) and

ti = JVH(u)

is the Hamiltonian equation corresponding to the hamiltonian H. Let UB denote

(1.3)

Definition (cf. [B]). A curve u(t) , 0 ~ t ~ T , is called a strong solution in the

space Zs of the equation (1.3) iff u E C
1
( [O,T] ;Zs) , u(t) E Ds(VH) Vt E [O,T] and Vt

equation (1.3) is satisfied. A curve u E C( [0,T] ;Zs) is called a weak solution of (1.3) iff it

is the limit in the C( [O,T] ;Zs}-norm. of same sequence of strong 801utions.

Definition. Let O~ COs be a domain such that for every UoE 0; there exists a

unique weak solution u(t) = st(uO) (0 5 t ~ T) cf equation (1.3) with initial condition

u(O) = Uo. The set of mappings

is called the "loeal semiflow of equation (1.3)11 or the Itflow of equation (1.3)" for short.

Weak solutions of equations (1.3) are generalized ones in the sense of distributions

(see [L] for systematic use of thi8 type of solutions):

Proposition 1.4. Let us suppose that for same' sl E IR, Lip(VH: ° ----+ Z ) < m .
8 81

Then a weak solution u(t) E Os (0 ~ t 5T) of equation (1.3) is a generalized solution

and after substitution of u(t) into (1.3) the left and right hand sides of the equation

coincide as elements of the spaee D' «OJT);Z ) of distributions on (O,T) with values in
82
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Proof. By definition of weak solution there e.."rist a sequence cf strang solutions un(t)

such that' une .)~ u(·) in C( [O,T] ;Xs) . For tbis sequence

JVH(u )~ JVH(u) in C( [O,T];Z -d)' After transition to the limit in equation (1.3)
n sl J

one obtains the resnlt.

ExamDle 1.1, again. Let H E C1(lRn )( IRn) . The Hamiltonian equation takes thep q
classical form:

p= -VqH(p,q)', ci = VpH(p,q) .

If H E C2(1R2n) then a weak solution is a strong one and it exists for some T > 0 ,
T = T(p(O),q(O)) .

Example 1.2, again. Let us consider the hamiltonian

2x-

H = if (px(x)2 + qx(x)2 + V(x)(p(x)2 + q(x)2) + X(p(x)2 + q(x)2))dx

o

with analrtical function X and smooth function V . Then H EC1(Zs} for s ~ 1 and

V 2 2 I 2 2H(p,q) = (-Pxx + V(x)p + X' (p +q )p, -qxx + V(x)q(x) + X (p + q )q) .

The equation (1.3) takes now the following form:

• I 2 2P = qxx - V(x)q - X (p +q )q ,
. 122q = -Pxx + V(x)p + X (p +q )p

Let us denote u(t,x) = p(t,x) + iq(trX) . The last equations are equivalent to nonlinear
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Sehrödinger equation with real potential V(x) for complex functions u(t,x):

ü = i(-u + V(x)u + X' (I u(x) 12)u)xx
(1.4)

u(t,x) == u( t,x+2-r-) .

The problem (1.4) has an unique strong solution u(t,x), u(t,·) E Zs '

o~ t 5 T = T(u(O,x)) J if s ~ 1 and u(O,x) E Zs+2 (we interpret here Zs as the Sobolev

space of periodie eomplex-valued funetions), and (1.4) has an unique weak solution for

o~ t ~ T if u(O,x) E Zs . For the simple proof see part 3 below.

Example 1.3, again. In the situation of example 1.3 let us eonsider the hamiltonian

2Jf

f 1 2 3
H= (~ux+n)dx.

o

Then H E C1(Zs) for s ~ 1 and VH(u(x)) =--uxx + 3u2 . So now equation (1.3) is the

KdVequation·

u(t,x) = -u +6uuxxx x

for periodie in x funetions with zero mean valne:

2r

u(t,x) ;: u(t,x+2l1"), f u(t,x)dx;: 0
o

(1.5)

(1.5' )

It is well known [K] that for 5 ~ 3 the problem (1.5), (1.5') has an unique strang

solution u(t,x) , u(t,·) E Z \/t , for every initial condition u(O,x) = uO(x) E Z I 3 and
S ST

has an unique weak solution for every uO(x) E Zs . The flow of problem (1.5), (1.5/)

defines a homeomorphisms cf phase space

st . Z • Z V t >0 V s >_ 3
• S N S -
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It is worth mentioning that any HamiItonian equation (including (1.4) and (1.5),

(1.5'» may be written down in a form (1.3) in many different ways. For this statement see

below Corollary 2.3.

2. Canonical transformations

Lei {X'{Xs},a
X

} and {Y'{Ys},a
Y

} be two SHS with 2-forms

aX = (lXdx,dx)X and o:Y = (lYdy,dy)y respectively; let JX (lY) be an

isomorphism of scale {Xs} ({Ys}) of order -d X (-d y); d X' d y ~ 0 . A mapping
J J J J

f/J : OX
s

--+ 0 Ys is a C1-diffeomorphism of domains OX
s

( X
s

and 0 Ya ( Y
X Y X X Y Sy

(sX ~ 0, Sy ~ 0) , if t/J is one-to-one onto 0 Y and
sy

(2.1)

Definition. A C1-diffeomorphism r/J: OX ----+ 0 Y
s

is a canonical transformation
Sx y

iff it transforms the 2-fonn 0:Y into the 2-fonn o:X:

* y X
;0: =0: .

Proposition 2.1. A C1-diffeomorphism ;: OX ----+ 0; is canonical Hf
Sx y

(the identity takes place in the space L(Xs ;X-s ».
X X

Proof. From (2.2) one has for v E OX and {1'{2 E XsSx X

(2.2)

(2.3)

(2.4)
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Therefore

for all ~1'!2 E Xs . This identity implies the stated assertion.
X

•
AB in the finite-dimensional case [A] & canonical transformation transfonns

solutions of Hamiltonian equation into solutions of the equation with transformed

hamiltonian:

Theorem 2.2. Let ~: oX ---+ 0 Y be a canonical transformation and let
Sx Sy

y: [O,T] ---+ 0 Y be a strong solution of the Hamiltonian equation
Sy

Then x(t) = ;-l(y(t)) is a strong solution in 0; of equation
X

• Xv X X Yx = V X(x) = J H (x) J H = H 0 ~ •

H .
(2.6)

If the mapping ;-1: 0 y ----t oX is Lipschitz and y is a weak solution of (2.5) then
Sy sx

x is a weak solution of (2.6).

Proof. For HX = HY 0 ; and x = ;-1 0 y VaX = ;* VBY . Then

x: [O,T] ---+ oX is Cl and far y = (J 0 xsx

• · YV Y Y * -1 V X;*x = y = J H (y) = J (;) H (x)

or

(2.7)
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(2.8)

(the right-hand side is well defined because JY(;*)-l VHX(x) E C ([O,T]; 0r )for
y

(2.1)). Hy (2.3), JX = (~*)-lJY(;*)-l , hence

• X V Xx = J H (x)

as stated.

The second statement of the theorem follows !rom the first one and the definition of a

weak solution because the mapping ;-1 is Lipshitz. •

Let {Y'{Ys},aY } be a SHS, let L be an isomorphism ofscale {Ys} oforder

1 V Xä ~ '2" d y, L: Ys N ) Ys-i1 s. Let us de:fine a second SHS {X,{Xs},a } where
J

X = Y, Xs = Ys and aX = (JXdx,dx) X , JX = L*JYL . The operator JX is

antisymmetrie in X and it defines an iSOIDOrphisID of the scale {Xs} of the order -

-d Y + 2ä ~ 0 ,80 the new tripIe is a SHS indeed. Let oXX be a domain in X y and
J s s

o YY = L(OXX) ( Y Y' sY = sX_& . The mapping L: OXX ----+ 0 YY is canonical
s s s s s

due to Proposition 2.1. So we have the trivial

Corollary 2.3 (change of symplectic structure). Let HY E C1(OYY) and let
s

y(t) E 0 YY (0 ~ t ~ T) be a solution of equation (2.5) (strong or wea.k). Then
s

x( t) = L-1y(t) is a solution of Ham.iltonian equation

with a ham.iltonian HX = HY 0 L E C1(OXX) .
8



- 9•.{-

Let {X,{Xs}' a = (J dx,dx) X} be a SHS, O~ and Os be domains in Xs '

0 1 (0 ands 8

(2.10)

(2.11)

Let UB consider the Hamiltonian equation

x= JVH(x) (2.12)

From (2.10), (2.11) one can easily obtain that the flow of equation (2.12) defines mappings

st E Cl(O~iOs) Vt E [O,T] , T = alK, and every 8t is a C1-diffeomorphism onto its

image.

Theorem 2.4. For every 0 5 t ~ T the mapping st is a canonical transformation.

Proof. One has to prove that

Since SO = Id it is sufficient to prove that

*(S·) a(x) [111' "2] = const (2.13)

Let x( T) be the solution of equation (2.12) for x(O) = x ,and "i(t) (j = 1,2) be the

solution of the Cauchy problem for linearized about x(·) equation:

(2.14)
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T * 1 2
(8 ) a(x) [711' 712] = a[71 (T),71 (T)] =

(2.15)

The function t( T) is continuously differentable. So (2.13) is equivalent to the relation

d/dT f.{ T) == 0 . One has

d (J -I 2) (J 1· 2)QT t(T) = 71 ,TJ X + 1] J TJ X =

because operator J is anti selfadjoint (Lemma 1.1) and operator (VH)* is selfadjoint.

The theorem is proved. •

Let Hj E C
1
{Os) I VHj EC(OsiXs) (j = 1,2) .

J

Definition. Let sI + s2 ~ dJ . The Poisson bracket of the functions HI' H2 is the

function {HI'H2} E C(Os) defined by

Let 0 < E ~ 1 and H E C2(Os) J let conditions (2.10), (2.11) be satisfied and

st E Cl(O~iOs), 0 ~ t ~ T = alK, be the flow of the equation

i = E JVH(x) .

1 t (2Theorem 2.5. For every G E C (Os) G(8 (x)) = G(x) + tE{H,G} x) + 0(( Et) )
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Proof. From the conmtions on H it is easy to see that

So

~d the theorem is proved.

3. Localsolvability of Hamiltonian equations

Let {Y'{Ys},a} be SHS, let Os be a domain in Ys and let

Here A is an isomorphism of scale {Ys} of order dA ~ 0 ;

A:Ys .Y VsEIR,
N s-dA

and the operator

A : D(A) (Y ---+ Y, D(A) = YdA

•

(3.1)

is selfadjoint. SO V(~ (Ay,y)y)(y) = Ay , and the Hamiltonian equation corresponding to

H has the form

y= J(Ay + VHO(Y)) (3.2)
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We shall prove a simple theorem on the loeal solvability of equation (3.2) which will

suit weIl to our aims. To formulate the theorem let us suppose that

for some s ~ 0 and let 0 2,01 C Ys be domains with the following properties:

(3.3)

Theorem 3.1. Let

0 2 C 0 1 (0s ' disty (01,ys\Os) ~ 0> 0 .
8

(3.4)

AJy = JAy Vy E y
m

(3.5)

(3.6)

Suppose that every strong solutiollB y(t) of equation (3.2) with initial condition

y(o) = YO E 0 2
stays inside 0 1

for 0 ~ t ~ T . Then for YO E 0
2 n Ys+d '

1

d1 = dA + dJ ' there exists a unique strong solution y(t) for 0 ~ t ~ T , and for yo E 0 2

there exists a unique weak solution y(t) for 0 ~ t ~ T .

Proof. Let us continue the mapping JVHO: 0 1
---i Ys to a Lipschitz one

V : Ys ---i Y8 . One may take for example

{
X(y)JVHO(y), y E Os

V(y) = 0 d. 0
,y ~ s'

where X(y) = 0-1 max (O,6-disty . (Yi01)) (see (3.4)). The function X is Lipschitz, it is
s

equal to 1 in 0 1 and to 0 out oI 0
8

• So Lip(V) ~ K1 and V I 1 = JVHO .
o

Let U8 consider the equation
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y= JAy + V{y) (3.7)

Ita solution y{t) ia a solution of equation (3.2) as long as y{t) E 0 1 . Let us consider the

linear equation

too. From (3.5), (3.6) it follows that

y= JAy , (3.8)

so by repeating the proof of Lemma 1.1 one can obtain that operator (AJ)-l: Ys --+ Ys
ia anti selfadjoint. So the operator

AJ : D{AJ) = Y +d C Y --+ Ys 1 s s

is anti selfadjoint, too. Due to Stone's theorem [RSl] for y(O) = yO E Ys+d equation
1

(3.8) has a unique strong solution and the mapping

T .
S : Ys+d

1
--+ YS+d

1
' y(O) ............... y(T) , T > 0 ,

is isometrie with respect to the Ys-norm. Equation (3.7) ia a Lipsehitz perturbation of

(3.8). So it has the unique strong solution y(t), t ~ 0 , for every y(O) E Ys+d and the
1

unique weak solution for every y(O) E Ya (see [B]) . If y(O) = yo E 0 2 then due to the

theorem'a hypotheses such a solution does not leave domain 0 1 for 0 ~ t ~ T and for

such a "t 11 it ia the unique solution of equation (3.7).

•
The theorem above reduees the problem of solving equation (3.2) to the problem of

finding apriori estimate for its solutions.
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4. Toroidal phase spare

Let us consider a toroidal phase space of the form y = Tn )( IRn )( Y . Here

yJl = IRn /2-x 7ln ia the n-dimensional torus, Y = Yo' {Ys Is EIR} ia a scale of Hilbert

spaces which satisfies properties a)--e) (see above). Let us denote I s = Tn )( IRn )( ys .

Every space I s has a natural metric dists and a natural structure of a Hilbert manifold

with Iocal charts

(see [Ch-B]). So

Let JY be an isomorphism of the scale {Ys} with properties d), e) and

Let us denote by J I the operator

and introduce in I s' s ~ 0 J a 2-form

Definition. The tripIe {;,{ ; s} Ja 11 is called toroidal sympiectic Hilbert scale

(TSHS).

Let Os be a domain in Ps and H E C
l
(0 s) . Then the Hamiltonian equations

corresponding to H have the form
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(4.1)

The definitions of strang and weak solutions for equations (4.1) are analogous to those for

equation (1.3).

The Poisson bracket of two functions Hp H2 with Hj E Cl (Os) ,

VyHj E C(05iYS) (j = 1,2), sI + 52 ~ dJ ' takes the form
J

The results of section 1-3 readily extend to canonical transformations and

Hamiltonian equations in T5H5. WeJll formulate analogs of Theorems 2.2,2.4,2.5 and 3.1

only.

Proposition 4.1. The statements of Theorem 2.2 remain true if anyone of the spaces

X, Y is replaced by a toroidal symplectic Hilbert space (with equations of motion replaced

accordingly) .

Let O~J Os be domains in Ps J O~ (Os and

(4.2)

Let H E C2(Os) and VH = (V H,-V H,JYV H) be corresponding Hamitonianp q y

vector-field. Let us suppose that VH E C1(OsiZs) and

IVH(q,p,y) I ~ K V(qJP,y), Lip(VH : Os ----4 Zs) ~ K (4.3)

Then the flow mappings 5t : o~ ----4 Os exist for 0 ~ t ~ T = 6/K and every 5t ia

Cl -diffeomorphism on its image.

Proposition 4.2. For every 0 ~ t ~ 6/K the mapping 5t is a canonical
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transformation.

Let conditions (4.2), (4.3) be fulfilled and st E C1(O~jOS) be the flow of equation

~ (q,p,y) = f VH(q)p,y) .

Proposition 4.3. For every G E C1(Os) G(st(f))) = G(f) + t f{H,G}(~) + O( ft)2

V ~ = (q,p,y) E O~ , Va ~ t ~ T = alK.

Let in (4.1) H = ~ (Ay,y)y + Ha(p,q,y) and let the linear operator A be the same

as in part 3. Let O~ I 0;, Os be domains in j s' 0; (O~ ( Os and suppose

inequality (4.2) is fulfilled. Let us suppose that Lip(VH : Os ----i Zs) ~ K .
a

Proposition 4.4. Let us suppose that relations (3.5)) (3.6) are fulfilled and that every

strong solution of (4.1) wi th initial paint f)0 = ('10 ,PO,y0) E 0 ~ stays in domain 0 ~ for

o~ t ~ T . Then for f)0 E0; n JIs+d ' d1 = dA + dJ ' and for 0 ~ t ~ T there exists a
1

unique strang solution of (4.1); for f)0 E O~ , 0 ~ t ~ T ) there exists a unique weak

solution of (4.1).

The proofs of Propositions 4.1-4.3 are the same as the proofs of the corresponding

theorems.

5. Aversion of the former constructions

All construction of the sections 1-4 have natural analogs for the scales of Hilbert spaces

depending on an integer index, i.e. for the scales {Zs Is E ll} . SHS and TSHS with

discrete scales {Zs} are sometimes more convenient to study Hamiltonian equations of

form (3.2) with integer dA' dJ . For example, KdV equation (1.5)) (1.5') (dJ = 1, dA =
2) and nonlinear Schrödinger equation (1.4) (dJ = 0, dA = 2) .

All the statements of sections 1-4 have natural analogs for discrete scales. The proofs are

the same.
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Parl 2.

Statement of tOO main theorem and its consequences

The following notations are used: for Hilbert spaces Y and Z the norms are denoted by

1·1 y, 1·1 z and inner products by <">y, <·,>Z ; distz - distance in the space Z.

The usual norms in If and cen (n ~ 1) are denoted 1·1 . For metric spaces B1,B2, for

a subset Q1 (B1 and a mapping h: Q1 ---+ B2 we denote

If the space B2 is a Banach one with a norm 1·1 B ,we denote
2

Ql'Lip .
Ihl B =max{sup Ih(b)IB ,Llph}. (0.1)

2 bEQ1 2

Let B1,B2 be Banach spaces with norms 1·1 B ' 1'1 B ,let B1c B c be their
1 2 ' 2

complexifications, let V.C be an (open) domain in B.c j = 1,2 . We denote by
J J

AR(V1c ; V2c) the set of Frechet complex-analytical mappings from V1c to V2c

which map VIc nB1 into V2c nB2 . Let M be some metric spare. We denote by

ARM (VIc ; V2c) a dass of mappings G: VIC )( M ---+ V2c with the following

properties:

i) G(' ; m) E A R(V1
C

; V2
c) Vm E M,

ii) the map G(b;·): M ---+ V2c is Lipschitz Vb E VIc and
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(0.2)

(the norm in B2c is denoted by ',1 B ).
2

For domains Vy Cy , VZ C Z we use standard notations Ck(Vy j VZ) (k E Z , k ~ 0)

*for the spaces of Frechet-differentiable mappings f{J: Vy --+ VZ and notation f{J.( f{J )

for tangent (cotangent) map.

For abstract sets 2!., ./, for a subset 8 of their product 21 x j and for 1 E j we denote

by 8 [I] a subset of 21 of the form

8 [I] = {a E21 1(a,l) E8} (0.3)

In the notations of functions and mappings we sometimes omit a part of arguments; we

denote by C,Cl'C2 etc. different positive constants which arrive at estimates and denote

by K,K 1 etc. constants in the assumptions of theorems.

1. Statement of the main theorem

Let {Z,{Zs Is E R} , a = < JZdz , dz >z} be a symplectic Hilbert scale as it was defined

in Part 1. It means that Z is a Hilbert space, {Zs} is a scale of Hilbert spaces with

*
norms 1I-lIs and inner products <-,->s ' ZSI ( Zs2 if SI ~ s2' Zs is dual to Zs with

respect to scalar product <'''>0 and Zo = Z . JZ is an isomorphism of scale {Zs} of

order ~J 50, Le. JZ: Z --+ Z +d Vs ER. The operator JZ : Z ---+ Zd (Z is
8 N S J J

supposed to be antisymmetric in Z. The operator JZ = --(JZ)-1 ia an isomorphiaID of

the scale {Zs} of order dJ , Hs restriction on Z ia aniselfa.djoint (and possibly

Z
unbounded). The 2-form a = < J dz , dz > Z '
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is continous, antisymmetrie and nondegenerate in any space Zs' s ~ 0 . Now every

Zs(s ~ 0) is a linear symplectic space. See Part 1 for more details.

Let us suppose that the operator JZ depends on a vector~arameter a E 21 , 21. is a

bounded open domain in It. So the symplectic form a depends on the parameter a,

too. Let AZ(a) be a seU-adjoint operator in Z depending on a E 2t and let Va E 21
ZA (a) defines an isomorphism of the seale {Zs} of order dA ~ 0 ,

AZ(a) : Z ---+ Z --d Vs E Rs N S A (1.1)

Let us suppose that there exists a basis {<pj± Ij ~ I} of the space Z with the following

properties:

i) there exist positive numbers '\Jo(s), s ER, JEN, such that ,\.(-5) = (,\.(S))-l Vj,s,
J . J

(1.2)

and {<I'/),t-fJ) Ij ~ I} is a Hilbert basis ofthe space Zs Vs ER, Le.

u1 (--5) u2 (-5) V . V
< <Pj ,\j , <Pk'\k > Zs = 0j,k DU1 'Q2 J,k E N, Ql,Q2 =:f:;

Z ± A ±V· VA (a) <po =,\. (a) <po J, a,
J J J

Here real numbers ),/ ' ),t are positive for j large enough:

Let us consider a hamiltonian

(1.3)

(1.3')

(1.4)
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1 Z
8(z;a,e) = ~ < A (a) z, z > Z + e H(z;a,e)

depending on a parameter a E 21 and a small parameter e E [0,1] . The corresponding

Hamiltonian equation (with respect to 2-form a(a) ) has the form

z= JZ(a) (AZ(a)z + e VH(z;a,e)) . (1.5)

Here and in what folIows, V ia the gradient in z E Z with respect to the scalar product

<.">Z . Equation (1.5) is aperturbation of linear Hamiltonian equation

In view of conditions (1.3), (1.3') the spectrum of operator JZ(a) AZ(a) is purely

imaginary,

It is supposed that the functions

are c2-smooth and for j ~ n, a E 7ln , Ia I ~ 2

(1.7)

and the mapping a~ W = (Al' ... ,An) E IRn is nondegenerate at some point aO E 21 ,

(1.8)

Let us denote
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(1.9)

Let ua set ZO (Z be a 2n-dimensional linear span of the vectors {cp~ Ij 5 n} . The space

ZO ia foliated into tori T(I) which are invariant for linear equation (1.6),

n 2 2
T(I) = { 1: 0tCPt + ajcpjl at +aj = 2 Ij ~ 0, 1~5n} .

j=l

(1.9')

A torus T(I) with I. > 0 Vj is n-dimensional, T(I) ~ Tn and it is filled with

quasiperiodie solutions 01 the form.

Here q is a coordinate on T(I) ,

q= w(a) . (1.10)

Let

1: 0 : Tn
---+ ZO ( Z

I

be an imbedding identifying a point of Tn with a point of T(I) having the same

coordinates.

Let us consider a family of tori {T(I) II E .7} where

(1.11)

is some Borel set (possibly J consists of the only point, J~ {la} ). Let UB denote

9'= U{T(I) II E J} .
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Let us fix Borne number d,

dA/2 ~ d , (1.12)

and let choose a domain O~ in the complexification of the space Zd '

O~ ( Z~ = Zd ~ ( , such that Y (O~ and
IR

We suppose that the function H may be extended to a function

H : Oc x 21 x [0,1] --+ ( which is complex-analytical on z E O~ and Lipschitz on

a E 21 , Le. H E A~ (0~ ;G:) VE •

Theorem 1.1. Let the conditions mentioned above hold together with

1) (analyticity and quasilinearity): for some dH E IR such thai

and for all E E [0,1]

(1.14)

(see (0.2));
2) (spectral asymptotics):

d1 == dA + dJ ~ 1
and there exists an asymptotic expansion for the frequencies ~jO' j ---+ m :

(1.16)
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d d d
L· ,A <K . A L· ,J <K . J L· ,< K . 1,rIp A j _ 1J ,1p A j _ 1J ,1p A j _ 1J i

Then there exist integers j1' MI such that if condition

3) (nonresonance):

(1.17)

(1.18)

(1.19)

(1.20)

is satisfied, then for sufficiently small E > 0 there exist 0* > 0 (sufficiently small and

a
independent from E), a Borel set 8 E

0 of vectors (a,l) ,

(1.21)

and analytical embeddings

(1.22)

with the following properties aH):

(1.23)

uniformly with respect to I E .J' (see (0.3))j

b) the mapping
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o 0
is Lipschitz and is elose to the mapping 1: :(q;a,l) 1---+ l (q)

I

n aO,€ , 0IT)(8 ,Lip
IL -L € 5C€;

Zd
c

€ a
c) every torus l (Tn) , (a,l) E 8 0 ,is invariant for the equation (1.5) and is

(a,l) €

filled with weak in Zd solutions of (1.5) of the form Zlö(t) = I lö (q+w' t) , here
( a,l)

q E Tn , w' = w' (a,l, €) E [Rn and Iw-w' I ~ C€ ;

d) all Liapunov exponents of solutions z€(t) are equal to zero.

The theorem will be proved in apart 3 of the tOO.

An immediate consequence of the stated result is a strong averaging principle for

nonresonant systems of the form (1.5):

a
Corollary 1.2. Under the assumptions of Theorem 1.1 for every (a,I) E 8 0, q E Tn , and

€
o

for all t a curve t~ l (q+ w' t) for € small enough is C €-elose to some weak
I

solution of (1.5). Here w' is an averaged frequency vector, 161' -611 ~ Cf .

Remarks. 1) From the second estimate in (1.15) one can see that the order of nonlinear

operator in equation (1.5) is equal to dJ+dH . The order of the linear one is equal to

dJ + dA' So the condition (1.14) of theorem 1.1 indeed means the quasilinearity of

equation (1.5) because the order of the linear term exceeds the order of the nonlinear one at

least by one.
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2) If da 5 dc-d1 = d-dJ-dH-l then the r.h.s. in (1.5) with z(t) = ZE(t) belongs to

C( [O,T] ;Zd ) . SO ZE E C1( [O,T] ;Zd ) is a strong in Zd solution of (1.5).
a a a

3) The numbers jl' MI in the a&sumption 3) of Theorem 1.1 depends on K, KO-K2,

K~, dl' d1 " dA' dJ , dH, d, n and .io only. The maximal possible values of E, 0* and,J
the rate of convergence in (1.23) depends on the same quantities and on K 3 .

E E * a
4) All the tori 1: (T

n
) are isotropie, i.e. [1: 1 a = 0 V(a,I) E 8 f

0 .
(a,l) (a,IY

5) The frequencies {~jO} are ordered asymptotically only (see (1.16)). So for a spa.ce

zO one can choose any 2n-dimensional invariant subspace of the operator J(a)A(a).

6) If instead of the condition d1 ~ 1 a weaker condition d1 > 0 takes place then the

statements of Theorem 1.1 seems to be wrong in a general case. But the statement of

Corollary 1.2 remains true for 0 ~ t ~ E-1 and C EP instead of CE with some p > 0

(see [K4]).

7) The form (1.16) of a spectral condition is not the most general one we need for our

proof. For example for d1 > 1 it is sufficient to demand that

See [Kl] for (1.24) and [K2] for a possible form of a spectral condition with d1 = 1 . For

the profound investigation of this problem see [DPRV].

8) The necessity of the quasilinearity condition dH ~ dA-1 results from (1.16) (or

(1.24)). Indeed for arbitrary d~ > dA-1 one can easily find perturbation H of the form

1 p() PAZ AZAPH = 2' < A a,E Z,z >Z' A = ,
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such that the condition (1.15) is satisfied with

d -1
AZ(a) + AP(a,E) condition 1,\j+l-'\j I ~ C1j 1

1dH = dH and for the operator

ia broken for same j large enough.

E

9) The analyticity of the tori l (Tu) was observed by J. Päsche! [PI]. In the
(a,l)

author's works [KI-K3] only smoothness of the tori was stated.

10) H all the numbers d, dH, dA' dJ are the integers then Theorem 1.1 may be

stated in the framework of discrete symplectic Hilbert acales {Z,{Zs Is E ll},a} (see Part

1, part 5).

2. Refonnu1a.tion ofTheorem 1.1

Let us suppose that the boundary fJJ. is smooth, the domain 21 is connected, all

eigen-values ~~, ~t are analytica.l functions of a E!21 and

(2.1)

A J
For some fixed point aOE 21 we define numbers ,\ j 0' ,\ jO' '\jO and a vector "'0 as in

(1.9).

Let us consider some resonance identical relation of a form

s· w(a) + A(a) =0 J A = t 1'\n+l(a)+ ...+tp'\n+p(a) , (2.2)

Lemma 2.1. Let all the functions ~~, ~t be analytical in !21 J d1 ~ 1 and asymptotic

(1.16) together with assumptions (1.19) and (2.1) take place. Then there exist numbers

M2J ~ with the following property: if sorne identical relation of form (2.2), (2.3) holds and

in (2.2) t p =f: 0 ,then Isl ~ M2J p ~ ~ .
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Proof. Hy the assumption (2.1) there exist a point a'E 21 such that

(2.4)

for some C. Let Va be a gradient with respect to the uaua! 8calar product in IRn . Then

*Va(s· w(a)) = w (a)s and by (2.4)

(2.5)

Till the end of the proof let us denote by ~n(p) zero function: ~n(p) =0 . Then

every relation of the form (2.2), (2.3) with I f 0 may be rewritten in the following way:p

(2.6)

Here sI 0 8 or 81 = 8/2 and n ~ m < n+p. 1t follow8 from (2.6) that

I~n+p(a) % ~m(a) I ~ C11 8land by the assumption (1.16)

d d d
C21 s I ~ (n+p) 1 - (n+p) 1,r - m 1 (2.7)

It follow8 from (2.5), (2.6) that Ci1 1s I ~ IV~m(a) I . So by the assumption (1.19)

Hy (2.7)) (2.8)

d d d d
(n+p) 1 _ m 1 ~ C((n+p) 1,r + m 1,r)

d
Since n + p ~ m + 1 and the function t 1 ia convex it follows that

(2.8)

(2.9)
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and

d1-1 d1-l d1 d1By the three last estimates (n+p) + (n+p-m)m ~ C
2
«n+p) ,r + m ,r). So

n+p 5 Cl (to prove the estimate one has to use the inequality dl r < d1-l and to,
consider the cases dl r < 0 and dl r ~ 0 separately). Now by (2.8) Isl ~ Cll and the, ,
lemma is proved with j2 = C1-n, M2 = eIl

Theorem 2.2. Let a1l eigen-values ~~, ~~ be analytical functions of a parameter a E~
J J

and conditions (1.2), (1.3), (1.3'), (1. 7), (1.11 )-(1.13), (2.1) hold together with

assumptions 1), 2) of Theorem 1.1. Then there exist integers jl' MI such that if an

assumption

(2.10)

is satisfied then for every 6 > 0 and for sufficiently small E > 0 there exists a Borel

subset 21~ (21 and analytical embeddings

with the following properties a)-c):

a) mes 21\210 < 6 ,
E

b) the mapping
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E 6 E
\ : T n )( 21. ~ Zd ' (q,a)~ l (q)
l E C a

is Lipschitz and

(2.11)

c) every torus 1: E(Tn) , a E2lc5 , is invariant for the equation (1.5) and is filled
a E

E

with wea.k in Zd quasiperiodidc solutions of the form l (q+w' t) and
a

(2.12)

All Liapunov exponents of these solutions are equal to zero.

Proof. By the analyticity of functions ,,~, "t and by the assumption (2.1) the set

{a E 211 Idet 8wj/Oak I > O} is open and of full Lebesque mea.sure in 21 (Le. a measure

of its complement is equal to zero). Let define

Then 21t , t --+ 0 , is an increa.sing sequence of compact sets and U{21t It > O} is of full

measure. So there exists KO= KO( 6) > 0 such that

mes 21\~ < 1 = 6/4
o

(2.13)

Let us choose j1 ~ ~+n, MI ~ M2+2 with ~,M2 aB in Lemma 2.1. Then by the

assumption (2.10) and Lemma 2.1 there is no identical resonance relation of the form (2.2),

(2.3). So every set

(2.14)
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with 1 ~ I Sn+1 1+ ...+ I sp I ~ 2 , is of full measure in 21.

Let us take a point aOE 21K . For the rernark 3, Theorem 1.1 is applicable with this
o

choice of aO if condition (1.20) is fulfilled with sorne j1 = j1 0 ' M1 = M1 0 which does, ,
not depend on aO ' Let us consider a set

As the sets (2.14) are of full measure, then for some to> 0

mes 2J.\~t < i .
o

(2.15)

Theorem 1.1 ia applicable with arbitrary aOE2lx n 21t ' .7 = {la} and a constant KOo 0
in the assumption (1.8) as in (2.13). In this situation for remark 3 0* does not depend on

aOaO and the set 8 € is of the form

(2.16)

The open balls 21(aO'o*), aa E21K n 2ft ' form a covering of the compact set
o 0

M
21K n ~t . Let us fix same finite subcovering, 2J.K n 2ft ( UD., D. = 21(aO"cS"*) . By

o 0 0 0 j=1 J J J
the statement a) of Theorem 1.1

mes D .\21aOj < 7/M V j=1,... ,M if € < €( 0)
J €

For every j = 1,... ,M let us choose a closed subset D~ ( Dj such that

(2.17)

(2.18)



-24-

and

Let us set

omes{U D.\U D.) < i .
J J

(2.19)

\ € aO· 0 , f
and define a map L ,a E 21 J n D. , being equal to the map L constructed by

a f J (a,IO)

means of Theorem 1.1 for a E 21aOj . This definition is correct because every point a E 210
E f

belongs to only one set 21aOj n D~ .
E J

The statements a)-e) of the theorem are true with this choice of 21° and LE • Indeed,
f a

the assertion a) results from the estimates (2.13), (2.15), (2.17), (2.19). The assertion c) is

local with respect to the parameter a and it results from Theorem 1.1.

For to prove the assertion b) let UB mention that by Theorem 1.1 for AE = E f -!P we

have

(2.20)

(2.21)
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By (2.20), (2.21) we get an estimate (2.11) with C 6 = C6(l + 26,-1) .•

Corollary 2.3. If under the assumptions of Theorem 2.2 condition (2.10) is satisfied then

for arbitrary p E (0,1) and for 0 < E «1 there exists a Borel subset 2L C 21 and
E

\ E n
analytical embeddings L : T ----t Zd' a E21E' dc = d + dA - dH-l J with the

a c
following properties:

a) mes 21\21E ----t 0 (E -----t 0) J

E

c) every torus l (Tn), a E 2L J is invariant for the equation (1.5) and ia filled
a E •

E

with weak in Zd solutions of the form l (q+w't), Iw'-wl ~ EP . All Liapunov
a

exponents of these solutions are equal to zero.

Proof. Hy Theorem 2.2 with 6 = 1/n, n = 1,2,... for E ~ En J En > 0 , we have the

sets 211/n and maps ~ E satisfying the assertions a)--e) of the theorem. If E «1
E La n

then

(2.22)

We may assume that En ' 0 (n ---+ 00) and set 6( E) = 11n if E E (E(n+l), E(n)J .

Now the assertions of the corollary result from Theorem 2.2 and (2.22).•

3. On systems with random spectrum

Theorems 1.1 and 2.2 may be applied to the Hamiltonian perturbations of random linear

system for proving that quasiperiodie solutions of the unperturbed linear system survive in

perturbed system with probability 1 (w.pr.l). Here we prove a simple theorem of tbis sort
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which deals with perturbations of a linear system equivalent to a countable set of free

harmonic oscillators with random frequencies "'1' "'2' ....

The perturbations of a countable system of random oscillators by means of a short range

interacting hamiltonians have been studied in a number of works (see [FSW] , [P2] and

bibliographies of these papers). For applications of our theorems we don't need short range

interaction assumption. Instead of the last we use the assumption of linear or super-linear

growth of frequencies (wj N CJ.d, d ~ 1) .

In the work [Wl] non-linear perturbations of the string equation with a random potential

were studied. The theorems of [Wl] are similar to our results of this section.

Let Z be a Hilbert space with an orthobasis {ep~ Ij ~ I} j Zs' s E IR , be Hilbert spa.ces

with the orthobasis {f-Sep~ Ij ~ I} and .

:l: T VJ:Z---tZ, J(ep.)=Tep. j.
J J

(3.1)

Then J = (_J)-l = J and the tripie {Z,{Zs}' < Jdz,dz >z} is a symplectic Hilbert

scale with properties (1.3) being fulfilled with ~i == 1 .

Let (U, /7,..9) be some probability space and A = A(J') , J' E u, be a random

se1fadjoint operator in Z such that Vj E IN

:l: A * A .dAA(ep.) = ~ .(~)<p., ~ .(1') = KJ + A.(J') (3.2)
J J J J J

Here K > 0 and {Aj Ij ~ I} are independent random variables (r.v.) such that every Aj
is uniformly distributed on a segment

(3.3)

Let O~ be a neighborhood of Zd in Z~ = Zd ~ ( and H E AR(O~;() . Let us consider
IR

a Hamiltonian equation with a hamiltonian a = ~ < Az,z >Z + € H(z) , i.e. the equation
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z= J(Az + E VH(z» . (3.4)

Theorem 3.1. Let dA ~ 1, d ~ ~ dA ,H E AR(O~;(), VH E vlR(O~;Zd-d ) with
H

some dH ~ 0, dH < dA-1 and H, VH are bounded on bounded subsets of O~. Let in

(3.3) p < dA-1 . Let Qd be an arbitrary open domain in Zd. Then V E > 0 there

exists a set U E E :7 such that

a) SJ ( U E) ----i 0 (E -+ 0) ,

b) if p ~ U then the equation' (3.4) has a quasiperiodic solution passing through
€

Qd . All Liapunov exponents of tbis solution are equal to zero.

Remark. For a "not 80 small E 11 one has '/t = 'lt and the statement of the theorem ia
€

empty.

Corollary 3.2. Let { Ej} be a sequence such that Ej '0 for j -+ m . Then under the

asaumptions of Theorem 3.1 w.pr.l equation (3.4) has a quasiperiodic solution through Qd

for E equal to some E·.
J

Proof. Let ns set '/tO= n '/tE .. For Theorem 3.1 ..9( '/tO) = 0 . If P ~ Uo then p lies
J

out of some 'it and equation (3.4) with € = E· has a quasiperiodic solution though
Ej J

-
Corollary 3.3. Let €j~ 0 (j ---+ 00) and QP( Ej ) be the union of all quasiperlodie

trajectories of equation (3.4) with f = f· . Then w.pr.l ~ QP( E
J
.) is dense in Zd .

J J

Proof. As the Hilbert space Zd is separable there exists a countable system {Bj Ij E lN}

of balls B. (Zd such thai any open set B* contains some ball B .. Now the statement
J J*

results from Corollary 3.2 being applied to the balls Bj (j = 1,2,... ), because the

intersection 01 a countable system of sets of full measure is of full measure, again. _

Proof of thc theorem. Let UB take some point Zo E Qd of the form
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n
\ :I: :I:

Zo = L ZOj CP j J n = n(zO) < m J

j=l

and denote

(3.5)

Mter the rearrangernent of n first pairs of basis vectors {cp7 1i = l, ... ,n} and decreasing

2 2
the number n (if there ia need in it) one may suppose that z"'/j j + ZOj > 0 Vj = l, ... ,n .

So the point Zo belongs to sorne torus T(IO) ~ Tn J 10 E IR: .

Let us denote w· = ~~(p) , j EIN. Hy Corollary 2.3 for every fixed
J J

wm = (wn+lJwn+2'···) there exists a set OE = O€(wm) of vectors w = (wl"."wn) J

°€ ( .& 1 )( ä2 )( ... )( än J such that

(3.6)

(here mes is the norrnalized Lebesque measure) and for w ~ ° the equation (3.4) has an
€

invariant torus T € ~ T n at a distance < E
1/ 2 from the torus T(I). The torus TE is

filled with the quasiperiodic solutions. So if E < 6~ then equation (3.4) has a

quasiperiodic solution passing through Qd provided w lies out of n€ •

In the present situation a n---ilimensional parameter of the problem (3.4) is the frequency

vector w itself. So condition (1.8) is fnlfilled with KO= 1 . All the constants rnentioned

in the remark 3 (see part 1) are uniform with respect to w . So the remark and an
m

a.naJysis of the proof of Theorem 2.2 (we omit the routine) show that in (3.6) the function

m( €) does not depend on w • Let us set ?t = {p E U' Iw En (w )} . As the r.v. w
m E € m

and w
m

are independent, then .9(?t€) ~ m( E) . So the theorem is proved because for

jj ~ U'E equation (3.4) has a quasiperiodic solution tlrrough Qd. •

4. Nonlinea.r Schrödinger equation
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A nonlinear Schrödinger equation

• D 2u = i(-u + V(x;a)u + € 2 X(x, Iu I ja)u)
xx Dlul

(V and X depend on a parameter a E21) will be considered under the Dirichlet

boundary condition

°~ x ~ r, u(t,O) == u(t,r) == 0 .

Let Z = L2(O,7r;() which is regarded as areal Hilbert space with inner product

<,V >7 = Re f u(x) v(x) dx .

A differential operator -;}/ FJx2 with the Dirichlet boundary conditions defines a positive

selfadjoint operator Jt° in Z with the domain of definition

°1 2
D( vt0) = (H n H )(O,7r;(). For s ~ ° let Zs be the domain of definition of the

operator .A~/2. Every space Zs is a closed subspace of HS(O, r;() and the norm in Zs

is equivalent to the norm induced from HS(O, r;() . In panicu1ar

(4.1)

Let Z-s be the space adjoint to Zs with respect to the scalar product in Z.

Let UB consider the antiselfadjoint operator J ,

J : Z~ Z, u(x) t----i i u(x)

Then J2 = - E, so j == -{J-1) = J and the tripie {Z,{Zs}' < Jdz,dz >z} is a

symplectic Hilbert scale Part 1.

Let 21 be a bounded domain in !Rn and V: [O,r] )( 2[~ IR be a C2-function. The



-30-

differential operator -02/ fJx2 + V(x;a) defines a selfadjoint operator A(a) in Z with

the domain of definition Z2' ...4'(a) depends on a parameter a E21 . For a full system of

eigen-vectors of A(a) let us take {<p:(a)}. Here ~t(a) = <p.(x;a) J ~:(a) = i <p.(x;a)
J J'J J J

and {rpix;a)} is the full in L2(0,r;lR) system of real eigen-functions of the operator

-02/1Jx2 + V(x;a) under Dirichlet boundary conditions. So

Let us suppose that the numbers pt(a)} are asymptotically ordered, Le.

At(a) > At(a) if j > k and k is large enough.

Let Oc (( be a complex neighborhood of IR and let X may be extended to a function

x: [0,;1"] x OC x m--+ ( such that

(4.2)

OS R
-8 X(x,·;·) E v4'21(Oc;() Va ~ 2, Vx E [O,r] .
lJx

Let us set

r

If 2HO(u;a) = 2" X( Iu(x) I ,x;a)dx .

o
(4.3)

Lemma 4.1. For any R > 0 there exists a complex 6-neighbourhood B~ (Z~ of a ball

{u E Z2 1 lIull2 ~ R} such that 6 = 6(R) > 0 and HO E v4'~ (B~;() ,

and VHO E A~ (B~;Z~) .

V 8 2
Ho(n;a) = 2 X(x, Iu I ;a)u

81ul
(4.4)
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Proof. The existence of the set B~ and analyticity of HO result from Corollary A2 from

the Appendix. Relation (4.4) results from the identities

< v(x),V HO(u(x);a) >z = d HO(u;a)(v) =

'K

= ; f 3 2 X( X, 1u 1
2;a)(u v+ Ü v)dx =

o 81ul

8 2
= < v(x), 2 X(x, Iu(x) I ja)u >z .

Dlul

By Corollary A2 the map VHO belongs to A~(B~; H2(O,r;()) . Hut for u(x) EB~ the

function VHO(u(x);a) is equal to zero for x = 0 , .x = r . Therefore VHO(u(x)ja) EH~

for u EB~ and the last statement is proved. _

1So the Hamiltonian equation with a hamiltonian ~ < .A'(a)u,u >z + HO(u;a) has the

form

· 8 2u = i(-u + V(xja)u + € 2 X(x, Iu I ;a)u)
xx Dlul

(4.5)

This equation ia of the form. (1.5) hut operators ""'(a) don't commute one with another

and the condition (1.3') ia not satisfied. For applying the theorem we at first must do

linear transformations Ua of the phase space depending on a parameter a,

U : Z --+ Z J zrp.(x) t---+ zrp.(xja) Vz E ( V j .
a J J

1/2
Here rpix) = (2/ r) sin jx .

Lemma 4.2. For every a E 2!. the transformation Ua is canonical and orthogonal with

respect to scalar product < .,. >Z . For every a, al' ~ E 21 and every s E [0,2]
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l~ial)-~j(~)I~Clal~1 ,

lIua -ua....lls s ~ Csl al~ I ,1 --~ ,

(4.6)

(4.7)

(4.8)

Proof. The orthogonality of Ua results from the fact that it maps one Hilben basis of the

space Z into another. The canonicity results from identities

(we use the orthogonality of Ua ).

The estimate (4.6) for the spectrum of Sturm-Liouville problem is well-known [PT,Ma].

Ta prove (4.7) let us mention that for the eigen-functions rp.(xja) one has the estimate
J

(4.9)

(see [PT,Ma]). As
,

tf2
~ <p.{x;a) = (V{xja) - ~ .(a))<p.{xja)
fJx J J J

then we get from estimates (4.6), (4.9) that lI<pial) - CPj{~)1I2 ~ C21 al-~ jj. From
(4.9), the last inequalities and interpolation inequality [RS2] it follows that for all

s E [0,2]

(4.10)

Let u E Zs and
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(one has to mention that IIcpj lls = l ).Then

~ LI ut + iuk"1 1lCi\(x;a1) - Ci\(x;a2)lIs ~
k

and we get the estimate (4.7). The estimate (4.8) results from the inequality

IIcpix;a)-<p/x)l!s 5 C~l-1 in the same way as (4.7) results from (4.10).•

For Lemma 4.2 and Theorem 2.2 from Part 1 the substitution

U= U va

transformB 801utions of equation (4.5) to solutions of equation

v= J(A(a)v + f VH(v;a))

with

So

(4.11)

(4.12)
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A(a) cp:(a) = ~~(a) I{J: vj .
J J J

Equation (4.5) with f = 0 ia a linear Schrödinger equation

· °1 2 '
u = i(-u +V(x;a)u), u(t) E (H n H )(O,~() Vtxx

and it has invariant n-tori

{
n }n + . +2 _2

T (1) = '(a . +lO)cp.(x;a) la. +a. = 21.> 0
a L J J J J J J

j=l

Let a Borel set j (IR~ be as in (1.11) and 9'a = U {~(1) 11 E J} . For every a E 21

U~I(~(I)) is an invariant torus T(I) of equation (4.12) with E = 0 . It is of the form

(1.9'), does not depend on a and

U~1 9"a = 3' = U{T(I) 11 E J} .

Moreover, if R is large enough then one can choose a domain O~

OC ( n U-1 B C

2 aE21 a R

which satisfies relation (1.13) with s = 2 .

Let us check that Theorem 1.1 with

(4.13)

may be applied to the equation (4.12). Indeed, the validity of assumption 1) with

O~ = O~ (see (4.13)) results from (4.3), (4.7), (4.8); assumption 2) with d1 = dA = 2

results from (4.6) and from the weIl-known asymptotic ~. = j2 + 0(1) (see [PT] J

J
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[Ma]). So we get the following statement.

Theorem 4.3. Let aO be & point il;l 21 such that

(4.14)

Then there exist integers jl' MI such that if

(4.15)

then for sufficiently small € > 0 ihere exists 0* > 0 (sufficiently small and independent

of E), a Borel subset

and analytic embeddings

E °1 3 aO1: :Tn
--+ (H nH )(OJr;(), (aJI) EB ,

(a,l) €

with the following properties:

a
a) mes 8 €0 [I] ~ mes 21(ao'o*) (€ --+ 0) uniformly with respect to I;

€

b) every torus 1: (Tn) ia invariant far the equation (4.5) and is filled with weak
(a,l)

o E
in (H1nH2) aolutions of (4.5) of the form 1: (Qo + ",' t) (Clo ia an arbitrary point

(&,1)
from Tn

, 61' = w' (a,I,E) E IRn );

E

c) dist 2(l (rt) J T~(I)) ~ CE and Iw-61' I ~ C € ;
H (a,I)

d) the numbers jl' MI depend on KO' n and the C2-norm of V(xja) only.
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Let UB discuss a8sumptions (4.14), (4.15) of the theorem. For this purpose let U8 consider a

mapping U from the set 21 into the space C [0, r] of potentials V(x},

?L:21---iC[O,r], a~V{·ja} .

Every .At is an analytical function of potential V{x} . So condition {4.1} means that the

point ?L{aO) lies in the space C [O,r] out of the zero set of some nontrivial analytical

function. To discuss assumption (4.14) let us mention that

(see [PT, Ma]). It is proved in [PT] that the system of the functions

{cpi( · ;a), ... ,cp;{ · ja)} ia linearly independent for al1 a. So the function

turns out to be a non-trivial n-form on the space C [0, r] and the condition (4.14) means

that the restriction of tms n-form on the image of the tangent mapping

is nondegenerate, tao.

So the assumption (4.14)+{4.15) is an non-degeneracy condition on the I-jet of the map

?L at the point aO'

Remark. Theorem 1.1 is appllcable to study equation (4.5) under Neumann boundary

conditions, or in the space of even periodic with respect to x functions,

xEIR, u{t,x) == u{t,x+2r), u{t,x) == u{t,-x) , (4.16)
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if the functions V and X are even periodie and sIDooth on x. In the last situation one

has to take for Spates {Zs} the 8paces of even periodie Sobolev functions. In such a case

relation (4.4) defines an analytical mapping from the space Zs into itself for every s ~ 1 .

So Theorem 1.1 is applicable with arbitrary d ~ 1 and in the case of the problem (4.5),

(4.16) one may prove the existence of arbitrary sIDooth invariant tori (Le. being in the

space Hk(O, r;() with k arbitrarily large) at a distance of order E from 3"a'

5. Nonlinear string equation

The next application of our theorem will be to the equation of 08cillation of astring with

fixed ends in a nonlinear~astic medium depending on a parameter a E 21 :

t? ~ 2 8
~ w = (Ir / Ox -V(x;a»w-f 7fW x(x,w;a)
Ot

w = w(t,x), O~tSIj w(t,O) =w(t,r) == 0

(5.1)

(5.2)

For writing down tbis non-linear boundary value problem in a form. (1.5) we need some

preliminary work. Let V: [0, r] x2I ---+ IR+ be a smooth function. The differential

operator -02/ax2+ V(x;a) defines a positive selfadjoint operator in the space L2{0, r;lR)

o
with the domain of definition (H1nH2){0, ~IR) . The space ~ = D{y:;r;) is the Sobolev

0 1space H (O, 1j1R) with the scalar product

r

< u,v )a) =J(uxvx + V(xja)uv)dx

o

For t~O let ~t be the space ~t = D{ vtrt+1}/2) with the norm.

lIull~a) = 11 .A~/2u lI~a). In particular lIull~a) = {< U,u >(a»1/2 . For -t~O let

~-t be aspace dual to ~t with respect to scalar product <. j. >(a) . Let us set

z~a) = $"tX ~t with the natural norm and scalar product which will be denoied as
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, <.,. >(al, too. In the scale {Z~a)} let us consider an operator Ja of order dJ = 1 ,

This operator is a.nti-5elfadjoint in Z(a) = Z~a) with the domain of definition

D(Ja) = Zla) . The tripie

{z(a) {z(a) IsEIR} < J dw dw >(a)} J = -{J )-1
's 'a' 'a a

ia a symplectic Hilbert scale Part 1 depending on a parameter a.

Let {'P~a) Ii ~ I} be a full in L2(O,r,IR) system of eigen-functions of operator

-02/ax2 + V(xja) ,

(-t? /ax2 + V(x;a»cp(a) = A(a)cp(a), Icp(a) IL = 1 ,
J J J J 2

and ~ ~a) > ~~a) for j > k and k large enough. Let us set

(5.3)

Let the function x(x,w;a) and domain Oe C ( be the same as in § 4 with the additional

property

x(O,Oja) :: X( If,O;a) == 0 ,

and



W"

HO(wl'w2) = JX(x,w1(x);a)dx

o

Lemma 5.1. For any R > 0 there exists a complex 6-neighborhood

B~ ( z~a)c = z~a) ~ ( of a ball {u E z~a) I lIull~a)~R} such that 6 = 6(R) > 0 and

HO E AR(B c .() .21 R' ,

(5.4)

VaHOE .A~ (B~;Z~a)c) (here Va is the gradient with respect to scalar product

<_;_>(a) ).

Proof of analyticity of HO and VaHO is the same as in Lemma 4.1. The formula for

VaHO results from identities

•

The Hamiltonian equation corresponding to a hamiltonian eNa(w) = ~ IIwlI~ + EHO(w)

in a symplectic structure with the 2-form < Jadw,dw >(al is the following:
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= ( .A~/2 w2, - vl~/2(W1 + .A~1 € k X(x,w1(x);a)))
1

or

(5.5)

. _ 1/2 -1 a .
w2 - - via (w1 + .Aa f 7Fii: X(x,w1(x),a)) .

1

After elimination w2 from these equ~tions one gets an equati<?~,~·n.. w1 "

So equation (5.5) is equivalent to equation (5.1). In what follows we shall discuss equation

(5.1) in the form (5.5).

As in § 4 we have to do some linear transformation before to apply the theorem. So let

{Z} be the scale of spaces of the form {Z(a)} with V(x;a) == 0 , i.e. defined by operators . s

-tr/Ox2 instead of -02/ 1Jx2 + V(x;a) . Let us set

rpt(x) = (sin jx,O)(2/ rj)1/2, rpj = (O,sin jx)(2/rj)1/2

and denote an antiselfadjoint operator J(a) of order 1 in the scale {Zs} ,

(5.7)

The tripie {Z = Zo,{Zs}' < J(a)dw,dw >o} is a symplectic Hilbert scale depending on a

parameter a of the same sort as in § 1, Le. with condition (1.3) being fulfilled.

For the relations (5.3), (5.7) the mapping

u . z--+ Z(a) <p:~ (n:(a)
a . 'J T J
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Z ± A ±Z ± J T.A (a)<p. = =f A . (a)<p. I J (a)<p. = T A.(a)<p., J = n+1, ... ,n+p
J J J J J J

(see [K3]). In such a case

U {:i:A .(a) lj=n+1, ... ,n+p}, A.(a) = A~(a)A~(a) .
J J J J

So the spectrum contains p pairs of real eigenvalues.

(6.1)

(6.2)

Example. Let us consider the problem (5.6), (5.2) without the limitation V(x;a) ~ 0 (and,

so, with the possibility of negative points in the spectrum u( A a) of the ope~ator

.Aa = -a2/fJx2 + V(x;a)). Let us suppose that 0 ~ u( v4"a) and denote by ~t '

t ~ 0 , a space ~t = D( I via I(t+1)/2). Let us define spaces {Z~a)}, {Zs} and

operators Ja' J(a) and function HO in the same way aB in § 5 but with the operator

I A I instead of A
a

and IA(a)1 instead of A(a), j = 1,2, ... (by definition,
a J J

I .A I<p(a) = IA(a) I<p(a) Vj) .
a J J J

Let us consider a hamiltonian

(6.3)

sgn.A tp(a) = sgn A(a) <p(a) Vj
a J J J

Corresponding Hamiltonian equations have the form

(6.4)
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Borel subset6. > 0,existsthereE>Othen for sufficiently small

aO aO E n aO8 E (8 = 21 (ao,6*) x J and smooth embeddings l :T --+ Z2' (a,l) E8 ,
(a,l) E

with the following properties:

a
a) mes 8 E0 [I] ----+ mes 21 (aO,6*) (E ---t 0) uniformly with respect to I;

E

b) every torus l (Tn) is invariant for the equation (5.5) and is filled with weak
( a,l)

In Zl solutions.

The conditions (5.9), (5.10) are ones of non-degeneracy in the same sense as in § 4.

Example. Let n=l and V(xja) == a for a E21 = (0,1) . Then ~ (a) = m2+a and
m

assumption (5.9) is trivially fulfilled. Let UB consider some resonance relation of the form.

(5.10):

j 1

l (m2+a)1/2 sm == 0 .

m=l
(5.11)

The l.h.s. in (5.11) defines an analytical function of argument a E [0,1] . This function is

not identically zero because after the anaI.ytical extension into complex plain with the cut

along (--«l,O] the function has an essential singularlty at the point a = _m2 if sm:/ 0 .

~o the function has only a finite number of zeroes in 21. Let a countable set 210 be equal

to the union of zeroes of all the functions corresponding to the relations of the form. (5.11)

with jl ~ n+l and 1 ~ I Sn+l 1+ ...+ I Sjl 1 ~ 2 . Then all the assumptions of Theorem 5.2

are fulfilled for aOE21\210 .

6. On real points in the spectrum

The proof of the statements a)-e) of Theorem 1.1 ia valid if some finite number of

eigenvalues of the operator JZ(a) AZ(a) are real, i.e. if for sorne finite number of indexes

j instead of the conditions (1.3'), (1.3) one has
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defines a canonical transformation from Z to Z(a) for every s ~ 0 . So U
a

transformss s
solutions of equation

• V 0v = J(a)(v+f H(vja)), H(v;a) = H (Ua(v);a)

into solutions of (5.5). As in § 4 one can prove the following statement.

(5.8)

Lemma 5.2. For any R > 0 there exists a complex 6-neighborhood O~ C Z~ of a ball

{u E Z1 1 lIulll ~ R} such that 6 = o(R) > 0 and H E A~ (O~;(),

VH E .A~(O~jZ~) .

Let UB check that Theorem 1.1 with

A _ J _ (a) 1/2 _ _ _
~ j - 1, ~ j - (~J) ,dJ - 1, dA - 0, dH - -2, d = 1, dc = 2

ia applicable to equation (5.8). Indeed, assumption 1) results !rom Lemma 5.2, assumption
- 1/2

2) with r = 1, K2 = 1, is satisfied because ~ .(a) = ~~(a) = (~(a)) ,where
J J J

p~a) = p+ C(a) + O(l)} is a spectrum of the Sturm-Liouville problem. So we get the

following statement on equation (5.5) (or (5.6)).

Theorem 5.2. Let a Borel set J be as in (1.11) and 3.0 be a point in 21 such that

(a )
det( 8~ j 0 / 8ag 11~j, k~n) f 0 .

Then there exist integers jl' MI such that if

(5.9)

(5.10)
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and we get the equation (5.6) for the function w1(t,x) tagain. One can repeat the proofs of

§ 5 and to write down the equations (6.4) in a form (5.8) which satisfies the conditions of

Theorem 1.1 with the condition (6.1) instead of (1.3'), (1.3). So the statements of

Theorem 5.2 are true without the &8sumption V(x;a) ~ 0 .

Appendix. On superposition operator in Sobolev spaces.

Let Oc ({ be a complex neighborhood of the real line and X: Oc x [O,~] ----i (p be a

Ck-function which is real for real arguments. Let Hk{O, Jj(p) (Hk{O, i1j[Rp)) be the usual

Sobolev space of (p(IRP)-valued functions on [O,J'"]; B
R

be a ball in Hk(O, JjIRP) of

radius R centered at zero and B~{o) be a 6-neighborhood of BR in Hk(O,r;(p). As

Hk{O, i1jIRP) ( C{O, r;IRP) for k ~ 1 then for such a k B~(6) ( C{O, i1jOc) if

o= oCR) « 1 . So the superposition operator

,p: B~(6) -----i C{O,1rj{p)J u{x) t----+ X{u{x),x)

is well-defined.

aS R c aS
-5 X{· ,x) E.A (0 ;() Vx E [O,~], 1-

8
x{u,x) I ~ K* V u E OC, x E [0,,,,] .

8x 8x

I ,p{u) I k p ~ C{R)K* Vu E B~(6)
H (0,i1j( )

(Al)

Proof. Hy taking a derivative of order t ~ k from the function X(u{x),x), u E H~( 6) ,

one gets the estimate (Al). H u E B~(o) and V,w E Hk{O,Jj(p) then the function
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ia complex-analytic in some neighborhood of the origin in (; 80 the map (1 is wea.kly

analytic on B~(6) .

As , is bounded and weakly analytic then it ia Frechet-analytic (see [PT], Appendix

A). •
Let the function X = x(u,x;a) depends on a parameter a E21 in a Lipschitzian way, i.e.

x( •, •;a) E C
k

(0 c x [0, r]) Va E 21 and

Then by applying Theorem Al to functions X(u(x),x,a) and X(u(x),x,a1) - X(u(x),x,~)

(a,al'~ E 21) we get

Corollary A2. H aBsumption (A2) holds for

; E ...4'~(B~(6); Hk(O,rj(p)). In particular, the function

belongs to A~(B~(o);{p) .

some kEIN, then

u(x) -----.. J9l(u)(x)dx
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Part 3.

Proof of the main theorem

We use the notations from Part 1,2 and some new ones. A list of them is given at the end

of the paper. Sometimes we refer the reader to the formulas from Part 2. We write (2.2.3)

for the formula (2.3) from Part 2 and so on. We use the abbreviations r.h.s. (l.h.s) for

"right-hand-side" ("left-hand-side") and write Co instead of c. By 11 Co < < 1"

("K >> 111
) we mean llpositive Co is small enough" (" K is large enough").

L Prelimiuary tra.nsformaüoDB.

In a symplectic Hilbert scale {Z,{Zsl s E R} , a(a) = < JZ(a) dz, dz > Z} (see Part 1)
we study a Hamiltonian equation with the hamiltonian

1 Z
ß(z;a,cO) = 2" < A (a) z,z > Z + Co H(z;a,cO) ;

i. e. the equation

(1.1)

Here a E 21 ce ~ is a n-dimensional parameter, Co E [0,1] is a small parameter, H is

an analytical function , JZ(a), AZ(a) are linear operators a~d for some Hilbert basis

{<t'j± I j ~ I} of the space Z the following relations take place:

Z ± A ±A (a) <po = ~ .(a) <po
J J J

Vj, Va,

Vj, Va.

(1.2)

(1.3)

For the exact assumptions on equation (1.1) see_ ~art 2.
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1.1. Change of the symplectic stmeture.

The numbers {J~ (a)} are nonzero Vj,a and are positive for all j large enough (see
J

(2.1.4), (2.1.18)). So after unessential exchange CPj± on V'jT for same finite number of

indexes j we may suppose that ~~ (a) > 0 Vj,a. Let UB cansider a linear operator L
J a

which maps <p.± into (J~(a))1/2<p.± , j = I, 2, .... By aBsumption (2.1.18) this opera-
J J 'J

tor defines an isomorphism of the scale {Zs} of order dJ /2, La : Zs ;;;-+ ZS-d
J

/2 Vs. It

is seUadjoint in Z with the domain of definition Zd
J
/2' By Corollary 2.3 !rom Part 1

the mapping L~1 transforms solutions of the Hamiltonian equation (1.1) in the symplectic

Bilbert scale {Z, {Zs} ,a(a)} into solutions of a Hamiltonian equation with the

1
hamiltonian eH1(z;a,cO) = 2' < Al (a) Z,z > Z + Co BI(z;a,cO) in a symplectic Hilbert

Ey the definition of the operator La and by (1.2) one has

Jt(a) <p.± = =f <p.T
J J

Vj, Va. (1.4)

So operator J1(a) does not depend on the parameter a, J1 = - (J1) -1 =J1 ' and a

Hamiltonian equation with the hamiltonian ~ has the form

(1.5)

and

(1.6)

Let us denote by .l'(Z; Z ) the space of linear continuous operators from Zs to Zs
s 81 1
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with the operator norm 11· 11
8

8 ,and by L: 21 --+ $(Zs; Zs-d /2) the mapping
, 1 J

Lemma 1.1. For every s

For every 8 and every a

11 La 11 8 8 - d /2 + 11 L~1 11 s s + d /2 ~ Cl .
'J 'J

Proof. An operator La - L is diagonal in the basis {<p.±} with eigenvalues
1 ~ J

~/.± = (~.J(al))I/2 - (,\.J(a-.))1/2 . By the assumptions (2.1.18), (2.2.19)
J J J -z

(1.7)

(1.8)

and inequality (1.7) results from (2.1.2). Inequaltiy (1.8) results from (2.'1.2) and

(2.1.18).•

'11
Let us denote d = d + 2 dJ and Ta(I) = L~ T(I), {= U{Ta(l) II E .7},

o 9 =L-1 0 d
c .Then

d a a,

u

1:
± ± +2 _2 a .

T (I) = { a. <p. Ia. + a· = 2 I. ,J = 1,... ,u},
a J J J J J

j=1

and by the assumption (2.1.13) and estimate (1.8)

Va E 21. (1.9)
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By the analyticity assumption (2.1.15), Lemma 1.1 and identity (1.6) one can see that the

mappings

H
1

: OC I x 2l )( [0,1] --+ er:
d ,a

(1.10)

are complex-analytical with respect to the first variable and Lipschitz with respect to the

second one unifomly with respect to Co E [0,1] .

The operator A1(a) is an isomorphism of the scale {Zs} of the order d1 = dA + dJ
and

± ±A1(a) <po = ~ .(a) <p.
J J J

Vj, Va. (1.11)

I I

Equation (1.5) satisfies conditions 2) of the theorem with dA = dA + dJ, dJ = 0,
I

dH = dH + dJ . So it is sufficient to prove the theorem in a case dJ = 0 .

1.2. A change of parameter.

The statements of the theorem are Iocal with respect to the parameter a. So one may

replace the set 2l of parameters a by arbitrary 6a-neighbourhood 2l (aO,6a) of the

point aO in 2l. If positive 6
a

is sufficiently small, then by the assumptions (2.1.7),

(2.1.8) the mapping

ia a C
1
-differomorphism on same neighbourhood 00 of the point Wo = wO(aO) and

L· L' -1 <K1Ip W + Ip W _ , (1.12)

(1.13)
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(1.14)

So Lipschitz dependence on the parameter a E 21 (aO,oa) is equivalent to Lipschitz depen­

dence on the parameter fI) E 00 .

1.3. A transition to angle variables

In what follows we use the notation O(Q,6,B) for the 6-neighbourhood of a subset Q of

a metnc space B; for a Banach space Z we wnte O(o,Z)- instead of O(O,o,Z) .

Let us set ZO (Z be equal to the 2n-dimensionallinear span of the vectors {CPj± Ij 5 n}

and Y
B

( Zs' B ER, be equal to the closure in Zs of the linear span of the vectors

{cpj±lj ~ n + 1} and Y = YO . For a vector from ZO let {Xj±11 ~ j ~ n} be its co­

efficients for the basis {cpj± Ij 5 n} . In some small enough neighbourhood of a torus

Ta(I) let ns change coordinates {Xj±} to (q,e), q E Tn
, eE O(300,ftl) (60 « 1) :

q. = Arg (X·- + iX'+)'
J J J

1[+2 _2
J

ae· = 7i' X· + X· - 1. .J ~ J J J
(1.15)

Let us consider toroidal spaces ~ = T n )( ~ )( Ys' B E R, with a natural metric dists and

tangent spaces TuJ's ~ Rn )( ftl x Ys = Es, u E ~ . Let J be a restrietion on Ys of the

operator J1, i.~. J CPj± = T cpjT Vj ~ n + 1 (see (l.4))j let

and

J JI= JT x JY : E = (an )( If) x Y ---+ E .s s s

Let us introduce in Ps' s ~ 0 , a symplectic structure with the help of the 2-form

Cl: p = < J Pd 1/, d 1/ > E . The tripIe {PO' {Ps}' a p} is a toroidal symplectic HilbeIt

scale. See Part 1, § 4, for details.
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For the fixed s E R, 1 E ./, w E 00 and °0 << 1 let us consider a map

n

L : T
n

)( 0(3°0, If) )( Ys --. Zs' (q,e,y) H I Xj±l{Jj± + Y

j=1

(see (1.15)). It defines a complex-analytical diffeomorphism of tbe domain

on a complex neighbourbood of Ta(l) in Zs' This diffeomorphism is Lipschitz in 1 and

in w (via the dependence a = a(w)) , Le.

for all s.

(1.17)

Tbe subspaces ZO C Z, Y C Z are skew-ortogonal with respect to the 2-form

01 = < J 1 dz, dz > Z . A restrietion of 01 on ZO is of the form dX- " dX+ and, so, it

is equal to d{" dq (see [A2]). A restrietion of the form (} JI on ZO is de Adq , too.

Rence

and the map L is ca.nonical. So the equation (1.1) in the coordinates

Hamiltonian with the hamiltonian

(see Part 1, Proposition 4.1). Here we use the identity

(q,e ,y) is

(1.18)
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n

V l ++ --0Zo = x· <po + x· <po E Z ,
J J J J

j=l

denote by A( w) a restrietion of the operator Al(w) on the space Y and denote by

< . , . > = < . , . >y the scalar product in Y induced from Z. The Hamiltonian

equations have the form

8 0
{ . = --€o "'"!C""" HJ uq.

J
(1.29)

Let us set 80 = nO x J. A Borel set J is the same as in (2.1.11), Le.

Vj = l, ... ,n} . (1.20)

It results from (1.9), (1.17) and from the analyticity of the mappings (1.10) that

VeOE [0,1]

if in (1.16) Co << 1 .

The operator A(w) has the double spectrum {.l.(w) Ij = n + 1,n + 2, ...} and the opera­
J

tor JA( w) has the spectrum {± i)'j( w) Ij ~ n + I} . Let us shift the numeration:

± ±
<Pj := <Pj+n'

and redenote
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Then by the condition (2.1.2) the set of vectors {cpt ~{--li) Ij ~ I} is a Hilbert basis of

Ysand for some new K

K-1J-s <~ .(s) <KJ-s ~.(-fi) = (~.(S))-1 VJ' >1 Vs E R
- J - , J J -,

By this condition the scale {Ys} ia interpolational. See below appendix A.

(1.21)

For the shifted sequence {~jO = ~ j(wO)} relation (2.1.16) takes place with the same d!,

1 r-l 1.> nsome new r, K 2 ,... ,K2 ' d1 !,... ,d1 r-l and same new K . For all J _ 1 , w E 0
, J

and

A( w) cp.± = ~.(w) cp.± , J cp~ = T 'P.T
J J J J J

(1.22)

(1.24)

Theorem 1.1 from Part 2 may be reformu1ated for equations (1.19). Here we formu1ate

some more general resu1t. Ta da it , we suppose that the operator A(w) depends on €O'

A = A(w,€O) ; so ~j = ~j(w,€O)' and ~jO = ~jO(€O) . We suppose that

the functions HO' H3 may be continued to complex-analytic functions on a domain

QC(d), d ~ ! d1 . It is supposed that V€O E [0,1]

QC(d),B
O

QC(d) ,8
0IHO( . i . i cO) I + 11 VyHO<- i . j cO) 11 d-d ~ K1 (1.24)

H
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(1.25)

(1.26)

(1.27)

Here

(1.28)

In the terms of the decomposition Co HO = Co HO + H3 the results may be formulated in

more exact way, important for same applications. Now the equations (1.19) take the form

(1.29)

Theorem 1.1. Let the conditions (1.20) - (1.25) hold together with

(1.30)

d1 > d1,l >... > dl,r-l > dl,r such thai
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moreover

(1.31)

Then there exist integers jl' MI such that if a condition

2) Js . Wo + 11~10 + 12~20 + ... + I. ~. 0 I ~ KS > 0
J1 Jl

(1.32)

is satisfied, then for sufficiently smaIl Co > ° there exist 0a > ° s:ufficiently small and

independent on cO (see (1.13), (1.14)), a Borel subset B
co

( 80 and analytic embeddings

,Co n
l :T -+ Pd' (w,I)E8

cO
' dc =d+d1 -dH -l,

(w,I) c

with the following properties:

uniformly with respect to I E ..7;

b) the mapping

(1.33)

(1.34)

is Lipschitz and is elose to the mapping

(q,w,I) H (q,O,O) E JId .
c
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That is

. [\ 0 \ Co ] 0distd L (q;w,I), L (qjw,l) ~ COcO
c

Vo < 1/3 ,

Vp< 1/3;

(1.35)

C

c) every torus l 0 (Tn) , (w,l) E 8 ,is invariant for the equations (1.29) and is
(w,l) Co

Co Co I

filled with weak in Pd solutions of the form z (t) = l (q + w t) , q E Tn
,

(w,l)
I I

w = W (w,l,cO) EIf and

Iw- WI I <C C 1/3 .
- 0 '

C

d) all Lyapunow exponents of the solutions z O(t) are equal to zero.

(1.36)

Statement 1.2. Under the assumptions of Theorem 1.1 a sharper form of estimates (1.31),

(1.32) i8 true:

. [0 CO]dis\ l (q;w,I)'l (q;w,I) ~ C f:O I

2. Proof of Theorem 1.1

(1.37)

(1.38)

We extend the sca.lar product <.,. > to abilinear over ce map yC)( yC --+ ce and

denote by ~(Y c. Y c) a subspace of operators L E .zt:rs ; Ys c) symmetric with
81 ' 82 1 2

respect to <.,. > ,Le. < Ly1' Y2 > = < Y1' LY2> Vy1' Y2 E y~ . We denote
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No = NU {o} . We shall use the following domains in a:n/ 2w- ll.n, Ps and PsC :

U(6) = {e E a:n/ 2r Zn I IIm eI < 6},

OC(eo,epe2; J'SC) = U({o) )( O(e l' a:n) )( O(e2' y sC) .

Let us fix some

7* E (0,1] ,

( -2 -2 )and set 70 =2 1 +2 + ... ,

1pE (0, 3) (2.1)

e - { 0, m = 0
m - (-2 -2) -1 >1 + ... + m 10 ' m _ 1 ,

(2.2)

C = C (l+e)m 6 = 6 (l-e(m»
m 0 ' m 0 '

o C= OC(o 2/3 C 1/3. 11C)
m ID'cm , m I trd '

(2.3)

We shall need some subdomains of Um and 0mC • For this end let U8 set

J:j ~J: iJ: <.<
tim = 6 tim + 6 tlm +l ' 0 _ J _ 5

015(so Dm = Dm > Dm > ... > Dm ) , and denote

° je = Oc( D j (2-jc )2/3 (2-jc )1/3. 71 C) U j = U( D j).
m m' m ' m I trd' m m

(2.4)

If cO« 1 then 2-jcm > cm+P j = 1 J ••• J 5, and so the domains 0mjc are neigh­

bourhoods of 0m~P DmC ) Dm lc ) ... J DmSc ) Dm~l .

We denote by C, Cl' C2' '" different positive constants independent of Co and m j by
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C
C(m), Cl(m),... different functions of m of the form C(m) = Clm 2; by Ce(m),

Cle(m), ... different functions of the form exp C(rn) . By C*, C*l' ... , C*(rn) ,

C*l(m),... we denote fixed constants and functions of the form C(m). Let us mention

that VC(m) , VCe(m) and Vu < 0

C(rn) ~ C:.. Vm, if cO « 1 .

Let m E NO and Sm be a Borelsubset of BO= 00 x J such that

Here K6 = mes 00 and 1* as in (2.1).

(2.5)

We shall denote a pair (""I) E Bm by 0 and shall omit dependence of functions and sets

on the parameter cO. All estimates will be uniform with respect to Co E [0,1] .

At domain Dmc let UB consider a hamiltonian depending on the parameter () E 8m ;

Here the function H3 is the same aB in (1.24) and

the operator Am(q;O) is equal to A(tJ) + A~(qjtJ) and

1 ± ±A (qjO) cp. = ß· (q;O) cp.
m J JlD J

Vj, (2.9)
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(2.10)

We suppose that Hm E A: (O~;ct) and
m

OC·s
IH I m' m <C ( ) = K m+1m _*m_ 7 ,

o ca
IIV H 11 m' m ~ C -1/3C*{m).

y m d d m- H

(2.11)

(2.12)

For m = ° the hamiltonian J{° in (1.18) has a form (2.6) with AO{",,1) ='" ,A~ =°
and the assumptions (2.11), (2.12) are fulfilled by the theorem's assumptions.

Hamiltonian equations with the hamiltonian rRm have the form

For m = °these equations coincide with the equations (1.19).

The theorem will be proved via KAM-procedure. For m = 0,1,2'00' we shall construct

ca.nonical transformation Sm: 0m+1 --+ 0m which is well-defined for BE 8m+ 1 and

transfoIms the equations (2.13) - (2.15) into Hamiltonian equations in 0m+1 with a

hamiltonian of form (2.6) with m:= m + 1 . For 8 E B = na the limit transfor-Co m

mation to:So 0 SI 0 .•. transforms equations (1.19) into an equation in a set

nOm = Tn )( {O} )( {O} . The last one has solutions (q + tA (8),0,0), A = lim A ,m m m

q E T
n

. So for BEBe equation (1.19) has desired quasiperiodic solutions of a form

°
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Let us extract from Hm a linear on e and quadratic on y part:

Hm(q,{,y;8) = hq(q;8) + { . h1{(q;8) + < y,hY(qj8) > +

+ < y,hYY(q;8)y > + H3m(q,{,y;8) , (2.16)

Here hq E ~, h1{ E (n, hY E yC and hYY ia an operator in the scale {Ys}' We may

vary Hm on a constant depending on {} and so may suppose that

Here and in what follows

JC(q) dqJ(2r)n = (2r)-n J C(q) dq

Tn

for an arbitrary vector-valued function integrable on Tn . Let us define a function

hOe(O) = Jh1e(qjO)dqJ(2r)n and set

(2.18)

A = A + E hoem+1 m m (2.19)

an.d rearrange the terms of Jrm in the following way:

Here

I 1
HOrn = e.Am+1({}) + 2" < Am(qjB)y,y > ,H3m = Hm - H2m,

(2.20)
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Lemma 2.1. H Co «1 then

a)

(2.22)

(2.21)

(2.23)

b)

(2.24)

c) if in (2.11) K7 » 1 then

(2.25)

d)

e) (2.26)

Proof.

a) The estimate (2.21) results from (2.11) because h~q;O} = Hm(q,O,O;(J) . To

estimate the mapping h1e let us define a function of an argument z E (, Iz I < crn2/3: .
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By (2.11) Hs module is no greater than C*(m) and by Cauchy estimate its derivative at

zero ia no grea.ter than cm2/3 C*(m) . So Ie.h1e(q;6) I ~ E:m2/3 C*(m) VI eI ~ 1 and

Ih1e I ~ cm2/3 C*(m) . By considering a function

z --+ Hm(q,ze,O;(J1) - Hm(q,ze,O;62) , one can get an analogous estimate tor the Lipschitz

1e Um,Bm -2/3 . .
constant on 0 . So Ih I ~ cm C*(m) . From this estlmates results (2.22).

The estimate (2.23) results from (2.12) with y = 0 .

b) Let us consider a map

{ IZ I < E: 1/3} ---+ Y c ,
m d-d

H

Z H VyHm(q,O,zYj(J) , (2.27)

(lIyl!d ~ 1) . rts derivative at zero ia equal to hYY(qj(J)y. So by (2.12) and Cauchy esti­

mate

The last estimate implies (2.24). The indusion hYY E f(Yd;Yd-d ) results from the
H

general fact that Hessian of a function ia a symmetrie linear operator.

e) Let ~ = (q,e,y) E0m~1 and v = f:m
P/ 3 . Then (q,(z/v)2e ,(z/v)y) E 0me for

z E CC, Iz I ~ 1 . Let us consider a funetion ~ --+ Hm(q,(z/v)2e, (z/v)y;O) and its Taylor

series at zero:



-56-

if K7 » 1 . In a similar way one can estimate a Lipschitz constant of H3m .

To estimate VyH3m let us consider a map

z 2 z I I C
Z --+ V H (q,(-) (, (-)y;O) = hO + h1 z + ... E Y

y m v v d-;i
H

A similar estimate is true for the Lipschitz constant, so (2.25) is proved.

d) The analyticity of the functions is evident. Their real-valuedness for real (q,{,y)

results from the real-valuedness of R m .

e) The estimate results from (2.8), (2.19), (2.22).

Let us consider an auxiliary hamiltonian cmF,

F = fl(q;lJ) + e.~(q;O) + < y, fY(q;B) > + < y, rYY(q;B)y > ,

and the corresponding Hamiltonian equations

•

y = c JV F.m y (2.28)
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A flow of these equations consists of canonica.l transformations {St} of the phase space

1(see Part 1, Theorem 2.4). Let us set Sm = S and denote (q,e,y) = f) . Then

Here {".} is a PoiS80n bracket; see Part 1, Proposition 4.3. So if f),Sm(f)) E Dm ' then

by (1.25), (2.20) and (2.25)

(we omit the parmeter 8) . As

then we may denote

(2.29)

and rewrite H 0 S as folIows:m m

,.~ I I I- e. ör' / 8w - < Y, 8f!/ 8w > - < yJ( lJf!Y/ 8w )y > +

+ < A yJJfY > + 2 < A y,JfYYy> + h
q +e.he + < y,hY > +m m

(2.30)
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We try to find a transformation S such that the contents of the square brackets ism

O(c p) . For this end we have to find {q, {e, {Y, f YY 80lving homological equations:
m

(2.31)

I

8fYY/ lJw + fYYJ Am - AmJ {YY = hYY(q;8) -

- AhYY(q;8) +! ~ .VqAm(q;8) .

• Here AhYY is an admissible disparity.

Lemma 2.2. If Co « 1 then there exists a Borel subset 8m+1 (8m such that

and for all 8 E 8m+1

(2.32)

(2.33)

(2.34)

a)

b)

equations (2.31) have solutions f'I E A~ (U l;CV), ~ E A~ (U l;CVn) and
m+l m m+l m

U 1 8 U 1 8
IßI m' m+1 5C(m)J I~ Im' m+1 5c

m
2/ 3 C(m); (2.35)

equation (2.32) has an analytical solution {y E vi: (U 2; Y~--d + d ) and
. m+1 m H 1

(2.36)

c) there exist AhYY E vi: (U 2; .zB(Yd' Y )) such that
m+1 m d-d

H
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~hYY<p.± = b.(q;O)<p.± Vj , Vq ,
J J J

equation (2.33) has a solution f!Y belonging to the same dass as L1hYY ,

(2.37)

(2.38)

U 2 8
11 f!Y11 m' m+l <Ce(m) -2/3

a , a + äd - cm Va E [- d - äd,d] , (2.39)

U 2 8
IIA JfYY - fYYJ A 11 m I m+l 5 Ce(m) c-2/ 3 . (2.40)

m m d d-d m, H

A proof of the lemma is given below in § 3.

Let us denote

C C
II JI : JI x 80~ JI , (f),O) Hf),

(f),O) HO,

(2.41)

(2.42)

let ßq, ße,ß
y

be projectors of pC = (cr;n/ 2r lln) x cr;n x yC on the first, second and

third term respectively and let S be a time one shift along the trajectories of the systemm
(2.28).

Let dc = d + d1 - dH -1 and Om~dc = Omen JI~c with the norm dist dc . The set

Oe d is dense in 0 C and ia unbounded in PdC •
mJ C m C

We may identify the torus T n with a measurable subset T(n) ( ~,
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(the map Tn
---+ T(n) is one-to-one, measurable and diseontinuous), and may identify

JI with a subset T(n) )( If x Y of E = R2n x Y . The identifications depend on a ehoice

of T(n) , but if dist p(~1'~2) <:l'" then the point in E corresponding to ~l - ~2 does

not depend on T(n). We shall use these identifieations and treat a differenee of two dose

J1-valued (ar '['n_valued) maps as a E-valued ( ~-valued) map.

Lemma 2.3. If €O « 1 then

a) (2.43)

and

05e x 8 Lip

1
8 -11 I m m+1' <€p.
m p Ed - m

e

More precisely,

(2.44)

°5c x 8 ,Lip /
IIIq 0 (Sm - II p) I m m+l ~ C(m) c~ 3 , (2.45)

b) A restriction of Sm on 0m+1 is a eanonical transformation whieh transforms

equations (2.13) - (2.15) on the domain 0m into Hamiltonian equations with a

hamiltonian tNm+1 ofthe form (2.6) with m:= m +1 on the domain 0m+l'
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The lemma is proved in § 5.

Let UB set B = n8 . Then B~ is a Borel set. Für the definition of ""0 and em (see
EO m c;.0

(2.2)) and for (2.5)

1
mes BE [I] ~ (1- 2" 7*) mes 00

o

For 8 E 8 and r, N E No let us set
EO

VI E J. (2.48)

\ r C C
L. r+N+l(. j 0) = Sr(' ; 8) 0 ••• 0 Sr+N(' ; 8) : 0r+N+l --+ 0r

(2.49)

r
and let UB set I: be equal to the identical map of 0rC •

r

Lemma 2.4. For all r, m ~ 0

r OC)( 8 ,Lip
11: -TI 1 r+m,dc m+l <3E!

r+m JI Ed - r '
c

(2.50)

Proof. Let UB denote the l.h.s. in (2.50) by Dr~m' One may rewrite the identity

r r+ 11: (f);8) = Sr( 1: (f)j8)jO) in the form
r+m r+m

r r+ 1 r+ 1I: - TI 7L = (8 - TI 71) 0 ( 1: x IIa) + 1: - TI 7L .
r+m , r T r+m r+m T

So by (2.44) we get the estimate

D r <d! (Dr+ 1 + 2) + Dr+ 1 .
r+m - r r+m r+m (2.51)
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As nr++m = 0 , then the lemma's assertion results by the induction. _r m

Let us denote TOn = T
n

)( {O} )( {O} and O~ = U(°0/2) )( {O} )( {O} ( p~ . Then

TOn (O~ and O~ lies in O~ for every m ~ 1 as 0m>! °0 Vm.

\ m c c
Lemma 2.5. H EO« 1 then Vm E Na the maps l : 0 )( BE ---+ Pd

m+N Q) 0 c

(N --+ m) converge to a map Im: 0 C x B~ --+ Jldc such that
m m ~o c

a)
m

for every B the map l (.; B) : 0 C ---+ Pd is complex-analyticalj
m Q) c

b)

m p ml (.; B) 0 l (. j B) = l (. j B); Va ~ m ~ p, VB E 8
Ep m m 0

(2.52)

m OC )( 8 ,Lip
c) I l - TI pi Em EO ~ 3 E!:t j (2.53)

m dc

d) IIITy 0 I m(~;O)lId ~ em1/3+p V(~,B) E~ )( BE ' (2.54)
Q) c 0

lITt I m(~;O) I ~! em2/3 V(~)8) E Tg )( 8 . (2.55)
m EO

m
Proof. Let ~O E 0 ~ and for j ~ 1 let ~. = l .(~O;O) . Then by (2.44), (2.50)

J m+J
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So the gequence {fJ-} is fundamental and converges to a point fJ E JldC • The r.h.s. of
J m C

m
the last estimate does not depend on fJO . So the seqnenee {1: (. ;fJ)} converges

m+N
m m

uniformly in 0 ~ to an analytical map l (. j (J) : 0 ~ --+ Jld
e
' l (f)O;(J) = f)(J) . The re-

m m
lations (2.52) take place and the iteros a), b) are proved.

The estimate (2.53) resultB from (2.50) by going to a limit.

To prove (2.54), (2.55) let UB take f) E Oe and set Qm+N+1 = Q,
m

t.-i \ j (m+N+1) e V· [ ] nIr = l f) jB E O. J E m, m + N IHO.
m+N+1 J

. . 1
Then r,J = Sj(qJ+ j8} and by (2.47)

As ny~m+N+l = 0 ,then IIny~mlld 5 e~+l/3 . So
e

IIn 0 Lm (~;(J)lId 5 e p+l/3 and by going to the limit when m -+ m one gets
y m+N+1 e m

(2.54).

Estimate (2.55) results from (2.46) because for the last
. ·+1

Ißetr I ~ Ißetrl I + Ce(j) Cj .•

As AO(w,I} == w then by (2.19) with m = 0 , 1, ... , r-1

Here the vector-function h~e corresponds to the hamiltonian eN with m = j . So
J m
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the maps A : B --+ ~ (r --+ 00) converge to a Lipschitz one
r GO

and by (2.57)

Let us fix 60 E Be and denote "'m = Am(OO)J m ~ 00 • Then by (2.56), (2.57)
o

I"'rn - "'rn+p I ~ C(rn) crn1/3 Vrn, Vp ~ 1 .

I

Let us consider a curve t H ~m(t) = (Clo + twoo'O,O) , 0 ~ t 5 1 , on the torus

m
TOn = Tn

)( {O} )( {O} . The map l (.; °0), m ~ 0 ,transforms it into a curve
(IJ

~m(t) = (qm(t),em(t)'Ym(t)) E0m . Hy the estimates (2.53) - (2.55)

I

dist (q (t), q (0) + tw ) <C eP ,m m CD- m

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

Let ~(t) be same strong solution of the system with hamiltonian eNm ' staying inside

Dm n0m1c for 0 ~ t 5T . Taking the inner product in Yd of equation (2.15) by y(t)

we obtain
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~~ lIy(t)lI~ = Cm < J VyHm, y > d + < J VyH
3
, Y > d ~

~ cllYlldllvyHmll d + IIYlld K1 (lIyll~+ I{I) ,

and

By equationa (2.13), (2.14) we have

I{(tl I ~ I{(O) I +1t Cm2/3 , diat (q(t), q(O) + twm) ~ Ct c~ (0 ~ t ~ T). (2.65)

Saif

then the solution f)(t) stays inside 0 m n0 m 1c for 0 ~ t ~ 1 . If f)m( t) is a weak

solution of the equations with hamiltonian JIm and f)ID(O) = f)m(O) , then (2.66) ia true

by (2.61) - (2.63) with t = 0 . So by Theorem 3.1 !rom Part 1 solution f)m(t) exista for

o~ t ~ 1 and for tbis solution estimates (2.64), (2.65) take place. By the inequalities

(2.61)-{2.63), (2.64), (2.65) and (2.60), distd(fm(t), fm(t)) ~ C f~ V 0 ~ t ~ 1 . The

o
mapping 1: (·;0 : JId --+ JId is Lipschitz by Lemma 2.4. So distd(f(t),

m
o

fO(t)) ~ C I f~ V 0 ~ t ~ 1 for arbitrary m . Rence fJ = fO and 1: (fm(z)j 8) is a
Q)

weak in JId solution of the initial Hamiltonian system.

Now the assertions b) - c) of the theorem are proved by setting

c 01: 0 (q;B) = 1: (q,O,O;B), because estimate (1.31) results from (2.53) and (1.32) results
Q)

from (2.59).
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In order to prove the assertion a), we set in (2.1) 7* = 7*(M) "0 ,where M is a

natural parameter tending to infinity. Assertions b) - c) are valid for Co = cO(M) > 0 ,

and we mayassume that cO(M) "- 0 . Then by (2.48) for cO E (co(M + 1), cO(M)]

mes 00 - mes BE [I] ~ 7*(M) '" 0 and the assertion is proved.
o

Ta prove assertion d) let U8 meniion thai Liapunov exponents are stahle under a change of

phase variable. So the exponents of a solution fJO(t) of equations (2.13) - (2.15) With

o -1
m = 0 are equal to ones of the solution fJm(t) = ( 1: ) fJO(t) of the equations with

m
m = m . Let 6f) = (6q, 6e, 6y)(t) be a strong solution of the variational equations for

(2.13) - (2.15) along fJm(t) :

6y = J [Am(qm(t))6y + (öq . Vq Am(qm(t)))y +

+ Vy(cmHm + H
3

)(Qm(t))*(6f))] .

Taking the inner product in Ed of these equations with 6I)(t) we get an inequality:

The same ia true after the change t --+ - t . So modules of the exponents of the

variational equations do not exceed c p. As m is arbitrary, they are equal to zero.m .

3. Proof of Lemma 2.2 (solving of homological equations)

In § 3 - 5 we write E,O instead of cm' 6m and sometimes we omit the argument () for

functions and maps. In the deduciions of estimates, we use systematically the conditions

cO « 1 , Da « 1. We denote 11~ = 1f \ {O} , 11.0 = 11 \ {O} .
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The assertioDB of the lemma will be proved for Bm+1 = Bm \ (81 U 82 U 83) ,where BP

are Borel sets, and for p =1, 2, 3

Hy (2.8) the map

,
Bm[I] 3 wH W = Am+1(w,l)

VI . (3.1)

(3.2)

for all 1 ia a Lipschitz homeomorphisID , changing the Lebesgue measure by a factor no

greater than two. Le. for every Borel subset n (8 [I]m

1
~ mes n5 mes Am+1(0,1) 5 2 mes n

(see Appendix CJ Treorem Cl). Besides,

Therefore, if

8
1 = U {Bs1ls E 110n} , B~ = {8 E 8m I I~/ (8) . si 5

~ [(m+1)2 Isl n C]-1},

then

mes 8
1

[I] ~ 1: mes 8~ [I] 5
sElIg

(3.3' )

(3.4)
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~ 2 l mes {w I IwI . si ~ (m + 1)-2 Isl -n C-1} ~

sEllg

and eondition (3.1) is satisfied if C >> 1 . For BE 8m \ 81 , q E Um
1

, the solutions of

equations (2.31) are given by convergent trigonometrie series and satisfy the estimates

(2.35) (see [A, Sec. 4.2] and Lemmas BI, B2 in Appendix B below).

We turn to the equation (2.33) (a proof of the assertion b) on the equation (2.32) is mueh

simpler, a sketch of it is given at the end of the section). For j E llO we set

Then { Wj A~ jj) I j E 7l0} is a Hilbert basis of aspace Yse. s E IR . For complex

numbers X,, j E llO ' we denote by diag (X·) an operator in yC whieh maps w· to
J J J

x·w. Vj E llO . In panicular by (2.9)
J J

(3.5)

with ~~(qjB) = ~iw) + ßjm.(q;B) Vj E llO . Here for j E IN ~_j(w) = - J.j(w) ,
ß_jm(qjB) = - ßjm(q;B) . By (2.10) and (1.27) Vj E llO

(3.6)

Vq,B

(here ;tjO = J.j(wO) ) . Let U8 ehoose functions bj(q;B), j E lN (see (2.37), (2.38)), as
follows:
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biqj!1) =! l < (!~ .Vq Am+! + hYY) CPj ,CPj >
lT=±

and define the operator ~hYY, 4hYY cp.± = b.(q) cp.± Vj EIN. Hy (2.24) and (2.10),
J J J

(2.35)

So operator ~hYY satisfies (2.37), (2.38).

Vj EIN. (3.7)

Let us denote h lyy(qjB) = hYY + ~ ~ . Vq Am - ~hYY . Then by (2.24), (2.35) and (3.7)

U 1 8IIh1YYII m' m+l ~ C(m) c
m

-2/3 (3.8)
d , d-d H

AB the operators J and Am commute we may write equation (2.33) as follows:

(3.9)

Let us fix for a moment some functions W.(qjB) , j E lZO ' such that W. =- W " and
J J ~

U 1 8
W.E v4'~ (U

m
1 j(),IW

J
.1 m' m+1~C(m)

J m+l
Vj (3.10)

(they will be chosen later) and denote W(qj8) = diag(exp i Wj(q;O)) . Then

-L- W±1(q;O) =± diag (i -L- w.(q,O)) W±I(qj8) .
8w 8w J

So if we substitute into (3.9)

py = WFYY W-1 , h1yy = WHYY W-1 , (3.11)
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then by (3.5) we get for FYY an equation

J, FYY + [F1Y , diag (i (~J~ - J, W
J
.»] = HYY . (3.12)

8w 8w

Let UB take functions Wk be solutions of equations

8 1 I I Jl n---, Wk(q;8) = ~k(qj8) - ~k(8) , ~k = ~k(q;8) dqf(2r) .
8w

(3.13)

U 8 E 8m \ 81 then the equations (3.13) may be solved just as equations (2.31) and by

(3.6) estimates (3.10) take pIace for the solutions Wj , j E 710 , By (3.10),

1

(3.11) 11 ·IIUmb'Sm+1_norms of operators h1yy and HYY, fYY and FYY differ by a
&,

factor no greater than Ce(m). Thus to get estimate (2.39) for a solution of (2.33) is

equivalent to get it for one of (3.12).

Let us mention that elements of the matrix {Fjk} of the operator FYY in the basis

{Wj Ij E 710l are given by the formula F jk = < FYY W k ' W_j > and the same is true

for a matrix {Hjkl of the operator HYY. So we may apply quadratic forms

corresponding to the operators in l.h.s. and r.h.s. of (3.12) to vectors Wk J W_j and get

equations on the matrix elements Fjk(q;8) :

(3.14)

/'....

For a vector-function f(q), q E Tn , we denote by f (s) , 8 E 71n , its Fourier coefficients:
""",......., .

f(q) = l f (8) e1q . s . By (3.8) and Lemma BI

For the diagonal elements {h~j} of the matrix of operator h1yy we have:
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So by the definitions 01 the functions b. and operator h
1yy

, h~ .(q) =0 Vj and the same
J JJ

is true for the operator HYY :

H..(q;O) :: 0
JJ

Vj (3.17)

By (3.17) equations (3.14) are equivalent to the following relations on Fourier coefficients:

if k=j,
if kfj .

...............

Let us choose F kk(s) =0 Vk E 1/.0 and denote

, I I

. { i( cu • S - Aj + Ak) , j t k ,
D(k,J,s;O) = i, j = k .

Then

............... ............... -1.
F kj(S) = H kj(SjO) D (k,J,sjO). (3.18)

Lemma 3.1. There exists a Borel subset 82 (Sm with the property (3.1) and a constant

c > 0 such that if EO«1 and 0a« 1 then for all

oE Sm \ (SI U S2) and for all j,k E 110 ' j t k , s E 1/.n the following estimate takes

place:

-1. Sm \ a2
,Lip

ID (k,J,s;·) I ~

~ C(m)(1 + IB1)2C+l(1 + I'\0 - ~ jO 1)-1 . (3.19)

The proof ia given in § 4 below.
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For a map g(k,p) , g : 110 )( P --+ ( ,where P is an abstract set, we denote

Ig(k,p) I /r(k) = (1: Ig(k,p) Ir)l/r

kEllO

and treat g aB a map from P to /r(llo)'

We have to estimate the norm of the operator FYY(q;B). By Lemmas B 1, B 2 this is

equivalent to estimate the operator norms of Fourier coefficients FIT(s) . For this end

we:

(1) estimate matrix coefficients Hk.(s) of operator üYY(s) ,
/'... J

(2) estimate coefficient8 F k .(8) via the relation (3.18);
J ~ /'...

(3) estimate the norm of a matrix F (5) via coefficients F kj(S) .

Step (1) is rather simple. Indeed, the matrix of the operator üYY(s): y~ --+ Y~-d
H

with respect to the basises {,\k(-d)wk Ik E HO} Cy~ and

(-d+dH) c (-d+dH) /'... (-d)
{,\k wk Ik E HO} ( Yd-d

H
ia equal to {,\k H kj(S) ,\j }. So by

Lemma BI Vj E 110

d-d B ,Lip Bm,Lip

I Ikl H Hk·(S) IW~ I ~ 5 c lIüYY(s)1I <
J / (k) d ,d-d

H
-

5. C(m) c;-2/3 e-5/6 0 15 I .

Step (2) results from (3.18) and Lemma 3.1:

/'... 8 ,Lip
/'-. Sm\ (SI Us2),Lip I H k j (s ) I m T 1

I F kis) I 5 1 + . - ;\ j 0 r'

(3.20)
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(3.21)

For Step (3) we have to glue the estimates (3.20), (3.21) in order to obtain estimates on

Fn'(s) and FYY(q). The operator Fn'(s) from the space Yd with the basis

(--d )
{~.(--d)w.} into the space Y

d
C

t d = d - d
H

+ d
1
-1 , with the basis {~. C w.} has

J J C C J J
the matrix

(3.22)

Let us denote by ~k' (j,k E 110) the function ""k' = 1 - 0k .. Then by (3.21) we have a
,J ,J ,J

trivial estimate for / I-norm of the column number j and its Lipschitz coefficient:

(3.23)

To estimate the r.h.s. we need the following statement:

Lemma 3.2. If jl in (1.28) is large enough then Vj, kEIN

H j > k > 0 then

(3.25)

Proof. For j = k the inequalities (3.24) are evident. So we may suppose that j > k .

Then by the assumption (1.26)
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r-I d d d d

1
A(· k) I < C \ (. 1,1_ k 1,1) + K . I,r + K k I,r<J, - l J IJ 1 -

1=1

d d d d d d
~ Cl(j)(j 1 - k 1) + K

I
j I,r + K

I
k l,r ~ C

2
(j)(j 1 _ k 1)

and Cl(j) , C2(j) ---t 0 as j ---+ CD (one has to mention that

d l d} d1 d1 dI-l dl d l -<11 r
j - k ~ j - (j - I) ~ C j and so (j - k ) j , ---t m (j ---t m) because

dl,r < dl -1) . Now the estimate (3.24) is proved for j greater than some C*. For

j , k ~ C* it is true with same Cl» 1 because

in! { I ~jO - ~kO 1 11 ~ k < j ~ C*} > 0 the assumption (1.28) with s = 0 and

- 'k = ~ = 1 (one has to take jl ~ C* ).

Inequality (3.25) results from (3.24) .

Hy this lemma

•

d -1 1 I 2(d1-l)
J'"k . 1k I 1 2 [ j -1 m ] 1k 1

1~12 ~C L + L 1 a ap·
k0 jO I (k) k=-m k= I j 1+1 I k 1 1 _ I j 1 1

Mter a substitution k = I j 1y one can estimate the sums in the r.h.s. via integrals. So

d -1 . -1 2(d -1)
i1"k . I k 1 1 2 Cl [ 1-1 J 1 m ] I YI 1 dy

I~1/2(k)~-IJ·1 f + f. -1 T<Il12~C2'
J -m 1+IJI Llyl J.-IJ

Hy (3.20), (3.23) and by the last estimate , ,I-norm of the column number j of the

matrix (3.22) and its Lipschitz constant are no greater than
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For ,l-norm of the rew number k ef the matrix (3.22) and Hs Lipschitz constant we

have the estimate:

(d ) '" (-d) 8 l,LipI ~ C F .(8) ~. I m+ <
k kJ J , 1 (j) -

d-dH-l,.-....... l-d 8 ,Lip
~ C Tl I Ik I H .(8) Ij I I m

kJ , 2(j)

c
As HYY(q) E f(Yd;Y ) then by the interpolation theorem (Corollary A2)

d-dH

and for the conjugate operator (HYY)* one has the estimate

Thus Vs,k

and the first factor in the r.h.s. in (3.26) is estimated. For the second one the following

estimate is true:
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<~
- Ik I

1-1 k 1-1

f
Ikl-1

Thus by (3.26), (3.27) ,1-norm of the row number k is bounded above by the constant

L2 = C2(m) Tl c-2
/
3
exp -ä 61 si·

So the matrix (3.22) of the operator FIT(s) : Y~ --+ Y~ has columns and rows bounded
c

in ,I-norm together with their Lipschitz constants by IDax(L1,L2). Hence the norm of

the operator is bounded by the same constantj for this classical result see [RLP, Chap. 8]

or [HS]. We have got the estimate

By it and Lemma B2

because the norm of fYY is equivalent to the norm of FYY up to a factor Ce(m). So

(2.39) is proved for a = d . The estimate (2.40) results from the equality (2.33) and from

estimate (3.28).

The symmetry of the operators FYY and fYY results from the one of the Fourier

coefficients F'YY(s) (formula (3.18)). For q E Tn the operator fYY(q) is real, Le. it

maps Yd into Yd-d because the operators hYY(q), q ETU, are real. So
H
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fYY(q) E .z8(Y~ ; Y~ ) . Now the validity of the estimate (2.39) Va E [- dc,d] results
c

from the estimate for a = d , from the symmetry of operator f!Y and interpolation

theorem (Corollary A2) . The assertion c) ia proved.

We give now a sketch of a proof of the assertion b). Let us substitute into (2.32)

fY = W FY , hY= WHY . Then

or

(i"'" s) FY - diag(i ~ ~ (0)) FY = HY .
J

Let

Then by (3.29)

/'.... -1. /'.... . ."
F j(s) = D1 (J,SjO) H /s), D1(J,s;0) =1(8'''' - ~ j)

Hy (2.30), (3.10) and Lemma BI

(3.30)

(3.29)

~ B ,Lip / /
11 H J(s)1I m+ 1 ~ Ce(m) e-1 3e-5 6 81 si. (3.31)

d-dH

To estimate Di1 we use an analog of Lemma 3.1 (it will be proved in § 4):

Lemma 3.3. There exists a Borel 8ubset 83 (8m with the property (3.1) and such that
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Byequality (3.30) and estima.tes (3.31), (3.32)

So by Lemma B2

and the estimate (2.37) results from the equality (2.32).

4. Proof of Lemmas 3.1, 3.3 (estimation of sma1l divisors)

The estimate (3.19) results easily from the following one:

(4.1)

(3.32)

•

Indeed, Lip D-1 5 (Lip D)(infl D 1)-2 and by the estimates (3.6), (1.27)

d -1
Lip D(k,j,s;·) 5 C( Isl + 1 + max{ Ij I , Ik I} 1 ). So (4.1) and (3.25) imply (3.19) .

We may suppose that Ij I ~ Ik I and j > 0 because

ID(k,j,s) I = ID(j,k,s) I = ID(-k,-j,-s) I .So in what follows

j>0,l k I5j,k#j. (4.2)
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By estimates (3.6)

Vj , VfJ (4.3)

By this estimate and (4.2), (3.25) we have for Da' Co « 1 inequalities

(4.4)

I I I 1 I I 1
If 21 €V • si ~ I ~ k - ~ j I then by (4.4) I D I .~ 21~ k - ~ j I ~ 41~kO - ~ jO I and the
estimate (4.1) is obtained. So we may suppose below that

I I I

21 €V • s I ~ 1~k - ~ j 1

In particular, s f 0 . By (4.4), (4.5) and (3.24), (3.25)

(4.5)

(4.6)

(4.7)

(4.8)

Situations d1 = 1 and d1 > 1 have to be considered separately. We start with the more

difficult one.

A) d1 = 1. Then in (1.25) da < - X and in (1.26) d1 r ~ - X and

d1,j ~ 1 - X Vj for some 0 < X < 1 . Depending on the 'relation between k and s , we

consider three cases.
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because Isl ~ 1 , Ik I ~ 1 . By (4.8)

(4.9)

Let us take in the assumption 3) of the theorem j1 ~ C1* and M1 ~ 9 K1 +! .Then by

(3.3), (4.3) and (1.28) with ~ = 1 , .(1 k I = - sgn k (or 'j = 2 if k = - j ) we have

1 I

ID I ~ I"'0 . s + ~kO - ;\ jO I - (9 K1 +~) I'" - "'0 I -
I I

- I~k - ~kO I - I~ j - ~jO I ~ KS - C leg + 0al .

'Now the estimate (4.1) result8 from the last one because 0 ~ j ~ Cl* '
Ik I ~ (18 K1)1/X .

1 ~ 1
A2) Isl > 9 K1k-X + 2 t Ik I ~ c*3(m) I5 I . Here mo ~ X- (n + 3) and a

I I

function C*3(m) will be chosen later. By (3.6) and (1.27) Lip (~k - ~ j) 5 3 K11 k I-X
if Co « 1 . So

Let

(4.10)

. -1 -In1
T = T(k,J,s) = C*4(m) Isl I~jO - ~kO I,

and

I

B (k,j,s) = {8 E Bm I ID(k,j,sj8) I 5T} ,
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We shall construct a set 8 2 as 82 = 82,1 U82,2 (the set 82,2 will be defined later).

Therefore, if () ~ 82 then () t e2,1 and ID I ~ T . So (4.1) is true.

We have to estimate mes a2,1 [I] . For this end we estimate mes 8 ' (k,j,s) [I] . By the
I I I

estimate (3.3 ) mes B (k,j,s) [I] 5 2 mes n (k,j,s) [I] . Here
I I

n (k,j,s) [I] is the image of the set 8 (k,j,s) [I] under the'map (3.2). To estimate mes
I

n [I] it is enough to estimate one-dimensional Lebesque measure of the intersection of
I I I

n [I] with an arbitrary line of a form {w = w (t) =

1J + t s Isl-11 t EIR} , fJ E (Rn • The set of "t" corresponding to tbis intersection is

contained in the set

I I I

{tl-T~r(t)~T}, r(t)=fJ·s+tlsl+(~k-~j)(w (t)) (4.11)

By(3.3) Lip(w:w' HW)~~ if cO«! VIE J.Soby(4.10)
I I I 1 1

LiP (t H (~k - ~ j )(w (t )) ~ 2 1s1 -:{. Hence for t1 > t2

I I I

r(t1) - r(t2) ~ Isl (i 1 - t 2) - I(~k - Aj)(w (t1))-

I I I 1 1
-(Ak-Aj)(W (i2)) I ~ It1 - t2 1 (2181 +:{)

-1 I

and the measure of the set (4.11) is no greater than 2T(! Is I + 1) .Since the set n [I]
is bounded and the vector 1] may be chosen orbitrarlly, we have by Fatou lemma:

mes n' (k,j,s) [I] ~ CT( Isl + 1)-1 . So

2 1 I I
mes 8 ' [I] ~ l mes B (k,j,s) [I] ~ 2l l mes n (k,j,s) [I] .

k, j ,8 SfO j ,k
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m
As Ik I ~ C*3(m) Is I 0 and Ij - k I 5C11 si, ihen we have no more ihan

m +1
C C*3(m) Is I 0 a.dmissible pairs (j,k). As I~kO - ~ jO I ~ Cis I ihen

I-m1 1
T 5Cisl C;4(m) and

Therefore, under a suitable choice of ihe function C*4(ro), depending on the choice of

C*3(ro) , roes 8 2,1 [I] is no greater ihan one-half of the r.h.s. of (3.1) .

roo
A3) Ikl ~C*3(ro) Isl , s=/=O. Then by (4.2) and (4.7) j> k> O. By (1.26) (with

dl = 1 , d1,r ~ - X, d1,) ~ 1 - X Vj = 1 , ... , r -1 ) (4.3) (with

d1 r < - X , dH < - X) and (4.7) we have,

(4.12)

I-vrn
< -x() ;\,. .........0
_ C C*3 m Is I .

Let U8 set

I I {, I I I I~ ·0 - ~kO I }n (s,N) = W IW - Wo I ~ 1 , Iw . s - NK21 ~ J n+2
C*2(ro) Is I

(a function C*2(ro) will be chosen later) and

2 2 I I I

8' = U {O E Sm Iw (0) E n (s,N)}.

I I

Here we take ihe union over all s E Hg and N E 7I. • The set n (s,N) is empty if



-83-

1 " n+2 1 'IN I ~ c Isl K; ;by (4.7) mes n (s,N) ~ C(C*2(m) 181 )-. So by (3.3 )

and mes 82,1 [I] is no greater than one-half of r.h.s. of (3.1) if the function C*2(m) is

large enough.

H 8 ~ 82,2 then by (3.25) and (4.12), by the definition of {l" (s,N) and by the

inequality mO~ (n +3)/X

if C*3(m) is large enough. The inequality (4.1) for 8 E 8"m\ 82,2 results from the last

one.

Now the lemma is proved for d = 1 with 82 = 82,1 U82,2 .

B) d1 > 1. Let us find X E (0,1) such that d1 - 1 > X and d1 r ~ d1 - 1 - X .,

By the inequality (4.6)

(4.13)

/ d -1 -X
Let us denote j* = (12 K1 C;1)1 X , j** = 3 j*1 (K1 j* + 1) + 1 and consider two
cases.
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BI) j ~ j* ' Is I ~ j** . In this case the estimate (4.1) results from (4.3) and assumption

3) of the theorem if jl ~ j* ' MI ~ j** and €O« 1 , 6a « 1 .

,
B2) j > j* or Isl > j**. Let the sets B (k,j,s) and 0' (k,j,s) [I] be the same as in

the item A2) and

Then for 8 E Bm\82 the estimate (4.1) is true. So we have to estimate mes 82 [I] .

By (1.27) and (3.6)

By tbis estimate and (3.3) we have for the function r(t) (see (4.11)):

If j > j* then by (4.13) for t 1 > t2

if j ~ j* then Isi> j** and

So mes 0' (k,j,s) [I] ~ ClT and mes a2 [I] ~ C 1: 1: T{k,j,s) .

sfO k ,j

By (4.13) there are no more than Cis ,2X admissible pairs (j,k) j by (4.7)

l"'kO - ~ jO I ~ Cis I .So
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if m1 ~ n + 2 + 2X , and the estimate (3.1) is fulfiIled if C*4(m) islarge enough.

The lemma is proved.

Proof of the Lemma 3.3. Let us define the set 83 as {oIlows:

83 = U{S' (j,s) Is E 7ln , j E 1l0} ,

•

, "-1 -n-1
8 (j,8) = {8 E 8m I Is . w (6) - ~ j (8) I ~ C**(m)(1 + Isi) } .

, 11d1By the assumption (1.26) the set 8 is empty if Ij I ~ Cis I . By (1.26) and (1.28)

with s = 0 , I 'li + ... + I~I I = 1 and MI large enough • I}p> I ~ C-
I Vj. () . So

by (4.3) this set ia empty if s = 0 provided that Co << 1 , 0a << 1 and C*(m) >> 1 .

Thus we may suppose that

(4.14)

As in the proo{ of Lemma 3.1 we get that mes 8' (j,s) [I] ~ C C;;(m) !sl-n-2 . So by

(4.14)

and (3.1) is true if C**(m) is luge enough. If 6 t 83 then

ID I ~ C**(m)-1(1 + Isl )-n-1 and (3.32) ia proved.
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5. Proof of Lemma 2.3 (esümation oe the change of variables)

Let us denote by E~ ~ , s E IR , (J' = ± , the space E~ = (2n )( ~ endowed with the norm

1I·1I«(1,S,€) , ,

The following assertion results from the definition.

Lemma 5.1. For an s E IR the spaces E~,=; are dual with respect to the bilinear pairing

Ec EC (< . , . >E : )( --+ ,

We denote by dist(s,€) the metric in JI~ induced by 1I·1I(_,s,€)'

Let us write down the system (2.28) in the form:

f) = € 3'(f) , f) = f)(t) = (q(t), {(tl, y(t)) ,

(5.1)

~ = (,rI, ~, ~Y)J ,rI = VeF, .r. = - Vl' ~Y = JVl'

If €o « 1 , then for j = 1 , ... , 5

Hy Lemma 2.2 and Cauchy estimate

(5.2)
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(5.3)

Hy (5.2) and (5.3) for 0 ~ t ~ 1 and cO« 1 the solution of (5.1) depends analytically

on ~(O) E 0m4c and stays inside 0m3c . So (2.43) is proved.

For every ~ E 0;C the following estimate on the tangent map ~* results by Lemma

2.2:

I
Bm+1,LiP . e 1/3

Ik !Y*(~j·)1 (_, a,e) , (-,a + Ad,e) ~ C (m) e

Va E D = [-d - Ad,d] .

(5.4)

For t E [0,1] let UB set 1J(t) = st*(~)'7' Then 7](t) is a solution of the Cauchy problem

i}{t) = e :Y*(~(t)) 1J(t) , 1](0) = '7 , ~(t) = st(~) .

Hy (5.4) for ~ E Dm4c and a E D we get the estimates:

11
t II Bm+l'LiP e 1/3

S*(~) -Id (_, a,e) , (-,a + Ad,e) ~ tC (m) e

and

t Bm+1,Lip 2 e 2/3
IIs*(~) - Id - te !Y*(1))11 (_ , a,e) , (-,a + Ad,e) ~ t Cl(m) e

(5.6)

The first of them results from the identity

t

7](t) - Tl = cI ~*(~(r)) !1Cr) dr
o

(5.5)
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and the second one results from the identity

t

1}{t) -,., - et ~*(1),., = eJ(~*(I)(r» 1}{t) - ~*(1) ,.,) dr .
o

Let ~(t) = (q(t) ,((t) ,y(t» be a solution cf (5.1) with ~(O) = ~ = (q,{,y) . Then

So IIq 0 Sr(~) = S~(qjO) (i.e. does not depend on ( and y) and by (2.35)

By the first estimate with r = 1 we get the assertion (2.45).

For y(t) we have the equation

(5.7)

y(t) = 2c J fYY(q(r))y + c J fY(q(r)) . (5.8)

Let z(t) = z(t) (q;O) be a. solution of (5.8) with zero Cauchy data. Then by (2.36), (2.39),

(2.40) and (5.7)

Vt E [0,1] . (5.9)

Let us substitute into (5.8) y(t) = z(t) + u(t) . Then

ü = 2€ J fYY(q(r))u I u(O) = y . (5.10)
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So u(t) = Y+ U(t)y ,here U(t) is a linear operator and by (2.39), (5.7)

Vt E [0,1] . (5.11)

So TTy
0 Sm(q,e,y) - y = z(l) (q;O) + U(l) (q;O)y and the estimate (2.47) results from

(5.9), (5.11).

The estimate (2.46) results from the equation on e(t) and the estimates on q(t) , y(t) .

Now (2.44) results from (2.45) - (2.47) .

The transformation Sm = 8t It = 1 is canonical as a shift along the trajectories of a

Hamiltonian flow (see Part 1, Theorem 2.4). To investigate the transformed hamiltonian

J'i(m 0 Sm we start with an analysis of the quadratic term

21(t) = ! < Am(q(t») y(t) ,y(t) > with y(t) = z(t) + u(t) = z(t) (q;tJ) + y +
+ U(t) (q,O)y . It ia equal to the sum of terms of zero order, first order and second order on

y:

21(t) = 210(t) + < 21Y(t),y > + < 21YY(t)y,y > ,

21Y(t) (q;8) = (I + U(t))*Am(q(t)) z(t) ,

21YY(t) (qj8) = ~ (I + U(t))*Am(q(t)) (I + U(t») .

Lemma 5.2. The following estimates are valid:

II!11YY(l) -!11YY(O) -~~(q). Vq Am(q)­

U4 B
- [J Am(q) , t: fYY(q)] 11 m' m+l ~ Ce(m) t:2/ 3 ,

d ,d-d H

(5.12)

(5.13)
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(5.14)

(5.15)

Proof. Hy the definition of 21YY(t) we get the equality:

1

< (~YY(1) - 2(YY(O)) y,y > =!f~ < Am(q(t)) u(t) • u(t) > dt =
o

(5.16)

t

=f < B(t) u(t) , u(t) > +! < (E ~(q(t)) . VAm(q( t))) u(t) , u(t) > dt

o

with H(t) = [J Am(q(t» ) E fYY(q(t»)] . By (5.7) and (2.40)

(5.17)

(5.18)

Hy (5~7) and (2.9), (2.10)

u4 B
IIl t O(E~(q(r».VA (q(r»)11 m' m+1~tC(m)E2/3. (5.19)

r= m d d-d) H

Now we may replace the integrand in (5.16) by its value at t = 0 and get the estimate

(5.13) from (5.18), (5.19) and (5.11).
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To prove (5.14) we rewrite < (21Y(I) - 21Y(O)) , Y> as follows:

1

< (21Y(I) - 21Y(O)) , Y> = J~ < Am(q(t)) z(t) , u(t) > dt =

o
1

= J(< (~Am(q(t))) + Am (q(t)) (2 E J rYY(q(t))z + E J rY(q(t)) , u(t) > +
o

+ < Am (q(t)) z(t) ,2 E: J fYY(q(t))u(t) > ) dt .

H lIylI-d + d ~ 1 then by (5.12), (5.8) and estimates on fYY, fY this integral differs
H

from < J Am(q) t fY(q) , y > by Ce(m) c , as stated in (5.14).

The last estimate of the lemma results from (5.10). •

By (5.12), V(21(1) -21(0)) = (21Y(1) -21Y(O)) + 2(21YY(1) -21YY(O)) y . So we have the

following conseqnence from thislemma:

Corollary 5.3. For ~ E0m~1

11 Vl~l(1) - 21(0) - ~ < E t (q) . Vq Am(q) Y, Y> -

U c 8
- < [J A (q), E: fYY(q)] Y, Y> - < J A (q) fY(q) , y > )11 m+ l' m+1 ~ c .

m m d d- H

Let Sm(~) = ~ + E:~1 = ((L~,y) . We write the transformed hamiltonian as follows:
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- < [J Am(q) ,c fYY(q)] y,y > -! < c ~(q) . VqAm y,y >-

- < J Am(q) fY(q) , y > ] 1 + € [(ei - sre) .Am+1] 2 +

+ €[hq --l,fl]3 + e[(he-JL,.~). e]4-
8w 8w

+ [(€lSm + €H3m + H3)(f) + c;f)l) - (c;H2m + €H3m + H3)(f))] 7 +

+ € [H3m] 8 + W (5.20)

We denote by AjH the functional in the brackets [.] j (together with the preceding

factar).

Lemma 5.4. For j = 1 , ... , 8 the following estimates hold:

o c 8 ~P+1)IIV ä.HII m+1' m+1:s! C (m + 1) €3
Y J d d 8 *- H

Proof. We prdve the more complicated estimates (5.22) only.

j = 1. The estimate is contained in Corollary 5.3.

(5.22)

(5.21)

j - 2. Für the natural projection 11 : EC
--+ Y we have:

Y (+,--d + dH,e) d-dH
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By (5.6) with a = -d + dH E D t t = 1 and by Lemma 5.1

8 tLip
II(Sm - Id - e ,.t1")*(~)11 m+1 5

( + , d1-d-1,e) , (+,--d+dH,e)

5C~(m) e2
/
3

.

Since

(5.23)

(5.24)

and lI(o,Am+ 1'0)11(+,dC-d-l,c) ~ C c
2
/
3

, then the estimate (5.22) results from (5.23),

(5.24).

j 7. For arbitrary function H we have the identity:

Vy(H(~ + e~l) - H(fJ)) = (VyH(fJ) I 1 - VyH(f))) +
f)=f)+Ef)

+ D
y

(ef)l)*(f)) Vf)H(f) + EfJ1) .

So we have to estimate two terms,

and

(5.25)

(5.26)
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N

for H = c(~m + cH3m) and for H = H3 . Let UB denote f) = Sm(f)) and mention that

IIq 0 (f)1*(~)) (O,O,y) :: 0 . So

N N N

ßy 0 (cf)I)*(~) V~H(~) = Uy 0 (c~I)*(~) (O,V~H(~),VyH(~))

and by (5.23) and (5.5) with a = - d + dH

N B ,Lip
IIU 0 (cf)I)*(~) V~H(~)II m+l ~

y d-d
H

-1/311 1 * Bm+1, L ip
~ t: (t:~ ) 11 ( + , -MdCl,t:) , (+,-d+dH,t:) x

/

N B ,Lip / N 8 ,Lip
<Ce(m) (c2 3 1V H(I)) 1 m+l + EI 311V H(f))11 m+l )- e y d---<i1+1

(5.27)

Let H = c(H2m + H3m) . Then the estimate (5.22) for the term (5.25) results from (2.12),

(2.44) and Cauchy estimate. The estimate for the tenn (5.26) results from (5.27), (2.11),

(2.12) .

Let H = H3 . The term (5.25) ia equal to

E E

f~ VyH3(~ + rl)l)dT = f (VyH3)*(~ + rl)l)~ldT
o 0

B +1 ,Lip
and its 11·11 m -norm ie estimated above by

d-dH
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The first factor is no greater than C [;2/3 by (1.27) and Cauchy estimate. The second one

is no greater than eP by (2.44) aB dH ~ d1 - 1 . So the term (5.25) is estimated.

The estimate for the term (5.26) results from (5.27), (1.27) and Cauchy estimate because

d - d1 + 1 ~ d - dH .

j - 8 . The estimate contains in Lemma 2.1, item c) .

Hy the equation (5.20) and Lemma 5.4 hamiltonian tRm(Sm(~;B)jB) has a

form (2.6) with

Am+1(qjB) = Am(qjB) + 2[; ~hYY(qjB) .

Lemma 2.4 is proved.

6. Proof of Statement 1.2.

•

(5.28)

o €
Hy the definitions of the maps l and l 0, for f) = (q,O,O) E Tg

o [;0 °
~ (~;O) = ß p(q,O,O;O) = (q,O,O) E P and ~ (q;O) =~ m(q,O,O;O) . So we have to prove

that

(6.1)

o
Hy the proof of Theorem 1.1 the map l is equal to

(D
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and

(6.3)

(Lemma 2.5). The r.h.s. in (6.3) ia smaller than Co if m ~ m(p) . So to prove (6.1) it is

enough to check that

Vj ~ m(p) (6.4)

In a similar way,

oe oe 1/3
(see (2.56)) and I€jhj + €j+1 hj+ 1 + ... I 5 C(j) €j
m = j , p = m ) . So to get (1.34) we have to prove that

(see (2.60)

(6.5)

with

Vj 5m(p) (6.6)

(we increase m(p) if there is a need in it).

To prove (6.4), (6.6) we should improve the constants in the r.h.s. of the estimates of

Lemmas 2.1, 2.2. For this end we define independent on Co domains Qmc ,Qmje instead

of 0 c 0 je: Q je = O(Tn )( {O} )( {o} 0 j 7L c)
m 'm m ' m 'Td '

Qmc = Qmoc (see (2.4)).

We prove by induction the following statement. Hamiltonian dim (see (2.6)) may be
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written down in the domain Qme in the following way:

Here the function H
3

is the same as in (1.24), H(m) E "":m(QmCj{) and

(6.8)

Hy (2.6) and (2.7) we see that €OH(m) = €mHm on Dme . So cOH(m) ia an analytical

extension of c H on the domain Q e.
m m m

For m = 0 the representation (6.7) coincides with the initial one (see (1.23), (1.24)). Let

UB suppose that the statement is true for 80me 0 5m ~ m(p) - 1 . We denote the terms

EmHm ' Emh
q

,Emh1e etc. in the decomposition (2.16) by EOH(m) ' EOhq(m) , EOh(i)

etc. and denote the eoefficients c ß, c ~ etc. of the hamiltonian c F bym m m

E01m) ,Eo1m) etc. Hy repeating the proof of Lemma 2.1 we have for h(m) , h(i) etc.

the estimates of the Hems a), b) of Lemma 2.1 with r.h.s. replaced by C (we don't. m
controll the rate of increase on m).

In partieular,

(6.9)

For H(m) we have an estimate ofthe form (6.8) .

By repeating the proof of Lemma 2.2 we get for 1m)' 1m) etc. the estimates of form

(2.35) - (2.40)- with the r.h.s. replaced by C~. So after an analytical extension into

domain Qm3e the vector-field of equation (2.28) ia no larger than C; cO . So Sm may

be (analytically) extended to a map from Q 4e into Q 3e and for this extension the
m m
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estimates of the item a), Lemma 2.4, hold with r.h.s. repla.ced by C; EO (and with

Q~+l,dc in the notations of the norms). In particular

Hence the transformed hamiltonian B m 0 Sm may be extended to the domain

Q c +1 d and has there the form (6.7) with m:= m + 1 .
m 'c

Now the estimates (6.4) and (6.6) result from (6.9), (6.10) with

m = 0 , 1 , ... , m(p) .

7. On the reducibility of variational equations.

In the statement of Theorem 1.1 we made no use of the estimates (2.9). (2.10), (2.24) on

the quadratic on y part of the hamiltonian J'I . These estimates allow us to prove thatm
E:

the variational equations for (1.19) along the solutions z O(t) are reducible to the constant

coefficient ones (tbis redncibility is a typical by-product of KAM-procedure; see [Al],

§ 5.5.10).

E:O
The variational equations for 6z0 = (0<10 J oe0 ' oyo) E Ed along the solution z = z (t)

have the form:

(7.1)

E:

Let us denote by T~O = ~O(w,I) == E( ~,I)('U'n) the invariant tori constructed in Theorem
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1.1.

Theorem 7.1. Under the aBsumptions of Theorem 1.1 there exists an analytical mapping

~1 : T~o --+ .i'(Ed ' Ed) such that the substitution

ozO = cI»1(z(t)) 6I) , 6I) = (6q,6(,6y) E Ed J transfonDs solutions of (7.1) into the solutions

of the equations

oq = 0 , oe = 0 , oy = J A (B) oy .m

The change of variables ~1 is constructed in two steps:

1. The substitution

transfonDs solutions of (7.1) into solutions of the equations

2. The equation for 6y in (7.2) may be reduced to the constant-roefficient one via
m

the substitution 6ym = W(~) oy ,W = diag (exp (iWj(Clm))) j see § 3.

We omit the details.

Appendix A. Interpolation theorem.
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Let Xl be a real Hilben spare with a Hilbert basis {1Jj Ij E 1l0} (Le.

< 1J. , f1JE: > X = 6. k) . Let X2 be a dense subspace of Xl with the Hilbert basis
J 1 J,

{Xj-l '1j} ,Xj ~ C Vj. Then for 0 ~ T ~ 1 the interpolation space [X2 , Xl] T is a

Hilbert space with the Hilbert basis {X·-1+T '1·1 j E 1l0} . In particular if
J J

Xl = Ya ,~ = Yb , b > a, and Ya , Yb are the spaces from the scale {Ys} as in § 1,

then by the conditions (1.21)

(one has to take '1j = <Pj+ for j > 0 and '1j = <P_j- for j < 0 ). The norms in the spaces

are equivalent:

Far complexifications Xlc and X2c of the spaces Xl ,~ we set by definition

(Le. an interpolation of complexifications ia equal to the complexification of interpolation).

So [Yb
c

, YaC]r= Y~+(l-T)b'

tocontinuedbemay

Theorem Al (interpolation theorem). Let a linear operator L: yC --+ yC may be
Q) ;0

continued to the continuous maps Y
s
c --+ Y1

c and Y
a
c --+ YIc . Then VT E [0,1] it

o 0 1 1

the continuous map

For the general formulation of the theorem and for a proof see [LM, RS2].
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Corollary A2. Let a linear continuous operator YSC --+ YIC be symmetrie with respect to

the pairing <',' > (i.e. L E .zB(Ys
C

, y I
C

) ). Then

V". E [0,1] L E .zB(Y e , y I
e) , 8 = T(s + 1) -1 , 1 = T(s + 1) -1 , ands T T

". ".

II L1I 8r,lr 5C II LII8,1 .

Proof. We have equalities: IILII-1-8 = IIL*11-1 = IILJI l' Here L* is the operator,, ,-B S,
conjugate to L with respect to the pairing <',' > . Now the assertion results from

Theorem Al with So = s , sl = -l ,10 = 1 ,11 = -B .•

Appendix B. Some estimates for Fourier series.

Let B be a Banach spate with a norm 11·11, BC be the eomplexification of B , M = {Jl}
be ametrie spa.ce, ~ > 0 and

Let us write a Fourier series for G:

~..-.... is qG(q;Jl) = L G (s;J') e . .
sElZn

Lemma Bi. For every s E lZn

IIG(Sj.)IIM,Lip ~ e-e Isi.

and

(BI)

(B2)

(B3)

..-.... ..-....
G (s,p) = G (-S,Il)

An Ilalmost inverse" statement ia true:

VS,VJl (B4)
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Lemma B2. If (B3), (B4) are true Vs E 7ln and 0 < t:a < { then the series (B2) converges

Vq E U({ - ä) , the map G is analytic and

LPTDma B3. If (BI) takes place, 0 < 2ä < { < land

, ..-... is·q
RM G(q) = l G (S;Il) e ,

* Is I~M*

then

The proves of the lemmas given in [A2, § 4.2] for B = [Rn , are valid for arbitrary Banach

space B.

Appendix C. Lipschitz homoomorphisms of Borel sets.

Let n (!Rn be a bounded Borel subset and A: n --+ IRn be a Lipschitz map of the form

A(a) = a + A1(a) ,

LiP A1 ~ P, < I .

So

Lip A 5 I + p,.

Theorem Cl. H (Cl) takes place than the inverse map A-1 is well-defined and

(Cl)

(C2)
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I

For arbitrary Borel set n (n

(C3)

I I

(1 - #)n mes n ~ mes A(O ) ~ (1 + #)n mes n (C4)

Proof. The first statement is evident. Indeed, if A(xj) = Yj J j = 1 , 2 , then

(Xl -~) + (A l x1 -AI~) = YI -Y2 and by (Cl) lXI _~12 ~ #Ixi _~12 +

+ IXl - ~ I 1Y1 - Y2 1 . So IXl - ~ I ~ (1 - #)-1 IYI - Y2 1 and (C3) is proved.

To prove (C4) let us continue A to a Lipschitz map AC: IRn
--+ IRn with the same
I

Lipschitz constant (Kirszbraun's theorem, see [Fe]). Let mes n = a. Then the upper
I I

measure of n is equal to a J too. SO VE > 0 the set n may be covered by a countable

set of balls B. ( !Rn , radius of B. is equal to r· J and
J J J

Q)

VI l I j
n
~ (1 + E) a

j=1

( VI is the measure of I-ball in !Rn). As Lip AC = Lip A ~ (1 + #) , then A(Bj ) is
I

contained in a ball of the radius (1 + p) rj . As A(O ) ( UA(B j ) J then

I \ n n n I
mes A(O ) ~ VI L (1 + Jl) I j ~ (1 + Jl) (1 + E) mes 0 .

The second inequality in (C4) is proved because E > 0 may be chosen arbitrarily small.

To prove the first inequality we have to consider the map A-1 and to use (C3).

List of notaüons

1. Constants.
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C J C1, C2 I ••• - positive constants which arrive in estimates. They are independent on

€ and m and are different in different parts of the text.

K J K1 I'" - constants which characterize initial data in theorems;

m - the number of the iterationj

C2
C(m) J C1(m) J ••• - functionB of m ofthe form C1m

C*j J C*}m) - fixed constants and fixed functions of the form C(m);

C~(m) , C~(m) J ••• functions of m of the form exp C(m) ;

-2 -2 -2
e( ) _1 +2 + ... +m

m - 2 2 J

2(1- + 2- + ... )

€ = € (l+p)m 0 < p < 1/3 .
mO' J

2. Linear spates and maps.

e(m) <! Vm'J

Y J Z Hilbert spaces with norms 1I·lIy , 11·11 Z and inner products <. J • >y J

<. J' >Z;

{Ys Is E IR} - ascale of Hilbert spaces Y J I' Iy = 11·11 s J Y0 = Y J Ys (Ys for
s s 1 2

81 ~ 82 J Y8 and Y-fi are conjugate with respect to the pairing

< . J • > = < . J • >y ;
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yC , YSC - complexifications of Y , Ys ' the scalar product <.,. > in Y is continued

to a complex-bilinear pairing YSC )( Y--6C --+ ( ,sE IR i

.:t(Ys
c; Yl

c) aspace of linear continuous operators from Ys
c to Yl

c provided with the

operator norm 1I·ll s I j,

3. Sets and domains

0(Q,6,M) - 6-neighborhood of a subset Q of a metric space M;

O( 6,Z) = 0(0,6,Z) for a Banach space Z;

21. C [Rn - a set of parameters a;

00 - a set of frequencies vectors (w1 ' ... , wn) ;

.7 - a set of actions (11' ... , In) j

Bj = {B = (w,I)} , j = 0, 1,... - subsets of 00 )( .7 j

8[1] = {w E Ol(w,l) E 8} for a 8 (0)( J and arbitrary I E .7;

Tn [RnIIs = )( )( Ys' P = 110 , tangent space to

E = [Rn )( !Rn )( y .
B B '

is identified with
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° je = OC(6 j (2-je )2/3 (2-je )1/3. 71 C) 0 <J' <5 .
m m ' m ' m I Td ' - - I

4. Maps and functions

For a map G: Ql --+ Q2 (Qj is a metric space with a distance distj , j = 1,2 )

space;

A R(OIcj02c) is the set of Frechet complex-analytical mappings !rom 01c e BIc to

02ce B2c which map 01c nBI into B2 ;

""",RM(OIci02c) is the set of mappings G: 01c x M ---+ 02c such that

G(· ; m) E .A"R(OIc;02c) Vm E M and
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°lC jM M L'IGIB = sup IG(b;·) IB' Ip < Q) j

2 bEO C 2
1

<J dz,dz >z is the 2-form in a Hilbert spate Z, <J dz,dz >z [zl ,z2] = = <J dz,dz >z .
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