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Introduction

The book is devoted to nonlinear Hamiltonian perturbations of stable linear Hamiltonian
systems of large and infinite dimension. Such systems arise in physics in many different
ways. As a working hypothesis for theirs study it was postulated in the physical literature
after the works of Boltzmann that in a “typical situation™ their solutions are stochastic.
This postulate (“ergodic hypothesis”) was succesfully used to explain many properties
of matter. On the other hand, a lot of numerical experiments starting from the ones
of Fermi-Pasta~Ulam (see {[FPU], [U]) bave shown quite regular recurrent behavior of
many solutions of the systems under consideration (see e.g. [ZIS]). This effect cannot
be explained by means of the Poincare recurrence theorem [A4} because the Poincare
recurrence time is much larger than the one obtained in the experiments. It seems that
the investigated systems have a lots of quasiperiodic trajectories or trajectories abnormally
close to the quasiperiodic ones (see [LL], [DEGM],[Mo]). These trajectories correspond
to low-frequency oscillations of the underlying physical object. In these oscillations the
energy is frozen in low frequencies for a very long time. So the recurrence effect causes
a low rate of stochasticity (the ergodic hypothesis works now in a slow way). This effect
seemed rather strange to the physicists who observed it.

Our goal is to obtain some general theorem to prove the existence many of quasiperi-
odic solutions in perturbed linear infinite-dimensional Hamiltonian systems corresponding
to conservative physical systems with one spatial dimension. The theorem gives some ex-
planation to the recurrence effect in spatially one-dimensional systems. It proves that in
some strict sense the one-dimensional world “is not very ergodic”.

The introduction is devoted to a rather expanded discussion of the theorem and its
applications. Sometimes the discussion supplements the results from the main text. We
preface the survey of our results with a survey of the finite dimensional situation.

1 Finite dimensional situation

“Regular” (periodic and quasiperiodic) solutions of 2n-dimensional Hamiltonian systems
are important for classical and celestial mechanics. Some quite general existence theorems
for this class of solutions have been obtained. Here we are interested in perturbation-type
results only. '

1.1 Lyapunov’s theorem

The first classical result in this direction was Lyapunov’s thorem (see e.g. [AbM], [AKN],
[SM]). It states that “nonresonant” periodic solutions of a Hamiltonian system survive
under Hamiltonian perturbations. In particular if the unperturbed system is a stable
linear system with the spectrum

{ii)‘j]j=1""an} (1)

and
Tb\j -75 )‘k V] ?é k,Vn € Z,

then the perturbed system has n two-dimensional invariant manifolds and the manifold
number j (j=1,...,n) is filled with periodic solutions of periods close to 27 /A;.
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1.2 Kolmogorov’s theorem

The second classical result concerning the subject is Kolmogorov’s theorem {Kol] which
inspired Arnold and Moser to create a powerful technique to handle nonlinear problems,
well known nowadays as KAM (Kolmogorov-Arnold-Moser) theory; see [A2], [A3], [AA],
[Mo], [SM] and bibliographies of the last three books. Kolmogorov’s theorem states that
most of the quasiperiodic n-frequency solutions of a nondegenerate integrable analytical
system with n degrees of freedom survive under analytical Hamiltonian perturbations or,
equivalently, Hamiltonian perturbations preserve most of invariant n-tori of a nondegen-
erate integrable system. Here integrability means that in a phase space T" x P (P is an
n-dimensional domain) the system has the form:

¢ =Vh(p), p=10, (2)

(i.e. it has a hamiltonian k& depending on p € P ounly) and the nondegeneracy means that

Hess h(p) := det{8*h(p)/8p;0p;} £ 0. (3)

Invariant tori of the system (2) are of the form
T"(p)=T"x {p},p€ P, (4)
and most of them survive in the perturbed system with the hamiltonian 2(p) + ¢H(4q, p),
~—/  ¢=V,(h(p) +eH(q,p)),p = -V, H(q, p) ()

if positive ¢ is small enough. That means that there exists a subset P, C P such that
mes(P \ P,) — 0(c — 0), and for p € P, there exists a map £, : T* — T" x P such that
for all ¢ € T* dist(Z,(q), (¢,p)) < Ce and the curve

t > Sy(q + tVA(p)) | (6)

is a solution of (5). :
For other versions and important improvements of the theorem see [AKN], [Brul] ,
[Bru2}, [Laz], [Mo], [P3], [Ru], [Z1].

1.3 Melnikov’s theorem

Lyapunov’s theorem states the preservation of nondegenerate one-dimensional invariant
tori (=periodic solutions) under Hamiltonian perturbations, and Kolmogorov’s theorem
states the preservation of most of the invariant n-tori of integrable system with n degrees
of freedom. The natural question is if most of invariant tori of an intermediate dimension
k, 1 < k < n, survive under perturbations. For perturbations of a linear Hamiltonian
system the question means the following. In the phase space

T" x P x R*™ = {(¢,p, 2)}, = = (24, 2-) € R™, (7)
the Hamiltonian equations

G=A+eV,H p=—sVH :=J(Az +cV.H) (8)
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are considered. Here J{zy,z_) = (—z_,z4), 4 is a symmetric linear operator in R*™,
¢H = ¢H(q,p, z) i3 an analytical perturbation and A € A CC R" is a parameter. For
€ = 0 the system (8) has invariant n-tori 7™™(p) = T" x {p} x {0}, p € P. The question
is if these tori survive in the system (8) for £ > 0.

Let us denote the spectrum of the operator JA by M = {p,..., pam}. We have to
consider three cases:

a) (nondegenerate hyperbolic tori) M C C\ R, u; # ue¥7 # k. In this situation a
hyperbolic torus 7™™(p) survives for most A. That is, for positive € small enough and
for A € A, p), mes A \A(g,p) — 0(c — 0), the equation (8) has an invariant torus at a
distance < Ce from T™™(p). See [Bi], [Gz], [Mol], [Z1].

bo) (nondegenerate elliptic tori ) M C iR\ {0}, g; # ueVj # k. This situation is
more complicated. The preservation theorem for the elliptic torus 7™™(p) for most A was
formulated by Melnikov [Mel], [Me2]. The complete proof of the theorem was published
only 15 years later by Eliasson [El}, Poschel {P1] and the author {K1], {K2] (the infinite-
dimensional theorems of the last two works are applicable to equations (8) as well). The
proofs given in the papers just mentioned are also valid in the more general situation:

b) (nondegenerate tori) 0 & M, u; # pVj # k.

In the degenerate case

c)0€ M or p; = y; for some j # k
no preservation theorem for tori 7™™(p), formulated in terms of the unperturbed equation
(8) with ¢ = 0 only, is known yet.

Remark. Melnikov’s theorem (case bg) ) remains true for m = 0, too. In such a case
Y = {0} and the theorem then asserts the preservation of the n-dimensional invariant
torus T™ x {0} of the system with the linear hamiltonian A(p) = A - p,

under small analytical Hamiltonian perturbations for most parameters A € A. This result
implies Kolmogorov’s theorem as it was formulated above via some simple substitution;
see [Mo], p.171 (and [K3], Part 1 with Y = {0}). Conversely, one can easily extract this
version of Melnikov’s theorem from Kolmogorov’s theorem. So these two statement are
equivalent. This equivalence (we had found it in the paper {Mo]) was important for our
insigt into infinite-dimensional problems.

Remark. The case ¢) is important for a better understanding of the situation studied
in Kolmogorov’s theorem. Indeed, if some torus T"(p) (see (4)) is resonant and

dimq E(p) =n — 1, E(p) = Q0k/Op1 +... + QOh/Opa

(we treat E(p) C R as a linear space over the field Q here), then the torus 77(p) is a
union of invariant (n — 1)-tori. Near each (n — 1)-torus the perturbed system (5) may be
reduced to a system (8) of the type c¢) with m =1 and J A equal to Jordan cell with zero
eigenvalue.



2 Infinite dimensional systems

2.1 The problem

In a Hilbert space Z with inner product < -,- > we consider the equation
u(t) = JVK(u(t)), u(t) € Z. (9)

Here J is an antiselfadjoint operator in Z and VX is the gradient of a functional K relative
to the inner product < -,- >. In the most interesting situations the linear operator J, or
the nonlinear operator VX, or both of them are unbounded. So one has to be careful with
the equation and its solutions. For the exact definition of solutions of (9) and for some
their properties see Part 1 of the main text. Equation (9) is Hamiltonian if the phase
space Z is provided with a symplectic structure by means of 2-form — < J~1du, du > (by
definition, — < J~ldu,du > [£,9] = - < J7¥,n > V&, n € Z).
In this book we are most interested in equations of the form

u(t) = J(Au(t) + eVH(u(t))). (10)
This equation is Hamiltonian with the hamiltonian
K. = 1< Au,u> +cH(u).

Here A is a selfadjoint linear operator in Z and H is an analytic functional. The linear
operators J,A and the nonlinear operator VH are assumed to be characterized by their
orders d”/,d* and d”. We suppose that

d/>0,d*>0,d +d*>1,d’ +d7 <0. (11)

In the most important examples Z is the Lo-space of square-summable functions on a
segment, and J and A are differential operators. In such a case d/, d* are the orders of
the differential operators and V H(u) is a variational derivative § H/éu(z). In particular,
if

H(u) = / h(z, u(z)) dz

then §H/6u(z) = hy(z,u(z)) and 4 = 0; if the density A depends on integral of u(z)
instead of u(z) itself, then d¥ < 0. To define the orders d’,d4,d” in a general case, we
must include the space Z into a scale of Hilbert spaces. See Part 1 below.

The assumption (11) implies that equation (10) is quasilinear. This assumption is
rather natural for the study of long-time behavior of solutions because for some strongly
nonlinear Hamiltonian equations (i.e. ones of the form (10) with d = d4) it is known
that the equations have no nontrivial solutions existing for all time; see [Lax].

We suppose that J and A commute, and that Z admits an ortonormal basis {(,ofl j =1}
such that

At = M#, Jot =TT, Vi > 1 (12
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So, in particular, the spectrum of JA is equal to
{Fi\ ] > 1,25 =AM
Let us fix some n 2> 1. The 2n-dimensional linear space
Z° = span{p}|l < j < n}

is invariant for the flow of equation (10) and is foliated into invariant n-tori
n - 2 -2 .
T =T"(1) = {L =i} lef +27 =2I;Vi},
i=1 ,

I =(h,...,1;,) € R}. Every torus T" is filled with quasiperiodic solutions of equation
(10) with ¢ = 0. One can treat (10) with ¢ = 0 as an infinite chain of free harmonic
oscillators with frequencies Ay, Ay, . ... The solutions lying on the tori T"(/) correspond to
oscillations with only the first n oscillators being excited. One can treat these solutions
as low-frequency oscillations.

We study the question: under what assumptions do the tori T"(I) and the correspond-
ing low-frequency quasiperiodic solutions survive in equation (10) for ¢ > 0¢

It is convenient to introduce the angle-action variables (¢1,...,¢n,P1,---, Pn) in the
space Z°,

I;'-'}'zx; = zpjexP(qu')? 7=L..4n

(zF are coordinates with respect to the basis {(pﬂl <j<n});todenote Y = Z g Z°

i
(i.e. Y is equal to the closure of span{¢T|j > n+1}) and to pass to the variables (¢, p, ),

2
a=(q1,---,¢2) ET",p=(p1,...,pn) ERL,Y €Y. (13)
Let us denote by 3° the imbedding
2°: T"x R} — Z,(g,p) ~ (g,p,0).

(we use coordinates (13) in Z). The invariant space Z° is the image of this map.
In the new variables (13) equation (10) takes the form:

§=V,H,p=-V,Hj=JV,H (14)
with
H=H.=w-p+3<Ay,y> +eHi(q,py).

Here w = (Ay,...,As), J¥ = Jiy, AY = Ayy. So the operator JY AY has pure imag-
inary spectrum {%iA;|; > n + 1} and one can easily recognize in the last equations an
infinite-dimensional analogy to the elliptic case of the system (8). The form of Melnikov’s
theorem we gave above in Section 1.3 has a natural infinite-dimensional reformulation. It
is remarkable that this reformulation becomes a true statement after adding essentially
just one infinite-dimensional condition.
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2.2 The result

Keeping in mind the applications, we generalise the situation and suppose that equation
(10) analytically depends on n outer parameters (ay,...,a,) = a € A, A is a bounded
open domain in R™. So A = A,, H = H, and A; = A;(a). Let us assume that

det{0M;(a)/0ar]l < j,k<n} #0 (15)

and consider a torus T"(y,..., I,) such that I > 0 Vk.
Theorem 1. Let us suppose that the assumptions (12), (15) take place together W1th
1) (quasilinearity)

d?>0,d4>0,dy:=d’ +d* > 1,d" +d7 <0,d +d¥ < dy - 1;
2) (spectral asymptotics)

Ai(a) = K1j® + K2 + pj(a)
|ui(a)l + |V pj(a)l < Kaj®™"

for some & > 1;
3) for some N > n and M > 1 depending on the problem (10) nonresonance relations

s1A(a) + s2he(a) + ... +syin(a) Z0 (16)

hold for all s € Z¥ such that 1 < |s| € M and [s,41] +... + Jsn] < 2.
Then for positive ¢ small enough there exist a Borel subset A,(I) C A and analytical

embeddings
Yo Tt = Zac A(l), (17)

such that

a) mes(A\ A, (1)) — 0 (¢ — 0);

b) the map (q,7,a) — I ;(q) is Lipschitz and is Ce- close to the map (¢,7,a) —
£%q, I);

c) for a € A, the torus Ef ;(T") is invariant for the equation (10) and is filled with
quasiperiodic solutions of the form u.(t) = Z¢ ;(¢ + w.t) with a vector w, € R™ which
is Ce-close to w = (Ay,...,As). All Lyapunov exponents of these solutions are equal to
zero.

Refinement 1. If K! < I; < K for all j = 1,...,n, then the numbers M, N in the
assumption 3) and the rate of convergence in the statement a) of the theorem depend on
n, K, K — K3, d, &, the radius of analyticity of H and its norm only.

Refinement 2 (see Part 3, Theorem 1.1). In the variables (13) the unperturbed hamil-
tonian is equal to w-p+1 < A¥y,y > and the perturbation is ¢ H1(q, p,y). The statememt
of the theorem remains true for perturbations of the more general form

eHi(e,pv)+ Ha,py), K2 =O0(p— 1P+l y P+l v |l I = 1))

This form of the result is suitable for applications to perturbations of nonlinear problems
(see below).

Remark. The formulations of our results given above are "almost exact”. For the
exact statements see the main text.
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Remark. If the first n frequencies (A,...,A;) = w are taken for the parameters
a,...,an and if A; does not depend on w for j > n+1, then the assumption 3) is fulfilled
trivially. If in addition dim Z < co, then the assumptions 1), 2) hold trivially, too. So for
finite-dimensional systems (written in the form (14)) Theorem 1 coincides with Melnikov’s
theorem:.

As another infinite-dimensional version of Melnikov-type theorem we want to mention
the result of Wayne's paper [W1}, devoted to the nonlinear-string equation with a random
potential. We discuss the approach the work [W1] is based on, below.

Remark. As the map (17) is Ce-close to the map ¢ — X%gq, I), then the solutions
u.(t) are Ce-close to the curves t — ¥%(q + w,t, I) for all t&. The vector w, is equal to
w + ew; + €%w; + ... and the vector w; may be obtained via some natural averaging
(see [K4]). So Theorem 1 gives an averaging procedure for solutions of equation (10) as a
simple consequence ([K4], [K8]).

Under the assumptions of the theorem an unperturbed torus 7"(1) with

IeI={zeR'K'<z;<KVj}
survives in the equation (10) if € £ €y and a belongs to a set A.(I) such that
mes(A \ A(I)) < v(e)mesA,

v(e) = 0(e = 0)

By Refinement 1 the number ¢4 and the function v(¢) don’t depend on I (but depend on
K). Let us denote '
I.(a) = {I € T{a € A(])}.

The torus T"(7) survives if I € Z,(a). By Fatou theorem,

(mes.A)"! L mes(Z \ Z.(a)) da =

— (mesA)™! /I mes(A\ A,(1)) dI < mesT v{e) (18)

(the set {(a, I)le € A.(I)} is measurable, see the main part of the text). Let us consider
the sets

Z}y ={(q,I) e 2°I € T}
and
Zy ={(g, )l € I(a)}.

By (18) for a typical a the relative measure of Z§ in Z5% is no less then 1 — v(¢). The
image of the set Z}, under the map

(¢, ) = E2,1(q) (19)

is invariant for the flow of equation (10) and is filled with quasiperiodic solutions. The
mapping (19) is Lipschitz and Ce-close to the embedding ¥°. So the Hausdorf measure
H?™ (see [Fe]) of the invariant set as above is no less then
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(1 — v1(e)) mesgnZR, (20)

with some v;(¢) — 0 as ¢ — 0. Taking K large enough and ¢ sufficiently small one can
make (20) as large as desired. So we have seen that under the assumptions of Theorem 1
for typical @ and for € small enough the equation (10) has invariant sets of the Hausdorf
measure H2" as large as desired. These sets are filled with quasiperiodic trajectories with
zero Lyapunov exponents. They form obstacles to the fast stochastisation of solutions of
a typical system of form (10). Our guess is that the recurrence effect "of FPU type” is
caused by such sets. See Part 2.3 of the main text for some more results concerning this
insight.

Our results leave without any answer the natural question: do the infinite-dimemsional
invariant tori of the system (10) with ¢ = 0 survive under Hamiltonian perturbations?
The answer is affirmative if the following three assumptions are satisfied:

a) the perturbation H has short range interactions, i.e for u(t) written as 3 zE(t)pf,
and for some finite N the equation for zf does not depend on zZ with [k — m| > N, or

depends on zZ in an exponentially small (with respect to |k — m] ) way;

b) |H(u)| =O(|| u ||%) for some d > 2;

c) the coefficients =i decrease for example exponentially when k is growing,

The assumtions a), b) are broken for nonlinear partial differential equations (but they
are fulfiled for some equations from the physics of crystals). For the exact statements see
[FSW], [VB] and [P2], [W2], [ALFS]. We want to mention that the works [FSW], [VB]
were the first ones where KAM theory was applied to infinite-dimensional Hamiltonian
systems.

Without the assumptions a)-b) the maximal magnitute of the perturbation which al-
lows one to prove Kolmogorov’s theorem (=to prove preservation most of half-dimensional
tori) exponentially decrease with the dimension of the phase-space (see e.g. [P2, p.364}).
We suppose that the exponential estimate is the best possible one. In particular, infinite-
dimensional tori ”in general” do not survive under perturbations of infinite-dimensional
systems.

We end this part with the remark that some results concerning the preservation of
infinite-dimensional tori in equation (10) with the spectrum {£iA,} of a special type may
be obtained via infinite-dimensional versions of Siegel’s theorem. See [War], [Z2] and
especially [Nik].

'3 Applications

3.1 Perturbations of linear differential equations

As a rule, the assumption 1) of Theorem 1 is fulfiled if JA is a differential operator on a
segment of the line with some self-adjoint boundary conditions. So the theorem is appli-
cable to spatially one-dimensional quasilinear Hamiltonian partial differential equations
depending on a vector parameter.

Ezample 1 (see [K1] and Part 2.4). Let us consider nonlinear Schrodinger equation
with a bounded real potential V(z;a) depending on an n-dimensional parameter a:

i = i(—u" + V(z;a)u + e¢'(z, [ul’ a)u),



v =u(t,z),t € R,z €(0,7), (21)
u(t,0) = u(t,x) = 0.

Here ¢ is a real function analytic in Ju|? and ¢’ = dp/8|u|®>. To apply the theorem one
has to set Z equal to the space of square-summable complex-valued functions on (0, )
(and consider it as a real Hilbert space), to set A, equal to the differential operator
—0?%/0z® + V(z; a) under the Dirichlet boundary condition, to set Ju(z) = iu(z) and

H(u(2) = } [ olz, [u(@)l} a) da.

Let us denote by {p;(z;a)}, {A;(a)} a complete system of real eigenfunctions and
eigenvalues of the operator A,. The invariant n-tori of the unperturbed problem are of
the form

T(I) = {3 (o} +ia])pi(z;a)la}’ +af =21I; > 0Vj}.

=1

By the well-known asymptotics of the spectrum of the Sturm-Liouville problem ([Ma],
[PT]), Aj(e) = 7240O(1) and the assumption 1) of Theorem 1 is fulfilled with dy = 2,
x = 3/2. The theorem is applicable to the problem (21); therefore the torus T'(I) survives
in the problem (21) for most of a and ¢ small enough if the potential V' depends on a
in a nondegenerate way. So for nondegenerate families of potentials {V{(-;a)} and for
typical parameters a equation (21) has a lot of quasiperiodic on t solutions, localized in
the phase-space Z in a Ce-neighborhood of the low-frequency tori T(I). One can compare
this frequency-localization result with the spatial Anderson localization for random linear
and non-linear Schrodinger equations (see [CFKS], [FSW], [PasF]).

Fzample 2 (see [K2] and Part 2.5). Let us consider the equation of oscillations of a
string with fixed ends in nonlinear-elastic media depending on n-dimensional parameter:

w = (8%/8z* — V(z;a))w — ep,(z, w; a),
w=uw(tz),0<z < teR, (22)
w(t,0) = w(t, 7)) =0.

After some reduction (see Part 2.5) Theorem 1 is applicable to this problem with the
choice d; = 1,k = 3/2,dy = —1. So in a nondegenerate case quasiperiodic in t solutions
of the unperturbed problem (22) with £ = 0 survive in the problem (22) for most of a and
¢ small enough.

3.2 Perturbations of nonlinear systems

A) Perturbations of Birkhoff-integrable systems (see [K5], Example 1).
We call a Hamiltonian system Birkhoff integrable if it may be analytically reduced to
an infinite sequence of Hamiltonian equations of the form

&} = 0H,/0z5,2; = —0Ho/0z},j =1,2,...
with

x1



2 -
Hy = Ho(Pth, . -~),Pj = %(3’;- + -'*"'ji)
(i-e. it may be reduced to the Birkhoff normal form, see {Mo], [SM]). The n-tori
T(I) = {:1:|a:_'1-"2 + :J:j'2 =2p;,j=1,...,n;0=25, =z%,=..}

are invariant for the system. It is convenient to pass to the variables (¢, p,y) as in (13)
with p = (p1,...Pn), ¥ = (v7, 47,95, ), y;h =zf,,(7=1,2,...). In these variables the
equations have the form (14) with

H(q,p,y) = h(p) + ;< Alp)y,v > +0(y[*)

and

h(?) = HO(pl:' .. ’Pmor . -)1

bad _ d
< AR,y >=Y_(vF +y; 2)3 _
j:l pn+J

h(Pl»- “apmos-")'

So the e-perturbed hamiltonian in the new variables is equal to

M. =H +eH = h(p) + 1< A(p)y,y > +O(| ¥ |°) + eHr. (23)

Let us fix for a moment some a € R} and rewrite H, as follows:

He = [h{a) — w(a) - a] + w(a) - p+ 1< A(a)y,y > +

+eHi + O(l y IP +lp— ol +ip—al | ¥ [I*)

with w(a) = Vh(a). The term in the square brackets does not affect the dynamics and
may be neglected. Let us suppose that the system possesses nondegenerate amplitude-
frequency modulation:

Hess h(a) = det{dw;(a)/dar} # 0. (24)

Then one can treat the vector a as a parameter of the problem and apply to the perturbed
problem Theorem 1, taking into account Refinement 2. So if spectral asymptotics and
nondegeneracy assumptions are fulfilled, then most of invariant tori T'(a) survive under
perturbations.

The trick we have just discussed is well suited to study perturbations of finite-dimensi-
onal integrable systems but not perturbations of integrable partial differential equations
of Hamiltonian form. The reason is that in the last case the transition to the Birkhoff
coordinates (or to the action-angle ones) is not regular. To handle infinite-dimensional
systems one needs more sophisticated approach; see item C) below.

B) Use of the partial Birkhoff normal form.

One can treat the unperturbed linear Hamiltonian system (10) as a Birkhoff integrable
system with the linear hamiltonian Hy = %Z)\j(x;"z + zJ-'Z) and A(p) = Mpr +... +
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AnPa, w(p) = (M,...,An). Now the condition (24) is broken and one can not use an
amplitude-frequency modulation to avoid outer parameters a. Nevertheless sometimes
one can extract the modulation from the perturbation. This trick was successfully used
in a number of works, starting (as far as we know) with Arnold’s paper [A3] devoted to
Hamiltonian systems with proper degeneration {see also [AKN]); Péschel [P1)] used the
trick in his investigations of lower-dimensional tori, Wayne [W1] used similar approach to
prove the existence of quasiperiodic on time solutions of nonlinear string equation. Now
we turn to its discussion.

For the sake of symplicity we restrict ourselves to the perturbations of the form H =
H® + H* with homogeneos of order j functions H’,j = 3,4. Let us pass to the variables
(13). Then the perturbed hamiltonian is H, = Ho + eH; with Ho = h(p) + 3 < Ay,y >
and

Hy = H%q,p)+ < H'(q,p),y > +1 < H*(q,p)y,y > +O(l| ¥ |I*).

Here H! is a vector in Y and H? is a selfadjoint operator. So
He = h(p) + ;< Ay,y > +

+e[H%q, p)+ < H'(q,p),y > +3< H*{(q,p)y,y > +O(|l v [I°)].

it is known since Birkhoff that with the help of a formally-analytic symplectic change of
variables H, may be put into a partial normal form as follows:

H. = h'p) + 1< A(p)y, y > +c*Halq,p,y) +€0(|| v |?). (25)

Here hl(p) = h(p) + ¢H (p) (the bar means the averaging over ¢ € T" ) and A! =
A + €Aa(p) with some operator Aa(p) constructed in terms of the operator Fz(p). The
function (25) is of the same form as (23} and in general the assumption (24) is fulfilled
for function A!(p). Now HessA! is of order ¢ and the norm of the inverse map w — p is
of order ¢~!. Following the scheme of item A) one has to pass to the parameter w. After
this the perturbation is of order £~ x €2 = ¢ and Theorem 1 is applicable provided the
change of variables is analytic. The exact formulaes (see e.g. {P1] and Part 3 below) show
that the normal-form transformation is defined as a series with some regular numerators
and with denominators of the form D(s) = s;A; +... + syAn. Here N is an arbitrary
natural number and

3< i+ ...+ sn| 4,38 # 0, |sn41] +... Hsn] £ 2
So if
[D(s)| = C~* (26)
for all s as above, then the scheme works and one can use it to prove the existence of an
invariant torus of the perturbed equation at a distance of order ¢ from the unperturbed
torus.
The condition (26) is not very restrictive because it holds for typical sequences {};}

satisfying assumption 2) of Theorem 1. Now we prove this statement for d; > 1. To do
it let us suppose for a moment that V > n 4+ 1. Then

|D(s)] 2 [Aag1Sntr + -+ Awsn| = st + ...+ Aasa] 2

xiil
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So (26) holds with C' = 1 if N is greater than some Ny. Therefore the inequality (26) holds
if D(s) # 0 for the finite set of resonance relations consisting of all admissible relations
with N < N, (one can choose C~! equal to min{l, min{|D(s)| |N < No}}).

This scheme was mostly proposed by Poschel in his work [P1] devoted to finite-
dimensional systems, where he also conjectured that it may be used to study infinite-
dimensional systems. We have a few doubts that described above infinite-dimensional
realization of the scheme via Theorem 1 may be done without too much efforts, although
this work still has not been done.

C) On the integrable equations of mathematical physics

One of the main achievements of mathematical physics during the last decades was
the discovery of theta-integrable nonlinear partial differential equations (see e.g. [DEGN],
[Nov]). Such equations are quasilinear Hamiltonian equations of the form (9). They
possess invariant symplectic 2n-dimensional manifolds 72" such that the restriction of
the system (9) on 72" is integrable. So 72" is symplectomorphic to T} x B,, P C R",
and in coordinates (g, p) the restriction of the system onto 7" has the form

¢=Vh(p),p=0.

Therefore 72" is foliated into invariant n-tori T"(p) = {(¢,p)|p = const} filled with
quasiperiodic solutions ug(t) = (¢ + tVh(p), p). The question is if the tori T"(p) survive
under Hamiltonian perturbations of the equation. To formulate the corresponding result
we have to consider variational equations about the solutions ug(t):

b = J(VK(uo(t)))v

and to suppose that all these equations are reducible to constant coefficient linear equa-
tions by means of a quasi-periodic substitutions v = B(t,p)V (B is a linear operator in
Z quasiperiodically depending on ¢). It is proved (see [K3] and [K7], [K8]) that under
the reducibility assumption the quasilinear equation (9) near the manifold 7%" may be
written in the form (14} with

H = h(p) + i< A(p)y,y > +O(ll v ")

A perturbed equation under this reduction takes exactly the form (23). So as in item
A) one can prove that in a nondegenerate situation most of the tori T"(p) survive under
perturbations.

For an exact realization of this scheme for a perturbed Korteweg—de Vries equation see
[K5] and for a perturbed Sine-Gordon equation see the forthcoming paper of R.Bikbaev
and the author. The finite-dimensional version of this result is of interest also. One can
treat it as a version of Kolmogorov’s theorem for lower-dimensional invariant tori, see

K7).
3.3 Last remark

Above we have proposed as an explanation of the recurrence effect of FPU-type in infini-
te-dimensional Hamiltonian systems, the theorem on the preservation of most of quasi-
periodic solutions under Hamiltonian perturbations. It is well-understood however that

Xiv



long-time regular behavior of solutions may be explained by means of an averaging the-
orem as well. In a finite-dimensional situation Nekhoroshev’s theorem (see [N], [BGG],
[Lo]) suites this purpose very well. For infinite-dimensional systems with discrete spec-
trum versions of this result are known only for systems with short range interactions
({W3],[BFG]). We are rather sceptical that there exists a version of Nekhoroshev’s theo-
rem applicable to all solutions of a nearly-integrable nonlinear partial differential equation
of Hamiltonian form.
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Part 1.

Symplectic structures and Hamiltonian systems
in the scales of Hilbert spaces

The following notations are used: for Hilbert spaces X, Y, Z the norms are denoted

by |*Ix, I-ly, |*|z andinner products by (-,-)y, {-,*)y, {*,*)g; disty —
distance in the space X ; for domains OXCX, OYCY the space of k—times Fréchet

differentiable mappings Oy — Oy, is denoted by C]‘(OX ;0y) and
C(Oy ;0y) = C%(04 ;0y), CX(O5 R) = CK(O4) Yk 20 for ¢ € C(Oy ;0y) the
tangent (cotangent) mapping is denoted by ¢*(¢5*) (tangent spaces T Oy, TyOY are

* *
identified with X and Y, cotangent spaces T, Oy, Ty Oy are identified with X and
Y through Riesz’s isomorphism). For a mapping G : OX — OY we denote by
Lip(G) = Lip(G : Oy — O) its Lipschitz constant,

16(x, G5l
1x;x9 Ix

Lip(G) = xsig
1

1. Symplectic Hilbert scales and Hamitonian equations

Let Z be a Hilbert space with inner product {-,- )Z and {Z |s €R} a scaleof
Hilbert spaces (see [RS1], [RS2] with following properties:

a) the Hilbert space Z, is densely inclosed in Z_ if 8, > s and the linear space
1 2
Z,=NZ, is densein ZSVs;

@

b)Zy=72;

c) the spaces Z, and Z_ are dual with respect to inner product (-, -)Z :

The norm (inner product) in Z, will be denoted by -1l s ({(-,") g) - In particular
|-llg=1-1 and {-,-}y=1{",")5 - The pairing between Z  and Z_, will be
denoted (-,-)0 or (-,-)Z :

Let J:2Z ——Z  be alinear operator such that J(2Z ) =12, and

d) J determines an isomorphism of the scale {Zs} of order d 3 2 0, i.e. for every
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s €ER J may be extended to a continuous linear isomorphism J: 2, —— 2., ;
J

e) the operator J with domain of definition Z_ is antisymmetricin Z, i.e.
(le,zz)z = —(zl , Jz2)Z Va,20€Z .
Let us denote by J the isomorphism of order —d; of scale {Z} :

T=—0) 2 —5— 2 Vs ER (1.1)

s+d ]

Lemma 1.1. The operator J: Z — Z4. CZ is anti selfadjoint in Z .
J

Proof. Let x,y €Z  and Jx=x;,Jy =y, . Then Jxl =—x, ]yl = —y and

(xlyjY:[)z = _(Jx:y)z = (x’J}')Z = -<]x11y1)z .

The operator J : Z —— Z is continuous, and the space ZCD is dense in Z , 50 the lemma
is proved. -

Let us introduce in every space Z_ with s 20 a2-form a= (J dz,dz)Z . Here by
definition

(T dz,dz)Z [zl,z2] =(J zl,z2>z v 2,29 € Z, (1.2)
The form a is closed and nondegenerate [A,Ch—B].

Definition. The triple {Z,{Z8 [s €ER}, a = (ZT dz,dz)} is called symplectic Hilbert
scale (or SHS for brevity).

Example 1.1. Let z=mgxmg, Z,=2%Vs and J:Z—Z, (p,a) — (—a.p)-
In this case J°=-E so J=—J""=J, d;=0 and

a = (Jdz,dz),, = (J dz,dz), =dpAdq .
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Properties a)—e) are obvious and we obtain the classical symplectic structure for
even—dimensional spaces [A].

Example 1.2. Let Z = Ly(S") x Ly(8"), §' = R/2#T, be a space of pairs of
square—summable periodic functions (p(x), q(x)) . Let Z = Hs(Sl) x HS(SI) . Here
Hs(Sl) is the Sobolev space of periodic functions, s € R [Ch—B,RS2]. Let us take

J:Z,— L, (p(x),q(x)) —— (—a(x),p(x)) -
Then J=1J is an isomorphism of scale {Z_} of order zero. Properties a)}—¢) are evident.

Example 1.3. Let

27
z, = B3(S") = {u(x) € B¥(S)] ju(x)dx =0} .
0
Let us take J = d/dx. Then J is an isomorphism of the scale of order one and

J=—J )_1 is an isomorphism of order —1 . Properties a)—e) are evident again and we
have got SHS corresponding to symplectic structure of KdV—equation (see below and [A,
Appendix 13; N]).

For f€ CI(OS) let Vi€Z _g e the gradient of { with respect to the inner product

(')
(Vf(u),v)z = Df(u)(v) = 'g? flutev)| .- Vv e O -

The mapping O, —Z__, u—— Vf(u) , is continuous.

For HE Cl(Os) the Hamiltonian vector—field Vg is the mapping

Vg:V,—7Z_ = lsJ Z, defined by the following relation [A, Ch-B]:

a(€,Vy(v)) = (¢,VH(u)), VEE€Z



or

(e Vy(u)) g = (EVEQ)), VEET .
So Vg(u) = JVH(u) and
u = JVH(u) (1.3)
is the Hamiltonian equation corresponding to the hamiltonian H . Let us denote
Dy(Vg) = {u € O | Vy(u) = IVH(u) €Z.} .

Definition (cf. [B]). A curve u(t), 0 <t < T, is called a strong solution in the

space Zg of the equation (1.3) iff u € cl(0,T] ;Z,) , u(t) € D(Vy) Vt € [0,T] and Vi
equation (1.3) is satisfied. A curve u € C([0,T];Z,) is called a weak solution of (1.3) iff it
is the limit in the C([0,T];Z )—norm of some sequence of strong solutions.

Definition. Let O: C 08 be a domain such that for every u, € O: there exists a

unique weak solution u(t) = St(uo) (0 €t T) of equation (1.3) with initial condition
u(0) = u, - The set of mappings

t. Al t
§:0,— 0, uy— 5(ug) (0<t<T)
is called the "local semiflow of equation {1.3)" or the "flow of equation (1.3)" for short.

Weak solutions of equations (1.3) are generalized ones in the sense of distributions
(see [L] for systematic use of this type of solutions):

Proposition 1.4. Let us suppose that for some 8 ER, Lip(VH : O, — Z, )J<o.
1

Then a weak solution u(t) € O, (0 <t <T) of equation (1.3) is a generalized solution

and after substitution of u(t) into (1.3) the left and right hand sides of the equation

coincide as elements of the space D’((0,T);Z, ) of distributions on (0,T) with values in
2

ZS2 ) By = min{s,sl-dJ} .



Proof. By definition of weak solution there exist a sequence of strong solutions u_(t)
such that u 11( «)—u(+) in C([0,T] ;Xs) . For this sequence

fln——+ u in D’((O,T);Zs) ,
JVH(u, ) — JVH(u) in C([0,T];Z _, ). After transition to the limit in equation (1.3)
1 7]

one obtains the result. -

Example 1.1, again. Let H € cl(th x RY) . The Hamiltonian equation takes the
classical form:

If HE Cz(lR2n) then a weak solution is a strong one and it exists for some T > 0,
T = T(p(0),q(0)) -

Example 1.2, again. Let us consider the hamiltonian

T

B=1[ (0, 0%+q (0% + V@@ + ax?) + xpx)? + a=)?)dx

ob—

with analytical function x and smooth function V. Then HE€ CI(ZS) for s 21 and

2, 2
VE(p.Q) = (-p, + V() + ¥’ (p*+a%p, —a + V(x)a(x) + 1’ (° + a*)a) -
The equation (1.3) takes now the following form:
p=q, —V(x)a-x'(p*+a)q ,
. 2, 2
q=-p, + V(x)p + x"(p“+a")p .

Let us denote u(t,x) = p(t,x) + iq(t,x) . The last equations are equivalent to nonlinear
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Schrédinger equation with real potential V(x) for complex functions u(t,x) :

i =i + ViJu + 1 (@) %))
' (1.4)
u(t,x) = u(t,x+27) .

The problem (1.4) has an unique strong solution u(t,x), u(t,*) € Z ,
0<t<{T="T(u(0,x)),if s21 and u(0,x) € Z,., (we interpret here Z_ as the Sobolev
space of periodic complex—valued functions), and (1.4) has an unique weak solution for
0<t<T if u(0x)€ Z . For the simple proof see part 3 below.

Example 1.3, again. In the situation of example 1.3 let us consider the hamiltonian

Then H € CY(Z)) for s> 1 and VH(u(x)) =—u,__ + 3u”. So now equation (1.3) is the
KdV equation-

u(t,x) = ~u__ +6uu_ (1.5)
for periodic in x functions with zero mean value:

27
ut,x) = u(t,x+27), J u(t,x)dx =0 (1.5%)
¢

It is well known [K] that for s > 3 the problem (1.5), (1.5”) has an unique strong
solution u(t,x), u(t,-) € 2Vt , for every initial condition u(0,x) = u,(x) € Zg. 3
has an unique weak solution for every uy(x) € Z, . The flow of problem (1.5), (L.5%)
defines a2 homeomorphisms of phase space

and

Stlzs—-—-N-——)sttZO V823
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It is worth mentioning that any Hamiltonian equation (including (1.4) and (1.5),
(1.5”)) may be written down in a form (1.3) in many different ways. For this statement see
below Corollary 2.3.

2. Canonical transformations

Let {X,{X.},a"} and {Y,{¥.},e¥} betwo SHS with 2-forms

oX = (J'de,dx)x and oY = (J'Ydy,dy)Y respectively; let JX (JY) be an
isomorphism of scale {XS} ({Ys}) of order —dJX (-—dJY) ; d_]x’ dJY 2 0. A mapping

é: O)sF —_ O:. isa Cl—djffeomorphjsm of domains O}s( C Xs and O;{ CY
X Y X %X Y %y
(SX 20, By 20),if ¢ is one—to—one onto O:IY and
seclo} ;0] ), ¢ echoy 0} ) (2.1)
X Y Y "X

Definition. A Cl—diffeomorphism ¢ Oi{ — OE is a canonical transformation
X Y

iff it transforms the 2—form aY into the 2—form ax :

pa =a . (2.2)

Proposition 2.1. A C'—diffeomorphism ¢: 0% ——0Y s canonical iff
X Y

*
¢ T¥g, =TX (2.3)
(the identity takes place in the space L(X_ ;X__ )).

SX’ -'SX

Proof. From (2.2) one has for v € oX and £€,6,€EX
8x 1'>2 Sy

(T 4], (M Exdy = (TX €160y - (2.4)



Therefore

(6 TV 00 E) 5 = (X €160 x

for all ¢ 1,52 € sz . This identity implies the stated assertion.

As in the finite—dimensional case [A] a canonical transformation transforms
solutions of Hamiltonian equation into solutions of the equation with transformed
hamiltonian:

Theorem 2.2. Let ¢: 0)3( — 0\: be a canonical transformation and let

X Y
y: [0,T] — Oys' be a strong solution of the Hamiltonian equation
Y

7=V () =378, B  ecloY_m) . (2.5)
H Y
Then x(t) = ¢—1(y(t)) is a strong solution in O)s( of equation
X
. Xy X X _ Y
x=VHX(x)=J VE*(x), H*=H o ¢ . (2.6)

If the mapping ¢_l 0¥ O)s( is Lipschitz and y is a weak solution of (2.5) then

'y X
x i8 a weak solution of (2.6).

_ *
Proof. For X =HY 0 ¢ and x=¢ Loy VEX=¢ VHY. Then
x:[O,T]—«»Oi( is ¢l and for y=gdox
X

pox =y =3 VEY(y) = 3¥(¢) ! VEX(x) (2.7)

or



x = ()" 19Y(") ! VEX (%) (28)

(the right—hand side is well defined because JY(ng,k)_1 VHX(X) € C ([o,T]; OEY) for

(2.1)). By (2.3), 3X = (4 LY(¢) L, hence
x = I VX (x)
as stated.

The second statement of the theorem follows from the first one and the definition of a

weak solution because the mapping ¢_1 is Lipshitz. -

Let {Y,{YS},aY} be a SHS, let L be an isomorphism of scale {Y_.} of order
A< %dJY , L:Y,—— Y, , V5. Let us define a second SHS {X,{X_},a™} where

*
X=Y, X, =Y, and a® = (Fdxdx)y, 7 = L'TVL . The operator IX is
antisymmetricin X and it defines an isomorphism of the scale {X_} of the order —

~d_y +2A €0, 50 the new triple is a SHS indeed. Let O™y bea domainin X  and
8 8

J
Y X Y_ X . X Y . ,
OsY_L(OsX)CYsY’ § =8 —A . The mapping L.OsX—aOsY is canonical

due to Proposition 2.1. So we have the trivial

Corollary 2.3 (change of symplectic structure). Let HY € CI(OYY) and let
8
y(t) € OYY (0 £t £T) be a solution of equation (2.5) (strong or weak). Then
§

x(t) = L—ly(t) is a solution of Hamiltonian equation
. — ¥ _
x =XV ), X =YL T,

with a hamiltonian H* = HY o L € C(0%y) .
8
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Let {X,{X.}, = (Jdx,dx)y} bea SHS, o: and O, be domains in X,
0; CO, and

d istxs(O:;Xs\Os) >6>0 (2.10)

Let H € CX(0,) and
(2.11)
1 .
VHEC (os;xs+dJ) , IVEE)|| <K, LipdVE: 0, — X ) <K ,
Let us consider the Hamiltonian equation
x = JVH(x) (2.12)
From (2.10), (2.11) one can easily obtain that the flow of equation (2.12) defines mappings
ste CI(O:;OS) Vi € [0,T] , T = /K, and every st isa Cl—djffeomorphism onto its
image.
Theorem 2.4. For every 0 <t { T the mapping S* is a canonical transformation.
Proof. One has to prove that
8 e(®) [7,,7,] = a[7,7,] Vx € O} V. m €X
N»M9) = @L7y,7, g 779 5
Since S0 = Id it is sufficient to prove that

(S')*a(x)[ﬂl;ﬂz] = const (2.13)

Let x(7) be the solution of equation (2.12) for x(0) = x , and 17-|(t) (j=1,2) bethe
solution of the Cauchy problem for linearized about x(+) equation:

7(r) = ITE(x(M)7(7), 70) = m; . (2.14)
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Then (ST)*(Z)ﬂj = 171(1') , j=1,2 and
(™) a(x) [np,my) = aln'(nn¥(7)] =

(2.15)
= (In' (). (")) = U7)

The function €(7) is continuously differentable. So (2.13) is equivalent to the relation
d/dr £(7) =0 . One has

%? ()= ;71=’72)x +(J ’Ils;iz)x =
= (QU(VE).()n" 12y + (T L I(VE)(x)rD) g =
= —((VE}() 7 12 5 + (L (TE)(x)n®) 5 = 0

because operator J is anti selfadjoint (Lemma 1.1) and operator (VH), is selfadjoint.
The theorem is proved. -

1 : -
Let H;€C (0,), VHj € C(os,xsj) (i=12).

Definition. Let s; + s, > d; . The Poisson bracket of the functions H,, H, is the
function {H;,Hy} € C(O,) defined by

{H,,H,} = (JVH, ,VH,) .

Let 0 < e<1 and HEC%0,), let conditions (2.10), (2.11) be satisfied and
s* € c'(01,0,), 0<t < T = §/K, be the flow of the equation

x = e JVH(x) .

Theorem 2.5. For every G € Cl(OS) G(St(x)) = G(x) + te{H,G}(x) + 0((€t)2)
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Vx€0;, VO<t<T.

Proof. From the conditions on H it is easy to see that

s x) = x + teJVH(x) + O(te)® in X,

G(S*(x))-G(x) = {VG(x),5*(x)-x) yx + O[IS*x—x]||? =

= 1e(VG(x),IVE(x)) y + O(et)?

and the theorem is proved. -

3. Local solvability of Hamiltonian equations

Let {Y,{Y.},a} beSHS,let O  bea domainin Y  and let

2 1
H€CY0,), H(y) =5 (Ay.y)y + Hy(y) -
Here A is an isomorphism of scale {YB} of order d, 20;

A:YS—N—»YS__dA VSER , (3.1)

and the operator

A:D(A)CY—Y, D(A)szA

is selfadjoint. So V(%- (Ay,y)Y)(y) = Ay, and the Hamiltonian equation corresponding to
H has the form

7 = J(Ay + VE,(7)) (3:2)
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We shall prove a simple theorem on the local solvability of equation (3.2) which will
suit well to our aims. To formulate the theorem let us suppose that

Lip(JVHO : Os — Ys) {K (3.3)
for some 8 2 0 and let 02,01 C Ys be domains with the following properties:
o’colco,, disty (0L,Y,\0)>6>0 . (3.4)
8

Theorem 3.1. Let
Aly=JAy VyeY_ (3.5)

(Ay1y) g = (3pAVg) o » (I979) e = (719790 Vv €Y, -
(3.6)

Suppose that every strong solutions y(t) of equation (3.2) with initial condition
y(0) = o € 02 stays inside ol for 0 <t < T. Then for Yo € 0%n Ys+d ,
1

d; =d, + dj, there exists a unique strong solution y(t) for 0 <t< T, and for Yo € 02
there exists a unique weak solution y(t) for 0 <t < T.

Proof. Let us continue the mapping JVH0 : O1 — Ys to a Lipschitz one
V: Ys — Ys . One may take for example

x(y)IVH,(y), y€O
v ={oy¢ o, s

where x(y) =46 1 max (0, 6—disty, (y;Ol)) (see (3.4)). The function y is Lipschitz, it is
5

equalto 1 in O' andto 0 outof O .So Lip(V) <K' and V|01=JVH0.

Let us consider the equation
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y = JAy + V(y) (3.7)

Its solution y(t) is a solution of equation (3.2) as long as y(t) € Ol . Let us consider the
linear equation

y =JAy , (3.8)
too. From (3.5), (3.6) it follows that

(AJy y9) s = —(vAdyg) Yy €Y

so by repeating the proof of Lemma 1.1 one can obtain that operator (AJ )_1 (Y, — Y
is anti selfadjoint. So the operator

AJ:D(AJ)=Ys+dICYs__'Ys

is anti selfad joint, too. Due to Stone’s theorem [RS1] for y(0) = Yo €Y, 4d equation
1

(3.8) has a unique strong solution and the mapping

T

ST:Y ;—»Ys+d1,y(0)h—-iy(T),T>0,

s+d1

is isometric with respect to the Ys—norm. Equation (3.7) is a Lipschitz perturbation of
(3.8). So it has the unique strong solution y(t), t 20, for every y(0) € Y, 44, andthe
1

unique weak solution for every y(0) € Y (see [B]).If y(0) =y, € 02 then due to the

theorem’s hypotheses such a solution does not leave domain ol for 0 <t<T and for
sucha " t" itis the unique solution of equation (3.7).

The theorem above reduces the problem of solving equation (3.2) to the problem of
finding a priort estimate for its solutions.
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4. Toroidal phase space

Let us consider a toroidal phase space of the form ¥ = T x R® x Y . Here
T™ = R"/2x I" is the n—dimensional torus, Y = Yy, {Yg|s €R} is ascale of Hilbert

spaces which satisfies properties a)—) (see above). Let us denote ¥, = T" x R™ x Y.
Every space . has a natural metric disi;B and a natural structure of a Hilbert manifold
with local charts

K(d') xR" x Y, K(¢") = {q¢ €R® |qj--q?| < = Vj}
(see [Ch—B]). So
n_ oh _
T, # 2R xR xY =2 Vue€ Yo
Let J¥ bean isomorphism of the scale {Ys} with properties d), e) and

JT

:R" xR — R" xR, (q,p) —— (-p,q) -
Let us denote by J ¥ the operator
_+T Y., _ /pn_pl _ ¢pb_ph
14 =1%3Y 2= R"<R )x Y2, g = (RSB x Y, g
and introduce in /N s 2 0,a2form

o = (]}/du,du)z, Iy=—(.l3/)_l, T, #2Z,

Definition. The triple { #,{ #,},a#} is called toroidal symplectic Hilbert scale
(TSHS).

Let O, beadomainin ¥ and HE Cl(Os) . Then the Hamiltonian equations
corresponding to H have the form
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. _gH . _ _OH i .Y
Qj—yp_js P;= 'aq—j(lﬁJSn).Y—J vyH (4.1)

The definitions of strong and weak solutions for equations (4.1) are analogous to those for
equation (1.3).

The Poisson bracket of two functions H,, H, with H €C (O ),
VijEC(O Y. ) (1=12), 5 +s2>dJ,ta.kestheform

.|
n
dH. 6H dH, 6H
1772 1772 Y
{H11H2}(QJPJ) = z yq—J'ap—J‘l"ap—J-aq—J + (J VyHI’ v H2>Y .
=1

The results of section 1-3 readily extend to canonical transformations and
Hamiltonian equations in TSHS. We'll formulate analogs of Theorems 2.2, 2.4, 2.5 and 3.1
only.

Proposition 4.1. The statements of Theorem 2.2 remain true if anyone of the spaces

X, Y is replaced by a toroidal symplectic Hilbert space (with equations of motion replaced
accordingly).

1 R 1
Let 08, Os be domains in Yo Os C Os and

dist %(01;%\05) >6>0 . (4.2)

Let H€C%0) and Vg = (VpH,—VqH,JYVyH) be corresponding Hamitonian
vector—field. Let us suppose that Vh € Cl(Os;Zs) and

|Vg(a.p.y)| <X Y(gpy), Lip(Vg: O, — 2Z) <K (4.3)

Then the flow mappings st . O: —0 g exist for 0t <T=§/K and every st is

Cl—diffeomorphism on its image.

Proposition 4.2. For every 0 €t < §/K the mapping S is a canonical
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transformation.

Let conditions (4.2), (4.3) be fulfilled and S* € C'(0§;05) be the flow of equation

%g (a,py) = € Vgx(a.py) -

Proposition 4.3. For every G € C1(0,) G(S*(h)) = G(b) + te{H,G}(b) + O(et)?
Vh=(qpy) €0;, VOSt<T=§/K .

Let in (4.1) H = % (Ay,y)Y + HO(p,q,y) and let the linear operator A be the same
asin part 3. Let 01, 0%, O_ be domainsin #_ , 02C Ol C O and suppose
5 8 8 5 8 3 8

inequality (4.2) is fulfilled. Let us suppose that Lip(Vg : 0O g Zs) {K.
0

Proposition 4.4. Let us suppose that relations (3.5), (3.6) are fulfilled and that every

strong solution of (4.1) with initial point [70 = (qo,po,yo) € 03 stays in domain Oé for
0<t<T. Then for f]060§n ys+d1’ d; =d, +dj, and for 0<t<T thereexists a

unique strong solution of (4.1); for f)o € 03 , 0 <t < T, there exists a unique weak
solution of (4.1).

The proofs of Propositions 4.1-4.3 are the same as the proofs of the corresponding
theorems.

5. A version of the former constructions

All construction of the sections 14 have natural aralogs for the scales of Hilbert spaces
depending on an integer index, i.e. for the scales {Z_|s € I} . SHS and TSHS with
discrete scales {Z.} are sometimes more convenient to study Hamiltonian equations of
form (3.2) with integer dy, d; . For example, KdV equation (1.5), (1.57) (dy=1,d, =
2) and nonlinear Schrodinger equation (1.4) (dy=0, dy =2).

All the statements of sections 14 have natural analogs for discrete scales. The proofs are
~ the same.
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Part 2.

Statement of the main theorem and its consequences

The following notations are used: for Hilbert spaces Y and Z the norms are denoted by
||y |-|5 and inner products by <:,>y , <>y ; dist, — distance in the space Z .

The usual norms in R® and C® (n > 1) are denoted |-| . For metric spaces B,,B,, for
a subset Q1 C B, and a mapping h: Q1 — B, we denote

dist (h(5;)ih(by)
di1 by;b
‘“‘Bl( 1:%9)

Lip h = Lip(h: Q; — B,) = sup
by#b,

If the space B, is a Banach one witha norm |- , we denote
2

) P e {sup [B0)[n SLiph}.  (O.1)
= max {sup , Liph} . )
B,y bEQ, B,

2

complexifications, let Vjc be an (open) domain in Bjc j=1,2 . We denote by

.AR(V ¢, V2c) the set of Fréchet complex—analytical mappings from Vlc to V2c

. C C .
Let B,,B, be Banach spaces with norms |'|B1’ |.|B2 , let B1 B be their

which map Vlc n B, into V2c n B, . Let M be some metric space. We denote by

A RM (Vlc ; V2c) a class of mappings G: Vlc xM— V2c with the following
properties:

) G(;m)€ AV, V,0) VmEM,
ii) themap G(b;-): M — V,© is Lipschitz Vb € V, and
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\ .
1 ;M _ M, Lip
G T =sup _|Gb;)| R <m (0.2)
€1 8, bEV,© | ',

(the norm in B,° is denoted by [-|g ).
2

For domains Vy, CY,V, CZ we use standard notations Ck(VY ; VZ) (k€Z,k2>0)

*
for the spaces of Fréchet—differentiable mappings ¢ :Vy — V., and notation Px(p )
for tangent (cotangent) map.

For abstract sets 20, 7, for a subset B of their product 2% x J and for I € J we denote
by B[I] asubset of 2 of the form

B[] = {a € %|(a,]) € B} (0.3)

In the notations of functions and mappings we sometimes omit a part of arguments; we
denote by C,CI,C2 etc. different positive constants which arrive at estimates and denote
by K,K1 etc. constants in the assumptions of theorems.

1. Statement of the main theorem

Let {Z,{Z|s € R}, a=<J%z,dz>,} beasymplectic Hilbert scale as it was defined

in Part 1. It means that Z is a Hilbert space, {Z.} is a scale of Hilbert spaces with
*

norms "”s and inner products <>, Zsl C Zﬁ2 if 5,255, 2, isdualto Z  with

respect to scalar product <>q and Z0 =Z. JZ is an isomorphism of scale {Zs} of

order —ngo, ie. JZ:ZS——»Z VsER.Theopera.tor]Z 12— 124y CZ is
J

~ x~:.+dJ

supposed to be antisymmetric in Z . The operator J Z _ —(:IZ)_1 is an isomorphism of
the scale {Z.} of order d; , its restriction on Z is aniselfadjoint (and possibly

unbounded). The 2—form a = < szz ,dz > 7

Z - Z
<J%z,dz > 4 [2),2)] =< T72,25 > 5,
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is continous, antisymmetric and nondegenerate in any space Zs’ 8§20 . Now every
Zs(s 2 0) is a linear symplectic space. See Part 1 for more details.

Let us suppose that the operator JZ depends on a vector—parameter a €% , A is a
bounded open domain in R® . So the symplectic form a depends on the parameter a ,
too. Let Az(a.) be a self-adjoint operator in Z dependingon a €A and let Va€ 2
Az(a) defines an isomorphism of the scale {Z .} of order d, 20,

A%@) 2,2, Vs€R (1.1)

—dy

Let us suppose that there exists a basis {(pji| j2 1} of the space Z with the following
properties:

i)  there exist positive numbers Aj(s), 8 €R, j € N, such that Aj(_s) = (/\j(s))_1 Vi,s,
K1 < Aj(s) <K Vi>1,Vs€R, (1.2)

and {:pji Aj(_s) |j2 1} is a Hilbert basis of the space Z, Vs €R,i.e.

1,(-) 72, (-s : -
<o "j( ),gok Ak( )>Zs=6j,k 601,0,2 Vijk €N, Vtrl,az::ﬁ,
i) I4a) T =727 @) T Vi2 1, Va (1.3)
+ + .
A%(a) ¢ = 2 A(a) 9 Vi, Va, (13)

A

Here real numbers A jJ , A; are positive for j large enough:

J
A.A(a) >0 )«.‘](a)>0Va Vi2j (1.4)
J ] J H _10 .

Let us consider a hamiltonian
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H#(z;a,6) = % < Az(a) z,z> 7 + € H(z;2,€)

depending on a parameter a € A and a small parameter ¢ € [0,1] . The corresponding
Hamiltonian equation (with respect to 2—form a(a) ) has the form

7 = 3%(2) (A%(2)z + € V H(z:a,¢)) . (1.5)

Here and in what follows, V is the gradient in z € Z with respect to the scalar product
<-,>5 . Equation (1.5) is a perturbation of linear Hamiltonian equation

7 = 15(a)A%(a)z (1.6)

In view of conditions (1.3), (1.3”) the spectrum of operator Jz(a) Az(a) is purely
imaginary,

o@P@)A%@) = {1 A@[52 1}, 33 = @) 2 @).
It is supposed that the functions
a'-—-’lg(a), a'—-*/\‘}‘(a) , i€n
are C’—smooth and for j<n, a€1", |a| <2
193 M@ + 103 25(a)] <K, (L7)
and the mapping a+—— w = (Al,...,An) € R" is nondegenerate at some point ag € A,

| det( 9w/ ba,)(ag) | 2 Ko>0 (jk = 1,...,n) .

0
(18)

Let us denote
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Vo= Njtag), X0 = Aj(ag)» Ajg = Afag), wp = ula) (19)

Let us set 20 C Z be a 2n—dimensional linear span of the vectors {go? |j < n} . The space

20 is foliated into tori T(I) which are invariant for linear equation (1.6),

n
2 2
T(I) = { 2 a';-'qo:'i' + ajqul a'}' +a; = 2 I.i 20,1£j<n} . (1.97)
=1

A torus T(I) with I.>0 Vj is n—dimensional, T(I)~T" and it is filled with
quasiperiodic solutions ofJ the form

Q= ufa) . (1.10)

Here q is a coordinate on T(I),

q; = Arg(a'.li’ +i aj_.) , j=1,..n .

Let
EO:Tn—eZOCZ
I

be an imbedding identifying a point of T" with a point of T(I) having the same
coordinates.

Let us consider a family of tori {T(I)|I € J} where

JC{1ER" K] < <Ky, j=1,..0} (1.11)
is some Borel set (possibly J consists of the only point, J= {I;} ). Let us denote

g=U{T()|I€ J} .
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Let us fix some number d,

and let choose a domain 03 in the complexification of the space Zd,

ogc zg = zdgc ,such that 9 C og and
distzd( 7;25\09) 2 K . (1.13)

We suppose that the function H may be extended to a function
H:0%x 2% x [0,1]] — € which is complex—analytical on z € 03 and Lipschitz on
a€%,ie HE £y (050) Ve.

Theorem 1.1. Let the conditions mentioned above hold together with
1) (analyticity and quasilinearity): for some dg €R such that

and for all € € [0,1]

oG 02
|H(-;-,€)] © <Ky, [VH(55-6)]4 0 <K (1.15)
d-dg
(see (0.2));
2) (spectral asymptotics):
d; =d, +d; 21
and there exists an asymptotic expansion for the frequencies A i0° j—o:

d, .d d d
| 4Ky i IREE bl Il RS O I (1.16)

here K, >0, r21 and dl>d1’1>...>d1’r,d1—1>d1,r;
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d d
R R PHOTES SR/

d d
R AESPHOTES SR/ PEY

d d d
. .A . S | . ) 1
LlPAjSKIJA,LIPAjSKIJJ,LlijSKIJ ,1';

Then there exist integers j;, M, such that if condition
3) (nonresonance):

|£1A10+a2A20+...+£j1Aj10| >Ky>0

J
Veer l£|gMplg|gHﬂ-hA-Mh|52

(1.17)

(1.18)

(1.19)

(1.20)

is satisfied, then for sufficiently small € > 0 there exist &4 > 0 (sufficiently small and

a
independent from ¢ ), a Borel set B 60 of vectors (a,I),

a a
8,008 0 =%Gay6.) x JUay64) = {2 €U| |a-ay| < 6},
and analytical embeddings

€

) (a,0)

with the following properties a}-d):

a
.l 0 4 =
T — ch, (a,]) € B, d. = d+d\—dp-1

a
a) mes B 0[I] —— mes A(a),04)
€ —

uniformly with respect to I € J (see (0.3));

b) the mapping

(1.21)

(1.22)

(1.23)
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2 - T xB __’Zd , (qal)n———;}:(al)

0 0
is Lipschitz and is close to the mapping ) : (q;a,]) —— ) I(q)

Ce;

n, a0
|2 2[)I']I‘ B Llp<

C

€ a
c) every torus T , (3I)€eB 0 , is invariant for the equation (1.5) and is
a,l €

€
filled with weak in Z, solutions of (1.5) of the form 2€(t) = 2( )(q+w’t), here
I

b

qQ€ETY, v’ =u'(aL,e) ER™ and |w—w’| <Ce ;-
d) all Liapunov exponents of solutions z€(t) are equal to zero.
The theorem will be proved in a part 3 of the text.

An immediate consequence of the stated result is a strong averaging principle for
nonresonant systems of the form (1.5):

a
Corollary 1.2. Under the assumptions of Theorem 1.1 for every (a,I) €0 eO’ q€T", and

0
for all t a curve t-——»Z (q+w’t) for € small enough is Ce—close to some weak
I

solution of (1.5). Here »’ is an averaged frequency vector, |w’—w| < Ce.

Remarks. 1) From the second estimate in (1.15) one can see that the order of nonlinear
operator in equation (1.5) is equal to dy+dy . The order of the linear one is equal to
dj +d, . So the condition (1.14) of theorem 1.1 indeed means the quasilinearity of
equation (1.5) because the order of the linear term exceeds the order of the nonlinear one at
least by one.
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2)If d, <d ~d; = d-d;—dg—1 then the rhas. in (1.5) with z(t) = z5(t) belongs to
C([0,T]:Z4 ) - So 2€ € Cl( [0,T];Z, ) is astrongin Z; solution of (1.5).
a a a

3) The numbers jl’ M1 in the assumption 3) of Theorem 1.1 depends on K, KO"K2’

K%, dl’ d1 7 dA’ dJ, dH, d,n and _10 only. The maximal possible values of ¢, 64 and
the rate of ’convergence in (1.23) depends on the same quantities and on K,.

€ n € * 3
4) All the tori (T™) are isotropic, i.e. a=0 V(@I €B °.
(a,I) (a,I ¢

5) The frequencies {A jO} are ordered asymptotically only (see (1.16)). So for a space

70 one can choose any 2n—dimensional invariant subspace of the operator J(a)A(a) .

6) If instead of the condition d; 2 1 a weaker condition d, >0 takes place then the
statements of Theorem 1.1 seems to be wrong in a general case. But the statement of

Corollary 1.2 remains true for 0 <t € ¢! and Cé€” instead of C, with some p>0
(see [K4]).

7) The form (1.16) of a spectral condition is not the most general one we need for our
proof. For example for d1 > 1 it is sufficient t0 demand that

a4 4 41
CT TSN CCT T, [A=451 2C5 V). (1.24)

See [K1] for (1.24) and [K2] for a possible form of a spectral condition with d;=1.For
the profound investigation of this problem see [DPRV].

8) The necessity of the quasilinearity condition dp <d,—1 results from (1.16) (or
(1.24)). Indeed for arbitrary d]%{ >d,—1 one can easily find perturbation H of the form

H =< AP(a,e)z,2 >, , APAZ = AZAP |
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such that the condition (1.15) is satisfied with dg= dé and for the operator

d,-1
Az(a) + AP(a,e) condition I"j +1_"j| 2C,j 1" is broken for some j large enough.

€
9) The analyticity of the tori 2 ( )('I‘n) was observed by J. Pdschel [P1]. In the
a,l
author’s works [K1—K3] only smoothness of the tori was stated.

10) If all the numbers d, dH, d A dJ are the integers then Theorem 1.1 may be
stated in the framework of discrete symplectic Hilbert scales {Z,{Z |8 € Z},a} (see Part
1, part 5).

2. Reformulation of Theorem 1.1

Let us suppose that the boundary @A 1is smooth, the domain 2 is connected, all
eigen—values ,\‘} , A? are analytical functions of a € 2 and

det{ 0/ 82, (3) | 1}, k<n} =0 - (2.1)

For some fixed point a € A we define numbers A’;‘O, A‘}O, A i0 and a vector wy as in

(1.9).

Let us consider some resonance identical relation of a form
s+w(a) + A(a)=0, A=24 pr(@F A () (2.2)
n < = <2. .
sEL, 1< (L], = |8 [+]L]+ +|_£p|_2 (2.3)

Lemma 2.1. Let all the functions A‘}, AA be analytical in 2, d; 2 1 and asymptotic
(1.16) together with assumptions (1.19) and (2.1) take place. Then there exist numbers
M,, j, with the following property: if some identical relation of form (2.2), (2.3) holds and
in (2.2) f,p:ﬁo,then |8] SMz,ijZ.
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Proof. By the assumption (2.1) there exist a point a’ € 2 such that

O < Hon(a")] gy g €O (2.4)

R

for some C . Let Va be a gradient with respect to the usual scalar product in R™ . Then
*
V.(s-{a)) = w (a)s and by (2.4)

1V, (a”))| 2C s (2.5)

Till the end of the proof let us denote by A _(p) zero function: A (p)=0. Then
every relation of the form (2.2), (2.3) with lp # 0 may be rewritten in the following way:

st w(a)* A (a) + An_I_p(a.) =0 (2.6)

Here s'0s or sl=s/2 and n2m<n4p. It follows from (2.6) that

|Ap+p(8) £ Ay (a)} € C;s| and by the assumption (1.16)

d d d
Cyls| 2 (n+p) ' —(n+p) T~m © . (2.7)

It follows from (2.5), (2.6) that Cgl [s] € |V)«m(a)| . So by the assumption (1.19)

d d
5| < Cyl(ntp) M +m 1) . (28)
By (2.7), (2.8)

d d d d

(n+p) '~m ' <C((atp) 4 m 1) (2.9)

d
Since n + p2 m + 1 and the function t 1 is convex it follows that

d

d d,—1
L) L-m 12 )



and

d d d,—1
2(@+p) '-m 12 P @4p-m)m !

By the three last estimates (n+p) + (n+p—m)m $Co((ntp) " +m 7). So
n+p < c! (to prove the estimate one has to use the inequality dy  <d;-1 and to
consider the cases d;, <0 and d, > 0 separately). Now by (2.8) |s| £ c!! and the

lemma is proved with j2 = Cl—n , M2 = c11 . -

Theorem 2.2. Let all eigen—values AA , A‘! be analytical functions of a parameter a € ¥
and conditions (1.2), (1.3), (1.37), (1.7), (1.11)H1.13), (2.1) hold together with
assumptions 1), 2) of Theorem 1.1. Then there exist integers ip My such that if an
assumption

5;4,(a) + 32,\2(a)+...+sjllj1(a) =0
(2.10)

]
VselZ", [s| <My, 1€ |sn+1|+...+|sj1| <2

is satisfied then for every & > 0 and for sufficiently small € > 0 there exists a Borel
subset 2% C % and analytical embeddings

€
. pll ] _
Ea.'r ——.zdc, a €A, d = d+dy—dg-1 ,

with the following properties a)—c):

a)mes W\Al < 5,
b) the mapping
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€ €
é
Y Tkl — 242 (@2) —) L@
is Lipschitz and

x4, Lip

39y

Z, < Cse (2.11)
¢

€ .
c) every torus E (T, a€ Qlf, is invariant for the equation (1.5) and is filled
a .

€
with weak in Z; quasiperiodidc solutions of the form Y (a+w’t) and
a

|o—w’| < Cge . (2.12)

All Liapunov exponents of these solutions are equal to zero.

Proof. By the analyticity of functions A'}, A‘? and by the assumption (2.1) the set
{a €YA| |det 0wj/83.k| > 0} is open and of full Lebesque measure in A (i.e. a measure
of its complement is equal to zero). Let define

%, = {a €| |det b/ 0, | 2t, dist(a, 02 2t} -

Then 2, t— 0, is an increasing sequence of compact sets and U{Qltlt > 0} is of full
measure. So there exists K = K(6) > 0 such that

mes QI\QLKO <7=6/4 . (2.13)

Let us choose J; 2 jo+n, M; 2 M,+2 with j,, M, as in Lemma 2.1. Then by the
assumption (2.10) and Lemma 2.1 there is no identical resonance relation of the form (2.2),
(2.3). So every set

{a€ 91|sl,\1(a)+...+sp/\p(a) $0} (2.14)
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with 1< |sn+1|+...+|sp| <2, is of full measurein A.

Let us take a point ag € QIK . For the remark 3, Theorem 1.1 is applicable with this
0
choice of a, if condition (1.20) is fulfilled with some ij=1ljg»M; =M, , which does

not depend on ag - Let us consider a set

A = A et 8, . 2
i = {3 €| |5)4,(a) +..+ 811’0 AJI,O (a)] 2¢
Y |s| SMI,O’ 1< |sn+1|+...+|sj10| <2} .
As the sets (2.14) are of full measure, then for some tg> 0

mes Ql\ﬁt <7. (2.15)
0

Theorem 1.1 is applicable with arbitrary ag € NY , J= {IO} and a constant K
0 0

in the assumption (1.8) as in (2.13). In this situation for remark 3 &4 does not depend on

a
2y and the set BGO is of the form

% _ %0 3
B, =2 _"x{L}, A" CAUagd) (2.16)

The open balls ®i(a,,6x), 3, €A, N , form a covering of the compact set
0 Ky ™t

M
QIKO n ﬁto . Let us fix some finite subcovering, QIKO n QItO C jgl D j’ D.i = Qt(aoj,ﬁ*) . By
the statement a) of Theorem 1.1

a..
mes Dj\QIGO-‘ <yM Vi=1,..M if €< €(6) (2.17)
For every j=1,...,M let us choose a closed subset D? CD j such that

djst(D?,DE) >6 >0 Vj#k (2.18)
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and
mes(U D\U D‘J?) <7. (2.19)
Let us set
M an:
2= U @ %nD?
j=1 !
and define a map 2 ,a € In Dj , being equal to the map z (1) constructed by
a a,l
"0

an.
means of Theorem 1.1 for a €YU eOJ . This definition is correct because every point a € Qif

0

an-
belongs to only one set 9160-‘ n DJ

€
The statements a)—c) of the theorem are true with this choice of Qif and }: . Indeed,
a

the assertion a) results from the estimates (2.13), (2.15), (2.17), (2.19). The assertion c) is
local with respect to the parameter a and it results from Theorem 1.1.

For to prove the assertion b) let us mention that by Theorem 1.1 for AY = X€ — 0 we
have

an.
T2 % Lip
Z
dc

|A X) < Cge

(2.20)

aq; :
0j 0 . . ’
If bj eA7N Dj then for j; # j, by (2.18) |bj1-bj2| 2 &’ . So by (2.20)

-1
5
I8 Saiby)-8 Aaibyllg 2 C56” [by-byle VYo by €1 (2.21)
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By (2.20), (2.21) we get an estimate (2.11) with C;=C4(1+26'""). u

Corollary 2.3. If under the assumptions of Theorem 2.2 condition (2.10) is satisfied then
for arbitrary p € (0,1) and for 0 < € <<1 there exists a Borel subset A, CA and
€

. . .l — 4. :
analytical embeddings Ea.r —-.zdc, a€R_, d =d+d, —dg-1, with the
following properties:

a)mes W\A_ —0 (e —0) ,

<ef

¥

e 0, T xA Lip
b)|2 o) Izz )
c

- €
c) every torus z (T%), a€ _, is invariant for the equation (1.5) and is filled
a .

€
with weak in Z, solutions of the form 2 (q+w’t), |w —w| < €?. All Liapunov
a

exponents of these solutions are equal to zero.

Proof. By Theorem 2.2 with §=1/n, n=1.2,.. for X €, €,> 0, we have the

€
sets Q(i/ % and maps z satisfying the assertions a)—) of the theorem. If € <<1
a

then

1
Cb-ESGp,Cé-EsEp Ve<en. (2.22)
We may assume that € \,0 (n— ) and set 6(€) =1/n if €€ (e(n+1), €(n)] .
Now the assertions of the corollary result from Theorem 2.2 and (2.22). g
3. On systems with random spectrum
Theorems 1.1 and 2.2 may be applied to the Hamiltonian perturbations of random linear

system for proving that quasiperiodic solutions of the unperturbed linear system survive in
perturbed system with probability 1 (w.pr.1). Here we prove a simple theorem of this sort
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which deals with perturbations of a linear system equivalent to a countable set of free
harmonic oscillators with random frequencies Wy Woy oo -

The perturbations of a countable system of random oscillators by means of a short range
interacting hamiltonians have been studied in a number of works (see [FSW], [P2] and
bibliographies of these papers). For applications of our theorems we don’t need short range
interaction assumption. Instead of the last we use the assumption of linear or super—inear

growth of frequencies (w.i ~ C_|d , d21).

In the work [W1] non—linear perturbations of the string equation with a random potential
were studied. The theorems of [W1] are similar to our results of this section.

Let Z be a Hilbert space with an orthobasis {qp?| j21}; Z_, s € R, be Hilbert spaces

s y
with the orthobasis {j_stp:;:| j>1} and -

J:Z——»Z,J(go?):?qp? Vij. (3.1)

Then J = (—J)—1 =J and the triple {Z,{Zs} , <Jdz,dz>,} is a symplectic Hilbert
scale with properties (1.3) being fulfilled with ,\i =1.

Let (%, ¥, #) be some probability space and A = A(u), u€ %, be a random
selfadjoint operator in Z such that Vj€N

dy

AW = 25w, 5w =Ki A+ A (3.2)

Here K > 0 and {A.i [j2 1} areindependent random variables (r.v.) such that every Aj
is uniformly distributed on a segment

8= -3 P31 . (3.3)

Let Og be a neighborhood of Z in Zg =24®C and HE ./GR(OS;C) . Let us consider
R

a Hamiltonian equation with a hamiltonian % = % <Azz>5 + € H(z) , i.e. the equation
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z = J(Az + € VH(z)) . (3.4)

1 R .
Theorem 3.1. Let d, >1, d23d, HE 43(050), VH€E 47052, _g,) ith

some dH <0, dH <d A_l and H, VH are bounded on bounded subsets of Og . Let in
(33) p< dA—l . Let Qd be an arbitrary open domain in Zd . Then Ve>0 there
exists a set 266 € & such that

a) 2(%,)—0 (e—0),
b)if uf %, then the equation (3.4) has a quasiperiodic solution passing through
Q d- All Liapunov exponents of this solution are equal to zero.

Remark. For a "not so small € " one has 2(6 = % and the statement of the theorem is
empty.

Corollary 3.2. Let {e j} be a sequence such that €.\,0 for j— o . Then under the
assumptions of Theorem 3.1 w.pr.1 equation (3.4) has a quasiperiodic solution through Q d
for € equal to some ¢ i

Proof. Letusset #%,=n %_ .For Theorem 3.1 P(#%))=0.If u§ %, then p lies

0

out of some % _  and equation (3.4) with e =€ j has a quasiperiodic solution though
J

Qq- =

Corollary 3.3. Let ej\, 0 (j— o) and QP(ej) be the union of all quasiperiodic

trajectories of equation (3.4) with ¢ = ¢ i Then w.pr.1 U QP(e j) is densein Z; .
J

Proof. As the Hilbert space Z d is separable there exists a countable system {B.i |j € N}
of balls B.i CZ d such that any open set By contains some ball Bj,,. . Now the statement

results from Corollary 3.2 being applied to the balls Bj (j=1,2,...), because the
intersection of a countable system of sets of full measure is of full measure, again. g

Proof of the theorem. Let us take some point z € Q g of the form



n
+
z0=2 20j 9 n=n(z;) <o,
=1
and denote
distzd(zo, Zd\Qd) = 60, 60 >0 . (3.5)

After the rearrangement of n first pairs of basis vectors {tpj: |j=1,..,n} and decreasing
2 2
the number n (if there is need in it) one may suppose that z-(|)-j + zaj >0 Vj=1,..n .

So the point z; belonge to some torus T(IO) ~ T8 L€ IR_I:_ .

Let us denote i = A‘?(,u) , jEN. By Corollary 2.3 for every fixed
Wy = (wn+1,wn+2,...) there exists a set Q=0 (v ) of vectors w=(w;,...,0),
ﬂf C Al x A2 X...X An , such that

mes ﬂe S m(e) ’ m(e) m—* 0, (36)

(here mes is the normalized Lebesque measure) and for w ¢ f1_ the equation (3.4) has an
invariant torus T _= T" at a distance < 61/ 2 from the torus T(I) . The torus T, is

filed with the quasiperiodic solutions. So if €< 63 then equation (3.4) has a
quasiperiodic solution passing through Q d provided « lies out of ﬂe.

In the present situation a n—dimensional parameter of the problem (3.4) is the frequency
vector w itself. So condition (1.8) is fulfilled with K, = 1. All the constants mentioned
in the remark 3 (see part 1) are uniform with respect to w, - So the remark and an
analysis of the proof of Theorem 2.2 (we omit the routine) show that in (3.6) the function
m(e€) does not dependon w_ . Letusset % ={u€ #%|w€N (v )} Astherv. w
and w_ = are independent, then P( ¥ €) <m(e€) . So the theorem is proved because for
pf ¢ €quation (3.4) has a quasiperiodic solution through Q;. w

4. Nonlinear Schrodinger equation
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A nonlinear Schrédinger equation

u= i(—u,  + Vixa)u + € T:IZ x(x,|u] 2;a)u)

(V and y depend on a parameter a € A) will be considered under the Dirichlet
boundary condition

0<x<x, ut,0)=ult,r)=0 .

Let Z = L2(0,1r;¢) which is regarded as a real Hilbert space with inner product

<uv >Z=Reju(x)7(;)dx .

A differential operator _&# / 9x2 with the Dirichlet boundary conditions defines a positive
selfadjoint operator A in /A with the domain of definition

[o]
D( £,) = (H1 N H2)(0,1r;€). For 520 let Z, be the domain of definition of the
operator S/ 2 Every space Zs is a closed subspace of Hs(O,r,dZ) and the norm in Z
is equivalent to the norm induced from HS(O,T;Q:) . In particular

| o R
z, = HY(0,x¢), Z, = (B n BY)(0,%0) . (4.1)
Let Z s be the space adjoint to Z 5 with respect to the scalar product in Z .

Let us consider the antiselfadjoint operator J,

J:Z—7, u(x)—iu(x) .

Then J%=-E,s0 J=—I")=J and the triple {2,{Z}, <Jdzds>,} isa
symplectic Hilbert scale Part 1.

Let A be a bounded domain in R® and V: [0,2] xT——R be a C>~function. The
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differential operator -—32/ a2 + V(x;a) defines a selfadjoint operator .6(a) in Z with
the domain of definition Z,. 4 (a) depends on a parameter a € A . For a full system of

eigen—vectors of .£(a) let us take {goj(a)} Here (,o+(a.) oix;a), (p(a) =i tp(ra)
and {(p (x;a)} is the full in Ly(0,x;R) system of real elgen—f! nctions of the 0perat0r

—-02/ 812 + V(x;a) under Dirichlet boundary conditions. So

A(3) ¢5(@) = 15(a) ¥5(a) V21 .

Let us suppose that the numbers {A?(a)} are asymptotically ordered, i.e.
A?(a) > Aﬁ(a) if j>k and k islarge enough.

Let 0°C C be a complex neighborhood of R and let y may be extended to a function
x: [0,#] x O° x T —— € such that

x(+,;a) € Cz( [0,x] XOC;C) Va€qd ,

(4.2)
%x(x,-r) € AN(0%C) Vs <2, Vx€ [0,7] .
Let us set
Houia) = 5 | 1(]u(x) Zxia)dx . (43)
0

Lemma 4.1. For any R > 0 there exists a complex §—neighbourhood BIC{ C Zg of a ball
R nc
{u€Z,| [[u]l, <R} suchthat 6= &R)>0 and Hy € Ay (Bg:0),

VH o(wa) = —a—l—lzx(x |u| ;a)u (4.4)

and VH; € .Am (BR, 5) -



Proof. The existence of the set Bﬁ and analyticity of H0 result from Corollary A2 from

the Appendix. Relation (4.4) results from the identities

< v(x),V Hy(u(x);a) >5 =d HO(u;a)(v) =

T
=%J"i21(x:|u|2;a)(u7+ﬁv)dx=
00|u|

= < v(x), F"I, x(x, |u(x) | %a)u >

By Corollary A2 the map VHO belongs to Ag(Bc; H2(O,x;€)) . But for u(x) € BIC{ the
function VHy(u(x);a) is equal to zero for x =0, x = x. Therefore VHj(u(x);a) € Bﬁ

for u € Bﬁ and the last statement is proved. -

So the Hamiltonian equation with a hamiltonian %-< A(a)u,u >; + Hy(u;a) has the
form

i = i(-ug + Vixau + € mil, x(x, | u| %a)u) (45)

This equation is of the form (1.5) but operators .6(a) don’t commute one with another
and the condition (1.3”) is not satisfied. For applying the theorem we at first must do
linear transformations Ua of the phase space depending on a parameter a,

U,:2—12, z<pj(x)t———bzgaj(x;a.) VzeC Vj.

1/2
Here qoj(x) =(2/x) sinjx.

Lemma 4.2. For every a € U the transformation Ua is canonical and orthogonal with
respect to scalar product < -, >g . Forevery a,a,a, € A and every s € [0,2]
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13(a) = A(ag)| £ Claj—ay] , (4.6)
||U::‘1—U32||$’S <Cglaay| , (4.7)
||Ua||s,s <cy . (4.8)

Here || '"3,3 =1 IZS’Zs -

Proof. The orthogonality of U, results from the fact that it maps one Hilbert basis of the
space Z into another. The canonicity results from identities

<i Uau,Uav >p=< Uaiu,Uav >g =< i,v >q
(we use the orthogonality of U, ).
The estimate (4.6) for the spectrum of Sturm—Liouville problem is well-known {PT,Ma].

To prove (4.7) let us mention that for the eigen—functions tpj(x;a.) one has the estimate
lley(ap)ilaglllg < C sup | Vixiay)-V(xiay) /i< Cy lay—2y 1/ (49)

(see [PT,Ma]). As

P xea) = (Vix .
;2’ ‘pj(x:a) - (V(x,a.) - AJ(a))th(x,a.)
then we get from estimates (4.6), (4.9) that ||qoj(a.1) —cpj(a2)||2 <Cyla;—a,|j. From

(4.9), the last inequalities and interpolation inequality [RS2] it follows that for all
s € [0,2]

lleay) - eyfagllly € €5 7 a3y (4.10)

Let u€Z and
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u= 2 (ut«i—iupgok(x) , "u”g = E |u:1::|2k2S <o

(one has to mention that ]|¢pj|| g = ). Then

1o, wv, ull = Ilg(u;;+iup(Ual-tl%)sak(x)IIs <

<Y Iuf +ing] le(xia,) - 0, (xia)l €
k

_ 1/2 5 1/2
</ luf+iug | 2% aay (J KD <
k

r
<Cq laj=ay| |lull

and we get the estimate (4.7). The estimate (4.8) results from the inequality

||gf)j(x;a)---(,aj(x)”s < C} js_l in the same way as (4.7) results from (4.10). g
For Lemma 4.2 and Theorem 2.2 from Part 1 the substitution
u="U,v (4.11)
transforms solutions of equation (4.5) to solutions of equation
v = J(A(a)v + € VH(v;a)) (4.12)
with
A(2) = U, 4,U_, H=Hy(Uva) .

So

V H(v;a) = U:VHO(Uav;a.) ,
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A3) ¢;(a) = X3 ¥} Vi -

Equation (4.5) with ¢ = 0 is a linear Schrddinger equation

o] .
i = i(—u_+V(x;a)u) , u(t) € (B n B?)(0,%;€) V5
and it has invariant n—tori
2 2 2
n +,. TR
= . . A X, . . = 21.
T, () {.21(01+m;)(pj(x,a)|a‘] +a; > 0}
J:

Let a Borel set J C IR_':_ be as in (1.11) and 5’a=U{T:(I)|IE J} . For every a€ 2

Ugl(Tg(I)) is an invariant torus T(I) of equation (4.12) with e = 0. It is of the form
(1.9”), does not depend on a and

-1 _ _
v, 9,= g=U{T(I)|1€ J} .
Moreover, if R is large enough then one can choose a domain Og

ofc n ulBE 4.13)
2 e & R (

which satisfies relation (1.13) with s =2 .

Let us check that Theorem 1.1 with

J_ _ — — — =

may be applied to the equation (4.12). Indeed, the validity of assumption 1) with
03 = Og (see (4.13)) results from (4.3), (4.7), (4.8); assumption 2) with d; =d, =2
results from (4.6) and from the well-known asymptotic Aj = j2 + O(1) (see [PT],
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[Ma]). So we get the following statement.

Theorem 4.3. Let ag be a point in % such that

| det(d r}(ao)/a 3, | 1<), k<n) | 2Ky > 0. (4.14)

Then there exist integers iy M1 such that if

A A A
A7(aglsy + Xg(ag)sy +..4 A j 1(ao)sj1 $0
(4.15)

h
VseI™, |s| <M, 1< s | +.+ |sj1| <2,

then for sufficiently small € > 0 there exists &4 > 0 (sufficiently small and independent
of € ), a Borel subset

3y 3,
B.°CO " =Aa,0) x J
€ 0
and analytic embeddings

€

) (a1)

with the following properties:

el i P | 3
: T "__’(H NH )(OJT;C)’ (3,1) € BE ’

a
a) mes 360 [I] — mes A(a),é+) (€ —— 0) uniformly with respect to I;
€
b) every torus ): : )(Tn) is invariant for the equation (4.5) and is filled with weak
al

o €
in (HlnHz) solutions of (4.5) of the form 2 ( )(qo + w't) | qy is an arbitrary point
I

¥

from T", o’ = o’ (a,],e) ER™);

c) distﬂz(z (o)

d) the numbers j;» M, depend on Ky n and the C®—norm of V(x;a) only.

(Tn),T:(I))SCE and |w-w’'| {Ce¢;



Let us discuss assumptions (4.14), (4.15) of the theorem. For this purpose let us consider a
mapping % from the set 2 into the space C[0,x] of potentials V(x),

%:A— C[0,x] , ar——V(-;3) .

Every A? is an analytical function of potential V(x) . So condition (4.1) means that the
point  #(a;) lies in the space C[0,x] out of the zero set of some nontrivial analytical
function. To discuss assumption (4.14) let us mention that

aA . T av(x;a,)
2. 140
-ﬂ—lak (ag) = ‘[[ ‘Pj(xna-o) - aa'k dx

(see [PT, Ma]). It is proved in [PT] that the system of the functions

{(p%( . ;a),...,gotzl( -;a)} is linearly independent for all a. So the function

(€ () £y0)) s det( [ ()€ (x)dx| 1S5, 2<n)

turns out to be a non—trivial n—form on the space C[0,x] and the condition (4.14) means
that the restriction of this n—form on the image of the tangent mapping

%i(ag) :R"— T ,z(ao)c [0,7] ~ C[0,7]

is nondegenerate, too.

So the assumption (4.14)+(4.15) is an non—degeneracy condition on the 1—jet of the map
% at the point ag -

Remark. Theorem 1.1 is applicable to study equation (4.5) under Neumann boundary
conditions, or in the space of even periodic with respect to x functions,

x€R, u(t,x) = u(t,x+27), u(t,x) = u(t,—x) , (4.16)
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if the functions V and y are even periodic and smooth on x . In the last situation one
has to take for spaces {Z } the spaces of even periodic Sobolev functions. In such a case
relation (4.4) defines an analytical mapping from the space Z, into itself for every s 2 1.
So Theorem 1.1 is applicable with arbitrary d 2 1 and in the case of the problem (4.5),
(4.16) one may prove the existence of arbitrary smooth invariant tori (i.e. being in the

space H¥(0,m;C) with k arbitrarily large) at a distance of order e from 3, .

5. Nonlinear string equation

The next application of our theorem will be to the equation of oscillation of a string with
fixed ends in a nonlinear—elastic medium depending on a parameter a € A :

B_f; w = 82/&: —V(x;a))w—e g; x(x,w;a) ; (5.1)
w = w(t,x), 0<t<m; w(t,0) = w(t,x)=0 (5.2)

For writing down this non—linear boundary value problem in a form (1.5) we need some
preliminary work. Let V: [0,x]xA— R 4 be a smooth function. The differential
operator —&2/ 3x2+V(x;a) defines a positive selfadjoint operator in the space L2(0,1r;IR)

o
with the domain of definition (Hlnﬂz)((},r,lR) . The space % =D(y £ 5) 18 the Sobolev

(o
space Hl(D,r,[R) with the scalar product

< u,v >(3) _ J (u, v, + V(x;a)uv)dx
0

. be the space =( #{FD/h  with the norm
||u"(a') = |l u‘t/gu ”(a In particular ||u]|(a' =(< uu>(a'))1/2 For —t<0 let
%4
Zga’) = Z Ry z 4 with the natural norm and scalar product which will be denoted as

For t20 let z

be a space dual to Z t with respect to scalar product <-;-> (a) . Let us set
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‘ <, >(a)’ too. In the scale {Zga)} let us consider an operator Ja. of order dJ =1,

5, :2{®) — 2(3)

1/2 1/2
t 10 W = (Fwg) — ( “‘a/ Wor — "‘a/ )

This operator is anti—selfadjoint in Z(a) = Z[()a) with the domain of defirition
D(3,) = 2{¥) . The triple

{Z(a); {Zga) | SE!R}, < Iadw,dw >(3)}, ]’a — _(Ja)"'l

is a symplectic Hilbert scale Part 1 depending on a parameter a .

Let {(pga')| j21} be a full in Ly(0,mR) system of eigen—functions of operator
—(92/ x° + V(x;a),

(-8 ax® + Vixa))e{®) = 2A203), 1 4l2)) L=

and Aga) > Al(ca) for j> k and k large enough. Let us set

—1/2 -1/2
ga.-}i.(a) - ((pga.)(x)’o)()‘ga)) / ’ (P}(a) = (0,¢ga)(X))(/\§a)) /

Then the set of functions {(Aga))—s/ 2¢:;(a) [j21} is a Hilbert basis of Zga) Vs€R and

1,650 = 2 ()12,70) v 5 (53)

Let the function y(x,#;a) and domain O°C € be the same as in § 4 with the additional
property '

x(0,0;3) = x(7,0;3) =0 ,

and
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0 _ r .
H (wl,w2) = J x(x,wl(x),a)dx
0

Lemma 5.1. For any R >0 there exists a complex ¢é—neighborhood

BIC{ C Zga)c = Zga’) ®C of aball {u€ Zga)| ||u”ga)SR} such that & = 6(R) > 0 and
0 R

H € £y(B;0),

VeE0(u;a) = (4" 9“,’;—1 x(xwy(x)2),0) | (5.4)

vael € a‘% (Bﬁ;zga)c) (here V® is the gradient with respect to scalar product

<.;.>(a‘) )

Proof of analyticity of H? and V2H? is the same as in Lemma 4.1. The formula for

V2H? results from identities
< (vp,vg), VE(w) > () = aBO(w)(v,,v,) =
= | (o xCemy (<) (s =
- J' (47! ?3;1 x(x,w, (x);a) o ,v,(x))dx =
= < () (A7 g 2ty (x)a), 0) > -

The Hamiltonian equation corresponding to a hamiltonian ¥ (w) = % ||w||§ + eHO(w)

in a symplectic structure with the 2—form < Jadw,dw >(a) is the following:

(W), Wy) = W = JaV K, =
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= (A = oy + 7T € gy ()
or
.12
W= "‘a./ Wo
(5.5)
v = gl/2 -1_ 4 X
Wo=— A (W + A, € Fwy x(x,w,(x);a)) .
After elimination Wo from these equations one géts'an equa.tiqn‘dn_- LA ,
2 P
-g—gwl = (gg =V(xa))w, — € Ty x(x,w,(x);a) - (5.6)

So equation (5.5) is equivalent to equation (5.1). In what follows we shall discuss equation
(5.1) in the form (5.5).

As in § 4 we have to do some linear transformation before to apply the theorem. So let
{Zs} be the scale of spaces of the form {Zga)} with V(x;a) =0, i.e. defined by operator
—82/ ax’ instead of —32/6‘1(2 + V(x;a) . Let us set

12 1/2

ot (x) = (sin jx,0)(2/ 7)) = (0,sin x)(2/7j)

J

and denote an antiselfadjoint operator J(a) of order 1 in the scale {Zs} ,

I(@) o5 =7 N2 T (5.7)

The triple {Z = Zy,{Z.}, < J(a)dw,dw >4} is a symplectic Hilbert scale depending on a
parameter a of the same sort as in § 1, i.e. with condition (1.3) being fulfilled.

For the relations (5.3), (5.7) the mapping

Ua. L — Z(a), (,o:; — w?(a)
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AZa)p; =% A3 (a)es, 3A(a)e; = 7 A3(a)eT, i = n+L,mtp (6.1)

(see [K3]). In such a case

o(3%(a)AZ(a)) = {2i {(@)i=1, 4P+l n4p42..} U
(6.2)

U {£3{(a) j=n+1,..a+p}, A{(a) = A‘}(a),\?‘(a) .
So the spectrum contains p pairs of real eigenvalues.

Example. Let us consider the problem (5.6), (5.2) without the limitation V(x;a) 2 0 (and,

so, with the possibility of negative points in the spectrum o £ a.) of the operator

A, = —02/t9x2 + V(x;a)). Let us suppose that 0 € o ./{a) and denote by .‘E’,'t ,
t+1)/2 a

t20, aspace 2, =D(| ./‘al(.-lh ) ) . Let us define spaces {Zg )}, {Z,} and

operators J,, J(a) and function H? in the same way as in § 5 but with the operator

| ,| instead of .6, and ]Aga)| instead of Aga), j=1,2,... (by definition,

PArSEIRRIPSATY

Let us consider a hamiltonian

1 2 1 1.1
H(wa) = 5 I]w”z(a) + 5 <sgn A, W, >Z(a) + € Ho(w;a); (6.3)
0 0

sgn £, (pga') = sgn Aga) (pga') Vi.

Corresponding Hamiltonian equations have the form

(6.4)
. 1/2 -1
w2=—| £, /((sgn ./ia)w1+€| A, 5‘%1"0
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then for sufficiently small €e>0 there exists 6%« >0, Borel subset

ao a.o € n ao
8, CB " = (ay8)x J and smooth embeddings 2( ):T —Z,, (al)€8,°
a,

with the following properties:
a
a) mes 960 [[] — mes 2 (30,6*) (e — 0) uniformly with respect to I;

€
b) every torus 2 (T™) is invariant for the equation (5.5) and is filled with weak

(a,1)
in Z1 solutions.

The conditions (5.9), (5.10) are ones of non—degeneracy in the same sense as in § 4.

Example. Let n=1 and V(x;a)=a for a€%A=(0,1). Then Aéla) =m?+a and
assumption (5.9) is trivially fulfilled. Let us consider some resonance relation of the form
(5.10):

i1
2 (m2+a)1/2 8,20 -
(5.11) m=

The Lh.s. in (5.11) defines an analytical function of argument a € [0,1] . This function is
not identically zero because after the analytical extension into complex plain with the cut

along (—w,0] the function has an essential singularity at the point a = —m? if 51 $0.
So the function has only a finite number of zeroes in % . Let a countable set 2[0 be equal
to the union of zeroes of all the functions corresponding to the relations of the form (5.11)
with j; 2n+1 and 1< Isyyql +...+|sj1| < 2. Then all the assumptions of Theorem 5.2

are fulfilled for a; € A\2, .

6. On real points in the spectrum

The proof of the statements a)-c) of Theorem 1.1 is valid if some finite number of

eigenvalues of the operator J Z(a) Az(a.) are real, i.e. if for some finite number of indexes
j instead of the conditions (1.3”), (1.3) one has
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defines a canonical transformation from Z, to Zga) for every 82 0. So Ua transforms
solutions of equation

v = J(a)(v+€VH(v;a)), H(v;a) = HO(Ua(v);a) (5.8)

into solutions of (5.5). As in § 4 one can prove the following statement.

Lemma 5.2. For any R > 0 there exists a complex é—neighborhood 0(1: C Zg of a ball

R
{u€z;| |lulf <R}  such that §=6R)>0 and  HE £y (0};0),
VH € £5(05:25) .

Let us check that Theorem 1.1 with

A_ J a)/
=1, 4] (;\( ) L dy=1,d, =0, dg=-2 d=1,d =2

is applicable to equation (5.8). Indeed, assumption 1) results from Lemma 5.2, assumption

1/2
2) with r=1, K,=1, is satisfied because A (a)— A% (a) (A(a')) , where

{A(a) = J + C(a) + O(1)} is a spectrum of the Sturm—Llouvﬂle problem. So we get the
follomng statement on equation (5.5) (or (5.6)).

Theorem 5.2. Let a Borel set J beasin (1.11) and a, bea point in 2 such that

det(&\(ao)/ 1<5, k<
;18 1165, k<o) #0 (5.9)

Then there exist integers j;» M such that if

1/2 1/2 1/2
(Aiao)) 8 + (Agao)) 8y +...+ (A gj )) sjl $0
(5.10)

i
VSED, (8] My, 1€ [yl +ot Iy | 2
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and we get the equation (5.6) for the function wl(t,x) , again. One can repeat the proofs of
§ 5 and to write down the equations (6.4) in a form (5.8) which satisfies the conditions of
Theorem 1.1 with the condition (6.1) instead of (1.3”), (1.3). So the statements of
Theorem 5.2 are true without the assumption V(x;a) 2 0.

Appendix. On superposition operator in Sobolev spaces.

Let O°C C be a complex neighborhood of the real line and y : 0% x [0,7] — CP bea
C¥_function which is real for real arguments. Let Hk(O,r,ﬂZp) (Hk(O,r,[Rp)) be the usual
Sobolev space of CP(RP)-valued functions on [0,7]; By bea ball in H5(0,rRP) of
radius R centered at zero and Bﬁ(:ﬁ) be a 6~neighborhood of Bp in Hk(O,a’;Cp) . As

BX(0,x®P) C C(0,~RP) for k> 1 then for such a k BR(6) C C(0,;,0°)  if
& = §(R) << 1. So the superposition operator

¢ : BR(8) — C(0,m€P), u(x) — x(u(x),x)
is well—defined.

Theorem Al. Let k €N, y € CX(0°x[0,7]) and Vs <k

8 R,~C 8° c
?X(.:X)E A (O :C) VXE [0,1’], I;x—SX(uxx)l SK* VUEO ’ XE [0,!’] .

Then ¢ € £N(BS(6); HX(0,r;CP)) and

| $(u) | SC(R)K4 Yu€BL(d) (A1)

B¥(0,x,¢?)

Proof. By taking a derivative of order £ <k from the function x(u(x)x), u € BE(6),
one gets the estimate (A1). If u € BIC{( 6) and v,w € Hk(O,:r;Cp) then the function

Ar— < g(utAv),w >
B¥(0,x;CP)
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is complex—analytic in some neighborhood of the origin in € ; so the map ¢ is weakly

analytic on Bﬁ(é) .

As ¢ is bounded and weakly analytic then it is Fréchet—analytic (see [PT], Appendix
A). _ -

Let the function y = y(u,x;a) depends on a parameter a € 2 in a Lipschitzian way, i.e.

x(+,:2) € CX0% x [0,4]) Va€% and

%x(nxr) € 4R(0%CP) Vs <k, Vx€ [0,] . (A2)

Then by applying Theorem Al to functions x(u(x),x,a) and x(u(x)x,a,) — x(u(x)x,2,)
(3,31, € 2A) we get

Corollary  A2. If assumption (A2) holds for some kEN, then
¢ € J%(Bﬁ(&); Hk(O,r,Cp)). In particular, the function u(x) r-——»J #(u)(x)dx
belongs to £ %(Bﬁ(&);cp) .
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Part 3.

Proof of the main theorem

We use the notations from Part 1, 2 and some new ones. A list of them is given at the end
of the paper. Sometimes we refer the reader to the formulas from Part 2. We write (2.2.3)
for the formula (2.3) from Part 2 and so on. We use the abbreviations r.h.s. (Lh.s) for
"right—hand—side" ("left—hand—side") and write gy instead of & . By " g <<1"
("K >> 1") we mean "positive ¢ is small enough" (" K is large enough").

1. Preliminary transformations.

In a symplectic Hilbert scale {Z,{Z |s €R} , a(a) = < Jz(a) dz, dz > 5} (see Part 1)
we study a Hamiltonian equation with the hamiltonian

J&’(z;a,eo) = % < AZ(a.) 22> 7 + &, H(z;a,eo) ;
i. e. the equation
2 = 32(a)(A%(a)z + e VE(zia,c)) , 1%(a) = — (3%(a) - (1)

Here a € ACCR" is a n—dimensional parameter, g € [0,1] is a small parameter, H is
an analytical function, Jz(a) , Az(a) are linear operators and for some Hilbert basis
{gaji | §2 1} of the space Z the following relations take place:

@) o= =% 2@) ¢ Vi, Va, (12)

A%(a) o = 3() o Vi, Va. (1.3)

For the exact assumptions on equation (1.1) see Part 2.
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1.1. Change of the symplectic structure.

The numbers {A‘} (a)} are nonzero Vja and are positive for all j large enough (see

(2.1.4), (2.1.18)). So after unessential exchange gojd:

indexes j we may suppose that A‘; (a) >0 Vja . Let us consider a linear operator La

which maps (pj:t into (A‘I(a.))ll2 go.:': ,J=1, 2, ... . By assumption (2.1.18) this opera-
tor defines an isomorphism of the sca.fe {Z;} oforder dy/2,L, :Z - Zs—dJ/2 Vs . It

on gof for some finite number of

is selfadjoint in Z with the domain of definition Z d./2 " By Corollary 2.3 from Part 1
J

the mapping L;I transforms solutions of the Hamiltonian equation (1.1) in the symplectic
Hilbert scale {Z, {Zs} ,a(a)} into solutions of a Hamiltonian equation with the

hamiltonian Jo’l(z;a,so) = % < Al(a.) 22> 5 + €, Hl(z;a,eo) in a symplectic Hilbert

scale {Z, {Z.} , a,(a) = <J,(a) dz,dz > ,} . Here

- -Z
Z
J,(3)=LJ (3)L,, A(a)=L,A%@)L,, H =H(L, z3az,).

By the definition of the operator L, and by (1.2) one has

T + ¥ :
Jl(a) o = F ?; Vj, Va. (1.4)

So operator Jl(a) does not depend on the parameter a, J, = —(Jl) -1_ J;,and a
Hamiltonian equation with the hamiltonian :}q has the form

z=1J,(A,(a) z + ) VH,(z;3,¢)) (1.5)

and
VH, =L VH,(L, z;2,¢) (1.6)

Let us denote by H(Z; Z ) the space of linear continuous operators from Z, to Zg
1 1
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with the operator norm || -||. ., and by L:%— AZ;Z 4 j2) the mapping
» 8 J

ah La.'
Lemma 1.1. For every s

Lip(L: %A — AZ; Z&_dle)) <C. (1.7)

For every s and every a
-1
I L, I 8,8 —dy/2 +1 L, I 8,8 + dJ/2 < Cy- (1.8)

Proof. An operator Lal - La2

2t = ()‘jJ(al))U2 _ (Aj‘](a2))1/2 . By the assumptions (2.1.18), (2.2.19)

is diagonal in the basis {gaj*} with eigenvalues

dy
Kila; - a9] ]
2 min (A;°(a)"/%, 27 (ap)'/?)

K,3/2 d./2
2T 13l

184 <

and inequality (1.7) results from (2.1.2). Inequaltiy (1.8) results from (2.1.2) and
(2.1.18). g

/ 1 -1
Let us denote d =d+ fdJ and Ta(I) = I‘a T(I), % =U {Ta(l) |1 € J},
¢ _q1Aac¢

n
2 2 I.
+ + 4+ - a . a
T (I)= A7/ B . . =217 j=1,... 1=
2D {_ElaJ o 1o +a hi=len) L 1J—A_(a)
= J

and by the assumption (2.1.13) and estimate (1.8)

djstz(%;z;,\o;,a)>'5>o Vae2d.  (19)

¥
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By the analyticity assumption (2.1.15), Lemma 1.1 and identity (1.6) one can see that the

mappings

:0%, x2% x[0,1] —C
d ,a

H

(1.10)

VHI:OCI x % x [0,1] — 2%,

are complex—analytical with respect to the first variable and Lipschitz with respect to the
second one unifomly with respect to £, € [0,1] .

The operator A,(a) is an isomorphism of the scale {Z } of the order d, =d, + dg
and

A,(a) tpji ={a) qaji Vj, Va . (1.11)

/ /
Equation (1.5) satisfies conditions 2) of the theorem with d, =d, + dj, dy =0,
7/

dH = dH + dJ . So it is sufficient to prove the theorem in a case dJ =0.

1.2. A change of parameter.

The statements of the theorem are local with respect to the parameter a . So one may
replace the set 2 of parameters a by arbitrary & —neighbourhood 2 (a;,6.) of the

point a; in A . If positive 6a is sufficiently small, then by the assumptions (2.1.7),
(2.1.8) the mapping

w: % (ay,6,) — R, a b «fa) = (A;(a),.-. A (a))
is a Cl—diﬁeromorphism on some neighbourhood 1, of the point wy = wy(a;) and
Lip w + Lip Wl < Kl, (1.12)
diam {1

1
0 S$K'6, (1.13)
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—1,n n
K46, < mes N <K b, - (1.14)

So Lipschitz dependence on the parameter a € A (ao,Ja) i8 equivalent to Lipschitz depen-
dence on the parameter w € QO .

1.3. A transition to angle variables

In what follows we use the notation O(Q,8,B) for the é—neighbourhood of a subset Q of
a metric space B ; for a Banach space Z we write O(4,Z) instead of 0(0,4,Z) .

Let us set 20 CZ be equal to the 2n—dimensional linear span of the vectors {goj:h| j<n}

and Ys C Zg, 8 € R, be equal to the closure in Z of the linear span of the vectors
{goji|j2n+ 1} and Y= Y, - For a vector from 70 let {xjillﬁan} be its co-
efficients for the basis {(pjil j<n} . In some small enough neighbourhood of a torus

T,(I) let us change coordinates {in} to (q,6), € TR € € 0(360,Rn) (6p<<1):

2 2
= .— i .+ .=1 .+ ._ — .a
q;= Arg (x; +ix;"), ¢; g[xj + X; ] L= (1.15)

Let us consider toroidal spaces 4= T x R® x Ys’ 8 € R, with a natural metric dist'3 and
tangent spaces Tu}s ~ R x R" x Ys = Es’ u€ ]s . Let J be a restriction on Ys of the
operator J,,i.e. J goji =F <pj:F Vi2n+1 (see (1.4)); let

JTZRD an__)Rle Rn) (6Qr6£)H (6£J “"6(]),
and
J}=JTXJY:ES=(RHXRD)XYS——>ES.

Let us introducein %, s 2 0, a symplectic structure with the help of the 2—form

a¥ =<3%d49dn> . Thetrple { ¥y, { #,},a #} is a toroidal symplectic Hilbert
scale. See Part 1, § 4, for details.
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For the fixed s€ R, 1€ J, w€ ﬂo and 60 << 1 let us consider a map

L:Tnx0(360,Rn)st——>Zs, (Q: sY)H Ex ‘Pji'l'y
J""

(see (1.15)). It defines a complex—analytical diffeomorphism of the domain

Q%(s) = O(T" x {0} x {0}, 360, #,5) C # S =(C"/ 2rZ") x C" x Y ° (1.16)

on a complex neighbourhood of T a(I) in Z . This diffeomorphism is Lipschitz in I and
in w (via the dependence a = a(w)), i.e.

LE .,{Rno « AQs) 25) (1.17)
for all s.

The subspaces z0 CZ,YCZ are skew—ortogonal with respect to the 2—form

a; =< J1 dz, dz > 7 - A restriction of a; on 20 is of the form dy A dx+ and, so, it

is equal to d€ A dq (see [A2]). A restriction of the form a¥ on 720 is d¢ A dq, too.
Hence

L*al=L*(dx_l\dx++<Jldy,dy>Z)=d5Adq+<de’dy>Y=a}

and the map L is canonical. So the equation (1.1) in the coordinates (q,{,y) is
Hamiltonian with the hamiltonian

n

Fo(ad.3;0Ley) = const + ) §i9 +3<AW)yy >+ eoH O ey £g)  (1.18)
=1

(see Part 1, Proposition 4.1). Here we use the identity
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2 2
%( A (w) 2, 25 > 22 z\(w)[ + +x_] ] = zwj{j
J_

Ex ¢ +xJ -"EZO,

denote by A(w) a restriction of the operator A (w) onm the space Y and denote by
<+, >=<0, Dy the scalar product in Y induced from Z . The Hamiltonian
equations have the form

© d 0 _ 4 50
qj—wj+£0-3-§H, Ej——equ—jH
(1.29)
7= I(A)y +¢, ¥ BY) .
y
Let us set By =l x J. A Borel set J is the same as in (2.1.11), i.e.
JC{IERY K¢ <K Vj=1,..n}. (1.20)

It results from (1.9), (1.17) and from the analyticity of the mappings (1.10) that
€ [0,1]

c /!
0 Q(d )’BO / 0 )B /
B, e) <k NVE - el 0¢k

ifin (1.16) &5 <<1.

The operator A(w) has the double spectrum {Aj(w) [j=n+ 1,n+2,..} and the opera-
tor JA(w) has the spectrum {+ iAj(w)| j2n+ 1} . Let us shift the numeration:

3 (@) = Ay (0), o =oiy AP =a)

and redenote
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14
— —d = 1
dg=dg+d;, d:=d =d+3d;.

Then by the condition (2.1.2) the set of vectors {"a:.*i: A j(—s) |j2 1} is a Hilbert basis of
Y, and for some new K

KL ¢ ,\j(“) <KP, Aj(‘“) - (,\j("))“l Vi>1,Vs €R (1.21)
By this condition the scale {Ys} is interpolational. See below appendix A.

For the shifted sequence {A 0= Aj(wo)} relation (2.1.16) takes place with the same d,,

1 -1

somenew 1, K, ... Ky d1,1’“"d1,r—1 and some new K1 . For all j21,wé€ no

A(w) soji = 45(w) saji J T =F o (1.22)
and

,\j(u) >0 Vj2j,- (1.24)
Theorem 1.1 from Part 2 may be reformulated for equations (1.19). Here we formulate

some more general result. To do it , we suppose that the operator A(w) depends on €y

A = A(wgg) ; 50 ’\j =2 j(a;,eo), and A 0= Ajo(eo) . We suppose that

3
EO HO = gOHO(q,f,y;G,SO) +H (Q:E:Y59:50) )

the functlons H, B may be continued to complex—analytic functions on a domain

0’
Q%(d), d> d, . It is supposed that Ve, € [0,1]
Q%(d)8 Q°(d) B
[Hy( 53 ¢) | 0+||VyHO(-;-,eO)|| O<k, (1.24)
H

and Vh = (q,6,5) € Q%(d)
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8,,Lip
1B%0; -, e O <Ky(1€1%+ (€] lvlly + Nyl

(1.25)

8,,Lip
VB (-, e9)l © SK(1€] +vlly) (1.26)

8,Lip
V Hh; -, 0 ¢k +|lyll.3 . 1.27
I ya (O el ady e+ Isll (1.27)

Here
dg <0, dg<d; —1. (1.28)

In the terms of the decomposition £ ) L £ H0 + ity the results may be formulated in

more exact way, important for some applications. Now the equations (1.19) take the form

. /] d 3
= W. H H
q.l wJ+€0'3Tj 0+3z-j ,

> _ a 4 3

L 3
ij=J(A(w)y + GOVyHO + VyH ) .
Theorem 1.1. Let the conditions (1.20) — (1.25) hold together with

1) d;21 and

dp 19y, o dir
|Aj0—K2] Ky Ky |<K,j (1.30)

for some Ko = Ko(g) > 0,121, K2-l = Kz-‘(eo) €ER(j=1,..,r—1) and for

d; > dl,l > dl,r—l > dl,r such that

-1 j v
d-1>4d;, K3' < Ko(ey) <K, K eg) ISKy V5, Ve s
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moreover

d
Lip(};: 0 — B) S Ky Lt V, ey ; (1.31)
Then there exist integers j;, M; such that if a condition
2)  s-wpt fAjgt LAyt /lej10| 2K, >0
(1.32)
]
Vs€z®,  |s| <M, V/€ZT, 1 4)+ - +14 | <2,
1

is satisfied, then for sufficiently small ¢, >0 there exist 6, > 0 sufficiently small and

independent on &, (see (1.13), (1.14)), a Borel subset 8 . €8, and analytic embeddings
0

€
0 n
T — 7, (w])€B_,d =d+d, —dg—1,

with the following properties:

a) mes BEO [I] — mes 0, (gg—0) (1.33)

uniformly with respect to 1 € J;

b) the mapping
280 T %8, — 4, (q,4]) HZEO (@), (1.34)
o T (w])

is Lipschitz and is close to the mapping

0
2 : Tn X BE — ydc: (q,w,I) H (q,0,0) € ydc

0
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That is
i 0 . €y . 0
stdc[z @), “weD)] €Cgy Vo< 1/3,
(1.35)
Li O_y%0. g <Ce¢l Vp<1/3;
1p[2 2 : T KBEO——» !/dc]-cgeﬁ p<1/3;

>
¢) every torus 2 0 (T, (w) €8 . is invariant for the equations (1.29) and is
w1 0

%0 €0 / n
filled with weak in % solutions of the fom z '(1)=) ° (q+w t), q€T",
’ ’ (w'I)
v =w (wle,) € R" and

7
|w—w |$0501/3; (1.36)

£
d) all Lyapunow exponents of the solutions z 0(t) are equal to zero.

Statement 1.2. Under the assumptions of Theorem 1.1 a sharper form of estimates (1.31),
(1.32) is true:

0 €
disty [ 3 (@), § @] <Ceq, (1.37)
|w—w,| <Cig- (1.38)

2.  Proof of Theorem 1.1

We extend the scalar product < -,-> to a bilinear over € map Y°x Y’ — € and
denote by .z‘(YS ¢, Y, c) a subspace of operators L € .Z(Yg 4 ) symmetric with
1 2 1 2

respect to <-,-> , ie < Lyl’ Yo > =<V¥y Ly2 > Vyl, Yo € Y; . We denote
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N, = NU {0} . We shall use the following domains in C%/ 2x 1", y, and ¥ .°:

U(é) = {¢ €T/ 22 27| |Im €| < &},
O%Egib b ) = UlE) X O(¢4, €) x O(6,, Y,©) -
Let us fix some

7, € (0,1], p€(0,3) (2.1)

and set 7, =2(1 24272 +...),

O,bm =90
e = ! 2.2
- {(1-2 + ...+ m_2)70_1) m2>1, (22)
e =g (1407 4 = 6,(1 —e(m)) U_=U(6) (2.3)
m 0 * "mT 0 ! m m’’ :

3

C_ AC 2 1/3. ,,°© At
0, °=0%6,.6. % % 39, 0 =050 z,.

We shall need some subdomains of Um and Omc . For this end let us set

i_64 1

3 0<j<s (2.4)

=5 0 1 5
(s0 6 =6_">6_ " >..>86_"),anddenote

. e S
0,1 = 0580, (27 )3, e )'V% 149, v = (o).

If £y << 1 then 2—jem > €t j=1,..,5, and sothe domains Omjc are neigh-
c c lc 5¢C c
bourhoods of Om+1, 0,3 Om J...D Om ) Om_*_1 .

We denote by C, Cl’ Cz, ... different positive constants independent of €9 and m ; by
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C2 e
C(m), C;(m), ... different functions of m of the form C(m) =Cm “;by C%(m),
Cle(m), ... different functions of the form exp C(m) . By C,, C,;,...,C (m),
Cyq(m),... we denote fixed constants and functions of the form C(m) . Let us mention

that YV C(m), VC%m) and Yo <0

C(m) £ sgl Vm, C%(m) < egl Vm if eg<<1.
Let m € N, and 8 be a Borel subset of By = 00 x J such that
mes B [1] 2 Kg(1 - 7, e(m)) Vie s. (2.5)
Here K¢ = mes {2, and 7, asin (2.1).

We shall denote a pair («,I) €8 by 6 and shall omit dependence of functions and sets
on the parameter &, . All estimates will be uniform with respect to ¢, € [0,1] .

At domain Omc let us consider a hamiltonian depending on the parameter 6 € Bm ;
¥, =By (0y:0) + e B (0,6:0) + B (a6.y:0) , (2.6)
Hom = ¢ - Ag(®) + 5 < Ay (@d)yy > (2.7)
Here the function H® is the same as in (1.24) and
Ap:8,— R, |Ap (@) — w|9m, Lipg eope(m); (2.8)
the operator A_ (q;f) is equal to A(f) + Ax}l(q;ﬂ) and

1, o & 2 .
An(@i0) o™ = Bp(a:0) ¢ Vi, (2.9)
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U_.8 d
R . m’ m p SH
B. € .A’Bm(Um,lE), |8 | SEO e(m)j = . (2.10)
We suppose that H € ./{IB{m(Olfl;(D) and
ot.e
m’' m — v m+l
|5, | < C,(m) =K, , (2.11)
o_°8
m ' m -1/3
”vyHm” { -4y e, /°C(m) . (2.12)

1

For m =0 the hamiltonian ¥, in (1.18) has a form (2.6) with Ay (w])=w, Ay

and the assumptions (2.11), (2.12) are fulfilled by the theorem’s assumptions.

Hamiltonian equations with the hamiltonian Jim have the form

q= Ay (0) + VeleHy, + B) (a6y40) , (2.13)
E ==V (5 < Ap(atyy > + (e + B (a6.5:9)), (2.14)
y=JI(An(af)y + V(e Hy + 1) (0.6,y:)) - (2.15)

For m = 0 these equations coincide with the equations (1.19).

The theorem will be proved via KAM—procedure. For m = 0,1,2,... we shall construct
canonical transformation Sm 10 " O, which is well—defined for 6 € B, 41 and
transforms the equations (2.13) —(2.15) into Hamiltonian equations in O 41 Witha

hamiltonian of form (2.6) with m:=m+1. For §€8_ =NB_ the limit transfor-
0

mation ZEO :8p©8, 0 .. transforms equations (1.19) into an equation in a set
no, = T" x {0} x {0} . The last one has solutions (q + tA (0),00), A =LmA_,

qET" . Sofor 4€B . equation (1.19) has desired quasiperiodic solutions of a form
0
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Eso(qo+tAm,0,0).

Let us extract from H  alinear on ¢ and quadratic on y part:

H (0.6,5:8) = b%q;0) + ¢ - h'(q:0) + < y.b¥(qi6) > +

+ <y.h7(g8)y > + By (a.6,:0) , (2.16)
Hy = 0(|¢1 + Iyl + €1 flslly) - (2.17)

Here hi€ C, nl¢ €C™ by € Y® and hYY is an operator in the scale {Ys} . We may
vary H_ on a constant depending on § and so may suppose that

[8%a) das(2n)* = 0. (218)
Here and in what follows
[tta) da/2n)" = (20)™ [4(a) e
Tll
for an arbitrary vector—valued function integrable on T" . Let us define a function

1% () = Jh‘f(q;o)dq/(zx)“ and set

18(q;0) = n'é — n%, Aper=Am +enh® (2.19)

and rearrange the terms of a‘%’m in the following way:

/
3
H o =Hom(a6yi0) + e (Hy +Hy )+ H (2.20)

Here

/

_ 1 . -
Hom =€ Ap @) +3<Ap(af)yy>, Hy =H —Hy ,



B, =h%+¢ 08+ <y >+ <yn¥y>.

2m

Lemma 2.1. If €g << 1 then
U_,8
a) |nd| ™ T <C, (m), (2.21)

U_.,B 8 _, Lip
, —2/3 |, 0 ' —2/3
mé] ™ <o, m)en 3, 8% T e (m)e B,

m
(2.22)
U_,8
W)™ < ¢y (m) e (2.23)
d—dg
b) b (q,8) € LYY, ) Vq € T, Vo
& Vd—dg
U_,8 N
YY) ™R < m) 23, (2.24)
d,d—dg

¢) ifin(211) K, >> 1 then

0 ] e
+1'""m 1/3 +1' )
[Hyg| =T 4 e 3V g d‘“ " o, (mil)el s (225)
’ R .
d) HOm’ H2m’ H m € ‘/‘Bm(om  €);
BLlip

e) | m_H(B) o] ™ < gpe(m +1) . (2.26)
Proof.
a) The estimate (2.21) results from (2.11) because h%q;f) = H_(q,0,0;6) . To

estimate the mapping hlf let us define a function of an argument z € ¢, |z| < ¢ m2I 3 :



z— H_(q2,00), £ €C", [£] 1.

By (2.11) its module is no greater than C_(m) and by Cauchy estimate its derivative at
. —2/3 1 —2/3

2e10 is nO greater than & / C,(m).So |£-h E(q;9)| e, / C,(m) V[¢] <1 and

|h1€| < e;2/ 3 C,(m) . By considering a function

z — Hm(q,zf ,0;01) -H m(q,xt,{,0;¢92) , one can get an analogous estimate for the Lipschitz

U .8
constant on 4. So lhlel mem ¢ 5;2/ 3¢ 4(m) . From this estimates results (2.22).
The estimate (2.23) results from (2.12) with y =0.

b)  Let us consider a map

el <egPy—y C o an Vi (a0ar0), (2:27)
H

(”y" d <1). Its derivative at zero is equal to h¥Y(q;0)y . So by (2.12) and Cauchy esti-
mate

U

O,
b5 ™ <P oym Vil <t

—dg

The last estimate implies (2.24). The inclusion hYY € .ffﬂ(Yd;Yd _4..) results from the
H

general fact that Hessian of a function is a symmetric linear operator.

Q) Let h=(a6y) €0, and v=c /% Then (a,a/0)%,a/v}y) €0y° for

z € C, |z| 1. Let us consider a function z — Hm(q,(Z/V)2§, (z/v)y;0) and its Taylor
series at zero:

H m(q,(%)zg , (%)y;a) =hy +hz + h222 + ...
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By (2.11), [by | < C,(m) Vk.Since Hy_(h0) = hgo® + byt + . then

C.(m) e P C_(m+1)e ”
. _ 3 4 * m * m

|Hy(5:0)| = |hgt” + hyv™ + .. | < - P/ﬁ_s 3
m

if K7 >> 1. In a similar way one can estimate a Lipschitz constant of H3m

To estimate Vstm let us consider a map

z— VB (2% B)y0) = by BTN
By (2.12) (|||, € <3¢, (m) Vk. So

rs 7’
|]VyH3m(b;0)”d_d = ”h2V2 + ]13"3 + .. "d_dH <
<o metes Bl o mr).

A similar estimate is true for the Lipschitz constant, so (2.25) is proved.

d) The analyticity of the functions is evident. Their real—valuedness for real (q,¢,y)
results from the real—valuedness of & n

e)  The estimate results from (2.8), (2.19), (2.22). -
Let us consider an auxiliary hamiltonian . 8
F =1%q0) + ¢ - £(a0) + <y, F(a:0) > + <3, P (af)y >,

and the corresponding Hamiltonian equations

q=¢ £F, ¢ =— equF, y = stVyF ) (2.28)



A flow of these equations consists of canonical transformations {St} of the phase space

(see Part 1, Theorem 2.4). Let us set Sp = s and denote (q,€,y) =h . Then

¥ (S (5:0):0) = ¥ _(0:6) + e {F.H¥_} +O(e %) .

Here { -,-} is a Poisson bracket; see Part 1, Proposition 4.3. So if b,Sm(h) €0, , then
by (1.25), (2.20) and (2.25)

# (S (0)) = Bo 1 (5) + e (Hy () + {F(h), Hy (5)}) +
+ (e, ) = Hy () + gy (Byp (0) — T F(5) - W, Ho () +

+VeF -V Hy o+ <3V F(), Vo Hy(0) > ) + Oey 1)

(we omit the parmeter ). As

7/ /
_ _ _1
v£HOm - Am+1’ Vy Hym = A quOm =3< Vquy,y >
then we may denote
! a 78
@ = Am+1(w;9), E‘ = 2 wj Bq—-l (2.29)

and rewrite & m° Sy, 38 follows:
¥ (S, (5:6):0) = H{I)m +en [% - < Vqu Yy > — 31‘1/0@, —
-¢- aff/aw' -< y,ﬂfy/r?w, >—-< y,(afyy/r?wl)y >+
+<Amy,ny>+2<Amy,nyyy>+hq+£-h‘f+ <yh’ >+

yy 1+
+ <y ¥y >] +0(e, 7). (2.30)
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We try to find a transformation Sm such that the contents of the square brackets is

O(e Ifl ) . For this end we have to find f 9, f£, £3, 1YY solving homological equations:
14 14
o%/6w =1YqH), 01{/80 = h£(q;0) , (2.31)
4
87/ 8w —A_(6)3F = v (q;0), (2.32)

4
yy YV A VY — 1Y ( a0} —
o gw +PVIA_—A_JPY =¥ (q)

— a0 (q0) + 3£ - VAnLa0) . (2.33)

Here AhYY is an admissible disparity.

Lemma 2.2. If £ << 1 then there exists a Borel subset B +1 C B such that

mes (8, \ 8 . ;) [1] £ 7, Kg(m + 1)~ 2 % Vi (2.34)

a.ndfora.llOEBm_*_1

a) equations (2.31) have solutions {3 € ./{g' (Uml;(D), f£e Jg' (Uml;dln) and
m+1 m+1

1 1
U -8 u_-8 —
@ BB Com), (€ BB om); (239)

. . . R 2, yC
b) equation (2.32) has an analytical solution ¥ € .6 (U_%Y ) and
. 8,4 m’ ddy+d;

2

U_“,8
19 ™ "R < cBm) 13 (2.36)
d—dH + d1

¢) thereexist AV € Ap (U % (Y, Y ) suchthat
m+1 d—dH
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ARYY tpji = bj(q;ﬁ')qaji Yj,Vq, (2.37)
2
U_“8
byl ™ P com P, (2.38)

equation (2.33) has a solution £7 belonging to the same class as AhYY |

2
v ’e
m* ml ¢ oo(m) 2/ Va € [-d—Ad,d] , (2.39)

71,2, <

(here Ad =d; —dg —1) and

2
U _“8
A 387 —F75 A_|| dm m+l ¢ o%(m) 213 (2.40)
,d-dg

A proof of the lemma is given below in § 3.
Let us denote

y: ¥ x8,— ¥5 (bo)H b, (2.41)

Mg: #°x8,— 8, (5,0)H 8, (2.42)

let Hq, Hg, IIy be projectors of ]c = (C%/ 22 ™) x C" x Y® on the first, second and
third term respectively and let S_ be a time one shift along the trajectories of the system
(2.28).

Let d,=d+d —dg—1 and O % =0_°N yj with the norm dist d_ . The set
¢ c

01;:1, dc is dense in 01(1:1 and is unbounded in ygc.

We may identify the torus T™ with a measurable subset T(n) CRY,
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{a€R| [g < Vi} (T C {q € B g5/ ¢ 7 Vi)

(the map ™ — T(n) is one—to—one, measurable and discontinuous), and may identify
# withasubset TV x R x Y of E =R x Y . The identifications depend on a choice
of T(n) , but if dist },(f)l,f]2) < 7 then the point in E corresponding to b; —b, does
not depend on T(n) . We shall use these identifications and treat a difference of two close

#—valued (or T"—valued) maps as a E—valued ( R"—valued) map.

Lemma 2.3. If €g << 1 then

R 4c c
a) 5_ € dierJrl(om ;0.9 (2.43)
and
5¢ :
O'"x8g ,Lip
=T ylgs =1 <ef (2.44)
¥'Ey
C
More precisely,
°Cx@_ . Li
,L1p
Mo Ep-T 1 ™ < om) e, (245)
5S¢ .
x 8 ,Lip
Mo (S~ ) ™ mHT < c¥m) e (2.46)
acC .
0""xB8 ,Lip 9
Iy o 5= Pllg™ T < cqmy e3P (2.47)
o

b) A restriction of S on O 41 83 canonical transformation which transforms
equations (2.13) —(2.15) on the domain O into Hamiltonian equations with a

hamiltonian ¥ , of the form (2.6) with m := m +1 on the domain Omat-
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The lemma is proved in § 5.

Let us set Be =ﬂBm.Then Bs

is a Borel set. For the definition of 7, and e (see
0
(2.2)) and for (2.5)

0

mes BEO [1] 2(1 —% 7,) mes fl Vie. (2.48)

For 0695 and r,NEN0 let us set

0

r

2

0 = .. .-m- 0 —%0¢
(;6)=S8,(;0)0.08 N(:0):0% . — O

r+N+1
(2.49)
T c
and let us set 2 be equal to the identical map of O,".
I
Lemma 2.4. Forallr, m 20
r o°¢ x B ,Lip
r+m ¥ By

Proof. Let us denote the Lh.s. in (2.50) by Dr:-m . One may rewrite the identity

I +1
Z (0:0) = 5( 2 (5;0);0) in the form
r+m I+m

1 r+1

xﬂe)+2r+m—ﬂy.

I

I+
2r+m—n},=(sr—ny)o(2r+m

So by (2.44) we get the estimate

1 1
D im ¢ (Orim +2) + Dy, (2.51)



—62 —

As Diii = 0, then the lemma’s assertion results by the induction. g

Let ug denote T," =T" x {0} x {0} and O =U(6,/2)x {0} x {0} C #_ . Then
TOBCOEJ and 0; lies in Ol‘;l forevery m2> 1 as 6m>%60 Vm .

m
+N
— yﬁc such that

Lemma 2.5. If £; << 1 then Vm €N, the maps Em :0; x 980——* ﬂgc

m e
(N — o) converge to a map 2 10, %8,
o 0

m
a) for every 4 the map 2 (-;0): O; — ;/3 is complex—analytical,
® c

b)
P © o
m O; x Be ,Lip P
c) lEm_HﬂIEdc 0 <36l (2.53)
m

) lny ey @0l < e L3+p V() € T <8, (2.54)
MoY (5:0)] <Le 23 v Dyg
|To ) m(b, )| $3en (h,0) € Tg - (2.55)

m
Proof. Let hy € O andfor j2 1 let b, = ) +_(f)0;0).Then by (2.44), (2.50)
m+]
( N )
dist ; (b , byy) = dist S b:9)),
a,ON+1: ON) dc(szrN( m+N{(g:6)

m
: Py, P p
2m+N(b0,0)) S(1+3¢;) EmAN <2 EmaN -
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So the sequence {hj} is fundamental and converges to a point h_€ yg . The r.h.s. of
c
m
the last estimate does not depend on b, . So the sequence { 2 N(- ; )} converges
m+
: . AC . m c c ¢°
uniformly in O to an analytical map 2 m(. ;0): 0, — ydc, 2 cn(1)0;0) = b, - The re-
lations (2.52) take place and the items a), b) are proved.

The estimate (2.53) results from (2.50) by going to a limit.

To prove (2.54), (2.55) let us take b € 0; and set bm+N+1 =h,

w=3

N l(bm+N+1;0) € 0;-: Vi€ [m,m+NJNN,.
m+N+

Then f)-' =8 j(ljj+1;0) and by (2.47)

IIH,,thIdc < IIH,,ijJ“IIIdc +geftiBs, m<j<m+N.

m+N+1 _ m +1/3
As T f =0, then || f "dcfsxﬁ 13 s

m
)

N (h;B)"d < Emp+1/3 and by going to the limit when m — o one gets
m+N+1 c
(2.54).

Estimate (2.55) results from (2.46) because for the last
M| < M+ O e m

As Ao(w,l) = w then by (2.19) with m=0,1,..,r—-1
_ 0¢ 0¢ 0¢
A(o])=w+ehy™ +eh™ + .. +¢, b2 (2.56)

Here the vector—function h?€ corresponds to the hamiltonian ¥ m with m =j. So
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Be ,Lip
el 0 <o, (2.57)

the maps A : 8, — R" (r — o) converge to a Lipschitz one
0

: - 0§ 0¢
A Beo — R, Ay = w+eghy” + 0> + . (2.58)
and by (2.57)
B i 13
[A (@) — o] <C¢ . (2.59)
Let us fix 00 € BEO and denote w = Am(ﬂo), m € o . Then by (2.56), (2.57)
|w_ —w | <C(m)e 13 Y Y21 (2.60)
m m+pl = m PR = '

/
Let us consider a curve t B bm(t) = (q0 + twm,0,0) ,0<£t<1, on the torus
m
TOIl = T" x {0} x {0} . The map 2 (-5 6p),m 2 0, transforms it into a curve
[+ 1}

b (t) = (4, ()6 ()7, (t)) € O . By the estimates (2.53) — (2.55)

dist (q (1), q(0) + tw) < C el (2.61)
1/3+

||§'m(t)||dc $e g (2.62)

[n®) < i‘em2/ 3. (2.63)

Let H(t) be some strong solution of the system with hamiltonian ¥ , staying inside

o, N Omlc for 0<t< T . Taking the inner product in Y g of equation (2.15) by y(t)
we obtain
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1 3
§%T||Y(t)||(21=€m<JVyHm,y>d+<JVyH ¥> 48

< ellyllglVyBaglg + llvllg Ky (llslZ+ 1€1)

and

ly)lly € y@)lly + 3t e /3 for o<t ¢, (2.64)

By equations (2.13), (2.14) we have

€)1 € [6O)] + 5t eyl dist (a(t), a(0) + tu) S Ctel (0 <E<T). (265)

m

So if
ly)lly <3 M3 160 <Le 23 q0) € TP, (2.66)

then the solution b(t) stays inside o,nN Omlc for 0<t<1.If HT(t) is a weak
solution of the equations with hamiltonian ¥ and 5(0) = b(0) , then (2.66) is true

by (2.61) — (2.63) with t =0 . So by Theorem 3.1 from Part 1 solution h™(t) exists for
0<t<1 and for this solution estimates (2.64), (2.65) take place. By the inequalities

(261)(2.63), (2.64), (2.65) and (2.60), dist (f(t), f (t))<Cef YV 0<t<1. The
0
mapping 2 (+;f) : Fa— ¥4 is Lipschitz by Lemma 24. So distd(fo(t),
m .
0
f() $C’ €2 ¥V 0<t<1 for arbitrary m . Hence £ =1, and Xm(fm(z);o) is 2

weak in ¥ d solution of the initial Hamiltonian system.

Now the assertions b) — c) of the theorem are proved by setting

E 0
z 0 (q;0) =2 (q,0,0;8) , because estimate (1.31) results from (2.53) and (1.32) results
o
from (2.59).
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In order to prove the assertion a), we set in (2.1) 7, = 7,(M)\,0, where M is a
natural parameter tending to infinity. Assertions b) —c) are valid for &5 =¢y(M) >0,
and we may assume that £)(M) ™\, 0 . Then by (2.48) for ¢ € (5(M + 1), £4(M)]
mes {1 — mes B ) [1] £ 7,(M)\, 0 and the assertion is proved.

To prove assertion d) let us mention that Liapunov exponents are stable under a change of
phase variable. So the exponents of a solution bo(t) of equations (2.13) —(2.15) with

0 -1
m =0 are equal to ones of the solution h_(t) = ( E ) By(t) of the equations with
m

m=m . Let &)= (68q, 6f, y)(t) be a strong solution of the variational equations for
(2.13) — (2.15) along b (t):

69 = VeleHyy + H)(0,(1)), (8, 8¢, &),
68 = =V (Hop + By + Bo) (0, (1)), (6, 6, 65) ,

by = J[A(a,(+))6y + (6a- Va A (a.,(t))y +

+ V(e By + BO)(0,(6)(80)] -

Taking the inner product in E; of these equations with 6h(t) we get an inequality:

ool < e lIbly -

The same is true after the change t—— —t . So modules of the exponents of the

variational equations do not exceed amp . As m is arbitrary, they are equal to zero.
3.  Proof of Lemma 2.2 (solving of homalogical equations)

In § 3 —5 we write ¢, instead of Em 6m and sometimes we omit the argument 6 for
functions and maps. In the deductions of estimates, we use systematically the conditions

€y << 1,6, << 1. We denote ES:H‘S\{O},H():H\{O}.
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The assertions of the lemma will be proved for Elm 1= 8, \ (EI1 ueu 93) , where 6P
are Borel sets, and for p=1,2, 3

mes BP[1] < 7, Kg(m + 1)72/ (37,) Vi. (3.1)
By (2.8) the map

8_[3wnu =A_, (s]) (3.2)

for all 1 is a Lipschitz homeomorphism , changing the Lebesgue measure by a factor no
greater than two. L.e. for every Borel subset 1 C 8, [1]

%mes N<mesA . ,(0]) <2mesQ (3.37)

(see Appendix C, Treorem C 1). Besides,

8, [1].Lip
|Am+1—w| m SCEOP, |Am+1(w,l)—w0| SC(EOP+ 6,)
(3.3)
Vwea [I].
Therefore, if
gl=u{8lisez},8 = {s€B_| |v (8)- s <
8 04" m =
< [(m+1)%s|"C]7}, (3.4)

then

mes8'[1] < ¥ mes 8] [1] <
sEllg
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7 7
<2 ) mes{w | |w-s| <(m+1)2s|mCTI}<
s€X;)

2 -—n—1 —1 —2
<—=2 Y ¢ s <2C,C Y m +1)
C(m+1)2 sgﬂg 1 2

and condition (3.1) is satisfied if C>> 1. For 6 € Bm \ gl ,q€ Uml , the solutions of
equations (2.31) are given by convergent trigonometric series and satisfy the estimates
(2.35) (see [A, Sec. 4.2] and Lemmas B1, B2 in Appendix B below).

We turn to the equation (2.33) (a proof of the assertion b) on the equation (2.32) is much
simpler, a sketch of it is given at the end of the section). For j€ X, we set

wi=(o %) +Gemiie)/ V2.
Then {wj Ai}?) | 1€ HO} is a Hilbert basis of a space Ysc ,8 ER . For complex
numbers X j€ ZIO , we denote by diag (xj) an operator in Y® which maps w; to
X% Vj € Z; . In particular by (2.9)

J A (qi6) = diag (i33(a;0)) (35)

with A}(q;a)=A.(w)+ﬁ. (66) Vi€Zy . Here for JEN A_(a)=—A(a),
B (@) = = B, (§6) . By (2.10) and (127) Vi€ T,

U_;8 d
1 ’ |
1G5 =A01 ™ BLeflil 7,
(3.6)
1 . dlr P dH
|5(a:0) = A9 £C(6, 151 " +¢571i] 7)  Va, 0

(here AjO = )«j(wo) ) . Let us choose functions bj(q;ﬂ) , JEN (see (2.37), (2.38)), as
follows:
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bj(q;0)=% Z < (%t‘f-Vqu+1+hyy) (p?,(p?)
o=+

and define the operator AhYY | AWYY (pj:t = bj(q) :pji Vi€N . By (2.24) and (2.10),
(2.35)

1,

u lg a
|b:| 0+ ¢ G(m) e 235 B VienN.  (3.7)

J

So operator AhYY satisfies (2.37), (2.38).

Let us denote hlyy q;0) =h7Y + 1 t{ -V_A_ —AbYY . Then by (2.24), (2.35) and (3.7
2 q m
1

U',8
a7 ™ "B ¢ o(m) ¢ 23 (3.8)
d,d—dg

As the operators J and A = commute we may write equation (2.33) as follows:

0—37' Y 4 [(7Y,5A_] =0V (3.9)
(")

Let us fix for a moment some functions Wj(q;ﬂ) ,J € HO , such that Wj =— W—j , and

1
U -8
R 1 ! 1 .
WEsg (U0, W) " -+l ¢ ¢(m) Vi  (3.10)
m+1
(they will be chosen later) and denote W(q;f) = diag(expi W j(q;B)) . Then
2. w*Hq0) = = diag (i -2 W(a8) W*'(a0) .
Ow v 3

So if we substitute into (3.9)

Y =wrY wl oY —weY wl, (3.11)
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then by (3.5) we get for F¥¥ an equation

DBV 4 [PV, diag (i (Al 2 wy)=87. (3.12)
dw 8&; J

Let us take functions W, be solutions of equations

P NCOREHCORENOIPHEY ERCORYCL LR CEE)

If §€8_\ 8" then the equations (3.13) may be solved just as equations (2.31) and by
(3.6) estimates (3.10) take place for the solutions Wj ,i€Ly. By (8.10),

(3.11) |- || m+1 —norms of operators h'¥Y and HYY | 7 and FYY differ by a

factor no greater than C®%(m) . Thus to get estimate (2.39) for a solution of (2.33) is
equivalent to get it for one of (3.12).

Let us mention that elements of the matrix {ij} of the operator FYY in the basis
{Wj| i€ HO} are given by the formula F k = < F¥Y W, W—.i > and the same is true

for a matrix {H jk} of the operator HYY . So we may apply quadratic forms
corresponding to the operators in 1.h.s. and r.h.§. of (3.12) to vectors W, W—j and get
equations on the matrix elements F jk(q;ﬂ) :

T (@) + (O 0) = 45000 Py = By (a0). (3.14)

P
For a vector—function f(q),q € T®, we denote by f (s),s € I, its Fourier coefficients:
f(q) =2 f (8) ed 8, By (3.8) and Lemma B1

e (s)Ilde’l’H < C¥(m) e ~237/6 8ls] (3.15)

For the diagonal elements {h}j} of the matrix of operator h!¥Y we have:



h}j(Q) =%< hl”(tl)(sol"}l +i(8gnj)so|3|).so['}| —i(sgn i) @5 >
1(<h13"3’() t + >+<h1”() p 0 >) (3.16)
=3 Q‘Pljl:ﬁaljl Q‘Pljlnﬁf’ljl .

So by the definitions of the functions b.i and operator n1¥y . h}j(Q) =0 Vj and the same

ig true for the operator HYY :

Hii(q;()) =0 Vi (3.17)

By (3.17) equations (3.14) are equivalent to the following relations on Fourier coefficients:

. 4 / o~ _ 0 if k — j,
l(U'B—AJ'I'/\k)ij(B)—{/H\.. ifk#-].
Let us choose ?kk(s) =0 Vk¢€ I, and denote
( ’ AI AI) 4y
(w-8-A.+ ) ’
. k
D(k,j,s;0) = { i, j=k. )
Then
F kj(s) =H 1‘j(s;ﬁ) D™ “(k,j,s;0) . (3.18)

Lemma 3.1. There exists a Borel subset 62 C B, with the property (3.1) and a constant
c > 0 such that if € <<1 and 6a. << 1 then for all

g€ Bm \ (B1 U 82) and for all jk¢€ Iy,j #+k,s € I" the following estimate takes
place:

2.
Bm\B,Llp<

1D (ki85 |
<Cm)(1+ 8]t 1+ (2,2 j0|)‘1. (3.19)

The proof ig given in § 4 below.
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For a map g(k,p) ,g: Zy*x P — €, where P is an abstract set, we denote

|8(k.p) | /7y = (kél lg(k.p) |/
0

and treat g as a map from P to / r(ZIO) .

We have to estimate the norm of the operator FYY(q;f) . By Lemmas B 1, B 2 this is

equivalent to estimate the operator norms of Fourier coefficients F YY(s) . For this end
we:

(1) estimate matrix coefficients H kj(s) of operator HYY(s),
P
(2) estimate coefficients F ,(s) via the relation (3.18);
J -
(3) estimate the norm of a matrix F Y7(s) via coefficients F k j(s) .

Step (1) is rather simple. Indeed, the matrix of the operator HYY(s): Yg — Yg d
H

with respect to the basises {Ak(_d)wk |k € llo} C YS and

(—d+dH) c ) (—d+dH) ~ (—d)
{2 w |k€Z,}C Yd—dH is equal to {A, ij(s) /\j } . So by
Lemma Bl Vj € Z,

8_,Lip 8 _,Lip

d—dg ~ m’ m’

H .
1kl TEE T, <clETE) <
72%(x) d,d—dg
Step (2) results from (3.18) and Lemma 3.1:
1 ) H .
a_\ @' uehLp |Hk;()l T,

/\. <
| Fy;(8)1 ST F Mgy - Xyl
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(3.21)
T, = C;(m)(1 + |s[)%L.

For Step (3) we have to glue the estimates (3.20), (3.21) in order to obtain estimates on

/F\W(s) and FY¥(q) . The operator /FWY(S) from the space Yfl with the basis

(—d,)
0 j(‘d)wj} into the space ch ,dg=d—dg+d) —1, with thebasis {A; ©wi} has

the matrix

(d) ~
)y J Py ,\j(‘d)}. (3.22)

Let us denote by i (j,k € EO) the function T j= 1- 6kj . Then by (3.21) we have a

trivial estimate for ¢ '~norm of the column number j and its Lipschitz coefficient:

d) ~ Bm+1'Lip
I"k( ) F 1;(®) "j(_d)|/1 (k) ¢
(3.23)

. d,—-1
8_,Li 1

Hpi6) i /201 |

<T.| |k 2
(| 1k T i

To estimate the r.h.s. we need the following statement:
Lemma 3.2. If j, in (1.28) is large enough then Vj, k €N

d d d d
A | 1 -1,.1 1
Cy li " -k 7|2 I)‘jO_AkOI ch i —k7. (3.24)

If j>k>0 then

d,—1

A=Al 2Coi & (3.25)

0
Proof. For j=k the inequalities (3.24) are evident. So we may suppose that j> k.
Then by the assumption (1.26)
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4 4 .
AjO—AkO=K2(J -k )+ 43, k),

r—l1
d d d d
1AG, 01 <C Y M-k M4k 5 DT 4K & DTG

1=1

o di dy d; 4y
N R W S L E SR EPORt i B

and C,(j), Cy(j)— 0 as j— o (one has to mention that

d d d d d,—1 d
jl-x12it-(G-nt2ci! andso (j!

dl,r <d, - 1) . Now the estimate (3.24) is proved for j greater than some C « - For
j, k< C, it is true with some C >> 1 because

1nf{|A —Ak0| [1<k< j< C*} >0 the assumption (1.28) with s5=0 and
—/k— . =1 (one has to take j; 2 C, ).

d, —d
-k 1)j L o (j— o) because

Inequality (3.25) results from (3.24) . -
By this lemma

d;-1
|i]-1

T i |k [ ] || .

T+ [A oA 1071/2(1;) L+ ): [Ikldl- Ijlal]g

k=—w k=|j|+1

2(d,-1)

After a substitution k = |j|y one can estimate the sums in the r.h.s. via integrals. So

d;-1 2(d,-1)

1—
i 1x| 2 (cl [JIJI "‘J ] |y o
1 ) 2 GLP T
+| k0ol | 2k) | 1+7j) 7 [|Y| 1—1]

By (3.20), (3.23) and by the last estimate , / 1_jorm of the column number j of the
matrix (3.22) and its Lipschitz constant are no greater than

L, = C,(m) T, 2/3c75/6 61s]
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For ¢!-norm of the row number k of the matrix (3.22) and its Lipschitz constant we
have the estimate:

(d )/\ —d g ,Lip
A Y F (s ,\-( )| mtl <
ERRGEVOR el o
1
d—dg—1 ~ 8_,Lip Y CH
H 4 1-d, "m’ k,j
<CT, | |X| Hy ()i | T =

(3.26)

c
As BY¥(q) € J’S(Yg ; Yd—d ) then by the interpolation theorem (Corollary A2)

H
ule ul,e 2/

1:S0d | 2B T <CCy(m)e
1—d+d g,1-d d,d-dg

and for the conjugate operator (HYY )* one has the estimate

1

U_ .8
|(EF)¥| = ™ <CC, (m)e 23
d—l,d—dH—l

Thus Vs,k

d—d
| ||

-1 .~ e ,Llp i
2 °(j)
(3.27)

and the first factor in the r.h.s. in (3.26) is estimated. For the second one the following
estimate is true:
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1
T '“*I‘ko Aj00) |~/"<j)S

-1 -1
-| k| 1-| k|

Sﬁ[J ¥ J Y T ] » PRCE

2
|k| 1+|k|_l y'(1-sgn y |y| )

Thus by (3.26), (3.27) ¢ 1_norm of the row number k is bounded above by the constant
—2/3 )
L, = Cy(m) T, € 2/ Pexp —2 65 .

So the matrix (3.22) of the operator /F\yy(s) : Y:i — Y& has columns and rows bounded
c

in /-norm together with their Lipschitz constants by max(L,,L,) . Hence the norm of
the operator is bounded by the same constant; for this classical result see [HLP, Chap. 8]
or [HS]. We have got the estimate

I'F (s)||derl <C(m)T ¢2/3575/6 8|s|

By it and Lemma B2

2 2
,8 ,0
1#7]] 4" ‘m m+1+z Ilg—" fyyucl m+1<ce(m> 23 (3.28)
c
=1

because the norm of 7 is equivalent to the norm of F¥J up to a factor C¥(m) . So
(2.39) is proved for a =d . The estimate (2.40) results from the equality (2.33) and from
estimate (3.28).

The symmetry of the operators F’Y and f'Y results from the one of the Fourier
coefficients F Y (s) (formula (3.18)). For q € T® the operator £7(q) is real, i.e. it

maps Yd into Y d—d because the operators hw(q), q€ Tn, are real. So
H



L

(q) € £(Yg; Y§ ) . Now the validity of the estimate (2.39) Va € [-d_d] results
[

from the estimate for a=4d , from the symmetry of operator 7 and interpolation
theorem (Corollary A2) . The assertion c) is proved.

We give now a sketch of a proof of the assertion b). Let us substitute into (2.32)
¥ =WF b7 = WHY . Then

o gy _ — diag [i -2~ i
ErFl' [JA dlag[aw w]]FY H
or
(v -5) FY — diagli ,\;(B)) FY=HY. (3.29)

Let

IOED) /F\J(s)w =Y ® (6)%;
jEIlO JEHO

Then by (3.29)
F () = D7'(i0) B (5), Dy (i) = (s — .\;) (3.30)

By (2.30), (3.10) and Lemma B1

'Y s)ll i“ P CBm) Y36 18] ()

H

To estimate DII we use an analog of Lemma 3.1 (it will be proved in § 4):

Lemma 3.3. There exists 2 Borel subset 8% C B_ with the property (3.1) and such that
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8, \ 8% Lip

- 2
D} | <CC,,(m) [s|2F3. (3.32)

By equality (3.30) and estimates (3.31), (3.32)

8 1.LiP 2n+5 —5/6 ~1/3
”/F\y(S)" m+1 SCi(m)|s| 1+5¢ / 68|, /3

H
So by Lemma B2
2 2
Uus.8 v ,0 —
”fy" m’ “m+1 + "vq fy" m’ “m+l < Ce(m) ¢ 1/3
d—dg d—dg
and the estimate (2.37) results from the equality (2.32). -

4.  Proof of Lemmas 3.1, 3.3 (estimation of small divisors)

The estimate (3.19) results easily from the following one:

s ko~ 4ol

D(k,j,s;0
PO 2 G )@ s)®

(4.1)
Vk#jer,,Vse1®,Voen \ (8'ue?).

Indeed, Lip D! < (Lip D)(inf|D|)™2 and by the estimates (3.6), (1.27)

d,~1
Lip D(k,j;8;') € C(|s| + 1 + max{[j| , |[k|} > ).So(4.1)and (3.25) imply (3.19).

We may suppose that |j| 2 |k| and j> 0 because
| D(k,j,s)| = |D(j,k,8)| = | D{(—%,—j,—8)| . So in what follows

i>0, k| <j,k#j. (4.2)
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By estimates (3.6)

’ d d
5=l SC(8, 13l M+ ef 13l ) Vi, Vo (43)

By this estimate and (4.2), (3.25) we have for 63, gg << 1 inequalities

/

|"k—A |>|"k0“10|'|“‘k Aol = 145 =21 23129 = 4] +

d,-1
1 a1 Oy - 1 1

If 2|w s|<|Ak—AJ| then by (4.4) |D|>2|)‘k by |>I|Ak0_AjO| and the
estimate (4.1) is obtained. So we may suppose below that

’ 2 Al - A, 4
2|w -8] 2 |4 j| (4.5)
In particular, s # 0. By (4.4), (4.5) and (3.24), (3.25)

d,-1

1 /
j {Clw 8], (4.6)
|Ak0—Aj0|SC|3|, (4.7)
d; dy
i " —|k| 7| £C,ls}. (4.8)

Situations d1 =1 and d1 > 1 have to be considered separately. We start with the more
difficult one.

A) d;=1. Thenin (1.25) dg <—x andin (1.26) d1 {—x and

dl j <1-x Vj for some 0< x < 1 . Depending on the relation between k and 5, we
consider three cases.

— 1
A1) |s| <9K,|k|™X+ 5. Then
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|k|g(13K1)1/X, |8|S9K1+% (4.9)
because |s| 21, |k| 21. By (4.8)
: 1 1
J<Cyls| + k| <C,0K, + 1)+ (18K /X =,

Let us take in the assumption 3) of the theorem i 2 Cl* and M, 29 K; + % . Then by
(3.3), (4.3) and (1.28) with /J =1, /Ikl =—sgnk (or /J =2 if k=—j) we have

1 /
/ / Ep

Now the estimate (4.1) results from the last one because 0 < j < Cix>
k| < (18K )X

—x ., 1 Mo -1
A2) 8| >9K kX435, |k|<Cuq(m) [s] ~ . Here my 2x (n+3) and a

7/ /
function C_4(m) will be chosen later. By (3.6) and (1.27) Lip (A, — Aj) <3 K1|k|_x
if €5 <<1.850

7/ 4
. 1

Let

v sy el | _

and

B (kjs) = {0 €8,_| |D(k,js0)| < T},
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r 4 —_ .
85! = U {8 (k)] (9K, k| x+%)< le] . k] €5,

m
0
|k € Cyg(m) 5] 7, g = Al €Clsl}-

We shall construct a set 82 as 82 = 821U g2 (the set 822 will be defined later).
Therefore, if § ¢ 82 then 8 ¢ 8% and |D| 2 T. So (4.1) is true.

We have to estimate mes B! [T] . For this end we estimate mes B, (k,j,8) [I] . By the
estimate (3.3 ) mes 8 (k,j,s) [I] <2 mes 0 (k,js) [1] . Here

Q,(k,j,s) [I] is the image of the set B’(k,j,s) [I] under the'map (3.2). To estimate mes
ﬂ’ [I] it is enough to estimate one—dimensional Lebesque measure of the intersection of
n’ [I] with an arbitrary line of a form {w’= wl(t) =

11+ts|s|_l|t €R},n€ER™ . The set of ™" corresponding to this intersection is
contained in the set

{t] ~TETEETY, T =n s+ t[s|+ (A -2 () (41)

4
By (33) Lip (v:w b w) <3 if gy<<1 VIEJ.Soby(4.10)
. 7/ 7 7 1 1
Lip (tH(Ak--Aj)(w (t)) £5]8| — - Hencefor t; > 1,

D) = Tltp) 2 [](t = t) = [ (A = A ) (47) -

SO =20 ()] 2 1t~ ty] Gls| + P

-1 ’
and the measure of the set (4.11) is no greater than 2T(%|s| + ;11) . Since the set @ [I]

is bounded and the vector 7 may be chosen orbitrarily, we have by Fatou lemma:

/
mes 00 (k,j,s) [1] < CT([s] + 1) . So

mes 851[1) < ¥ mes8 (kjs) [11 <2Y § mes (k,js) [1] -
k,j,8 540 j,k
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m
As  |k| £C,q4(m) |s] 0 and |li—k| £C,|s| , then we have no more than

m.+1
C C,4(m) [s] 0 admissible pairs  (jk) . As I"kO—AjOI <Cj|s| then
l-m,
T L C|s| Cy4(m) and
Cyq(m) 151707 c) Cyqlm)
2,1 x3\m) 1% 1 Ux3\m
’ < <
mes B [I]_CZ T, 2 (W)

my
s#0 C,,(m) |s|

Therefore, under a suitable choice of the function C, 4(m) , depending on the choice of

92,1

Cy3(m) , mes [I] is no greater than one—half of the r.h.s. of (3.1) .

m
Ag) |k| 2C,g(m) |s| °,s#0. Then by (4.2) and (47) j> k> 0. By (1.26) (with
d, =1, d; $-x,d;;€1—x Vj=1,..,r-1) , (4.3) (with
d;  <—x,dg <-x) and (4.7) we have

’ ’ _ .
1A, = A —Ky(i=0)| SCKX(|j—k| +1) <
(4.12)

- 1—xm
<CC . Xm)[s| ~ °.

Let us set

4 ! /7 / A° 'A
n (s,N)={w ||w—w0|$l,|w-s—NK2|$ 20 kgl2}
C*z(m)|s|

(a function C,o(m) will be chosen later) and
2 2 / r/
Bo"=U{0€B_ |v (6)€Q (sN)}.

’7
Here we take the union over all s € ﬂg and NE€Z. The set 2 (s,N) is empty if
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r7 /
IN| 2C|s| K3 ; by (4.7) mes (s,N) € C(C,p(m) |87 S0 by (33)

¢ Cy
St m)
2-
Co(m) |s| 2t *2

mes 82?11 <y Y
s#0 |[N|<C|s| /K,

and mes 8% [I] is no greater than one—half of r.h.s. of (3.1) if the function Cyo(m) is
large enough.

’ 7/
If 6¢8%% then by (3.25) and (4.12), by the definition of 0 (s,N) and by the
inequality m 2 (n +3)/x

D] = 1= 2"~ Ky = 1)) + (Kyi= 1) = - 8)] 2

m,

2

1—
—1 —n—2 —
> [ Xjg = Aol Calm) [s] 77"~ C C.X (m) |s]

1
> 512

-1 —n-2
jo_Akol C*g(m) 8] e,

g2:2

if C,4(m) is large enough. The inequality (4.1) for 6 € Bm\ results from the last

one.

Now the lemma is proved for d =1 with 82 = 92’1 U 82'2 .
B) d; > 1. Let us find x € (0,1) such that dy—1>x and dIrSdl—l—x.
By the inequality (4.6)

dl_l

HELN (4.13)

d,—-1 —X
3 —1,1 . .1 .
Let us denote j, = (12 K, C, ) Ix y Jgx = 3y (K1 Jx

cases.

+ 1) + 1 and consider two



—84 —

B1) ij* , 18] Sj** . In this case the estimate (4.1) results from (4.3) and assumption
3) of the theorem if i Zj* M, Zj** and g <<, 6a <<1.

4
B2) j>j, or |s] >j,, . Letthesets B (kjs) and 0'(k,js)[I] be the same as in
the item A2) and

4
6% = U {8 (kis)[3> |k| , [ A=Al SC Is], Is] 2 C, %} .

Then for 4 € Bm\82 the estimate (4.1) is true. So we have to estimate mes 8> [1] .

By (1.27) and (3.6)

’ ’ d,—1
Lip(¢ w2 (o) $3i 1 KiX+ef),r=ki.
By this estimate and (3.3) we have for the function I'(t) (see (4.11)):

D(t)) ~T(tg) 2 [s| (ty —t)) =33 ' (Kyi X +ef) (t; —ty).

If j> j, thenby (4.13) for t, >t

d,—1
1 — 1
F(tl) _P(tg) 2 (tl - tg)J (C* -3 (Kl J X 4 Eg)) 2 5 C*(tl - t2) )
if j<j, then [s| >j . and

d,—1
. | —_
P(tl) _F(tg) 2 (tl _tg)(|5| -3 Iy (Kl j*x +1)2 t’.1 —t2 .

So mes 1 (k,js)[1] < C,T and mes 8°[1 <C T ¥ T(k,js).
§#0 k, j

By (4.13) there are no more than C|s|2x admissible pairs (j,k); by (4.7)
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1+2x~m C

2 —1 1 1
mes 8°[I] <C ) C_,(m)|s| < ,
sgo *4 C*4(m§

if m; 2n+ 2+ 2x, and the estimate (3.1) is fulfilled if C_,(m) is large enough.

The lemma is proved. =
Proof of the Lemma 3.3. Let us define the set 93 as follows:
3 _ ’ . n .
8°=U{8 (js)|s €L ,j€ Ly},

8’ (1) ={0€8 |50 ()= (0)] <Cohm)t+ [s))™}.

’ 1/d

By the assumption (1.26) the set B is empty if |j| 2 C|s| 1 By (1.26) and (1.28)

with =0, || +.. + |/J | =1 and M, large enough , ]Aj(0)| >c! Vi, 0. So
1

by (4.3) this set is empty if 8 = 0 provided that €y <<1, 6, << 1 and Cy(m)>>1.
Thus we may suppose that

Iilﬁclﬂllldl.#o- (4.14)

/!
As in the proof of Lemma 3.1 we get that mes 8 (j;s)[I] < C CyL(m) |s| ™™ 2. So by
(4.14)

C
mes 81 Sy ¥ Y (U s oy
530 j<C|s| *x

and (3.1) is true if C,,(m) is large enough. If § ¢ 8% then
ID| 2C,,(m) (1 + [5])™ " and (3.32) is proved.
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5.  Proof of Lemma 2.3 (estimation of the change of variables)

Let us denote by EC? s€ER,0== , the space E: = C2n x Y: endowed with the norm

8,6’
II.”(O’,B,E) !

2 2 i% 2 i% 2
(£:8,€)

The following assertion results from the definition.

Lemma 5.1. For all s € R the spaces Eg,f are dual with respect to the bilinear pairing

<., > E*xE'—0¢,

||b||(d:,s’€) = sgp I< bib* >E| "
5 Mgy $1

We denote by dist, ) the metric in #; induced by ||||(_ 5)

Let us write down the system (2.28) in the form:

b= F(b), b= h(t) = (alt), £(t), ¥(t)) ,

(5.1)
F=(5% 3%, 57, 5= V£F, 9t = —VqF, Y = JVyF :
If £g << 1,thenfor j=1,..,5
dist (03¢, 0_°\ 0_¥*) > (m). (5.2)

By Lemma 2.2 and Cauchy estimate
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3c

0 x8 ,Lip
ol ™ L cm)el/3 aa = d, —dg (5.3)
(—,d + Adye)

By (5.2) and (5.3) for 0t<1 and £, << 1 the solution of (5.1) depends analytically

0
on hH(0) € 0m4c and stays inside Om3c . So (2.43) is proved.

For every h € Oic the following estimate on the tangent map 5 * results by Lemma
2.2

Lip

lle & ,(5:- )"(E ;1;5) (= + Adye) < C¥(m) £1/3

(5.4)
Va€D = [-d—Ad,d] .
For t € [0,1] let usset 7(t) = st «(0)n . Then 7(t) is a solution of the Cauchy problem

it) = € F (6(t)) Wt) , 70) = 7, b(t) = S¥(h) .

By (5.4) for h € 0m4c and a € D we get the estimates:

,Li
s (6) —1d | (m+; 6)" a4 bd) S 1C°m) €3 (5.5)
and
,Li
I55(6) —1d —te &, o) = [ )p (oo 4 Adg) S £CTm) 23

(5.6)

The first of them results from the identity

{
W) =n=c | () n(r) dr
0
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and the second one results from the identity

t
W) —n—et F O =c [ (5,06(r)) ot) — 5, () m) dr .
0
Let B(t) = (q(t), &(t), y(t)) be a solution of (5.1) with §(0) = h = (q,£,y) . Then

a(r) = ¢ £(a(7)) -

So IIq o S7(h) = S;(q;ﬂ) (i.e. does not depend on ¢ and y ) and by (2.35)

T U;‘Bm-i-l 1/3
|S4(a) — 4| $rC(m)e/”,
(5.7)
T UI?J'Bm+1 2 2/3
[Sq(q)—q—*rsfs(q)| <77 Cy(m) e

By the first estimate with 7 =1 we get the assertion (2.45).
For y(t) we have the equation

y(t) = 26 3 P (a(n)y + I F(q(7)) - (5.8)

Let z(t) = z(t) (g;f) be a solution of (5.8) with zero Cauchy data. Then by (2.36), (2.39),
(2.40) and (5.7)

4

Um:Omy1 <t 8 2/3
z m Y 1] . .
”(t)"d . +d1_tC( )e t € [0,1] (5.9)

Let us substitute into (5.8) y(t) = z(t) + u(t) . Then

u=2J(q(r))u,u(0)=7y. (5.10)
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So u(t) =y + U(t)y, here U(t) is a linear operator and by (2.39), (5.7)

U By 1/3
o)l 4™y Bk, <t C¥(m) e/ Vi€ [0,1] . (5.11)

,d + Ad

So Tl'yo S o(2:6,y) —y = 2(1) (g;6) + U(1) (q;f)y and the estimate (2.47) results from
(5.9), (5.11). :

The estimate (2.46) results from the equation on £(t) and the estimates on q(t), y(t) .
Now (2.44) results from (2.45) — (2.47) .

The transformation S_ = Stlt —1 is canonical as a shift along the trajectories of a
Hamiltonian flow (see Part 1, Theorem 2.4). To investigate the transformed hamiltonian

M ° Sm we start with an analysis of the quadratic term

At) = % <A_(at) y(t),y(¥)>  with  y(t)=z(t) +u(t)= =(t)(qg0)+ ¥+
+ U(t) (q,8)y - It is equal to the sum of terms of zero order, first order and second order on
y:

At) = A (t) + <W(t)y > + <V (t)y.y >, (5.12)

2%(t) () = 3 < A_(a(t):0) 2(t), =(t) >,

2 (t) (g6) = (1 + U) A _(a(t)) 2(t) ,

W (t) () = 3 (T + UE)*A_(a(t)) (1 + U()) .

Lemma 5.2. The following estimates are valid:

277 - 27%(0) ~§ £ - T, A (a) -

U4 ,8 1 2/3
SFAL@, e @] | ™ TH < c¥m) 23, (5.13)

,d—d g
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4
|27 (1) ~ 2% (0) -3 Am(Q)fy(Q)”Um, Pt < C¥m)e, (5.14)
d—dg
UnBmi1 . e 4/3
|2,(1)] <C*(m)e™". (5.15)

Proof. By the definition of AYY(t) we get the equality:

d

< @Y(1) - 27(0) vy > =5 [ § < Apla®) ), u() > dt =

Oy

(5.16)

t
= [ <BE (), u()) > + § < (¢ £a®) - Ay (a®) u(t) , u(t) > ot
0

with B(t) = [JA_(a(t)), e #¥(q(t))] . By (5.7) and (2.40)

4

ude
Bl ™ ™+ ¢ c¥(m) el/3, (5.17)
d,d-dg

4

liB(t) - B(O)IIU“"B“”1 <t C¥m) 213 (5.18)
d, d—dH

By (5.7) and (2.9), (2.10)

4
Uu_,8
t ! 1 2/3
I [omgle Eam) - VA @I ™ 2 <eem) . (s19)
d y d_dH
Now we may replace the integrand in (5.16) by its value at t =0 and get the estimate
(5.13) from (5.18), (5.19) and (5.11).
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To prove (5.14) we rewrite < (27(1) —=27(0)), y > as follows:

1

<@ -2),5>= [ F<AZE®) %), u() > dt =
0

(< (%z A () + A (a(t) (2 I P (q(t))z + £ T P (q(t)) , u(t) > +

O%H

+ <A (q(t) =(t) , 2 T 7 (q(t))u(t) > ) dt .
I |lyll_g4 4 €1 then by (5.12), (5.8) and estimates on £7, this integral differs
H
from <JA (q)¢ (q),y> by C%m) e, as stated in (5.14).

The last estimate of the lemma results from (5.10). -

By (5.12), V(2(1) —2(0)) = (A7(1) —2¥(0)) + 2(A¥Y(1) — w7V (0)) y . So we have the
following consequence from this lemma:

c

Corollary 5.3. For h €O+,

IV (1) - 2(0) — g < e £a) -V, Ag @)y, ¥y > =

U _¢. .8
—<[FALQ, e @]y, y>-<TA_ (@ F(@),y>)| 2H1 ™ H <.
—dg

Let S_(h)=b+ ebl = (q,f,y) . We write the transformed hamiltonian as follows:
4
-0 = . Y¥(a-
X _(S,(50)0) = (B (00) + € < AV (q:0) v,y > )

+E<A DT> -5<A (@ yy>-
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—< B AL, e (@l vy >-F<ef(@) VA, vy >-
—<IAL(QF(@),y> ] +el - 5% Ay ), +
+e[hq—3“:—,-fq]3 +e[(h£—5—g-rle) €], -

—£[<—arfy—AmJ{y-hy,y>]5—

dw

—e[ < (ﬁrﬁ’?u [FA_, 7] —hyy—%ff-qum+AhW)y,y> 1+

+ [(cHyp, + el + E)(b + eb') — (B, + eHg + E)(0)]; +
+e[Hy ]g+ E (5.20)

We denote by A jH the functional in the brackets [-]j (together with the preceding
factor).

Lemma 5.4. For j=1, ..., 8 the following estimates hold:

0 °¢.8
ap| mHImMAL L6y ) Pt 5.21
j 8 V%

2

o_°%..,8 3(p+1)
v, AjH"dm+1d mtl¢ic,m+1)é (5.22)
— 4y

Proof. We prove the more complicated estimates (5.22) only.

j=1. The estimate is contained in Corollary 5.3.

j=2. For the natural projection II_ : E® — Y we have:
' (+d + dgee) d—dy
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”Hy"(+,—d +dH’E) ,d—~ dH S € / . (5.23)

By (5.6) with a=—-d + dg €D ,t =1 and by Lemma 5.1

*
(5, —1d = ) (h)"(+ ,d—d-1e) , (+,~d+dg.€)

< Cg(m) &3 (5.24)

Since
V(ele' = 3%) - Ay 4 ) =T 0 (S, —1d —¢ 3)7(0)(0Ap,1.0)

and "(O’Am+1’0)”(+,d1—d—l,£) {C 213 , then the estimate (5.22) results from (5.23),
(5.24).

j=3-—6. A3H=...=A6H=0.

j= 7. For arbitrary function H we have the identity:

JH() +

V (H Ly_H@EH)=(V.H -V
§(EO + ')~ BE) = (OO,
+11,(e6')*(6) VB + &0')
So we have to estimate two terms,

VHOI, 1= TyHO) - (5.25)

+eb

and

I (e5")*(5) V(b + eb) (5.26)
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for H=¢(H, +eH, ) andfor H= H3 . Let us denote h=S8_(h) and mention that
I o (5,(5)) (0,05) 0. So

1L o (c5)¥(5) V,B(5) = T, o (e5")¥(9) (0., B(5).V, (b))
and by (5.23) and (5.5) with a=—d +dg

~ 8 ,Lip
I, o (e6™)* (o) VBRI =1 <

-1/3 +1LIP
e / "(Eb) "(f[}-1 —d+d -Le), (+ —d+dH,5)

~ ~ Li
A IREN (‘f+id+dp_1 <

~ B8 ,Lip ~ )
< C¥(m) (52/3|V£H(b)| m+1 +51/3||vy11(r;)|| ‘gi(ll ) )
(5.27)

Let H =¢(H,  + Hp ). Then the estimate (5.22) for the term (5.25) results from (2.12),
(2.44) and Cauchy estimate. The estimate for the term (5.26) results from (5.27), (2.11),
(2.12) .

Let H = H° . The term (5.25) is equal to

[

4 VyH3(b + mhl)dr = J (V Hy), (6 + Hh)pldr
0

oO\— ™

a8 ,Lip
and its |[-]| m+ 1 norm is estimated above by

H
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~ B ’Lip 3] ,Llp
(V) 270 o el P

: d+dqd
d+dg—dg* Td—dg ) i |

2/3

The first factor is no greater than C ¢“/* by (1.27) and Cauchy estimate. The second one

is no greater than & by (2.44) as dg €d; —1. So the term (5.25) is estimated.

The estimate for the term (5.26) results from (5.27), (1.27) and Cauchy estimate because
d—d; +1£d—dg.

j =8 . The estimate contains in Lemma 2.1, item c) . -

By the equation (5.20) and Lemma 5.4 hamiltonian % m(Sm(fJ;B);B) has a
form (2.8) with

A y1(30) = A (a6) + 2¢ Ab7Y(qi6) . (5.28)

Lemma 2.4 is proved.

6. Proof of Statement 1.2.

0 €0 n
By the definitions of the maps z and 2 , for b =(q,0,0) € T0

0 £ 0
Y (h:0)=T #(00.0:6) = (2.0,0) € ¥ and Y %a8) = (a,0,06) . So we have to prove
@®
that

0 T2 x 8_ ,Lip
0 En’
|y -n 0 <Ce (6.1)
Zm ;|Edc 0

0
By the proof of Theorem 1.1 the map 2 is equal to
@
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0 m
Em"’;") =Sy(-;0)e8,(-;0)0..08 (500 _0:0)
(6.2)

and

oS x 8, ,Lip

|2 —HflEd 0 <36 f (6.3)

(Lemma 2.5). The r.h.s. in (6.3) is smaller than ¢, if m > m(p) . So to prove (6.1) it is
enough to check that

0.% x8.,,,Lip
TR o, Vi<m(p) (6.4)

;=1 415

C

In a similar way,

/
w (o) =w+ 60h8£ + elhge + ... (6.5)

0§
0 1/3 .
(see (2.56)) and | hf + €541 h_]+1 + ... | £C()) £ / (see (2.60) with

=j,p=m).Sotoget (1 34) we have to prove that

eh] <Cey  Vi<mlp) (6.6)
(we increase m(p) if there is a need in it).

To prove (6.4), (6.6) we should improve the constants in the r.h.s. of the estimates of
Lemmas 2.1, 2.2. For this end we define mdependent on &, domains QIn , Q x instead
of 0,0 . Q, ¥ — o(T™ x {0} x {0}, 53 ydc),

Q ¢=Q % (see(24).

We prove by induction the following statement. Hamiltonian ¥ _ (see (2.6)) may be
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written down in the domain Q mc in the following way:
H g = oy (00) + g Hpy(00) + B2(56) . (6.7)
Here the function HO is the same as in (1.24), H(m) € A4 g‘ (ch;C) and
m

c

Q %8 Q.8
reny s "Vy H(m)”

mmec  (6.8)
d—d -om

By (2.6) and (2.7) we see that eyH )=, H  on 0, So €gH(m) 18 an analytical

. . C
extension of smE m On the domain Qm .

For m =0 the representation (6.7) coincides with the initial one (see (1.23), (1.24)). Let
us suppose that the statement is true for some 0 {m < m(p) —1 . We denote the terms

e H_,e hd,e bl¢ etc in the decomposition (2.16) by o (m) » €01 %m) ,eoh%li )

m m’' m

etc. and denote the coefficients equ,eme etc. of the hamiltonian EmF by

. 1
soi?m) , eolfm) etc. By repeating the proof of Lemma 2.1 we have for h?m) , h(fn) etc.

the estimates of the items a), b) of Lemma 2.1 with r.h.5. replaced by Ch (we don’t
controll the rate of increase on m).

In particular,

0 0
e [BO¢] =eo|h(§l)| <eyCpy - (6.9)

For H?m) we have an estimate of the form (6.8) .

By repeating the proof of Lemma 2.2 we get for t‘(lm) , ff m) etc. the estimates of form

(2.35) — (2.40) with the r.h.s. replaced by 01}1 . So after an analytical extension into
. 3c . . 2

domain Q" the vector—field of equation (2.28) is no larger than C_ €y - So 5 may

be (analytically) extended to a map from Qm4c into Qm3c and for this extension the
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estimates of the item a), Lemma 2.4, hold with r.h.s. replaced by 031 £y (and with

c . . .
Qm+l,dc in the notations of the norms). In particular

Cc .
Cmtrd, " OmertP
|sm—11!/|Ed <cle,. (6.10)
Cc

Hence the transformed hamiltonian Jo’m oS, may be extended to the domain

QI([:H'I,dc and has there the form (6.7) with m:=m + 1.

Now the estimates (6.4) and (6.6) result from (6.9), (6.10) with
m=0,1,..,m(p).

7.  On the reducibility of variational equations.

In the statement of Theorem 1.1 we made no use of the estimates (2.9). (2.10), (2.24) on
the quadratic on y part of the hamiltonian J&’m . These estimates allow us to prove that

£
the variational equations for (1.19) along the solutions z 0(t) are reducible to the constant

coefficient ones (this reducibility is a typical by—product of KAM—procedure; see [A1],
§ 5.5.10).

€
The variational equations for 6z, = (6q0 , 66 07 6y0) € E; along the solution z =1z 0(t)
have the form:

69y = 50(V£H0(z))*6z0 , 68y =— EO(VqHO(z))*(SzO ,
(7.1)

875 = J(A(0) 6y, + eo(V Hy(2), b2p) -

€
Let us denote by Tg = Tlg (w]I) = E(g I)(’I[‘n) the invariant tori constructed in Theorem
0 0 ’
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1.1.

Theorem 7.1. Under the assumptions of Theorem 1.1 there exists an analytical mapping
n - . .
®,:T € — AE4,Ey such that the substitution

6z, = ®,(2(t)) &b, 6b = (6q,6¢,6y) € E 4 , transforms solutions of (7.1) into the solutions
of the equations

6q=0,6£=0,6y=J7K (0) by.

0
d
+ + . . H 1
Here Im(ﬂ)cpj =Ij(0) ¢; Vj and |Ij(6)—Aj(w)[ SE'SJ Vp<§.

The change of variables ®, is constructed in two steps:

1. The substitution

2 01) = 22(04(1)), by(t) = (a + 0 100)
625 = Epl(0,(1) 80,

transforms solutions of (7.1) into solutions of the equations

69, =0,8 =0,8y =JA (q.(t) 6y, (7.2)

2. The equation for 6y in (7.2) may be reduced to the constant—coefficient one via
the substitution &y = W(qm) dy , W = diag (exp (in(qm))) ; see § 3.

We omit the details.

Appendix A. Interpolation theorem.
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Let X be a real Hilbert space with a Hilbert basis n.|;€EL i.e.
1 J 0
< s T >x. = é. k) . Let )(2 be a dense subspace of Xy with the Hilbert basis
1 ]
{xj_l qj} » X; 2C Vj. Then for 0 7<1 the interpolation space [X2 , Xl] ; i82

Hilbert space with the Hilbert basis {xj‘1+qu| J€L,} . In particular if
X1=Ya,X2=Yb,b>a,a.nd Ya'Yb are the spaces from the scale {Ys} asin § 1,
then by the conditions (1.21)

(X, X1] =Yy Yl = Y'm+(1--~'r)b

(one has to take ;= zpj+ for j> 0 and nj = ‘p—j_ for j < 0). The norms in the spaces
are equivalent:

-1
K sl 1o € 191 gy, v 3, €% Il iy
For complexifications X,¢ and X,® of the spaces X, , we set by definition
1 2 1
c ¢y _
%7, %1, = %y, ], 8¢

(i.e. an interpolation of complexifications is equal to the complexification of interpolation).

C Cc _ Cc
So [Yy", Y1, = Y'r'a.+(1—1')b '

Theorem Al (interpolation theorem). Let a linear operator L: ch — Yc_cn may be
continued to the continuous maps Ysc — ch and Ysc — ch . Then V7€ [0,1] it
- 0 0 1 1

may be continued to the continuous map YBc — ch

T T
5, =78+ (1—7)s8;,1 =7l +(1-7)];,and

L < C max {||L i .
loll ;< max ol y . lnll ;)

For the general formulation of the theorem and for a proof see [LM, RS2].
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Corollary A2. Let a linear continuous operator Ysc — ch be symmetric with respect to
the pairing < -,- > (ie. L€ (Y%, Y\)). Then
Vre[o1] Le £A(Y,S°, Y ,s =rs+1)-1,1_=r(s+1)-1,and

Iull, ;<< el

Proof. We have equalities: ||L||__'1 = "L*"—l = "L"sl . Here L* is the operator,
conjugate to L with respect to the pairing < -,-> . Now the assertion results from
Theorem Al with so=s,sl=—l,lo=l,11=—s..

Appendix B. Some estimates for Fourier series.

Let B be a Banach space with a norm |||| . B® be the complexification of B, M = {u}
be a metric space, £ > 0 and

G € A5 (u(e); B9, [lc]|VEOM <1 (B1)

Let us write a Fourier series for G :

Glau) =) G (sip) 659 (B2)
s€Z"”
Lemma B1. For every s € I™
G (s || MAAP < 21 (B3)
and
Tl =Clom) Vo,V (B4)

An "almost inverse" statement is true:
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Lemma B2. If (B3), (B4) are true Vs € I® and 0 < A < ¢ then the series (B2) converges
Vq € U(¢ — A) , the map G is analytic and

G € Ay(U(E -4); B9, [|G]VEIM ¢ gn g

Lemma B3. If (B1) takes place, 0 <24 < £ <1 and

Ry G@)=)  G(su)e®9,
s |2M,

then

3
-TM_A
”RM GIIU({—2A),M < C(n) A1, 4 x
*

The proves of the lemmas given in [A2, § 4.2] for B = R", are valid for arbitrary Banach
space B.

Appendix C. Lipschitz homeomorphisms of Borel sets.

Let N CR™ be a bounded Borel subset and A : 1 — R™ be a Lipschitz map of the form
A(a) =a + A (a),

LipA1$p<l. (C1)

LipA<1l+u. (C2)

Theorem C1. If (C1) takes place than the inverse map A1 is well—defined and
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LipAl < (1—p) . (C3)
/
For arbitrary Borel set 1 C 01

(1— )" mes’ < mes AR )< (1 + w)° mes 0 (C4)

Proof. The first statement is evident. Indeed, if A(xj) =7Yj j=1,2, then

2 2
(x; ~%g) + (Ayx; = A;X,) = 7, ~ 7, and by (C1) |x; —xo| % < ] x; =%y |* +
+ le_x2| |Y1_y2| - So |11—12| S(l—#)-l lyl—y2| and (C3) is proved.

To prove (C4) let us continue A to a Lipschitz map A®:R™ — R™ with the same
Lipschitz constant (Kirszbraun’s theorem, see [Fe]). Let mes ﬂ’ = a . Then the upper
measure of 0 is equal to a, too. So Ve > 0 the set Q may be covered by a countable
set of balls Bj C R", radius of B.i is equal to T and
@®
') rj“g(1+e)a
=1

(‘V1 is the measure of 1-ball in R™). As Lip A= Lip A < (1 + p), then A(Bj) is
4
contained in a ball of the radius (1 4 x) I As A(Y)CU A(Bj) , then

/ /
mes A(Q )$V12(1+p)nrjn$(1+p)n(l+e)mesn )

The second inequality in (C4) is proved because £ > 0 may be chosen arbitrarily small.

To prove the first inequality we have to consider the map AL and to use (C3).

List of notations

1. Constants.
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C, C1 , 02 , ... — positive constants which arrive in estimates. They are independent on
¢ and m and are different in different parts of the text.

K, K1 , ... — constants which characterize initial data in theorems;

m — the number of the iteration;

C
C(m), Cy(m),.. — functions of m of the form C;m 2 ;

C, T C, j(m) — fixed constants and fixed functions of the form C(m);

C‘le(m) , Cg(m) , .. — functions of m of the form exp C(m) ;
-2 —2 -2
1 2 ces 1
o(m) = = Tyt B, e(m)<y Vm;
21 % +27%4+... )

-

59 =(1-1 :
sl =(1-YHe6 +46 0<j<s

6 ‘m+1’
2. Lin e maps.
Y,Z — Hilbert spaces with norms "”Y’ ||||Z and inner products <-,->y,
<- y ° >Z N
{Y |s€R} — ascale of Hilbert spaces Y_,|-|y = ""s Yo=Y,Y, CY for
] 1 2

81282,Y8 and Y _g Are conjugate with respect to the pairing
< >=< >y

(O G| jemp — a Hilbert basis of Y, Aj(“") =) > Vi,
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Y®, YE‘c — complexifications of Y, Ys , the scalar product < -,-> in Y is continued
to a complex—bilinear pairing Ysc xY _sc — C,s€ER;

.Z[Ysc; ch) a space of linear continuous operators from YBc to ch provided with the

operator norm ""al "
’

s (Ysc; ch) — operators from .Z(YSC; ch) symmetric with respect to < -, >

3.  Sets and domains

m(}:mu{o}lﬂ(]s:”s\ {O}sn[):H\{O}n [R+={XE|RIX20};
0(Q,6,M) — &-neighborhood of a subset Q of a metric space M ;
0(6,Z) = 0(0,6,Z) for a Banach space Z ;

2ACRY — aset of parameters a;

Aa,,6) = {a €ACRY| |[a—ay| < 6}

ﬂo — a set of frequencies vectors (wl y ooy wn) ;
J — aset of actions (I1 ) e ,In) ;
Bj ={0=(vI)},j=0,1,.. — subsetsof Ny x J;

B[I] = {w€EN|(w]) €EB} fora BC N x J and arbitrary 1€ J;

Yo= T x R™ x Yo, #= J/O , tangent space to he y is identified with
ES=IRHXIRanB;
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]sc = (€ 2x 1™ x " x Ysc;
U(6) = {¢ €C/ 22 "] |Im €| < 6} ;

06t qsbai 5 ) = Ulg) X O(6,,€") x O(65,Y,) ;
1/3
U, = U(6,), 0, = 06 e 340

o ©=0%6, @ )3, @ )3 p 5, 0¢i¢s;
c .

4. Maps and functions

Foramap G:Q; — Q, ( Q.i is a metric space with a distance distj ,j=1,2)

dist o(G(x,).G(xy))
dist,(x),x,)

Lip G = sui
X175

ip
|G|Q2 = max {;Ea |G(q)|Q2,Lip G} if G:Q;— Q, and Q, is a Banach

1

A B’(Olc;Ozc) is the set of Frechet complex—analytical mappings from Olc C Blc to
O2CC B2c which map 01c n B, into B, ;

JRM(O 1550,°) is the set of mappings G : 0,°x M — 0,° such that
G(-;m) € £7(0,50,%) Vm €M and
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0 c;M .
1Glgt " =sup |G(b;) | P <w;
2 beo, © 2

<J dz,dz >q is the 2—form in a Hilbert space Z , <J dz,dz >Z[zl,22] == <J dz,dz >z -
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