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Abstract. Via the cut-and-stack construction we produce a 2-fold simple weakly
mixing transformation which has countably many proper factors and all of them are

2-to-1 and prime.

0. Introduction

Let T be an (invertible) transformation of a probability space (X, B, µ). A
measure λ on X × X is called a 2-fold self-joining of T if it is T × T -invariant
and it projects onto µ on both coordinates. Denote by J e

2 (T ) the set of all ergodic
2-fold self-joinings of T . Let C(T ) stand for the centralizer of T , i.e. the group
of all µ-preserving transformations commuting with T . Given S ∈ C(T ), we let
µS(A × B) := µ(A ∩ SB) for all A, B ∈ B. Of course, µS ∈ Je

2 (T ). If Je
2 (T ) ⊂

{µS | S ∈ C(T )}∪ {µ×µ} then T is called 2-fold simple [Ve], [dJR]. By a factor of
T we mean a T -invariant sub-σ-algebra of B. If T has no non-trivial proper factors
then T is called prime. In [Ve] it was shown that if T is 2-fold simple then for each
non-trivial factor F of T there exists a compact (in the strong operator topology)
subgroup KF ⊂ C(T ) such that

F = {A ∈ B | µ(kA4A) = 0 for all k ∈ KF}.

Hence F (or, more precisely, the restriction of T to F) is prime if and only if KF is
a maximal compact subgroup of C(T ).

The purpose of our paper is to produce via cutting-and-stacking a 2-fold simple
weakly mixing transformation which has countably many factors and all of them
are prime. We also specify which of these factors are conjugate.

Note that the only known example of a 2-fold simple T with non-unique prime
factors was constructed by Glasner and Weiss [GlW] as an inverse limit of certain
horocycle flows, i.e. in a quite different way. The subtle results of M. Ratner on
joinings of horocycle flows [Ra], as well as the existence of a lattice in SL2(R) with
rather special properties play a crucial role in [GlW]. We notice also that T has
many non-prime factors as well. Note that for some time it was not obvious at all
whether it is possible to construct such an example by means of the more elementary
cutting-and-stacking technique (see [Th]). To achieve this purpose we use the idea
suggested first in [dJ] (see also [Ma], [Da3], [Da4]): we construct a rank-one action
of an auxiliary non-Abelian group G = Z × (Z o Z/2Z) such that the Z-subaction
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is 2-fold simple and has centralizer coinciding with the full G-action. It remains to
list all non-trivial finite subgroups of G:

{{(0, b, 1), (0, 0, 0)} | b ∈ Z, b 6= 0}

and note that all of them are maximal. While constructing this action we follow
the (C, F )-formalism developed in [Da4, Section 6].

1.(C, F )-construction

We remind here the (C, F )-construction of funny rank-one actions (see [Da1]–
[Da4], [DaS] and [dJ] for details). Let G be a countable group. Given a finite subset
F ⊂ G, we denote by λF the probability equidistributed on F . Now let (Fn)n≥0

and (Cn)n≥1 be two sequences of finite subsets in G such that the following are
satisfied:

F0 = {0}, #Cn > 1,(1-1)

FnCn+1 ⊂ Fn+1,(1-2)

Fnc ∩ Fnc′ = ∅ for all c 6= c′ ∈ Cn+1,(1-3)

lim
n→∞

#Fn

#C1 · · ·#Cn

< ∞.(1-4)

We put Xn := Fn×Cn+1×Cn+2×· · · and define a map in : Xn → Xn+1 by setting

in(fn, dn+1, dn+2, . . . ) := (fndn+1, dn+2, . . . ).

In view of (1-1), Xn endowed with the infinite product topology is a compact
Cantor space. It follows from (1-2) and (1-3) that in is well defined and it is a
topological embedding of Xn into Xn+1. Denote by X the topological inductive
limit of the sequence (Xn, in)∞n=1. In the sequel we will suppress the canonical
embedding maps and just write X =

⋃
n≥0 Xn with X0 ⊂ X1 ⊂ · · · . Clearly, X

is a locally compact Polish totally disconnected space without isolated points. We
define a finite measure µn on Xn by setting

µn := αn(λFn
× λCn+1

× λCn+2
× · · · ),

where αn is a positive coefficient such that

α0 := 1 and αn+1 := αn

#Fn+1

#Fn#Cn+1
.

The latter ‘matching’ condition yields that µn+1 � Xn = µn. Hence there exists a
unique σ-finite measure µ on the standard Borel σ-algebra B of X generated by
the topology such that µ � Xn = µn. In particular, µ(Xn) = αn for all n ≥ 0. It is
easy to check that µ(X) < ∞ if and only if (1-4) holds. After a normalization (i.e.
by an appropriate change of α0) we may assume that µ(X) = 1. Suppose also that
the following is satisfied:

(1-5) for any g ∈ G, there exists m ≥ 0 with gFnCn+1 ⊂ Fn+1 for all n ≥ m.

For such n, take any x ∈ Xn ⊂ X and write the expansion x = (fn, cn+1, cn+2, . . . )
with fn ∈ Fn and cn+i ∈ Cn+i, i > 0. Then we let

Tgx := (gfncn+1, cn+2, . . . ) ∈ Xn+1 ⊂ X.

It follows from (1-5) that Tg is a well defined homeomorphism of X. Moreover,
TgTg′ = Tgg′ , i.e. T := (Tg)g∈G is a topological action of G on X.

2



Definition 1.1. We call (X, B, µ, T ) the (C, F )-action of G associated to the se-
quence (Fn, Cn+1)

∞
n=0 (cf. [dJ], [Da1], [Da4], [DaS]).

We list without proof several properties of T . They can be verified easily by the
reader.

— T is a minimal uniquely ergodic (i.e. strictly ergodic) free action of G.
— Two points x = (fn, cn+1, cn+2, . . . ) and x′ = (f ′

n, c′n+1, c
′
n+2, . . . ) ∈ Xn

are T -orbit equivalent if and only if ci = c′i eventually (i.e. for all large
enough i). Moreover, x′ = Tgx if and only if

g = lim
i→∞

f ′
nc′n+1 · · · c

′
n+ic

−1
n+i · · · c

−1
n+1f

−1
n .

For each A ⊂ Fn, we let [A]n := {x = (fn, cn+1, . . . ) ∈ Xn | fn ∈ A} and call it an
n-cylinder. The following holds:

[A]n ∩ [B]n = [A ∩ B]n, and [A]n ∪ [B]n = [A ∪ B]n,

[A]n =
⊔

c∈Cn+1

[Ac]n+1,

Tg[A]n = [gA]n if gA ⊂ Fn,

µ([Ac]n+1) =
1

#Cn+1
µ([A]n) for any c ∈ Cn+1,

µ([A]n) = µ(Xn)λFn
(A).

Moreover, for each measurable subset B ⊂ X,

(1-6) lim
n→∞

min
A⊂Fn

µ

(
B4

⊔

a∈A

Ta[0]n

)
= 0.

This means that T has funny rank one (see [Fe] for the case of Z-actions and [So]
for the general case).

2. Main result

Let G = Z × Z o Z/2Z with multiplication as follows

(n, m, a)(n′, m′, a′) = (n + n′, m + (−1)am′, a + a′).

Then the center C(G) of G is Z × {0} × {0}. Each finite subgroup of G coincides
with Gb := {(0, b, 1), (0, 0, 0)} for some b ∈ Z. Notice also that Gb is a maximal
finite subgroup of G if b 6= 0.

Let H := Z
2. Given a > 0, we denote by I[a] the symmetric interval {m ∈ Z |

|m| < a}. We also set I+[a] := I[a] ∪ {a}. The Cartesian square of I[a] and I+[a]
are denoted by I2[a] and I2

+[a] respectively. Let (rn)∞n=0 be an increasing sequence
of positive integers such that

(2-1) lim
n→∞

n4/rn = 0.
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Below—just after Lemma 2.1—one more restriction on the growth of (rn)∞n=0 will
be imposed. We define recurrently two other sequences (an)∞n=0 and (ãn)∞n=0 by
setting

a0 = ã0 = 1, an+1 := ãn(2rn − 1), ãn+1 := an+1 + (2n + 1)ãn.

For each n ∈ N, we let

Hn := I2[rn], Fn := I2
+[an] × Z/2Z, F̃n := I2

+[ãn] × Z/2Z and

Sn := I2
+[(2n − 1)ãn−1] × Z/2Z.

We also consider a homomorphism φn : H → G given by

φn(i, j) := (2iãn, 2jãn, 0).

We then have

Sn ⊂ Fn, FnSn = SnFn ⊂ F̃n ⊂ G,(2-2)

Fn+1 =
⊔

h∈Hn

F̃nφn(h) =
⊔

h∈Hn

φn(h)F̃n and(2-3)

Sn =
⊔

h∈I2[n]

F̃n−1φn−1(h).(2-4)

Now fix a sequence εn → 0 as n → ∞. For any two finite sets A, B and a map
φ : A → B, the probability 1

#A

∑
a∈A δφ(a) on B will be denoted by dista∈Aφ(a).

Given two measures κ, ρ on a finite set B, we let ‖κ − ρ‖1 :=
∑

b∈B |κ(b) − ρ(b)|.

Lemma 2.1[dJ]. If rn is sufficiently large then there exists a map sn : Hn → Sn

such that for any δ ≥ n−2rn,

‖distt∈I[δ]×{0}(sn(h + t), sn(h′ + t)) − λSn
× λSn

‖1 < εn

whenever h 6= h′ ∈ Hn with {h, h′} + (I[δ] × {0}) ⊂ Hn.

From now on we will assume that rn is large so that the conclusion of Lemma 2.1
is satisfied. For every n ∈ N, we fix a map sn whose existence is asserted in the
lemma. Without loss of generality we may assume that the following boundary

condition holds

(2-5) sn(i, rn−1) = sn(i, 1−rn) = sn(rn−1, i) = sn(1−rn, i) = 0 for all i ∈ I[rn].

Now we can define a map cn+1 : Hn → Fn+1 by setting cn+1(h) := sn(h)φn(h). We
also put Cn+1 := cn+1(Hn). It is easy to derive from (2-2) and (2-3) that (1-1)–(1-3)
are satisfied for the sequence (Fn, Cn+1)

∞
n=0. Moreover,

#Fn+1

#Fn#Cn+1
=

a2
n+1

a2
n(2rn − 1)2

=
ã2

n

a2
n

=

(
1 +

(2n − 1)ãn−1

an

)2

=

(
1 +

2n − 1

2rn−1 − 1

)2

.

From this and (2-1) we deduce that (1-4) holds. Moreover, (2-5) implies (1-5).
Thus the conditions (1-1)—(1-5) are all satisfied for (Fn, Cn+1)

∞
n=0. Hence the

associated (C, F )-action T = (Tg)g∈G of G is well defined on a standard probability
space (X, B, µ).

We now state the main result of the paper.
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Theorem 2.2. The transformation T(1,0,0) is weakly mixing and 2-fold simple. All

non-trivial proper factors of T(1,0,0) are 2-to-1 and prime. They are as follows:

FGb
, b ∈ Z \ {0}. Two factors FGb

and FG
b′

are isomorphic if and only if b and b′

are of the same evenness.

To prove Theorem 2.2 we will need an auxiliary lemma.

Lemma 2.3. Let f = f ′φn−1(h) with f ′ ∈ F̃n−1 and h ∈ H.

(i) Then we have

F̃n−1φn−1(h + I2[n − 1]) ⊂ fSn ⊂ F̃n−1φn−1(h + I2[n + 1]) and hence

#(fSn \ F̃n−1φn−1(h + I2[n − 1]))

#Sn

≤
4

n − 1
.

(ii) If, in addition, fSn ⊂ Fn then

#(ACn ∩ fSn)

#Sn

= λFn−1
(A) ±

10

n

for any subset A ⊂ Fn−1.

Proof. (i) We have

fSn = f ′φn−1(h)F̃n−1φn−1(I
2[n]) = f ′F̃n−1φn−1(h + I2[n]).

For each u = (u1, u2) ∈ Z
2, we let |u| := max(|u1|, |u2|). Since F̃n−1F̃n−1 ⊂⊔

|u|≤1 F̃n−1φn−1(u), there exists a partition of F̃n−1 into subsets Au, |u| ≤ 1, such

that f ′Au ⊂ F̃n−1φn−1(u) for any u. Therefore

fSn =
⊔

|u|≤1

f ′Auφn−1(u)−1φn−1(u + h + I2[n]).

It remains to notice that
⊔

|u|≤1 f ′Auφn−1(u)−1 = F̃n−1.

(ii) If fSn ⊂ Fn then the subset K := h + I2[n− 1] is contained in Hn−1 by (i).
Therefore

#(ACn ∩ fSn)

#Sn

=

∑
h∈Hn−1

#(Asn−1(h)φn−1(h) ∩ F̃n−1φn−1(K)) ± 4#Sn

2n−1

#Sn

=
∑

k∈K

#(Asn−1(h))

#Sn

±
8

n

=
#A

#Fn−1
·
#Fn−1

#F̃n−1

·
#K#F̃n−1

#Sn

±
8

n

= λFn−1
(A)

(
1 ±

1

n

)
#I2[n − 1]

#I2[n]
±

8

n
. �

Now we are ready to prove the first half of the first claim of Theorem 2.2.
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Proposition 2.4. The transformation T(1,0,0) is weakly mixing.

Proof. Let h0 := (1, 0) ∈ H and gn := φn(h0). Since gn = (1, 0, 0)2ean, it suffices to
show that the sequence (gn)∞n=1 is mixing for T , i.e.

lim
n→∞

µ(Tgn
D ∩ D′) = µ(D)µ(D′)

for every pair of measurable subsets D, D′ ⊂ X. Take any A, B ⊂ Fn. Since
gn ∈ C(G) for all n ∈ N, we have

gnAcn+1(h) = Asn(h)φn(h0 + h) = Asn(h)sn(h0 + h)−1cn+1(h0 + h)

whenever h, h0h ∈ Hn. We set F ′
n := Fn ∩ FnSnS−1

n , A′ := A ∩ F ′
n, B′ := B ∩ F ′

n,
H ′

n := Hn ∩ (h−1
0 Hn). Then

µ(Tgn
[A]n ∩ [B]n) = µ(Tgn

[A′]n ∩ [B′]n) ± 2µ([Fn \ F ′
n]n)

=
∑

h∈Hn

µ(Tgn
[A′cn+1(h)]n+1 ∩ [B′]n) + o(1)

=
∑

h∈H′

n

µ(Tgn
[A′cn+1(h)]n+1 ∩ [B′]n) + o(1)

=
∑

h∈H′

n

µ([A′sn(h)sn(h0 + h)−1cn+1(h0 + h)]n+1 ∩ [B′]n) + o(1)

=
∑

h∈H′

n

µ([(A′sn(h)sn(h0 + h)−1 ∩ B′)cn+1(h0 + h)]n+1) + o(1)

=
1

#Hn

∑

h∈H′

n

µ([A′sn(h)sn(h0 + h)−1 ∩ B′]n) + o(1)

=
1

#Hn

∑

h∈H′

n

λFn
(A′sn(h)sn(h0 + h)−1 ∩ B′)µ(Xn) + o(1)

=
1

#H ′
n

∑

h∈H′

n

λFn
(A′sn(h) ∩ B′sn(h0 + h)) + o(1),

=
1

#H ′
n

∑

h∈H′

n

λFn
(Asn(h) ∩ Bsn(h0 + h)) + o(1)

where o(1) means (here and below) a sequence that goes to 0 and that does not
depend on the choice of A, B ⊂ Fn. Let ξn := disth∈H′

n
(sn(h), sn(h0 + h)). Notice

that

ξn =
1

2rn − 1

∑

i∈I[rn]

dist−rn<t<rn−1(sn(t, i), sn(t + 1, i)).

It follows from Lemma 2.1 that ‖ξn − λSn
× λSn

‖1 < εn. We define a function
f : Sn × Sn → R by setting f(v, w) := λFn

(Av ∩ Bw). Then

1

#H ′
n

∑

h∈H′

n

λFn
(Asn(h) ∩ Bsn(h0 + h)) =

∫
f dξn =

∫
f d(λSn

× λSn
) ± εn.
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Thus we obtain

(2-6) µ(Tgn
[A]n ∩ [B]n) =

∫

Sn×Sn

λFn
(Av ∩ Bw) dλSn

(v) dλSn
(w) + o(1).

Now we take A := A∗Cn and B := B∗Cn for some subsets A∗, B∗ ⊂ Fn−1. Then
the integral in the righthand side of (2-6) equals to the sum

(2-7)
∑

a∈A∗

∑

b∈B∗

∑

h,h′∈Hn−1

#(acn(h)Sn ∩ bcn(h′)Sn ∩ Fn)

(#Sn)2#Fn

.

It follows from the definition of cn and Lemma 2.3(i) that

acn(h)Sn ∩ bcn(h′)Sn ⊂ F̃n−1φn−1(h + I2[n + 1]) ∩ F̃n−1φn−1(h
′ + I2[n + 1]).

Hence acn(h)Sn ∩ bcn(h′)Sn 6= ∅ only if h′ − h ∈ I2[2n + 1]. If the latter is satisfied
we say that h and h′ are partners. Denote by P (h) the set of partners of h that
belong to Hn−1. Clearly, #P (h) ≤ (4n + 1)2. Therefore we deduce from (2-6),
(2-7) and Lemma 2.3(i) that

µ(Tgn
[A∗]n−1 ∩ [B∗]n−1)

=
∑

a∈A∗

∑

b∈B∗

∑

h∈Hn−1

∑

h′∈P (h)

#(cn(h)Sn ∩ cn(h′)Sn ∩ Fn) ± 4#Sn

n−1

(#Sn)2#Fn

+ o(1)

=
#A∗#B∗

(#Fn−1)2
· θn ±

(#Fn−1)
2#Hn−1 · (4n + 1)2 · 4#Sn

(#Sn)2#Fn · (n − 1)
+ o(1)

= λFn−1
(A∗)λFn−1

(B∗)θn ± 67n
#Fn−1

#Sn

+ o(1),

where θn is a positive number. Substituting A∗ = B∗ = Fn−1 and passing to the
limit, we obtain that θn → 1 as n → ∞. Hence

(2-8) µ(Tgn
[A∗]n−1 ∩ [B∗]n−1) = µ([A∗]n−1)µ([B∗]n−1) + o(1).

Since o(1) does not depend on the choice of A∗ and B∗ inside Fn−1, it follows
from (1-6) and (2-8) that (gn)∞n=1 is mixing for T . �

Notice that slyghtly modifying the techniques from Ornstein’s work [Or] one can
show that T(1,0,0) is mixing indeed (cf. [Ma]). However we will not need this.

Our next task is to describe all ergodic 2-fold self-joinings of T(1,0,0).

Theorem 2.5. The transformation T(1,0,0) is 2-fold simple and

C(T(1,0,0)) = {Tg | g ∈ G}.

Proof. Take any joining ν ∈ Je
2 (T(1,0,0)). Let In := I[n−2an], Jn := I[n−2rn] and

Φn := In + 2ãnJn. We first notice that (Φn)∞n=1 is a Følner sequence in Z. Since

an

n2
+

2ãnrn

n2
<

ãn(2rn + 1)

n2
<

2an+1

(n + 1)2
,
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it follows that Φn ⊂ In+1 + In+1 and hence
⋃n

m=1 Φm ⊂ In+1 + In+1. This implies
that

#

(
Φn+1 −

n⋃

m=1

Φm

)
≤ 3#Φn+1 for every n ∈ N,

i.e. Shulman’s condition [Li] is satisfied for (Φn)∞n=1. By [Li], the pointwise ergodic
theorem holds along (Φn)∞n=1 for any ergodic transformation. Hence

(2-9)
1

#Φn

∑

i∈Φn

χD(T(i,0,0)x)χD′(T(i,0,0)x
′) → ν(D × D′)

as n → ∞ at ν-a.a. (x, x′) ∈ X × X for all cylinders D, D′ ⊂ X. We call such
(x, x′) a generic point for (T(1,0,0) × T(1,0,0), ν). Fix one of them. Then x, x′ ∈ Xn

for all sufficiently large n and we have the following expansions

x = (fn, cn+1(hn), cn+2(hn+1), . . . , ),

x′ = (f ′
n, cn+1(h

′
n), cn+2(h

′
n+1), . . . , )

with fn, f ′
n ∈ Fn and hi, h

′
i ∈ Hi, i > n. We let H−

n = I2[(1 − n−2)rn] ⊂ Hn.
Then #H−

n /#Hn ≥ 1 − 0.5n−2. Since the marginals of ν are both equal to µ, by
Borel-Cantelli lemma we may assume without loss of generality that hn, h′

n ∈ H−
n

for all sufficiently large n. This implies, in turn, that

fn+1 = fncn+1(hn) ∈ F̃nφn(H−
n ) ⊂ I2

+[(2rn(1 − n−2) − 1)ãn] × Z/2Z,

and, similarly, f ′
n+1 ∈ I2

+[(2rn(1− n−2) − 1)ãn]× Z/2Z. Notice that given g ∈ Φn,
we have (g, 0, 0) = (b, 0, 0)φn(t, 0) for some uniquely determined b ∈ In and t ∈ Jn.
Moreover, (t, 0, 0)hn ∈ Hn. We also claim that

(2-10) (b, 0, 0)fnSnSn ⊂ Fn and (b, 0, 0)fnSnS−1
n ⊂ Fn

if n is large enough. To verify this, it suffices to show that

an

n2
+ 2rn−1

(
1 −

1

(n − 1)2

)
ãn−1 + 4nãn−1 < an,

which follows from (2-1) in a routine way. Hence

(g, 0, 0)fnsn(hn)φn(hn) = dcn+1((t, 0) + hn) and

(g, 0, 0)f ′
nsn(h′

n)φn(h′
n) = d′cn+1((t, 0) + h′

n),

where d := (b, 0, 0)fnsn(hn)sn((t, 0) + hn)−1 and d′ := (b, 0, 0)f ′
nsn(h′

n)sn((t, 0) +
h′

n)−1 belong to Fn by (2-10). Now take any B, B′ ⊂ Fn−1 and set A := BCn ⊂ Fn

and A′ := B′Cn ⊂ Fn. We have

#{g ∈ Φn | (T(g,0,0)x, T(g,0,0)x
′) ∈ [A]n × [A′]n}

#Φn

=
1

#In

∑

b∈In

#{t ∈ Jn | d ∈ A, d′ ∈ A′}

#Jn

=
1

#In

∑

b∈In

ξn(A−1(b, 0, 0)fnsn(hn) × A′−1
(b, 0, 0)f ′

nsn(h′
n)),

8



where ξn := distt∈Jn
(sn((t, 0)hn), sn((t, 0)h′

n)).
We consider separately two cases. Suppose first that hn = h′

n for all n greater
than some N . Then it is easy to deduce from Lemma 2.1 that ‖ξn − ∆‖1 < εn,
where ∆ is the probability equidistributed on the diagonal of Sn × Sn. Moreover,

fnf ′
n
−1

= fNf ′
N

−1
=: k for all n > N . This yields

1

#In

∑

b∈In

ξn(A−1(b, 0, 0)fnsn(hn) × A′−1
(b, 0, 0)f ′

nsn(h′
n))

=
1

#In

∑

b∈In

λSn
(A−1(b, 0, 0)fnsn(hn) ∩ A′−1

(b, 0, 0)f ′
nsn(hn)) ± εn

=
1

#In

∑

b∈In

#(A ∩ kA′ ∩ (b, 0, 0)fnsn(hn)S−1
n )

#Sn

± εn.

Notice that (b, 0, 0)fnsn(hn)Sn ⊂ Fn by (2-10). We now set B̃ := B′ ∩ k−1Fn−1.

Since k ∈ FNF−1
N , it follows that #(B′ \ B̃)/#Fn−1 = o(1). Then Lemma 2.3(ii)

yields

#(BCn ∩ kB′Cn ∩ (b, 0, 0)fnsn(hn)S−1
n )

#Sn

=
#((B ∩ kB̃)Cn ∩ (b, 0, 0)fnsn(hn)Sn)

#Sn

+ o(1)

= λFn−1
(B ∩ kB̃) + o(1)

=
µ([B ∩ kB̃]n−1)

µ(Xn−1)
+ o(1)

= µ([B]n−1 ∩ Tk[B′]n−1) + o(1).

Therefore it follows from (2-9) that

ν([B]n−1 × [B′]n−1) = µTk
([B]n−1 × [B′]n−1) + o(1).

Then we deduce from (6-6) that ν = µTk
.

Now consider the second case, where hn 6= h′
n for infinitely many, say bad n. It

follows from Lemma 2.1 that ‖ξn − λSn
× λSn

‖ < εn for all such n. Hence

1

#In

∑

b∈In

ξn(A−1(b, 0, 0)fnsn(hn) × A′−1
(b, 0, 0)f ′

nsn(h′
n))

=
1

#In

∑

b∈In

λSn
(A−1(b, 0, 0)fnsn(hn))λSn

(A′−1
(b, 0, 0)f ′

nsn(h′
n)) ± εn.

Now we derive from Lemma 2.3(ii) and (2-10) that

λSn
(A−1(b, 0, 0)fnsn(hn)) =

#(A ∩ (b, 0, 0)fnsn(hn)S−1
n )

#Sn

= λFn−1
(B) + o(1)

and, in a similar way, λSn
(A′−1

(b, 0, 0)f ′
nsn(h′

n)) = λFn−1
(B′) + o(1). Hence

ν([B]n−1 × [B′]n−1) = µ([B]n−1)µ([B′]n−1) + o(1)
9



provided that n is bad. It remains to note that (1-6) holds along any subsequence,
in particular along the subsequence of bad n. Hence ν = µ × µ. �

Proof of Theorem 2.2. follows now from Proposition 2.4, Theorem 2.5 and the fact
that FGb

and FG
b′

are isomorphic if and only if the subgroups Gb and Gb′ are
conjugate in C(T(1,0,0)) [dJR]. �

Notice that with some additional conditions on sn (cf. [Da4, Section 6]) one
can show that T(1,0,0) is actually simple of all orders. For the definitions of higher
order simplicity we refer to [dJR]. (In fact, 3-fold simplicity implies the simplicity
of any order [GHR].) This would imply in turn that T(1,0,0) is mixing of any order
whenever it is mixing.
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