Quaternionic Transformations Of A Non-Positive Quaternionic-Kähler Manifold

D.V. Alekseevsky, S. Marchiafava

D.V. Alekseevsky 117279 Moscow gen. Antonova 2-99 RUSSIA

S. Marchiafava
Dipartimento di Matematica
Università di Roma I
Piazzale A. Moro 2
I-00185 Roma
ITALY

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 53225 Bonn GERMANY

QUATERNIONIC TRANSFORMATIONS OF A NON-POSITIVE QUATERNIONIC-KÄHLER MANIFOLD*

D.V. ALEKSEEVSKY

Max-Planck-Institute for Mathematics Gottfied-Claren strasse 26,D-53225 Bonn (Germany)

and S. MARCHIAFAVA

Dipartimento di Matematica, Università di Roma I Piazzale A. Moro 2, I-00185 Roma (Italy)

ABSTRACT. Let (M, g, Q) be a simply connected, complete, quaternionic Kähler manifold without flat de Rham factor. Then any 1-parameter group of transformations of M which preserve the quaternionic structure Q preserves also the metric g. Moreover, if (M, g) is irreducible then the quaternionic Kähler metric g on (M, Q) is unique up to a homothety.

1. Introduction.

Let Q be an almost quaternionic structure on a 4n-dimensional manifold M, that is a 3-dimensional subbundle of the bundle of endomorphisms locally generated by three anticommuting almost complex structures J_{α} , $\alpha = 1, 2, 3$, with $J_3 = J_1 J_2$. We will say that $H = (J_{\alpha})$ is a (local) admissible basis for Q. Q is called a quaternionic structure if there exists a torsionless linear connection ∇ which preserves Q. Such connection ∇ (called a quaternionic connection) is not unique. Any other quaternionic connection ∇' can be written as

$$\nabla' = \nabla + S^{\xi} \tag{1}$$

where $\xi \in \Lambda^1 M$ is a 1-form and S^{ξ} is a (1,2)-tensor given by

$$S_X^{\xi} = \xi(X)Id + X \otimes \xi - \sum_{\alpha=1}^{3} [\xi(J_{\alpha}X)J_{\alpha} + J_{\alpha}X \otimes (\xi \circ J_{\alpha})] \qquad (X \in TM)$$

*Work done under the program of G.N.S.A.G.A. of C.N.R. and partially financed by M.U.R.S.T., E.Schrödinger International Institute for Mathematical Physics (Vienna) and Max-Planck Institute for Mathematics (Bonn)

where $H = (J_{\alpha})$ is an admissible basis for Q (See [1]).

Definition 1. 1) A Riemannian metric g on a manifold M with a quaternionic structure Q is called Q-Hermitian if all endomorphisms $J \in Q$ are skew-symmetric with respect to g.

2) a Q-Hermitian metric g is called Q-Kähler if the Levi-Civita connection ∇^g is a quaternionic connection.

A triple (M, g, Q) is called a quaternionic Hermitian (resp., quaternionic Kähler) manifold if g is a Q-Hermitian (resp., Q-Kähler) metric.

We will assume that dim M = 4n > 4. Then it is well known that any Q-Kähler metric g is Einstein and the curvature tensor R of g can be written as

$$R = \nu R_1 + W \tag{2}$$

where $\nu = \frac{K}{4n(n+2)}$ is the reduced scalar curvature, K is the scalar curvature, R_1 is the curvature tensor of the standard quaternionic Kähler metric of the quaternionic projective space $\mathbb{H}P^n$,

$$R_1(X,Y) = \frac{1}{4} [S_X^{g \circ Y} - S_Y^{g \circ X}]$$
 (X, Y \in TM)

and W is the quaternionic Weyl tensor which satisfies the conditions

$$Ric(W) = 0$$
 , $[W(X,Y), J_{\alpha}] = 0$ $(\alpha = 1, 2, 3)$ $X, Y \in TM$

for any admissible basis $H = (J_{\alpha})$ of Q.

Definition 2. Let (M, g, Q) be a quaternionic Kähler manifold. A transformation of M is called a *quaternionic transformation* (resp., *quaternionic isometry*) if it preserves Q (resp., Q and g).

A vector field on M is called to be quaternionic (resp., quaternionic Killing) if it generates a local 1-parameter group of quaternionic transformations (resp., quaternionic isometries).

We denote by $\operatorname{Aut}(M,Q)$, $\operatorname{Aut}(M,Q,g)$ or, shortly, by $\operatorname{Aut}(Q)$, $\operatorname{Aut}(Q,g)$ the group of all quaternionic transformations and quaternionic isometries respectively, and by $\operatorname{aut}(Q)$, $\operatorname{aut}(Q,g)$ the Lie algebra of quaternionic and quaternionic Killing vector fields on M. We will use subscript 0 to denote the connected component of unity G_0 of a group G.

Remark that $\operatorname{aut}(Q,g)$ is the Lie algebra of the Lie group $\operatorname{Aut}(Q,g)$ if the metric g is complete since any Killing vector field on a complete Riemannian manifold is complete [8]. We will denote by $\operatorname{aut}_c(Q)$ the Lie algebra of the Lie group $\operatorname{Aut}(Q)$. It is a subalgebra of $\operatorname{aut}(Q)$ consisting of all complete quaternionic vector fields.

Recall ([3]) that the Lie derivative of the Levi-Civita connection ∇^g with respect to a quaternionic vector field $Z \in \text{aut}(Q)$ is given by

$$Z \cdot \nabla^g = S^{\xi} \tag{3}$$

where ξ is a 1-form,

$$\xi = df_Z$$
 , $f_Z = \frac{1}{4(n+1)} \operatorname{Trace} \nabla^g Z$ (4)

The form ξ is called the 1-form associated to Z.

Note that if $\nu \neq 0$ then the quaternionic structure Q is canonically defined by the metric g and, hence, $\operatorname{Aut}(Q,g) = \operatorname{Aut}(g)$ (the group of isometries), $\operatorname{aut}(Q,g) = \operatorname{aut}(g)$ (the Lie algebra of Killing vector fields).

We denote also by

$$\mathcal{P} = \mathcal{P}(Q, g) = \{ Z = \operatorname{grad} f = g^{-1} \circ df \in \operatorname{aut}(Q) \}$$

the space of all gradient quaternionic vector fields.

Now we state the main results.

Theorem 1. Let (M, g, Q) be a simply connected complete quaternionic Kähler 4n-manifold, n > 1. Assume that

$$\operatorname{Aut}_0(Q) \neq \operatorname{Aut}_0(Q,g).$$

If M is compact, it is isometric to the quaternionic projective space with the standard quaternionic Kähler structure.

If M is not compact, it has zero scalar curvature and its de Rham decomposition has an Euclidean factor (\mathbb{H}^k , g_0 , Q_0 ,), k > 0. The converse is also true.

In the compact case the conclusion holds under the weaker condition $\operatorname{Aut}(Q) \neq \operatorname{Aut}(Q, g)$, see ([3],[10]).

In the case of zero scalar curvature we have the following more general result. To state it we note that the quaternionic structure Q of a complete simply connected quaternionic Kähler manifold (M, g, Q) with zero scalar curvature is generated by a parallel hypercomplex structure $H = (J_1, J_2, J_3)$, where J_{α} , $\alpha = 1, 2, 3$, are parallel anticommuting complex structures. We fix such H, which is defined up to a rotation from SO(3), and we write $Q = \langle H \rangle$ to indicate that Q is generated by H. It is well known that the de Rham decomposition of the manifold (M, g, Q) may be written as follows:

$$M = \mathbb{H}^{k} \times M_{1} \times ... \times M_{l}$$

$$g = g_{0} \oplus g_{1} \oplus ... \oplus g_{l}$$

$$H = H_{0} \oplus H_{1} \oplus ... \oplus H_{l},$$

$$(5)$$

where $(\mathbb{H}^k, g_0, \langle H_0 \rangle)$ is the 4k-dimensional flat quaternionic Kähler manifold and $(M_i, g_i, \langle H_i \rangle)$, i = 1, ...l, is an irreducible quaternionic Kähler manifold with the holonomy group $Sp(n_i)$, dim $M_i = 4n_i$.

Theorem 2. Let (M, g, Q) be a complete simply connected quaternionic Kähler manifold with zero scalar curvature and let (5) be its de Rham decomposition.

(1) Assume that the metric $g = g_0$ is flat, that is M is identified with the quaternionic vector space \mathbb{H}^n with the standard quaternionic structure Q and the standard metric g_0 . Then any Ricci-flat Q-Kähler metric g' on \mathbb{H}^n is flat and has the form $g' = g \circ A$, where A is a positively defined symmetric endomorphism of $\mathbb{H}^n = \mathbb{R}^{4n}$ which commutes with Q. Moreover, any Q-Kähler metric g' with the reduced scalar curvature $\nu \neq 0$ has constant positive quaternionic curvature and can be written as

$$g'(x) = \frac{4}{q\nu} \left[h_0 - \frac{1}{q} (h_0 \circ x \otimes h_0 \circ x + \sum_{\alpha} h_0 \circ J_{\alpha} x \otimes h_0 \circ J_{\alpha} x) \right] \qquad x \in \mathbb{H}^n$$

where $h_0 = g \circ A$ is a flat Q-Kähler metric and

$$q = h_0(x, x) + c$$
 , $c = const > 0$.

(2) If the metric g is not flat, any Q-Kähler metric g' of (M, Q) is Ricci flat and may be written as

$$g' = g_0' \oplus \lambda_1 g_1 \oplus \dots \oplus \lambda_l g_l,$$

where $\lambda_i = \text{const} > 0$ and g'_0 is a flat quaternionic-Kähler metric on \mathbb{H}^k .

Corollary 1. Under the assumptions of the theorem

(1) any quaternionic transformation of (M, g, Q) is affine:

$$\operatorname{Aut}(Q) \subset \operatorname{Aut}(\nabla^g).$$

(2)
$$\operatorname{Aut}_{0}(Q) \neq \operatorname{Aut}_{0}(Q, g)$$

iff there is the flat factor in (5), i.e. k > 0.

(3)
$$\operatorname{Aut}(Q) \neq \operatorname{Aut}(Q, g) \quad , \quad \operatorname{Aut}_0(Q) = \operatorname{Aut}_0(Q, g)$$

iff k = 0 and for some i, j the manifolds $(M_i, g_i), (M_j, g_j)$ are homothetic but not isometric.

2. Quaternionic transformations of the spaces of constant quaternionic curvature.

We describe the groups $\operatorname{Aut}(M,Q)$ and $\operatorname{Aut}(M,g,Q)$ for the standard quaternionic Kähler manifolds $M=\mathbb{H}P^n,\mathbb{H}^n,\mathbb{H}\Lambda^n$ of constant quaternionic curvature 1,0,-1 respectively.

Proposition 1.

- 1) $\operatorname{Aut}(\mathbb{H}P^n, Q) = PGL_n(\mathbb{H}) = GL_{n+1}(\mathbb{H})/\mathbb{R}^* \supseteq \operatorname{Aut}(\mathbb{H}P^n, g, Q) = Sp_{n+1}/\mathbb{Z}_2$
- 2) $\operatorname{Aut}(\mathbb{H}^n, Q) = GL_n(\mathbb{H}) \rtimes \mathbb{H}^n \supseteq \operatorname{Aut}(\mathbb{H}^n, g, Q) = Sp_n \rtimes \mathbb{H}^n$
- 3) $\operatorname{Aut}(\mathbb{H}\Lambda_n, Q) = \operatorname{Aut}(\mathbb{H}\Lambda_n, g, Q) = Sp_{1,n}/\mathbb{Z}_2$

where \bowtie indicates the semidirect product.

Proof. 1) and 2) are well known (see [11], [9]). To prove 3) we realize the quaternionic Lobachevsky space $\mathbb{H}\Lambda^n$ as the open orbit $B = Sp_{1,n}[(1,0,...,0)] \subset \mathbb{H}P^n$ of the subgroup $Sp_{1,n}$ of the projective group $PGL_n(\mathbb{H})$ which preserves the quaternionic quadric Q:

$$x^0 \bar{x}^0 - \sum_{\alpha=1}^n x^\alpha \bar{x}^\alpha = 0.$$

The quaternionic structure of $\mathbb{H}\Lambda^n$ is induced by the canonical locally flat quaternionic structure of $\mathbb{H}P^n$. Any quaternionic transformation of $B = \mathbb{H}\Lambda^n$ can be extended to a unique quaternionic transformation φ of $\mathbb{H}P^n$; see ([11], [9]). Since Q is the boundary of B, the transformation φ preserves Q, that is it belongs to $Sp_{1,n}$.

Now we pass to the general case.

3. Quaternionic transformations and gradient quaternionic vector fields.

Let (M, g, Q) be a quaternionic Kähler manifold. For any vector field Z on M we denote by L_Z the field of endomorphisms $X \mapsto \nabla_X Z$, $X \in TM$, where $\nabla = \nabla^g$ is the Levi-Civita connection.

Lemma 1 ([3]). A vector field Z (resp. a gradient vector field $Z = \operatorname{grad} f, f \in C^{\infty}(M)$) is quaternionic iff $[L_Z, Q] \subset Q$ (resp. $[L_Z, Q] = 0$).

Note that if M is simply connected a vector field Z is gradient iff the operator L_Z is symmetric (with respect to g). Hence, we have

Corollary 2. Let M be simply connected. Then a vector field Z is gradient quaternionic field iff $g \circ L_Z = \nabla(g \circ Z)$ is a symmetric Q-hermitian form.

Now we prove the following

Proposition 2. Let g' be a quaternionic Q-Kähler metric on a simply connected quaternionic Kähler manifold (M,g,Q). If $\nabla^{g'} \neq \nabla^g$, then there exists a non zero gradient quaternionic vector field $Z = \operatorname{grad} f = g^{-1} \circ \operatorname{df}$ on M, where $f = \operatorname{div} Z = \operatorname{tr} \nabla^g Z$ is an eigenfunction of the Laplacian with the eigenvalue $\nu_1 = 2\nu(n+1)$.

Proof. By (1) we have

$$\nabla^{g'} - \nabla^g = S^{\xi}$$

for some $0 \neq \xi \in \Lambda^1 M$. Then ([2]) the Ricci tensors of the connections $\nabla^{g'}$, ∇^g are related by

$$Ric' = Ric - 4\rho^s + 4(n+1)\rho + 8\Pi\rho^s \tag{6}$$

where

$$\rho = \xi \otimes \xi - \sum_{\alpha=1}^{3} (\xi \circ J_{\alpha}) \otimes (\xi \circ J_{\alpha}) - \nabla \xi$$

 ρ^s is the symmetric part of the bilinear form ρ and Π is the projection of the space of bilinear forms onto the space of Q-Hermitian forms given by

$$\Pi: \omega \mapsto \Pi \omega = \frac{1}{4} [\omega + \sum_{\alpha} \omega(J_{\alpha}; J_{\alpha})].$$

Using (2), we can rewrite (6) as

$$\frac{\nu'}{4}g' = \frac{\nu}{4}g + \xi \otimes \xi - \sum_{\alpha=1}^{3} (\xi \circ J_{\alpha}) \otimes (\xi \circ J_{\alpha}) - \nabla \xi$$

where ν' is the reduced scalar curvature of the metric g'. It implies that the bilinear form $\nabla \xi - 2\xi \otimes \xi$ is symmetric and Q-Hermitian; in particular $d\xi = \text{Alt}(\nabla \xi) = \text{Alt}(\nabla \xi - 2\xi \otimes \xi) = 0$ and hence $\xi = dh$ for some function h. Now we put $\eta := e^{-2h}\xi$. Then $\nabla \eta = e^{-2h}[\nabla \xi - 2\xi \otimes \xi]$ is a symmetric Q-hermitian form and $\eta = df$ for $f = -\frac{1}{2}e^{-2h}$. Hence, by Corollary 2, $Z := g^{-1} \circ \eta = \text{grad } f$ is a non zero gradient quaternionic vector field. The last statement was proved in [3].

Corollary 3. Let (M, g, Q) be a simply connected quaternionic Kähler manifold and $\varphi \in \operatorname{Aut}(M, Q)$ be a quaternionic transformation which is not affine (i.e. doesn't preserves ∇^g). (If (M, g) is irreducible it is sufficient to assume that φ is not an isometry.) Then there exists a non zero gradient quaternionic vector field $Z = \operatorname{grad} f$, where $f = \operatorname{div} Z$ is an eigenfunction of the Laplacian with eigenvalue $\nu_1 = 2\nu(n+1)$.

Proof. It is sufficient to apply the Proposition 2 to $g' = \varphi^* g$.

4. Fundamental equation for gradient quaternionic vector fields.

We define the parallel (1,3) tensor P on M by

$$\begin{split} P(X,Y)Z = & 2g(X,Z)Y + g(Z,Y)X + g(X,Y)Z \\ & - \sum_{\alpha=1}^{3} g(Z,J_{\alpha}Y)J_{\alpha}X - \sum_{\alpha=1}^{3} g(X,J_{\alpha}Y)J_{\alpha}Z \\ & = S_{X}^{g \circ Z}Y + S_{Z}^{g \circ X}Y \end{split}$$

Remark 1. For any $X \in TM$ one has

$$P(X,X)X = 4||X||^2X$$

Proposition 3. Let Z be a quaternionic vector field on (M, g, Q) and ξ the associated 1-form. Then

1) Z and ξ satisfy the following equation:

$$\nabla_X L_Z + R(Z, X) = S_X^{\xi} \qquad \forall \ X \in \chi(M)$$
 (7)

2) if Z is a gradient field then

$$\xi = -\frac{\nu}{2}g \circ Z \tag{8}$$

and Z satisfies the following fundamental equation

$$\nabla_X L_Z = -\frac{\nu}{4} P(X, \cdot) Z \qquad \forall \ X \in \chi(M)$$
 (9)

Moreover

$$W(Z,\cdot) = 0 \tag{10}$$

and

$$[W(X,Y), L_Z] = 0 (11)$$

for any $X, Y \in TM$, where W is the quaternionic Weyl tensor.

Remark 2. If M is compact and ν is positive the inverse statement for 2) holds: any solution of the fundamental equation is a gradient quaternionic vector field (see [3]).

Corollary 4. If $\nu = 0$ then any gradient quaternionic field Z is affine $(Z \cdot \nabla = S^{\xi} = 0)$. In particular, Z is complete if the manifold (M, g) is complete.

Proof. 1) For any vector field Z on the Riemannian manifold (M,g) the following identity holds:

$$(Z \cdot \nabla)_X Y = (\nabla^2 Z)_{X,Y} + R(Z,X)Y \qquad (\forall X, Y \in \chi(M))$$

Taking into account the formula (3) we get (7). If $Z \in \mathcal{P}$ then L_Z is a symmetric endomorphism and consequently

$$2g(R(Z,X)Y,T) = g(S_X^{\xi}Y,T) - g(S_X^{\xi}T,Y) \qquad (\forall X,Y,T \in \chi(M))$$

By taking the trace, we obtain (8). Hence

$$R(Z,X) = \frac{\nu}{4} [S_Z^{g \circ X} - S_X^{g \circ Z}] \equiv \nu R_1(Z,X)$$
 (12)

that is (10) holds. Then (9) follows from (7), (8) and (12). Now we prove (11). Taking the covariant derivative of the fundamental equation we get the identity

$$(\nabla^2 L_Z)_{Y,X} = -\frac{\nu}{4} P(X,\cdot) L_Z Y$$

since $\nabla P = 0$. By antisymmetrizing with respect to X, Y the Ricci identity gives

$$[R(X,Y), L_Z] = \frac{\nu}{4} [P(X, \cdot) L_Z Y - P(Y, \cdot) L_Z X]$$

= $\frac{\nu}{4} [S_X^{g \circ L_Z Y} + S_{L_Z Y}^{g \circ X} - S_Y^{g \circ L_Z X} - S_{L_Z X}^{g \circ Y}]$

Recall now that

$$W(X,Y) = R(X,Y) - \nu R_1(X,Y) = R(X,Y) - \frac{\nu}{4} [S_X^{g \circ Y} - S_Y^{g \circ X}]$$

To prove the formula (11) it is sufficient to check that if $\nu \neq 0$ then

$$S_X^{g \circ L_Z Y} + S_{L_Z Y}^{g \circ X} - S_Y^{g \circ L_Z X} - S_{L_Z X}^{g \circ Y} = 4[R_1(X, Y), L_Z]$$
$$= [S_X^{g \circ Y} - S_Y^{g \circ X}, L_Z]$$

This is established by the following Lemma 2.

Lemma 2. Let A be a symmetric endomorphism which commutes with Q. Then for any $X, Y \in TM$ the following identities hold:

1)
$$[S_X^{g \circ Y}, A] = S_X^{g \circ AY} - S_{AX}^{g \circ Y}$$

2)
$$[S_X^{g \circ Y}, A] - [S_Y^{g \circ X}] = S_X^{g \circ AY} + S_{AY}^{g \circ X} - S_Y^{g \circ AX} - S_{AX}^{g \circ Y}$$

Proof. 1) is straightforward and then 2) follows from 1) immediately.

Proposition 4. Let (M, g, Q) be a complete quaternionic Kähler manifold with non-zero scalar curvature. Then the Lie algebra $\operatorname{aut}_c(Q)$ admits a reductive decomposition

$$\operatorname{aut}_c(Q) = \operatorname{aut}(Q, g) + \mathcal{P}_c,$$
$$[\operatorname{aut}(Q, g), \mathcal{P}_c] \subset \mathcal{P}_c \qquad , \qquad \operatorname{aut}(Q, g) \cap \mathcal{P}_c = 0$$

where \mathcal{P}_c is the space of complete gradient quaternionic vector fields.

If

$$\operatorname{Aut}_0(Q) \neq \operatorname{Aut}_0(Q,g)$$

then $\mathcal{P}_c \neq 0$.

Proof. For any $X \in \operatorname{aut}_c(Q)$ we construct a gradient quaternionic vector field Z as follows. Let $\xi = df_X$ be the 1-form associated to X, see sect.1. By using formula (3) we find

$$X \cdot \text{Ric} = -4(n+1)\nabla \xi + 4[\nabla \xi]^s - 8\Pi[\nabla \xi]^s$$

where "." indicates the Lie derivative. Since $X \cdot Ric$ is symmetric and Q-Hermitian we deduce that the bilinear form $\nabla \xi$ is symmetric. Q-Hermitian and

$$X \cdot \text{Ric} = -4(n+2)\nabla \xi$$

Hence

$$\nu X \cdot g = -4\nabla \xi$$

On the other hand, from the formula for Lie derivative we get

$$(g^{-1} \circ \xi) \cdot g = 2\nabla \xi$$

Hence

$$Y = X + \frac{2}{\nu}g^{-1} \circ \xi$$

is a Killing vector field and

$$Z = -\frac{2}{\nu}g^{-1} \circ \xi$$

is a gradient quaternionic vector field. Moreover, Z = X - Y is complete, since $X \in \operatorname{aut}_c(Q)$ and $Y \in \operatorname{aut}(Q,g) \subset \operatorname{aut}_c(Q)$. For any $Y \in \operatorname{aut}(Q,g)$, $Z = \operatorname{grad} f \in \mathcal{P}_c$ we have

$$[Y, Z] = \operatorname{grad}(Y \cdot f) \in \mathcal{P}_c$$

since Y preserves g. Suppose now that $Z \in \text{aut}(Q, g) \cap \mathcal{P}_c$. Then the endomorphism $L_Z = \nabla Z$ is both symmetric and skew-symmetric, hence, zero. The assumptions of the proposition imply that the metric g is irreducible. This implies that Z = 0.

5. Quaternionic distribution associated with a gradient quaternionic vector field.

Let Z be a gradient quaternionic vector field and $L_Z = \nabla Z$. Denote by $\mathcal{L}(Z)$ the space of vector fields spanned by vector fields $Z, L_Z Z, L_Z^k Z,$

Proposition 5. $\mathcal{L}(Z)$ is a Lie subalgebra of the Lie algebra $\chi(M)$ of vector fields and its orbits (leaves of the corresponding singular integrable distribution, see [15]), are totally geodesic totally real submanifolds.

The proof follows from the Lemma below.

Lemma 3.

1)
$$\langle L^k Z, J L^h Z \rangle = 0, \quad \forall J \in Q; h, k \in \mathbb{Z}^+$$

2)
$$\nabla_{L^{i}Z}L^{h}Z = -\frac{\nu}{4}\{2h < L^{i}Z, Z > L^{h-1}Z + \sum_{r=1}^{h}[\langle Z, L^{h-r}Z \rangle L^{i+r-1}Z + \langle L^{i}Z, L^{h-r}Z \rangle L^{r-1}Z]\} + L^{i+h+1}Z$$

where $L^i \equiv L_Z^i$ and the sum in right member of 2) has to be considered only for h > 0.

Proof of Lemma. 1) Since L_Z is a symmetric operator which commutes with J we need only to prove that $\langle L^k Z, JZ \rangle = 0$ for any positive integer k. It can be done as follows: for k odd the operator JL_Z is skew-symmetric and hence $\langle Z, JL_Z^k Z \rangle = 0$; for k = 2l we have $\langle L_Z^k Z, JZ \rangle = \langle L_Z^l Z, JL_Z^l Z \rangle = 0$.

2) By definition, we have

$$\nabla_{L^{i}Z}Z = L^{i+1}Z$$

which gives 2) for h = 0. By using (9), we have

$$\nabla_{L^i Z} L^1 Z = (\nabla_{L^i Z} L_Z) Z + L_Z (\nabla_{L^i Z} Z)$$
$$= -\frac{\nu}{4} P(L^i Z, Z) Z + L^{i+2} Z$$

By using 1) we get

$$\nabla_{L^{i}Z}L^{1}Z = -\frac{\nu}{4}\{2 < L^{i}Z, Z > Z + < Z, Z > L^{i}Z + < L^{i}Z, Z > Z\} + L^{i+2}Z$$

which establishes 2) for h = 1. Moreover, for h > 1,

$$\nabla_{L^i Z} L^h Z = (\nabla_{L^i Z} L_Z) L^{h-1} Z + L_Z (\nabla_{L^i Z} L^{h-1} Z)$$

Then 2) follows by induction on h.

Denote by $\mathcal{D}(Z)$ the (eventually singular) quaternionic (i.e. Q-invariant) distribution defined by

$$M \ni x \mapsto \mathcal{D}_x(Z) = \mathcal{L}_x(Z) + Q_x \mathcal{L}_x(Z)$$

and define the kernel of the Weyl tensor W as follows:

$$KerW = \{X \in TM \mid W(X,\cdot) = 0\}$$

Proposition 6.

- 1) $\mathcal{D}(Z) \subset KerW$
- 2) $\mathcal{D}(Z)$ is integrable
- 3) a regular orbit N of $\mathcal{D}(Z)$ is a totally geodesic quaternionic submanifold with constant quaternionic curvature, that is $W_{1N} \equiv 0$.

Proof. 2) Let be $X = L^k Z$, $Y = L^l Z$ and J a local section of Q. Then $[X,Y] = \nabla_X Y - \nabla_Y X$ belongs to $\mathcal{D}(Z)$ by 2) of Lemma 3. $\nabla_X (JY) = (\nabla_X J)Y + J\nabla_X Y$ belongs to $\mathcal{D}(Z)$ since $\nabla_X J \in Q$ and $\nabla_X Y \in \mathcal{D}(Z)$. Now it is sufficient to prove that $\nabla_{JX} Y \in \mathcal{D}(Z)$. It can be done by using induction on l:

$$\nabla_{JX}Y = \nabla_{JX}(L^{l}Z) = (\nabla_{JX}L_{Z})(L^{l-1}Z) + L_{Z}\nabla_{JX}(L^{l-1}Z)$$
$$= -\frac{\nu}{4}P(JX, Z)L^{l-1}Z + L_{Z}\nabla_{JX}(L^{l-1}Z).$$

The first term belongs to $\mathcal{D}(Z)$ by inductive hypothesis. This proves 2). Now we prove 1). By using identities (10) and (11), for any $X, Y \in TM$ and $J \in Q$ we have for any natural k:

$$W(X,Y)L^kZ = L^kW(X,Y)Z = 0$$

and

$$W(X,Y)JL^{k}Z = JW(X,Y)L^{k}Z = 0.$$

Hence the conclusion follows. 3) follows immediately from 1) and 2).

6. Completeness of a totally geodesic submanifold of an analytic Riemannian manifold.

Recall that a submanifold N of a Riemannian manifold (M,g) is called to be totally geodesic if any geodesic of the submanifold (N,g|N) is a geodesic of the manifold (M,g). A submanifold N of a Riemannian manifold (M,g) is totally geodesic iff the Lie algebra $\mathcal{X}(N)$ of vector fields tangent to N is invariant under covariant derivatives in the directions of vector fields from $\mathcal{X}(N)$:

$$\nabla_{\mathcal{X}(N)}\mathcal{X}(N) \subset \mathcal{X}(N)$$

In general, a totally geodesic submanifold of a complete Riemannian manifold can not be extended to a complete totally geodesic submanifold. However, we prove that this is true if the manifold (M, g) is analytic.

Proposition 7. Any (embedded) totally geodesic submanifold N of a complete analytic Riemannian manifold (M,g) admits a unique extension to a complete totally geodesic (immersed) submanifold.

Proof. The proof is based on the following lemma.

Lemma 4. Let (M,g) be an analytic Riemannian manifold and r the radius of injectivity in a point $p \in M$. Denote by B the open ball of radius r/2 in the tangent space T_pM and set $U = \exp B$. Then any (embedded) totally geodesic submanifold $N \in p$ of (U,g|U) admits a unique extension to a maximal totally geodesic submanifold $\tilde{N} = \exp(T_pN \cap B) \subset U$.

Proof of Lemma. Let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be an orthonormal basis of T_pM such that the vectors $\mathbf{e}_1, \dots, \mathbf{e}_k$ form a basis of T_pN . Denote by x_i the corresponding geodesic coordinates in U and set $\partial_i = \partial/\partial x_i$. The (analytic) submanifold $\tilde{N} = \exp(T_pN \cap B)$ of U is totally geodesic iff the (analytic) functions

$$\Gamma_{ij}^a = g(\nabla_{\partial_i}\partial_j, \partial_a), \ i, j \le k, \qquad a > k$$

vanish identically on \tilde{N} . This is true, since they vanish in the open submanifold N of \tilde{N} . This proves Lemma.

Proof of Proposition 7. To prove Proposition 7) it is sufficient to show that an embedded totally geodesic submanifold N can be extended along any geodesic $\gamma(t)$ which is tangent to N starting from a point $\gamma(0) \in N$. Let $q = \gamma(t_0)$ be a point of the geodesic γ such that $\gamma([0,t_0)) \subset N$ but $\gamma(t_0) \notin N$. Let r be the injectivity radius of a compact neighbourhood of q and $p = \gamma(t_0 - r/3)$. Denote by B the open ball of radius $\frac{r}{2}$ in T_pM . By Lemma 4, $V = \exp(T_pN \cap B)$ is a totally geodesic submanifold of M which extends $N \cap \exp B$. So $\hat{N} = N \cup V$ gives an extension of N to an (immersed) totally geodesic submanifold which contains $\gamma(0, t_0 + \epsilon)$. More precisely, N is defined as follows. If $(\varphi, N), \varphi : N \to M$ is the immersed totally geodesic submanifold, then $\varphi(N) \cap V$ is a disjoint union of totally geodesic connected submanifolds V_i and we define the extension $(\tilde{\varphi}, \tilde{N})$ by glueing to N in a natural way the components V_i which are open in V. This proves the Proposition.

7. Proof of the main theorems.

We prove Theorem 1 under the assumption that the reduced scalar curvature is negative, $\nu < 0$. For $\nu > 0$ the theorem was proved in [3], [10] and for $\nu = 0$ it follows from Theorem 2. Assume that

$$\operatorname{Aut}_0(Q) \neq \operatorname{Aut}_0(Q,q).$$

By Proposition 4 there exists a complete non zero gradient quaternionic vector field Z on M. It generates the 1-parameter group A of quaternionic transformations which preserves the (integrable) distribution $\mathcal{D}(Z)$ associated with Z, see sect. 5. A leaf N of this distribution is a totally geodesic quaternionic submanifold of M of constant quaternionic curvature. Since the quaternionic Kähler manifold is analytic, we can extend N to a complete totally geodesic quaternionic Kähler manifold \tilde{N} of constant negative quaternionic curvature. The group A preserves \tilde{N} and induces on \tilde{N} a one-parameter group of non isometric quaternionic transformations. This is impossible by Proposition 1, since the universal cover of the \tilde{N} is isometric to the quaternionic Lobachevsky space. This contradiction proves the Theorem.

Proof of Theorem 2. 1) Let $M = \mathbb{H}^n$ be the quaternionic vector space with the standard quaternionic structure Q and the standard flat metric g_0 . The Levi-Civita connection ∇' of any Q-Kähler metric g' is related with the Levi-Civita connection ∇^0 of g_0 by

$$\nabla' = \nabla^0 + S^{\xi}$$

where ξ is an exact 1-form, say

$$\xi = -\frac{1}{2}df \ ,$$

and

$$\frac{\nu'}{4}g' = \xi \otimes \xi - \sum_{\alpha} (\xi \circ J_{\alpha}) \otimes (\xi \circ J_{\alpha}) - \nabla^{0}\xi$$
 (13)

(See the proof of Prop.2). This formula may be written as

$$\nu'g' = 2e^{-f}[\nabla^0 \eta - 2e^{-f}\Pi(\eta \otimes \eta)] \tag{14}$$

where

$$\eta := de^f = -2e^f \xi \tag{15}$$

and $Z = \operatorname{grad} e^f = g^{-1} \circ \eta$ is a gradient quaternionic vector field.

Since g_0 is Ricci flat, Z is affine (see corollary 4) and hence it can be written as

$$Z(x) = Ax + b$$
 , $A \in gl_n^+(\mathbb{H})$, $b \in \mathbb{H}^n$ $x \in \mathbb{H}$

where $gl_n^+(\mathbb{H})$ is the space of symmetric quaternionic linear endomorphisms of \mathbb{H}^n . Indeed $\nabla^0 Z = A$ is an endomorphism of \mathbb{H}^n which commutes with Q, by Lemma 1, and it is symmetric with respect to g_0 . Hence the potential function of Z may be written as

$$e^{f} = \frac{1}{2}g_{0}(Ax, x) + g_{0}(b, x) + c_{1} \qquad x \in \mathbb{H}^{n}$$
 (16)

and

$$\eta_{|x} = de^f_{|x} = g_0(Ax, \cdot) + g_0(b, \cdot).$$

Remark that A is not negatively defined: $A \geq 0$. In fact, the following more strong statement is true.

Lemma 5. Either A is positively defined or A = 0.

Proof. Assume that $Ax = -\lambda x$, $x \neq 0$, $\lambda > 0$. Then restriction of (16) to the line tx gives

$$e^{f(tx)} = -\frac{1}{2}t^2\lambda g_0(x,x) + tg_0(b,x) + c_1 \qquad \forall t \in \mathbb{R}$$

and this is a contradiction.

Now we prove that $b \in ImA$. Indeed, let write $b = b_1 + b_2$ where $b_1 \in ImA$ and $b_2 \in (ImA)^{\perp}$: then

$$e^{f(tb_2)} = tq_0(b_2, b_2) + c_1 \qquad \forall t \in \mathbb{R}$$

and hence $b_2 = 0$.

Let us put now $y = x - x_0$ where $Z(x_0) \equiv Ax_0 + b = 0$. Then in new coordinates y the vector field Z is given by

$$Z(y) = Ay$$

and (14) can be written as

$$\frac{\nu'}{2}e^{f(y)}g' = g_0 \circ A - 2e^{-f(y)}\Pi(g_0 \circ Ay \otimes g_0 \circ Ay)$$
 (17)

$$e^{f(y)} = \frac{1}{2}g_0(Ay, y) + c_1.$$

In the origin y = 0 we have

$$\frac{\nu'}{2}c_1g' = g_0 \circ A$$

If $\nu' = 0$ then A = 0. If $\nu' \neq 0$ then A is positively defined and $\nu' > 0$. This proves Lemma.

Continuation of proof of Theorem 2. Now we finish the proof of the first part of the Theorem.

If A=0 then $\xi=0$ and $\nabla'=\nabla^0$ is a flat connection: hence g' is flat.

If A > 0 then (17) gives

$$g'_{|y} = \frac{4}{\nu' g} [h_0 - \frac{4}{g} \Pi(h_0 \circ y \otimes h_0 \circ y)]$$

where $h_0 = g_0 \circ A$ is a flat quaternionic Kähler metric on \mathbb{H}^n and $q = h_0(y, y) + c_1$. This is exactly the canonical expression for a standard quaternionic Kähler metric of $\mathbb{H}P^n$ (See for example [6]).

To prove the second part we need the following lemma.

Lemma 6. Let (M,g) be a simply connected complete Riemannian manifold with the de Rham decomposition

$$M = \mathbb{R}^k \times M_1 \times \cdots \times M_l$$

$$g = g_0 + g_1 + \dots + g_l,$$

where g_0 is the flat metric and g_i , i > 0 is an irreducible metric on M_i . Then any Riemannian metric on M with the same Levi-Civita connection as g is given by

$$\bar{g} = g_0 \circ A_0 + \lambda_1 g_1 + \dots + \lambda_l g_l$$

where $\lambda_i = const > 0$ and A_0 is a positively defined endomorphism of \mathbb{R}^k .

Proof of the Lemma. The field of endomorphisms $A = g^{-1} \circ \bar{g}$ is parallel with respect to the Levi-Civita connection of the metric g and, hence, it commutes with the holonomy group. By Schur lemma, it can be written as

$$A = \operatorname{diag}(A_0, \lambda_1 \operatorname{Id}, \dots, \lambda_l \operatorname{Id}),$$

where $A_0 > 0$ is a constant endomorphism. This proves the lemma.

Now we prove the statement 2).

Proof of the statement 2. Let (M, g, Q) be a non-flat quaternionic Kähler manifold with $\nu = 0$ and g' a Q-Kähler metric on M. Denote by Z the gradient quaternionic vector field on M, associated with g, g' by Proposition 2. The proposition 3 and Corollary 4 show that Z is an affine (complete) vector field and the field L_Z is parallel. Applying the lemma to the metrics $g, \bar{g} = (\exp tZ)^*g$, one can easily check that the field Z can be written as $Z = Z_0 + Z_1 + \cdots + Z_l$, where Z_i is an affine gradient vector field on (M_i, g_i) . Moreover, $L_{Z_i} = \lambda_i \operatorname{Id}$ for i > 0, that is Z_i is an infinitesimal homothety. Since on an irreducible manifold (M_i, g_i) there is no non-trivial homothetic transformation and parallel vector field, we conclude that $\lambda_1 = \cdots = \lambda_l = 0$ and, hence, $Z_i = 0$ for i > 0. This implies that the metric g' can be decomposed into the direct sum of some metric \bar{g} on $\bar{M} = M_1 \times \cdots \times M_l$ which has the same Levi-Civita connection as $g_1 + \cdots + g_l$ and a Ricci-flat Q-Kähler metric g' on H^k . The statement 2) follows now from statement 1) and the Lemma.

Proof of the corollary. 1) Let φ be a quaternionic transformation of (M, g, Q). Applying Theorem 2 to the metric $g' = \varphi^* g$, we get $\varphi^* \nabla^g = \nabla^{\varphi^* g} = \nabla^g$. (In the flat case we take into account that the metric $\varphi^* g$ is flat and hence $\varphi^* g = g \circ A$ for some constant endomorphism A.) 2) Now we will assume that there is no flat factor in the de Rham decomposition (5) and we denote by D_i the tangent distribution of the factor M_i , $i = 1, \ldots, l$. Since the distributions D_i depend only on the connection ∇^g and any quaternionic transformation of M is affine, any one-parametric group φ_t of quaternionic transformations preserves the distributions D_i and, hence,

induces on (M_i, g_i) an one-parametric group H_i of affine transformations. Since (M_i, g_i) is an irreducible manifold, the group H_i preserves the metric. This shows that $\operatorname{Aut}_0(Q) \subset \operatorname{Aut}_0(Q, g)$ and proves the direct statement of 2). The inverse statement is immediate. 3) We may assume as before that there is no flat factor in (5). Let φ be a quaternionic transformation. If it preserves all distributions D_i we conclude as before that it is an isometry. In the opposite case it induces some non trivial permutation of the set of the distributions. Let choose the index i such that $\varphi^*D_i = D_j$, $i \neq j$. The lemma shows that φ induces an homothetic diffeomorphism of M_i onto M_j . This proves the corollary.

REFERENCES

- D.V. ALEKSEEVSKY and S. MARCHIAFAVA, Quaternionic-like structures on a manifold: Note I. I-integrability and integrability conditions - Note II. Automorphism groups and their interrelations. Rend. Mat. Acc. Lincoi s.9, 4 (1993), 43-52, 53-61.
- 2. D.V. ALEKSEEVSKY and S. MARCHIAFAVA, Quaternionic structures on a manifold and subordinated structures. Preprint 94/14 Dipartimento di Matematica "G. Castelnuovo", Università degli Studi di Roma "La Sapienza", 1994.
- 3. D.V. ALEKSEEVSKY and S. MARCHIAFAVA, Transformations of a quaternionic Kähler manifold. C.R. Acad. Sci. Paris, 320, Série I (1995), 703-708.
- 4. D. BERNARD, Sur la géométrie différentielle des G-structures. Ann. Inst. Fourier (Grenoble), 10 (1960), 151-270.
- 5. A. BESSE, Einstein manifolds. Ergebnisse der Math. 3 Folge Band 10, Springer-Verlag, Berlin and New York, 1987.
- 6. E. BONAN, Sur les G-structures de type quaternionien. Cahiers de topologie et géométrie différentielle, 9 (1967), 389-461.
- 7. S.S. CHERN, The geometry of G-structures. Bull. Amer. Math. Soc., 72 (1966), 167-219.
- 8. S. KOBAYASHI and K. NOMIZU, Foundations of differential geometry. Vol 1, 11. Intersciences Publishers New-York and London 1963.
- 9. R. KULKARNI On the principle of uniformization. J. of Diff. Geometry, 13 (1978), 109-138.
- C. LEBRUN and Y.-G. YE, preprint 1994 and C.LEBRUN Fano manifolds, contact structures and quaternionic geometry. Int. J. Math., 6 (1995), 419-437.
- S. MARCHIAFAVA, Sulle varietà a struttura quaternionale generalizzata. Rend. di Matematica, 3 (1970), 529-545.
- 12. V. OPROIU, Integrability of almost quaternal structures. An. st. Univ. "Al. I. Cuza" lazi 30 (1984), 75-84.
- 13. P. PICCINI, On the infinitesimal automorphisms of quaternionic structures. J. de Math. Pures et Appl., 72 (1993), 593-605.
- S. SALAMON, Differential geometry of quaternionic manifolds. Ann. Scient. Ec. Norm. Sup., 4-èmc série 19 (1986), 31-55.
- SUSSMANN, Orbits of families of vector fields and integrability of distributions. Transactions of Amer. Math. Soc, 180 (1973), 171-188.
- A. SWANN, HyperKähler and Quaternionic Kähler Geometry. Math. Ann., 289 (1991), 421-450.