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AnsTRACT. Lot (M, g, @) be asimply connected, complete, quaternionic Kahier man-
ifold without flat de Rhiam factor. Then any 1-parameter group of transformations of
M which preserve the quaternionic structure @ preserves also the metric g. Morcover,
if (M, y) is irreducible then the quaternionic Kahler metric ¢ on (M, @) is unique up
to a homothety.

1. Introduction.

Let @ be an almost quaternionic structure on a dn-dimensional manifold M, that
is a 3-dimensional subbundle of the bundle of endomorphisms locally generated by
three anticommuting almost complex structures J,,o = 1,2,3, with J; = J,.Js.
We will say that H = (Ja) 1s a (local) admassible basis for Q. Q is called a quater-
nionic structure if there exists a torsionless linear connection ¥V which preserves
Q. Such connection V (called a quaternionic connection) is not unique. Any other
quaternionic connection ¥V’ can be written as

V' =V4 8¢ (1)

where € € A'M is a 1-form and S¢ is a (1, 2)-tensor given by

SE =X d+ X Q¢ - z[g(.an)Jn +JaX @ (€£0.00)] (X € TM)

a=|
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where H = (J,) is an admissible basis for @ (See [1]).

Definition 1. 1) A Riemannian metric ¢ on a manifold M with a quaternionic
structure @ s called @-Hermatian if all endomorphisms J € @ are skew-symmetric
with respect to g.

2) a Q-Hermitian metric ¢ is called Q-Kahler if the Levi-Civita connection VY is
a quaternionic connection.

A iriple (M, g, Q) is called a quaternionic Hermatian (rvesp., quaternionic Kahler)
manifold if ¢ is a @-Hermitian (vesp., @-INahler) metric.

We will assume that dim M = 4n > 4. Then it is well known that any Q-Kéahler
metric g 18 Einstein and the curvature tensor R of ¢ can be written as

R=uvRi+W (2)

where v = —171_(—5:—-1:75 1s the reduced scalar curvature, IU is the scalar curvature, Ry is
the curvature tensor of the standard quaternionic INahler metric of the quaternionic
projective space HP",

- 1 qoY golN o
Ry(X,Y) = Z[5;(,‘ — S9N (X,Y € TM)
and W is the quaternionic Weyl tensor which satisfies the conditions
Ric(W)y=0 , [W(X,Y),J,]=0 (a=1,23) X,YeTM

for any admissible basis H = (J,) of Q.

Definition 2. Let (A4, g, Q) be a quaternionic Kahler manifold. A transforma-
tion of M is called a quaternionic transformation (resp., quaternionic isometry) if
it preserves @ (resp., @ and g).

A vector field on M is called to he quaternionic (vesp., quaternionic Killing)
if it generates a local l-parameter group of quaternionic transformations (resp.,
quaternionic isometries).

We denote by Aut(M, Q), Aut(M,Q,qg) or, shortly, by Aut(@), Aut(Q,g) the
group of all quaternionic transformations and quaternionic isometries respectively,
and by aut(Q), aut(Q, g) the Lie algebra of quaternionic and quaternionic Killing
vector fields on M. We will use subscript 0 to denote the connected component of
unity Gg of a group G.

Remark that aut(Q, ¢) is the Lie algebra of the Lie group Aut(@Q, ¢) if the metric
¢ is complete since any Killing vector field on a complete Riemannian manifold is
complete [8]. We will denote by aut.(Q) the Lie algebra of the Lie group Aut(Q).
It is a subalgebra of aut{(Q) consisting of all complete quaternionic vector fields.

Recall ([3]) that the Lie derivative of the Levi-Civita connection V¢ with respect
to a quaternionic vector field Z € aut(Q) is given by

7'V = §¢ (3)



where £ 1s a 1-form,

1
= ].r = — Ace ¥ Z
E=dfy , fz 1) Trace VYZ (4)

The form £ is called the I-form associated to Z.

Note that if » # 0 then the quaternionic structure @ is canonically defined by
the metric ¢ and, hence, Aut(Q, ¢) = Aut(g) (the group of isometries), aut{Q), g) =
aut(g) (the Lie algebra of Killing vector fields).

We denote also by

P=PQ,g)={Z=gradf=¢g ' odf € aut(@)}

the space of all gradient quaternionic vector fields.
Now we state the main results.

Theorem 1. Let (M, g, Q) be a sunply connected complete quaternionic Kdihler
dn-manifold, n > 1. Assuwme that

Auto(Q) # Auto(Q, ).

If M s compact, b 18 wsometric to the quaternionic projective space with the
standard quaternzonic Kahler structure.

If M s not compact, it has zero scalar curvature and its de Rham decomposition
has an Buclidean factor (H* g, Qo,),k > 0. The conwverse is also true.

In the compact case the conclusion holds under the weaker condition Aut(Q) #
Aut(@Q, g), see ([3],[10]).

In the case of zero scalar curvature we have the following more general result. To
state it we note that the quaternionic structure @ of a complete simply connected
quaternionic Wahler manifold (A, g, Q) with zero scalar curvature is generated by a
parallel hypercomplex structure H = (J;,.Jy, J3), where J,, o = 1,2, 3, are parallel
anticommuting complex structures. We fix such H, which is defined up to a rotation
from SO(3), and we write @ =< H > to indicate that @ is generated by H. It
is well known that the de Rham decomposition of the manifold (M, g, Q) may be
written as follows:

M=H x M, x ... x M
I=9008n®..0y (5)
H=Hy® H, &..8 H,

where (H*, g0, < Ho >) is the 4k-dimensional flat quaternionic Kihler manifold and
(Mi,gi,< H;y >),1 = 1,...1, is an irreducible quaternionic Kahler manifold with the
holonomy group Sp(n;), dim M; = 4n;.



Theorem 2. Let (M, g,Q) be a complete simply connected quaternionic Kdahler
manfold with zero scalar curvature and let (5) be its de Rham decomposition.

(1) Assume that the metric ¢ = go s flat, that s M is identified with the
quaternionic vector space H" with the standard quaternionic structure @
and the standard metric gg. Then any Ricci-flat Q-Kdhler meiric ¢' on
H" 1s flat and has the form ¢ = g o A, where A is a positively defined
symmetric endomorphism of ' = R*™ which commautes with Q. Moreover,
any Q-Kdhler metric ¢’ with the reduced scalar curvature v # 0 has constant
posttive quaternionic curvature and can be written as

. 1
J'(x) = i[}'10 — —(hgox@hpou+ Z ho o Jaz @ ho o Jew)] z € H"

qu q
where hg = go A 15 a flut Q-Kahler metric and
q=holz,2) +c¢ , c¢=const>0.
(2) If the metric g s not flat, any Q-Kdhler metric ' of (M, Q) is Ricer flat
and may be written as
9 =900 ® ... Ny,
where A; = const > 0 and g}y is a flat quaternionic-Kdhler metric on H¥.

Corollary 1. Under the assumptions of the theorem

(1) any quaternionic transformation of (M, g, Q) s affine :

Aut(Q) C Aut(V9).

(2)
Auto(Q) # Aute(Q, g)
off there s the flat factor i (5), i.e. k> 0.
(3)
Aut(Q) # Aut(Q,g) ,  Aute(Q) = Aute(Q, )

ioff =0 and for some 1,5 the manifolds (M;, gi),(Mj,g;) are homothetic
but not wometric.

2. Quaternionic transformations of the spaces of constant quaternionic
curvature.

We describe the groups Aut(M, @) and Aut(M, g, Q) for the standard quater-
nionic Kahler manifolds M = HP", H",HA" of constant quaternionic curvature
1,0, —1 respectively.



Proposition 1.

1) Aut(HP",Q) = PGL,(H) = GL,4+,(H)/R* __2 Aut(HP", ¢, Q) = Sput1/Zy
2) Aut(H",Q) = GL,(H) x H" 2 Aut(H",¢,Q) = Sp, x H"

8)  Aut(HA,, Q) = Aut(HA, 9, Q) = Spi,w/Z2

where X indicates the semadirect product,

Proof. 1) and 2) are well known (see [11], [9]). To prove 3) we realize the quater-
nionic Lobachevsky space HA™ as the open orbit B = Sp; ,[(1,0,...,0)] ¢ HP" of
the subgroup Sp; , of the projective group PGL,(H) which preserves the quater-
nionic quadric @ :
n
a=1
The guaternionic structure of HA™ is induced by the canonical locally flat quater-
nionic structure of HP". Any quaterniomc transformation of B = HA" can be
extended to a unique quaternionic transformation o of HP"; see ([11}, [9]). Since @

is the boundary of B, the transformation ¢ preserves @, that is it belongs to Sp .

Now we pass to the general case.

3. Quaternionic transformations and gradient quaternionic vector fields.

Let (M, g,Q) be a quaternionic Kihler manifold. For any vector field Z on A
we denote by Lz the field of endomorphisms X — VyZ, X € TM, where V= VY
is the Levi-Civita connection.

Lemma 1 ([3]). A vector field Z (resp. o gradient vector field Z = grad f, f €
C°(M)) s quaternionic iff [Ly, Q) C Q (resp. [Lz,Q] = 0).

Note that if M is simply connected a vector field Z is gradient iff the operator
L 7 1s symmetric (with respect to ¢). Hence, we have

Corollary 2. Let M be sumply connected. Then a vector field Z s gradient quater-
nionic field iff go Lz = V(g o Z) is a symmetric Q-hermitian form.

Now we prove the following
Proposition 2. Let ¢' be a quaternionic Q-Kahler metric on a simply connected
quaternionic Kdhler manifold (M, g, Q). If V9 £ N9 then there exists a non zero
gradient quaternionic vector field Z = grad f = gl odf on M |, where f =divZ =
trV9Z 1s an eigenfunction of the Laplacian with the eigenvalue vy = 2v(n + 1).
Proof. By (1) we have
\VZ A v I

iy}



for some 0 # € € A'M. Then ([2]) the Ricei tensors of the connections V¢, V¢ are
related by
Ric¢' = Ric —4p" + 4(n + 1)p + 8IIp* (6)

where

3
p=E£@E=) (£0]a)® (€0 ]a) — VE
o=
p* 1s the symmetric part of the bilinear form p and IT is the projection of the space

of bilinear forms onto the space of @-Hermitian forms given by
1
H:wr lMw = _—l[w + ;u(.]ﬂ s Ja )]

Using (2), we can rewrite (G) as

v

3
=g =g+ E@E- Z}(fo-fc.)ca(fo-m - V¢

a=
where #' is the reduced scalar curvature of the meiric ¢'. It implies that the bilinear
form V& — 26 @ € is symmetric and @-Hermitian; in particular d6 = Alt(VE) =
AlE(VE—-2£Q¢) = 0 and hence € = dh for some function h. Now we put n := e~ e
Then Vi = ¢ #4[VE — 26 @ €] is a symmetric Q-hermitian form and o = df for
f=—21e " Hence, by Corollary 2, Z := ¢ oy = grad f 1s a non zero gradient
quaternionic vector ficld. The last statement was proved in [3].

Corollary 3. Let (M,q,Q) be « simply connected quaternionic Kahler manifold
and ¢ € Aut(M.Q) be a quaternionic transformation which s not affine (i.e.
doesn’t preserves V9). (If (M, g) is irreducible it is sufficient to assume that ¢
s not an 1sometry.) Then there exists a non zero gradient quaternionic vector field
Z =grad f, where f = divZ s an ewgenfunction of the Laplacian with eigenvalue
vy = 2v(n+1).

Proof. 1t is sufficient to apply the Proposition 2 to ¢’ = ¢*g.

4. Fundamental equation for gradient quaternionic vector fields.
We define the parallel (1, 3) tensor P on M by
P(X,Y)Z =29(X, Z)Y +¢(Z,Y)X + g(X,Y)Z

3

3
=S 92,V X = Y gl(X, JaY ) a2

a=1 a=1l

= SE7Y + SPYY

6



Remark 1. For any X € TM one has

P(X, X)X = 4)X|[PX

Proposition 3. Let Z be a quaternionic vector field on (M, g, Q) and £ the asso-
ciated 1-form. Then
1) Z and € satisfy the follounng equation:

VxLz+ R(Z,X) = 5% Y X € y(M) M)

2) if Z s a gradient field then

I/
52—5302 (8)

and Z satisfies the following fundamental equation

Vily = —%P(_\",' \Z ¥ X € x(M) (9)
Moreover
W(Z )=0 (10)
and
[(W(X,Y),Lz}=0 (11)

for any X, Y € TM , where W 1s the quaternionic Weyl tensor.

Remark 2. If M s compact and v is positive the inverse statement for 2) holds:
any solution of the fundamental equation is a gradient quaternionic vector field (sce

31).

Corollary 4. If v = 0 then any gradient quaternionic field Z is affine (Z -V =
5% =0). In particular, Z is complete if the manifold (M, g) is complete.

Proof. 1) For any vector field Z on the Riemannian manifold (A, g) the following
identity holds:

(Z V)Y =(VZ)x vy + R(Z,X)Y (VXY € x(M))

Taking into account the formula (3) we get (7). If Z € P then Ly is a symmetric
endomorphism and consequently

29(R(2,X)Y,T) = g(S4 Y. T) — g(S4T,Y) (VX,Y,T € y(M))
By taking the trace, we obtain (8). Hence

R(Z,X) = ;—’[sy-" — 597 = vR(Z,X) | (12)

7



that 1s (10) holds. Then (9) follows from (7),(8) and (12). Now we prove (11).
Taking the covanant derivative of the fundamental equation we get the identity

124 - .
(V2Lz)y,x = —EP(-\':' LzY

since VP = 0. By antisymmetrizing with respect to X, Y the Ricel identity gives
[R(X,Y),Lz) = ZIP(X, )LzY = P(Y, )Lz X]
_ il_/[s:q\:obzy 4 Sic;‘; _ Sg.obz.\' _ S*}"?\}
Recall now that
W(X,Y)=RX.)Y)—-vR(X,Y) = RX,Y) [S"’ﬂ — SJ°\]
To prove the formula (11) it is sufficient to check that if v # 0 then
SEPY g S S = 4R (X Y), L
= [SK" =S¥ Ly

This 1s established by the following Lemima. 2.

Lemma 2. Let A be a symmetric endomorphism which comnutes unth Q. Then
for any X,Y € TM the following identities hold:

1) [S‘g\?Y,A] — Sg?f\‘) 5_]03
2) (S, Al - [S9°V Al = SEN 4 SN - st — ol

Proof. 1) is straightforward and then 2) follows from 1) immediately.
Proposition 4. Let (M, q,Q) be a complete quaternionic Kdhler manifold with
non-zero scalar curvature. Then the Lie algebra ant (Q) admits o reductive decomn-
position
auta(Q) = aut(Q, 9) + P,
[aut(Q, g), Pe] C P. ) aut(Q,g) NP =0

where Py s the space of complete gradient quaternionic vector fields.
if
Autg(Q) # Auto(Q, g)
then P, # 0.

Proof. For any X € aut (@) we construct a gradient quaternionic vector field Z as
follows. Let £ = dfy be the 1-form associated to X, see sect.l. By using formula
(3) we find

X - Ric= —4(n +1)VE 4+ 4[VE)® — STU[VE]*

[v.7)



.

where 7”7 indicates the Lie derivative. Since X - Ri¢ 1s symunetric and Q-Hermitian

we deduce that the bilinear form VE iz symmetric, Q-Hermitian and
X - Ric = —4(n 4+ 2)V¢

Hence

vX - g=—4V¢

On the other hand, from the formula for Lie derivative we get

(971 0) g=2V¢

Hence

.2
Y=X+2g"0¢
I

is a Killing vector field and
2
Z=——g o0&
1

is a gradient quaternionic vector field. Moreover, Z = X — Y is complete, since X €
aut,(Q) and Y € aut(Q, g) C aut(Q). For any Y € aut(Q,¢), Z = grad f € P, we
have

Y, Z] = grad(Y - f) € P,,

since Y preserves g. Suppose now that Z € aut(Q, g) NP.. Then the endomorphism
Ly = VZ is both symmetric and skew-symmetric, hence, zero. The assumnptions of
the proposition imply that the metric g 1s irreducible. This implies that Z = 0.

5. Quaternionic distribution associated with a gradient quaternionic vec-

tor field.

Let Z be a gradient quaternionic vector field and Lz = VZ. Denote by £(Z)
the space of vector fields spanned by vector fields Z,LzZ,....L%Z, ...

Proposition 5. £(Z) is a Lie subalgebra of the Lie algebra x(M) of vector fields
and tts orbits (leaves of the corresponding singular integrable distribution, see [15]),
are totally geodesic totally real submanifolds.

The proof follows from the Lemma below.



Lemma 3.

2) vbz‘thZ= _%{Qh‘(LiZ,Z>Lh_1Z

h
4+ Z[< Z Lh-rz > Li+i'—12+ < LiZ’Lh—r‘Z > Ll'—lz]} + Li—l—h—i—]Z

r=1

where L' = L', and the sum in right member of 2) has to be considered only for
Z /) (4

h > 0.

Proof of Lemma. 1) Since Ly is a symmetric operator which commutes with .J
we need only to prove that < L¥Z,JZ >= 0 for any positive integer k. It
can be done as follows: for k& odd the operator JLyz is skew-symmetric and hence
< Z,JL5Z >=0;for k =2l we have < LY 2, JZ >=< 15,2, JL,Z >=0.

2) By definition, we have

VL.-ZZ = LH-IZ

which gives 2) for i = 0. By using (9), we have

Viigl'Z =(N1igLy)Z +Lz(V iz Z)

- _EP(LiZ, ZVZ + L't Z

By using 1) we get
Vi L' Z = —2{2 <L'Z,2>2+<2.2>LZ+<L'Z2,Z>2}+L"Z
which establishes 2) for i = 1. Moreover, for b > 1,
Viigh"Z = (V1igLy)L" ' Z + Lg(V iy L' Z)

Then 2) follows by induction on h.

Denote by D(Z) the (eventually singular) quaternionic (i.e. Q-invariant) distri-
bution defined by

M3v=D(2)=L(2)+Q.L:(Z)

and define the kernel of the Weyl tensor W as follows:

KerW ={X e¢TM | W(X,)=0}

10



Proposition 6.

1) D(Z)C KerW

2)  D(Z) s integrable

8)  a regular orbit N of D(Z) 1s a totally geodesic quaternionic submanfold
with constant quaternonic curvature, that s Wy = 0.

Proof. 2) Let be X = L*Z,Y = L'Z and J a local section of Q. Then [X,Y] =
VY — Vy X belongs to D(Z) by 2) of Lemma 3. Vx(JY) = (Vx.J)Y + JVyY
belongs to D(Z) since VyJ € @ and VY € D(Z). Now it is suflicient to prove
that VyxY € D(Z). It can be done by using induction on {:

VY =V (L'Z) = (VL) (L7 2y + LyV yx (L171 2)
- —EP(.]X, ZVL''Z 4+ Ly V(L7 2).

The first term belongs to D(Z) by inductive hypothesis. This proves 2). Now we
prove 1). By using identities (10) and (11), for any X, Y € TM and J € @ we have
for any natural k:

W(N.YVL*Z = L*W(X,Y)Z =0

and

W(X,YYIL*Z = JW(X,Y)L*Z = 0.

Hence the conclusion follows. 3) follows immediately from 1) and 2).

6. Completeness of a totally geodesic submanifold of an analytic Rie-
mannian manifold.

Recall that a submanifold N of a Riemannian manifold (M, ¢) is called to be
totally geodesic if any geodesic of the submanifold (N, ¢|N) is a geodesic of the
manifold (3,¢). A submanifold N of a Riemannian manifold (M, g) is totally
geodesic iff the Lie algehra A'(N) of vector fields tangent to N is invariant under
covariant certvatives in the directions of vector fields from A'(N) ¢

\7_1(1\:).’1'(1\") C ‘j\;'(_,‘\f)
In general, a totally geodesic submanifold of a complete Riemannian manifold can

not be extended to a complete totally geodesic submanifold. However, we prove
that this is true if the manifold (M, ¢) is analytic.



Proposition 7. Any (embedded) totally geodesic submanifold N of a complete an-
alytic Riemannian manifold (M, g) admits a unique extension to a complete totally
geodesic (immersed) submanifold.

Proof. The proof is based on the following lemma.

Lemma 4. Let (M, g) be an andalytic Riemannian mantfold and v the radius of
injectivity in a point p € M. Denote by B the open ball of radius r/2 in the
tangent space TyM and set U = exp B. Then any (embedded) totally geodesic
submanifold N € p of (U, g|U) admits o wnique estension to e mazimal totally
geodesic submanifold N = exp(T,N N B) C U.

Proof of Lemma. Let eq,--- e, be an orthonormal basis of T,M such that the
vectors e, -- -, e; form a basis of T,N. Denote by 2; the corresponding geodesic
coordinates in U and set §; = 8/0z;. The (analytic) submanifold N = exp(T,NNDB)
of U is totally geodesic iff the (analytic) functions

Ffj = _{I(Va;aj,a“), '1.} S ks a > "‘

vanish identically on N. This is true, since they vanish in the open submanifold N
of N. This proves Lemma.

Proof of Proposition 7. To prove Proposition 7) it is sufficient to show that an
embedded totally geodesic submanifold N can be extended along any geodesic v(t)
which is tangent to N starting from a point v(0) € N. Let ¢ = ~v(to) be a point
of the geodesic v such that v([0,40)) C N but v(to) € N. Let » be the injectivity
racdius of a compact neighbourhood of ¢ and p = v(tg —7/3). Denote by B the open
ball of radius £ in T,M. By Lemma 4, V = exp(T,N N B) is a totally geodesic
submanifold of M which extends N NexpB. So N = NUV gives an extension
of N to an (immersed) totally geodesic submanifold which contains v(0,% + €).
More precisely, N is defined as follows. If (o, N), o : N = M is the immersed
totally geodesic submanifold, then (V) NV 1s a disjoint union of totally geodesic
connected submanifolds V; and we define the extension (3, N) by glueing to N in a
natural way the components V; which are open in V. This proves the Proposition.

7. Proof of the main theorems.

We prove Theorem 1 under the assumption that the reduced scalar curvature is
negative, » < 0. For v > 0 the theorem was proved in [3], [10] and for v = 0 it
follows from Theorem 2. Assume that

Auto(Q) # Auto(Q, ).

12



By Proposition 4 there exists a complete non zero gradient quaternionic vector ficld
Z on M. It generates the l-paramncter group A of quaternionic transformations
which preserves the (integrable) distribution D(Z) associated with Z, see sect. 3.
A leaf N of this distribution is a totally geodesic quaternionic submanifold of A4 of
constant quaternionic curvature. Since the quaternionic Kahler manifold is analytic,
we can extend N to a complete totally geodesic quaternionic Iahler manifold N of
constant negative quaternionic curvature. The group A preserves N and induces
on N a one-parameter group of non isometric quaternionic transformations. This is
impossible by Proposition 1, since the universal cover of the N is isometric to the
quaternionic Lobachevsky space. This contradiction proves the Theorem.

Proof of Theorem 2. 1) Let M = H" be the quaternionic vector space with the
standard quaternionic structure @ and the standard flat metric go. The Levi-Civita
conmection V' of any @-INahler metric ¢’ is related with the Levi-Civita connection
VO of go by

VvV =V 58
where ¢ is an exact 1-form, say
_ 1 ]
5 - —§Cf )
and ,
1%
Ig’=£®£wgtfo‘fa)@s(fo'fn)—\‘f% (13)
(See the proof of Prop.2). This formula may he written as
Vg =2 (VO — 27Ty @ n)] (14)
where
n=del = —2el¢ (15)

and Z = grad e = g7 o is a gradient quaternionic vector field.
g ! g 1

Since go is Ricci flat, Z is affine (see corollary 4) and hence it can be written as
Z(x)= Az +b , Acgli(H), beH" x € H"

where glF(H) is the space of symmetric quaternionic lincar endomorphisins of H" .
Indeed V%Z = A is an endomorphism of H" which commutes with @, by Lemma
1, and it is symmetric with respect to go. Hence the potential function of Z may
be written as

1
e = Sgo(Aw, ) + golb, %) + c. v € W (16)

and
e = dcfp: = go(Ax, ) + go(d, ).

Remark that 4 1s not negatively defined : 4 > 0. In fact, the following more
strong statement 1s true.



Lemma 5. FEither A is positively defined or A = 0.
Proof. Assume that Az = —Az, @ # 0, A > 0. Then restriction of (16) to the line
ta gives

. 1.
el = —gt‘l,\go(n:,rc) + tgo(b, ) + ¢ YieR

and this is a contradiction,
Now we prove that b € I'mA. Indeed, let write b = by + by where b € ImA and
by € (ImA)L: then

6“”’2) :tgo(bg,bg)+cl Vte R
and hence b, = 0.

Let us put now y = 2 —x9 where Z(zp) = Azg 4+ b = 0. Then in new coordinates
y the vector field Z 1s given by

Z(y) = Ay
and (14) can be written as
T
7(3”3’)_(]' =good—2e" (g5 0 Ay @ go 0 Ay) (17)
e/ = %go(“ly:y) +cr.
In the origin y = 0 we have
o

—5(319" =goo A

If /¥ =0 then A =0. If ' # 0 then A is positively defined and ' > 0. This proves
Lemma.

Continuation of proof of Theorem 2. Now we finish the proof of the first part of the
Theorem.

I A=0then £ =0 and V' = VY is a flat connection: hence ¢’ is flat.

It A > 0 then (17) gives

4
Ny = -

[ho — ilH(hg oy ®hgoy)]
q

g
where g = go 0 4 15 a Hlat quaternionic Kahler metric on H" aud g = ho(y, y) + ¢;.

This is exactly the canonical expression for a standard quaternionic Kahler metric

of HHP" (See for example [6]).

To prove the second part we need the following lemma.

14



Lemma 6. Let (M, g) be a sunply connected complete Riemanmian manifold with
the de Rham decomposition

M=RFx M x - x M

g=go+og+- -+ a1,

where gg s the flat metric and g;, 1 > 0 w3 an wrreducible metric on M;. Then any
Riemannian metric on M with the same Levi-Cwita connection as ¢ 1s given by

g:g00440+/\1g]+"'+/\1g[

where \; = const > 0 and Ao 1s @ positively defined endomorphismn of R

Proof of the Lemana. The field of endomorphisms A = ¢~! o 7 is" parallel with
respect to the Levi-Civita connection of the metric g and, hence, 1t commutes with
the holonomy group. By Schur lemma, it can be written as

A = diag{Ag, Ay Id, ..., A Ld)

where Ag > 0 1s a constant endomorphisim. This proves the lemma.
Now we prove the statement 2).

Proof of the statement 2. Let (M. ¢, Q) be a non flat quaternionic Kahler manifold
with v = 0 and ¢’ a Q-Kéhler metric on M. Denote by Z the gradient quaternionic
vector field on M, associated with g,¢" by Proposition 2. The proposition 3 and
Corollary 4 show that Z is an affine (complete) vector field and the field Ly is
parallel. Applying the lemma to the metrics ¢, 7 = (exp tZ)*g, one can easily check
that the field Z can be writien as Z2 = Zo + Z, + - -+ + Z;, where Z; is an affine
gradient vector field on (M, ¢g;). Moreover, Ly, = N Id for ¢ > 0, that is Z; is
an infinitesimal homothety. Since on an irreducible manifold (M5, g;) there 1s no
non trivial homothetic transformation and parallel vector field ., we conclude that
Al = -+ = A = 0 and, hence, Z; = 0 for / > 0. This implies that the metric ¢
can be decomposed into the direct sum of some metric § on M = M, x - x M;
which has the same Levi-Civita connection as ¢ + - -« + ¢ and a Ricci-Hat Q-IKahler
metric gj on H*. The statement 2) follows now from statement 1) and the Lemma.

Proof of the corollary. 1) Let ¢ be a quaternionic transformation of (A, ¢, Q). Ap-
plying Theorem 2 to the metric ¢’ = *g, we get p*V9 = Vet = V9, (In the flat
case we take into account that the metric ¢*¢ is flat and hence p*g = go A for
some constant endomorphism A.) 2) Now we will assuine that there is no flat factor
in the de Rham decomposition (5) and we denote by D; the tangent distribution
of the factor M;, + = 1,...,1. Since the distributions D; depend only on the con-
nection V4 and any quaternionic transformation of M 1s affine, any one-parametric
group ¢ of quaternionic transformations preserves the distributions D; and, hence,



induces on (M;, g;) an one-parametric group H; of affine transformations. Since
(M;, ¢g;} is an irreducible manifold, the group H; preserves the metric. This shows
that Auto(Q) C Auto(Q,g) and proves the direct statement of 2). The inverse
statement is immediate. 3) We may assume as before that there is no flat factor in
(5). Let ¢ be a quaternionic transformation. If it preserves all distributions D; we
conclude as before that it is an isometry. In the opposite case it induces some non
trivial permutation of the set of the distributions. Let choose the index ¢ such that
@*Di = Dj, 1 # 7. The lemma shows that ¢ induces an homothetic diffeomorphisin
of M; onto M;. This proves the corollary.
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