Codimension two immersions of oriented Grassmann manifolds

Tang Zi-Zhou

Department of Mathematics Graduate School Academica Sinica Beijing 100039

,

P.R. China

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Germany

.

Abstract

In this paper we prove that there exist no codiemnsion two immersions of oriented Grassmann manifolds into Euclidean spaces, except for $\widetilde{G_2(\mathbb{R}^4)}$, $\widetilde{G_2(\mathbb{R}^5)}$, $\widetilde{G_3(\mathbb{R}^6)}$ and spheres.

1. Introduction

For $1 \leq k < n$, let $\widetilde{G_k(\mathbb{R}^n)}$ denote the oriented Grassmann manifold of oriented k-dimensional vector subspaces of \mathbb{R}^n . $\widetilde{G_k(\mathbb{R}^n)}$ is a smooth manifold of dimension k(n-k). Note that $\widetilde{G_1(\mathbb{R}^n)} \cong S^{n-1}$, the (n-1)-sphere, and that $\widetilde{G_k(\mathbb{R}^n)} \cong \widetilde{G_{n-k}(\mathbb{R}^n)}$ under the diffeomorphism that sends an oriented k-plane V to V^{\perp} together with that orientation on V^{\perp} which induces the standard orientation on $V \oplus V^{\perp} = \mathbb{R}^n$. The question of stable parallelizability for the oriented Grassmann manifolds was solved in [7] and [8]. Since $\widetilde{G_k(\mathbb{R}^n)}$ is orientable, the stable parallelizability for $\widetilde{G_k(\mathbb{R}^n)}$ is equivalent to the existence of a codimension one immersion of $\widetilde{G_k(\mathbb{R}^n)}$ into Euclidean space. In this paper, we investigate the existences of codimension two immersions of $\widetilde{G_k(\mathbb{R}^n)}$ into Euclidean spaces. Since $\widetilde{G_k(\mathbb{R}^n)} \cong \widetilde{G_{n-k}(\mathbb{R}^n)}$, we assume, without loss of generality, that $2k \leq n$. Our main result is

Theorem 1.1 Let $2 \le k \le n/2$. Then $G_k(\mathbb{R}^n)$ immerses into $\mathbb{R}^{k(n-k)+2}$ if and only if (n,k) = (4,2), (5,2) or (6,3).

Let $\gamma = \gamma_{n,k}$ denote the canonical k-plane bundle over $\widetilde{G_R(\mathbb{R}^n)}$, and let $\beta = \beta_{n,k}$ be its orthogonal complement, whose fiber over $a \ V \in \widetilde{G_k(\mathbb{R}^n)}$ is the vector space $V^{\perp} \subset \mathbb{R}^n$. We have bundle equivalence

(1.2)
$$\gamma_{n,k} \oplus \beta_{n,k} \stackrel{\sim}{=} n\varepsilon$$
,

where ε denotes a trivial line bundle.

It is well known that the tangent bundle $\tau G_k(\mathbf{R}^n)$ of $G_k(\mathbf{R}^n)$ has the following description ([6]):

(1.3)
$$\tau \widetilde{G_k(\mathbf{R}^n)} \cong \gamma_{n,k} \otimes \beta_{n,k}$$

For a topological space X, let $r: K(X) \to KO(X)$ denote the homomorphism of Abelian groups gotten by restriction of scalars to **R**, and let $c: KO(X) \to K(X)$ denote the complexification, $c[\xi] = [\xi \otimes_{\mathbf{R}} \mathbb{C}]$, which is a ring homomorphism.

We have the following identities:

(1.4)
$$rc(x) = 2x \quad \forall x \in KO(X)$$

(1.5)
$$cr(y) = y + \overline{y} \quad \forall y \in K(X) ,$$

where \overline{y} stands for complex conjugation of y.

2. *K*-theory of complex projective spaces

Let η denote the Hopf complex line bundle over $\mathbb{C}P^n$, $\sigma = \eta - 1 \in \widetilde{K}(CP^n)$, $\xi = r\eta$, $y = r\sigma = \xi - 2 \in \widetilde{KO}(\mathbb{C}P^n)$.

Proposition 2.1 ([1], [3])

(i) the ring $K(\mathbb{C}P^n)$ is a truncated polynomial ring over the integers generated by σ , i.e.,

$$K(\mathbb{C}P^n) \cong \mathbb{Z}[\sigma]/\langle \sigma^{n+1} \rangle;$$

(ii) the ring $KO(\mathbb{C}P^n)$ is a truncated polynomial ring over the integers generated by y, with the following relations:

$$y^{t+1} = 0 \quad \text{if} \quad n = 2t(t \ge 0)$$

$$2y^{2s+1} = 0, \ y^{2s+2} = 0 \quad \text{if} \quad n = 4s + 1(s \ge 0)$$

$$y^{2s+2} = 0 \quad \text{if} \quad n = 4s + 3(s \ge 0);$$

(iii) the complexification $c : KO(\mathbb{C}P^n) \to K(\mathbb{C}P^n)$ is a monomorphism if $n \not\equiv 1 \mod 4$.

<u>Proposition 2.2</u> For arbitrary real 2-plane bundle ζ over $\mathbb{C}P^2$, there exists $s \in \mathbb{Z}$, such that $\zeta - 2 = s^2(\xi - 2) \in \widetilde{KO}(\mathbb{C}P^2)$.

Proof: Since $\mathbb{C}P^2$ is one-connected, all real bundles over $\mathbb{C}P^2$ are orientable. Observe that ζ may arise from the realification of a complex line bundle over $\mathbb{C}P^2$, $(SO(2) \cong U(1))$, but the complex line bundles over $\mathbb{C}P^2$ are in bijection with $H^2(\mathbb{C}P^2; \mathbb{Z}) \cong \mathbb{Z}$. Therefore we get

$$\begin{aligned} \zeta &= r\eta^2 = r(\eta \otimes \eta \otimes \cdots \otimes \eta) , \quad \text{or} \\ \zeta &= r\overline{\eta}^s = r(\overline{\eta} \otimes \overline{\eta} \otimes \cdots \otimes \overline{\eta}) \quad \text{for some} \quad s \in \mathbf{Z}^+ = \{n \ge 0, n \in \mathbf{Z}\} \end{aligned}$$

Let us consider first the case $\zeta = r\eta^s$. Now, by proposition 2.1,

(2.3)

$$\zeta = r\eta^{s} = r(\sigma+1)^{s} = r\left(1+s\sigma+\binom{s}{2}\sigma^{2}\right)$$

$$= 2+s(\xi-2)+\binom{s}{2}r\sigma^{2}$$

and we have to compute $r\sigma^2 \in KO(\mathbb{C}P^2)$. Note that $\eta\overline{\eta} = 1$, so $(1+\sigma)(1+\overline{\sigma}) = 1$, it follows that $\overline{\sigma} = -\sigma + \sigma^2$. By (1.5), we have

$$cr\sigma^2 = \sigma^2 + \overline{\sigma^2} = \sigma^2 + \overline{\sigma}^2 = \sigma^2 + (-\sigma + \sigma^2)^2 = 2\sigma^2$$

On the other hand, $c(\xi - 2) = cr\sigma = \sigma + \overline{\sigma} = \sigma + (-\sigma + \sigma^2) = \sigma^2$. So $c(2(\xi - 2)) = 2\sigma^2 = cr\sigma^2$. By proposition 2.1 (iii), we finally obtain $r\sigma^2 = 2(\xi - 2)$. Now, (2.3) implies that $\zeta - 2 = s(\xi - 2) + 2\binom{s}{2}(\xi - 2) = s^2(\xi - 2)$. For the other case $\zeta = r\overline{\eta}^s$, the proof is similar.

3. Proof of theorem

Proposition 3.1 For $2 \le k < n$, $n \ne 2k$, $n \ge 6$, $G_k(\mathbb{R}^n)$ has not codimension two immersion into Euclidean space.

Proof: Without loss of generality we assume that $2k \leq n$. It follows that $n - k \geq 4 = \dim \mathbb{C}P^2$. Thus every real orientable k-plane bundle α over $\mathbb{C}P^2$ can be classified by a map $f: \mathbb{C}P^2 \to G_k(\mathbb{R}^n)$ so that $f^*(\gamma) \cong \alpha$. Taking $\alpha = \xi \oplus (k-2)\varepsilon$, where ξ is the underlying real 2-plane bundle of the canonical complex line bundle over $\mathbb{C}P^2$, we obtain the following equalities in $KO(\mathbb{C}P^2)$:

$$f^*(\gamma) \stackrel{\simeq}{=} \xi \oplus (k-2)\varepsilon ,$$

$$f^*(\beta) \stackrel{\simeq}{=} f^*(n\varepsilon - \gamma)$$

$$\stackrel{\simeq}{=} (n-k+2)\varepsilon - \xi.$$

Thus

$$f^*\left(\tau \widetilde{G_k}(\mathbf{R}^n)\right) \cong f^*(\gamma \otimes \beta) \cong f^*(\gamma) \otimes f^*(\beta)$$
$$\cong (\xi \oplus (k-2)\varepsilon) \otimes ((n-k+2)\varepsilon - \xi)$$
$$\cong (n-2k+4)\xi + (k-2)(n-k+2)\varepsilon - \xi \otimes \xi$$

Using the relation $\xi \otimes \xi \cong 4\xi - 4$ in $KO(\mathbb{C}P^2)$ (proposition 3.1), we obtain

(3.2)
$$f^*\left(\tau \widetilde{G_k}(\mathbf{R}^n)\right) \cong (n-2k)\xi + ((k-2)(n-k+2)+4)\varepsilon$$

Suppose $\widetilde{G}_k(\mathbf{R}^n)$ immerses into $\mathbf{R}^{K(n-k)+2}$, then there exists an orientable 2-plane bundle ζ' over $\widetilde{G}_k(\mathbf{R}^n)$, such that

$$\tau \widetilde{G}_k(\mathbf{R}^n) \oplus \zeta' \cong (k(n-k)+2)\varepsilon.$$

It follows that

$$f^*\left(\tau \widetilde{G_k}(\mathbf{R}^n)\right) \oplus f^*(\zeta') \cong (k(n-k)+2)\varepsilon$$

Using (3.2), we obtain

$$f^*(\zeta') \oplus (n-2k)\xi \oplus ((k-2)(n-k+2)+4)\varepsilon \cong (k(n-k)+2)\varepsilon.$$

By proposition 3.2, (taking $\zeta = f^* \zeta'$), we obtain

$$(n-2k+s^2)(\xi-2)=0$$
 in $\widetilde{KO}(\mathbb{C}P^2)$

with $(n-2k+s^2) > 0$, a contradiction to proposition 3.1.

Proposition 3.3 For $k \ge 4$, $\widetilde{G_k}(\mathbb{R}^{2k})$ has not codimension two immersion into \mathbb{R}^{k^2+2} . **Proof:** V. Bartik and J. Korbaš [2] have computed $w_i(G_R(\mathbb{R}^n))$ for $1 \le i \le 9$. From their results $w_8(G_4(\mathbb{R}^8)) = w_2^4 + w_1^2 + w_3^2 \in H^8(G_4(\mathbb{R}^8);\mathbb{Z}_2)$. It follows that $w_8(\widetilde{G_4}(\mathbb{R}^8)) = (w_2(\gamma_{8,4}))^2 \in H^8(\widetilde{G_4}(\mathbb{R}^8);\mathbb{Z}_2)$. We use the Gysin sequence associated to the double covering $\widetilde{G_4}(\mathbb{R}^8) \to G_4(\mathbb{R}^8)$ together with cohomology of $G_4(\mathbb{R}^8)$ to establish that $(w_2(\gamma_{8,4}))^4 \ne 0$ in $H^8(\widetilde{G_4}(\mathbb{R}^8);\mathbb{Z}_2)$. It is easy to see that $w_i(\widetilde{G_4}(\mathbb{R}^8)) = 0$ for $1 \le i \le 7$. These imply that $w_i(\widetilde{G}_4(\mathbb{R}^8)) = (w_2(\gamma_{8,4}))^4 \neq 0$. So $\widetilde{G}_4(\mathbb{R}^8)$ has no codimension two immersion into \mathbb{R}^{18} .

In case n = 2k, k > 4, consider the inclusion $\mathbb{R}^8 \to \mathbb{R}^{k-4} \oplus \mathbb{R}^8 \oplus \mathbb{R}^{k-4}$. This induces an inclusion $j : \widetilde{G}_4(\mathbb{R}^8) \to \widetilde{G}_R(\mathbb{R}^{2k})$ where $j(A) = \widetilde{X} + \widetilde{A}$, $\widetilde{X} = \mathbb{R}^{k-4} \oplus 0 \oplus 0$, and $\widetilde{A} = 0 \oplus A \oplus 0$. It is readily seen that $j^* \gamma_{2k,k} = \gamma_{8,4} \oplus (k-4)\varepsilon$. Hence

$$j^{*}\left(\tau\widetilde{G_{k}}\left(\mathbf{R}^{2k}\right)\right) \stackrel{\simeq}{=} j^{*}\left(\gamma_{2k,k}\otimes\beta_{2k,k}\right)$$
$$\stackrel{\simeq}{=} j^{*}\left(\gamma_{2k,k}\right)\otimes j^{*}\left(\beta_{2k,k}\right)$$
$$\stackrel{\simeq}{=} \left(\gamma_{8,4}\oplus\left(k-4\right)\varepsilon\right)\otimes\left(\beta_{8,4}\oplus\left(k-4\right)\varepsilon\right)$$
$$\stackrel{\simeq}{=} \gamma_{8,4}\otimes\beta_{8,4}\oplus\left(k-4\right)\varepsilon\otimes\left(\beta_{8,4}\oplus\gamma_{8,4}\right)\oplus\left(k-4\right)^{2}\varepsilon$$
$$\stackrel{\simeq}{=} \tau\left(\widetilde{G_{4}}\left(\mathbf{R}^{8}\right)\right)\oplus\left(k^{2}-16\right)\varepsilon.$$

Suppose $\widetilde{G}_k(\mathbf{R}^{2k})$ immerses into \mathbf{R}^{k^2+2} , then there exists an orientable 2-plane bundle ζ over $\widetilde{G}_k(\mathbf{R}^{2k})$, such that $\tau \widetilde{G}_k(\mathbf{R}^{2k}) \oplus \zeta \cong (k^2+2)\varepsilon$, thus

$$\tau\left(\widetilde{G_4}(\mathbf{R}^8)\right) \oplus (k^2 - 16)\varepsilon \oplus j^*(\zeta) \cong (k^2 + 2)\varepsilon.$$

By Hirsch theory ([4]), we obtain that $\widetilde{G}_4(\mathbb{R}^8)$ immerses into \mathbb{R}^{18} , a contradiction to the conclusion above. This concludes the proof of the proposition.

Proposition 3.4 $\widetilde{G}_2(\mathbf{R}^5)$ immerses into \mathbf{R}^8 .

Proof: An investigation similar to lemma 3.2 in [5] yields: the quotient space $\widetilde{G}_2(\mathbb{R}^5)/\widetilde{G}_2(\mathbb{R}^4)$ is homeomorphic to the Thom space $T(3\varepsilon)$ of a 3-plane trivial bundle over $\widetilde{G}_1(\mathbb{R}^4) \cong S^3$ (since S^3 is parallelizable. Obstruction theory establishes:

$$\widetilde{KO}\left(\widetilde{G_2}\left(\mathbf{R}^5\right)/_{\widetilde{G_2}\left(\mathbf{R}^4\right)}\right) \cong \widetilde{KO}(T(3\varepsilon)) \cong \widetilde{KO}\left(S^3 \wedge \left(S^3 \cup \infty\right)\right) \cong 0$$

This yields that the injectivity of i^* in the exact KO sequence of the cofibration: $S^2 \times S^2 \cong \widetilde{G_2}(\mathbb{R}^4) \xrightarrow{i} \widetilde{G_2}(\mathbb{R}^5) \to \widetilde{G_2}(\mathbb{R}^5)/_{\widetilde{G_2}(\mathbb{R}^4)}$

$$i^*: \widetilde{KO}\left(\widetilde{G_2}(\mathbf{R}^5)\right) \to \widetilde{KO}\left(S^2 \times S^2\right) \cong \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2$$

It is easy to see that $2i^*(\gamma - 2) = 0$ in $\widetilde{KO}(S^2 \times S^2)$, since $i^*(\gamma)$ is the canonical 2-plane bundle over $S^2 \times \{x_0\} \subset S^2 \times S^2$. So we have

(3.5)
$$2(\gamma - 2) = 0 \quad \text{in} \quad \widetilde{KO}\left(\widetilde{G}_2(\mathbf{R}^5)\right) \,.$$

On the other hand, using λ^2 -construction (second exterior power) we obtain

(3.6)
$$\binom{5}{2}\varepsilon \cong \lambda^2(\gamma \oplus \beta) \cong \lambda^2(\gamma) \oplus \lambda^2(\beta) \oplus \gamma \otimes \beta \cong \gamma \otimes \beta \oplus \beta \oplus \varepsilon$$

Combining (3.5) and (3.6), (1.2), we may obtain

$$\tau \widetilde{G_2}(\mathbf{R}^5) \oplus \gamma \stackrel{\sim}{=} 8\varepsilon.$$

Together with Hirsch theory ([4]), we know at once that $\widetilde{G}_2(\mathbf{R}^5)$ immerses into \mathbf{R}^8 .

Proof of theorem. The "only if" part of the theorem comes from proposition 3.1, 3.3. Then it suffices to show that $\widetilde{G_2}(\mathbb{R}^{\not\geq})$ immerses into \mathbb{R}^6 and $\widetilde{G_3}(\mathbb{R}^6)$ immerses in \mathbb{R}^{11} . But it is well known that $\widetilde{G_2}(\mathbb{R}^4) \cong S^2 \times S^2$, and $\widetilde{G_3}(\mathbb{R}^6)$ is parallelizable [8].

Acknowledgements

This work was done while the author was visiting the Max-Planck-Institut für Mathematik in Bonn. I wish to thank Professor F. Hirzebruch and Professor M. Kreck for their hospitality.

References

- 1. J.F. Adams, Vector fields on spheres. Ann. of Math. 15 (1962), 603-632.
- 2. V. Bartik, and J. Korbaš, Stiefel-Whitney characteristic classes and parallelizability of Grassmann manifolds. Proceedings of the 12th Winter School on Abstract Analysis, Supplement ai Rendiconti del Circolo Mathematico di Palermo II 6 (1984).
- 3. M. Fujii, KO-groups of projective spaces. Osake J. Math. 4 (1967), 141-149.
- 4. M. Hirsch, Immersions of Manifolds. Trans. Amer. Math. Soc. 93 (1959), 242-276.
- 5. S.G. Hoggar, On KO-theory of Grassmannians. Quart. J. Math.z 20 (1969), 447-463.
- 6. K.Y. Lam, A formula for the tangent bundle of flag manifolds and related manifolds. Trans. Amer. Math. Soc. 213 (1975), 305-314.
- 7. D. Miatello, and R.J. Miatello, On stable parallelizability of $\widetilde{G}_{k,n}$ and related manifolds. Math. Ann. 259 (1982), 343-350.
- 8. P. Sankaran, and P. Zvengrowski, Stable parallelizability of partially oriented flag manifolds. Pacific J. of Math. 128 (1987), 349-359.