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Abstract

We discuss the general properties of discretc transformation which
leavs integrable systems invariant. A group-theoretical interpretion for
this transfonuation is proposed. It allows to describe and understand
all essential properties of integrable systems as a direct corollary of a
representation theory of discrete groups of inteb'Table Iuappings.

1 Introduction

Liouville has introduced the term II integrability" with respect to dynamical
systems. He proved that if a dynamical system possesses a sufficiently large
number of integrals of motion in involution then such a systerll is integrable.
But neither general methods for constructing solution in an explicit form nor
any mentioll of the symmetry of the system undel' consideration are contained
in the Liouville's critcrion.

In the case of Lie symmetries the theorenl of E.Noether fills this gap and
teaches us that the number of conservation laws coincidcs with the dimension
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of the Lie group and gives the possibility (in the case of a Lagrange theorl')
of obtaining explicit expressions for integrals of motion.

Roughll' speaking the modern theory of integrable systems up to now has
maintained the Liouville definition (an illtegrable system havc to possess an
infinite number of integrals of motion in involution) and manl' people have
found various consequences which follow from this fact.

The goal of this paper is to show in a deductive wal' that the theory of
integrable systems mal' be understoad as a theory of linear representations
of discrete graups of integrable mappings [1, 2].

This does not mean that at the moment we can propose a complete math
ematical theory of this connection. Our aim is to show that all known results
of the theory of integrable systems do not contradiet to this hypothesis.

2 Discrete transformation of integrable sys
tems
and its general properties

Let us consider a loeal invertible transfonnation clescribecl by the substitution

- _ A..( , 11 (r») - A..( )U - If' u, u ,u , ... , 'lL = lf/ 'lL 1 (2.1)

where u is an s-dimensional vector function anel u', u,", ... are its derivatives of
thc corresponding order with respect to "space" coordinates (the dimension
of the space mal' bc arbitrary).

At first, we want to enumerate the IUOst important general properties
of substitutions (2.1) which result from observation of the sufficiently large
number of integrable systems [3].

1. All equations of a given hierarchy are invariant with respect to the same
discrete transformation.

2. The substitution (2.1) is invertiblc: this means that equations (2.1)
may be resolved with respect to the "old" variables u which mal' be
expressed as functions of the "new" variables u anel thcir derivatives.

3. The substitution (2.1) is canonical [4, 5]. This fact can be expressed
in two equivalent forms. There exists a single generating function from
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which by the rules of the theory of canonical transformations it is pos
sible to obtain the explicit form of substitution (2.1). In other words
this Ineans that the substitution (2.1) may be related to some Pois
son structure [7] (and not single) which is invariant with respect to
transformations described by substitution (2.1).

4. The conserved quantities of the theory are shifted by the divergence
(with respect to space coordinates) under the transfonnation (2.1) [7].

5. Tbe substitution (2.1) may be rewritten in the fOrIn of infinite chain of
equations

(2.2)

where U n denotes the result of n-time application of transformation
(2.1) to some initial function Uo (a possible solution of some integrable
system). Thc general property of chains (2.2) consists in their integra
bility. This means that it is possible to obtain exact general solution
of these chains under appropriate way of interrupting of the chain (by
using some "gooel" boundary conclitions) on its both encls. For all inte
grable systems with a rational spectral panuneter (in old inverse scat
tering method terminology) the chains (2.2) coincide with equations
of Toda lattice (tbe Darboux transformation) or of its generalizations.
About situation in the case of elliptic spectral parameter see [9, 10].

6. Substitution (2.1) may be generalized for the case of non-commutative
variables. For instancc, the function u may be considcred as matrix
valued or as operator-valued function in thc corresponcling representa
tion space [8].

3 The problems which may be solved with
the help of discrete transformations.

Now we enumerate the most important results which may be obtained with
the help of discrete transformation (2.1).

1. It is possible to obtain the wide dass of explicit solutioIlS of integrable
systems in a cleterminant (Hirota) fonn. These solutions depend on
some number of arbitrary functiolls [3].
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2. By an appropriate choice of these functions it is possible to extract
those solutions which either are invariant with respect to some inner
automorphisIll of dynamical systenl under consideration (in particular,
multi-soliton solutions) or satisfy some other boundary conditions [8,9].

3. The conelition of invariance of Poisson structures with respect to trans
formation (2.1)

</>1(U)Jn (U)<j/'I'(U) = Jn(</>(u))

(</>'(u) is the Frechet derivative) allows to obtain thc explicit form of
nonlocal Hamiltonian operators of an arbitrary order anel to construct
the whole hierarchy of integrable systellls with given eliscrete substitu
tion [4]-[6].

4. It is possible to obtain the equations of (1+2) integrable hierarchies cor
responding to a given integrable substitution (2.1) in two-dimensional
space [7].

4 Equation determining the discrete substi
tution and its group-theoretical interpreta
tion

As discussed above, knowledge of a discrete substitution allows to give a solu
tion for many problellls of the theory of integrable systems. The only "small"
problem is how to choose an appropriate substitution from the infinite set of
possible ones?

Below we give the equation solution ofwhich is exactly the mapping (2.1)
satisfying all conditions necessary to exploit it as a discrete symmetry of some
integrable system [1 1 2]. This equation is obtained nnder the assumption of
locality of a substitution.

Let 4J1 (u) be a Frechet derivative corresponding to substitution (2.1)

'() aq, a<jJ a<jJ 2<jJ U = - + -D + -D + ....
au au' Bul/

Next, we denote by F(u) thc vector column function cOlllponents ofwhich
are some (may be nonlocal) functions of dynamical variables u anel of its
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derivatives, namely
F( ) - F( / /f (n)U = u, u ,u , ... , u .

Then every solution of the functional differential equation with shifted argu
ments

F(</>(u)) = cjJ'(u)F(u)

may be related to an evolution-type equation

Ut = F(u)

(4.1)

which is invariant with respect to thc discretc trausformation u= </>(u).
Equation (4.1) is a generalization of the weIl known condition of inte

grability in the theory of differential eqllations. Indeed let us differentiate
substitution (2.1) with respect to some parameter on which 11 initial" function
u depends and denote ~(u) - F( </>(u)), U _ F(u) then (with all necessary
words) we come to (4.1).

So if a mapping (substitution) is integrable (in the above sense), then it
is possible to consider it as a discrete symmetry of some integrable system.

Let us now compare the equation (4.1) with adefinition of a linear rep
resentation T(g) of some group (for instance, Lie group)

w(gx) = T(g)w(x), (4.2)

where 9 is a group element, T(g) is the grollp operator of representation,
<I>(x) is an element of a basis of the corresponding representation space.

Comparing (4.2) with (4.1) we arrive at the obvious corresponclencc

<I>(x) ~ Fn(u), T(g) ~ cjJ' (u).

Let us give a group-theoretical interpretation of equation (4.1) using this
correspondence. We have some discrete group of transformation the group
element of which is acting exactly as substitution 'lL -+ cjJ(u). </>'(u) (a Frechet
derivative) is a linear representation of a group element. At last, Fn(u)
(the equations of hierarchy) form a basis in a rcpresentation space. If this
representation is irreducible (this fact should bc checkecl by independent
methods), then all possible bases of this representation (solutions of equation
(4.1) with different n) must be connected by some operator Wn,n'

(4.3)
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Certainly the salne situation takes place in the theory of (1 +1) integrable
systems. All equations of the same hierarchy are connectcd by the "raising"
operators constructed from the skew sYlnmetrical (nonlocal) Hamiltonian
operators Jn = -1;;

(4.4)

Two equations (which are typical for a group representation theory) will
be important for further considerations

,p' (u)W (u) ,p' (u)-1 = W (,p(u) ), 1/(u) J (1t ) ,p' (1t ) T = J (cjJ (1t ) ) J ( 4.5)

where ,p'(u)T = ,p~ - Dc/>'[; + D2,p~1I - "', and 111(u) , J(u) are unknown
s x s matrix operators thc matrix elements of which are polynomials of some
finite order with respect to positive and negative degrees of thc operator of
differentiation D.

From (4.5) and (4.1) it follows imlnecliately that if Fn('lL) is some solution
of main equation (4.1), tben WP(u)Fn(u) (p is an arbitrary natural number)
will be some other solution of the same equation.

A solution of thc second equation (4.5) uudcr additional condition of its
skew symmetry may be connccted to a Poisson structure which is invari
ant with respeet to a discrete symmetry transfofInation. Skew symmetrie
operators J(u) are known as Hamiltonian ones. Two different solutions of
thc seeond equation from (4.5), say J1 (u) and J2(u), in combination J1 J:;1
satisfy the first equation from (4.5). Thc operator J1J2-

1J1(u) is again the
solution of the second equation from (4.5) and so Oll. This is the way how
Hamiltonian operators arise in the theory of integrable systeills. It is nec
essary to find two different Poisson structures by independent methods anel
after this fulfill tbe above described proccdure. In this respect the equations
(4.5) were used in (5].

5 Some additional consequences of the main
equation

Let us differentiate the main equation (4.1) with respect to some parameter
p considering it as Olle of argulnents of thc function u. The following formula
for differentiation of an arbitrary s-th component vector functional <I>(u) takes
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place

8<I>(u) = <I>'(u) 8u
ßp Bp'

where <1>' (u) is s x s integro-differential operator (thc operator of variational
derivative). In the ease of a loeal funetional it coineidcs with a Freehet
derivative operator corresponding to cI> (u). Differcntiating of thc main equa
tion with respect to sOIne paraIneter ]J and applying the last formula we
obtain

The above equality is the identity with rcspect to thc funetion 'Up ' Let
us substitute the equality into it up = Fn2 ( u), where the last funetion is
some solution of our main equation different fronl Fn1 (u). It is not diffieult
to understand that tbe first tenn in thc right hand side of the last equation
is symmetrie with respeet to intercbanging 711 to 112. COinposing the same
equation with interchanged indexes and subtracting the last expression from
the previous oue we obtain

(Fn1 (cP(u)))'Fn~(cP(u)) - (Fn2 (cP(u)))'Fnl (cP(u)) =

cP(u)[(Fnl (u))'Fn2 (u) - (Fn:l (u))'Ftq (u)]

Tbus the combination [(Fn1 (u))'Fn2 (u) - (Fn2 (u))'Fnl (u)] satisfies our main
cquation. For all integrable systems known to us this combination is equal to
zero. So we can suppose that this is sonle additional condition (apart from
invarianee with respect to a discrete transforInation group) which ehooses
integrable systems from tbe set of all partial differential equations.

Let us consider the conclusions which follow frOIn this condition.
An equation of integrable hierarchy has thc fornl

the corresponding symmetry equation is thc following onc

and we see that each functions Fs (u) satisfying the Inain equation is a solution
of the symmetry equation if the abovc additional condition is satisfied.
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The additional condition allows to introduce a self-consistent multi-time
fornlalism in the sense that system of equation

is consistent. Using this language we can say that the additional condition
guarantee the equality of the second partial derivatives.

6 The general hypothesis

As a conc1usion of the previous considerations it is possible to formulate
the following general hypothesis about the structure of a future theory of
integrable systems:

• the problem of c1assification anel solution of integrable systems is equiv
alent to thc theory of representations of the discrete group of integrable
mapplngs.

Ineleed , if from independent considerations it turns out to be possible to
obtain a solution of our main equation (4.1), then we automatically produce
an integrable evolution-type equation (4.2) anel cach space of irreducible
representation of (4.3) will give us the cxact solution of it. vVe are weIl aware
of the fact that our main equation (4.1) in its present fonn is not very suitable
for obtaining direct conc1usions from it. In this connection, we can notice
by analogy with the 'distance ' between the original definition of semi-simple
algebras (in the sense of an absence of nontrivial ideals) anel the Cartan
c1assification into A, B, C, D, E, F, G anel E that there Inay be comparable
'distance' between the problem of classification of the solutions of our main
equation as it is formulated here and its possible solution.

We hope that something alike the Cartan '8 classification will be achieved
in the case of representation theory of discrete groups of integrable mappings.

7 Conclusion

The author doesn't insist on the mathematical regorouse of the present paper.
The number of arising questions is much more then regorous Inathematical
output.
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The main equation (4.1) will providc the allswers to two most impor
tant questions of the theory of integrable systcrI1s. The first question is a
'quantization' of substitution, Le., the choosing from the infinite number of
invertible substitutions the ones which will be intcgrable in the above sense.
Except for the obvious remark that this will dcpend cssentially upon the
dimensions of thc spaces involved, thc author knows almost nothing about
how to solve this problem and thinks that it not going to be resolved quickly.

Thc second more tractable problem is solution of thc rnain cquation (4.1)
for a given (ad hoc) integrable substitution if;(u) [7]. Thc author is convinced
of that the solution to this problem is dosely connccted with the theory
of representations of discrete groups of integrable mappings. From known
examples of integrable systems it follows that discrete groups of integrable
rnapping possess rich storage of different irreducible representations. With
each of these representations it rnay be connectccl a definite dass of exact
solutions of corresponding integrable system. In sorne sense the soliton-like
solutions correspond to finite-dimensional rcprescntations of such groups.
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