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NerOll-Severi grollp for torllS qllasi bundles over
curves

\Tasile Brinzänescu and I(enji Ueno

O. Introduction

By the Neron-Severi group of CL compact cOlllplex manifold X we mean the
kernel of the natural homOlnorphism H 2 (X, Z) -t H2 (X, Ox). It is a subgroup
of H2(X, Z) generated by the first ehern dasses of line bunclles on X. In
this paper we shall study the Neron-Severi group for torus quasi bundles over
curves. Firstly, we study the case of torus principal bundles X ~ B over a
(complex, cOlllpact, connected, smooth) curve B, whose structure group is a.

compact cOlllplex torus T = VIA. A T-principal bundle X -4 B is defined
by a cohomology class ~ E H1(OB(T)), where OB(T) is the sheaf of germs of
locally holoInorphic Inaps from B to T. The cohomology dass edetermines
a characteristic dass c(e) E H 2(B, A). By a Theorem of Blanchard ([1]),
the total space ){ of such a T-principal bundle is a non-Kähler manifold if
and only if c(() =J. O. In the first two parts of the paper we present SOHle
basic facts Oll torus principal bundles (see [7]) and we compute Leray spectral
sequences for the sheaves Zx and Ox. In the third part we define for any
line bundle L E Pic(T) an associated T V -principal bundle, described by an
element <PL(e) E Hl(OB(TV

)), where T V is the dual torus, aud we compute
the Neron-Severi group for torus principal bundles. vVe state the main resuIt.
(Theorenl 5):

"For (l T -p1'inc'ipal bnndle )( -4 B, rlefined by (l cohomology class

we have an eXflet sequence of frce groups

whtre F2 = 1r" JV8(8) un.d /\T(.:\;) is the subgroup of the JVeron-Severi gro'Up of
the torns T dcfined by

i~r(.~) = {c}(L) E IVS'(T) I <PL(~) ·is the trivial turus uurulle } ,



JB is the Jaeobian variety 01 the eurne Bund T V is the dual torus. II){ is
J(ühler F2 is isomorphie to lV5(8) ::: Z and i/ X is non.J(ähle1', F2 is the
torsion subgroup 0/ lVS(X) "

In the faurth part we reinterpret the obtained results geon1etrically (see The­
orem 6).
Then, in the fifth part, we study the case of torus quasi bundles. By a quasi'
T-bundle rr : X --+ 8 over a curve 8 we mean that rr is a T-principal bundle
over B \ {bi, b2 , .•• , bl } and that the fibre rr- 1(bi) over the point bi is af the fann
'miTi where 'mi 2:: 2 and Ti is a torus (the fibre 'miTi is caHed a lnultiple fibre of
the multi plicity md. In the Appendix we show that aH torus quasi bundles are
obtained from B x T by means of generalized logarithmic transformations. We
associate, canonicaHy, a To- principal bundle 1ro : Y --+ B to a quasi T-bundle
rr : )( --+ Ballei a holonlorphic lnapping f : ."',( -r Y, with To = TI H, where
H is a finite subgroup of the torus T. Then we extend the camputation of the
Neron-Severi group for torus quasi bundles (see Theorem 17).
Far the case of elliptic surfaces see [3], [4].

Acknowledgements. The first llaIned author would like to thank the Alexander
von HumboIdt-Stiftung far support and both authors would like to express
their thanks to Professor F. Hirzebruch and IVIax-Planck-Institut für Mathe­
Inatik in Bann far hospitality. This paper was prepared at the time we visited
this insti tutian.

1. Basic facts on torus principal bundles

Let T = \1/A be an n-dilnensional eonlpaet eompiex torus, defined by a laUice
A C V in the 'n-dilllensional camplex veetor spaee V. Canonical notation
eoneerning the torus Twill be used:

To(T) = IIU(T,8T) = V, If i(T,8T) = Hi(T,OT) 0 V,

HU(T, n}) = HO(T, 8 T )V = VV , A = H1(T, Z), f[I(T, Z) = i\v .

If B is Cl compaet cOlnplex lnanifold of dinlension '/TI, then ::\ ~ B denotes
a T-prineipal buudle over B. Let LJB(T) denote the sheaf of genns of locally
holomorphic Inaps frOln B to T. Thc T-prineipal bundles are deseribed by
cohomology classes ~ of Jil(B, OB(T)) (see [6]). For a Cech i-cocycle (eij) the
funetion

eij : Uj n Uj -t T

iclentifies (z, t) E Vi X T wi th (z, t') = (z, eij (z) + t) E Uj x T for all z E Ui nUj .

Taking Ioeal seetions of the constant sheaves

O-rA--+V-rT--+O

2



one gets an exact sequence of sheaves on the manifold B

(1)

with the induced exact COhOlll010gy sequence

(2) ... --+ HO(0 B(T)) --+ H 1( B l A) --+ H 1
( B ,OB) 0 V --+

-+ H1(OB(T)) ~ H 2 (B, A) -+ H 2 (B, OB) e> V -+ ....

The cohomology dass ~ of the bundle in H1(OB(T)) determines a character­
istic dass c(~) E H2(B, A) = H2(B, Z) ® A.

Because transition functions of the T-principal bundle X ~ B act trivially
on the cohonlology of fibre, we get natural identifications:

The transgression of the fibre bundle in integral cohomology is a Inap

Under the identification

the characteristic dass c(~) E H 2 (B, Z) e> A and the mapping J : H1(T, Z) -+
H 2

( B, Z) coincide (see [7J, 6.1). The first possibly nontrivial dThomomorphisIll

in the Leray spectral sequence of 0 x is denoted by

Recall for convenience the following result of Höfer (see [7), 7.1 allel 7.2):

Proposition There is an injcetive rnap

compatible with takin!J charaeteristic c!asses, i. e. if E L k '9 Ak is Cl cOlnbinatiofl
01line bundles iu P·ic( B )0zA,. then ihe ChU1Ylcteristic class c(<) of <p( L: Lk0Ak)
equais L: Cl (.C k ) GI Ak E fl 2 (B, A).



jv!oreoue1', if H'2(B,C) has a Hodge dec01nposition, then the image o/~) i.c.

ihe set of isomoT"phism classes 0/ principal bundles constructed above) eq71als

i-m4> = {[.sam. classes 0/ T - principal bundles with c = O} .

Remark. If B is Cl Cllrve, then c vanishes for dimension reasons.Thus, every T­

prineipal bundle over B eOilles (in an unique way) frorn the above construetion.
The eonstruetion itself is Cl !Jeneralized logarithmic transforrnation applied to
the trivial T-prineipal bllndle B x T (see [9]). Indeed, we ean write L.k =
OB(Dk ), with Dk CL divisor on Bi by choosing a suffieiently fine open eovering

(Ud of B the transition funetions of eaeh L.k are expressed by a eoeycle (!g:)).
Now, identify (z, td E Vi X T with (z, tj) E Uj x T if and only if

[
)..k (k) ]

ti = tj + E R log (!ij) ,
211' -1

for aU z E Ui n Uj (this is exaetly Höfer's Inorphism <I».

Also we can eonstruct Cl T-principal bundle over B by using logarithrnic
transforInations silnilar to the case of elliptic surfaces. Express the divisor Dk

as

Let UJk) be a coordinate neighbollrhood of b;k) with Ioeal coordinate tjk). \Ve

mayassunle

ly) : Ujk)* x T -+ UJ k)* x T

[

'In (k) ,,\ ]
( t(k l [(J) -f (t(k) (- ] k log t(k) ).

} , ], 211'R ]

for a. sllfficiently small posit.ive IIlllnber E. Let HS cOllsider a holOlllorphic IUClp­

plng
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Note that the mapping is a.n isomorphism. Hence, we can patch ujk) X T's anel

(B \ {bil), ... , b;k), ... }) X T by the isomorphisms l;k) and obtain a T - principal
bundle over B. We denote the T-principal bundle obtained in this way by

Lb(,J(171~l)'l' l) ... Lb(j)(m~:.Al' 1)(B X T)
I T11

or by.

Remark. By the above proposition anel Blanchard's theorem ([1]) we can easily
show that a T-principal bundle

is Kähler if and only if L~=l ai = O.

2. Leray spectral sequences

Let X -4 B be a T-principal bundle over the manifold B. We consider the
Leray spectral sequences:

(4)

(5)

By the res~lts of Höfer (see [7]) the first spectral sequence (4) degenerates at
E3-level (i.e. dr = 0 for 'l' > 2) anel t.he dTelifferential is cletermined by the
Inap,5: f[I(T, Z) -r f{1.(B, Z) (i.e. by c(e)).

Now, we suppose that B is a curve. By (3) we have:

\Vith the natural ielentifications

2

[lU ( B, Z) = Z 1 f[~ ( B, Z) = Z 1 H 2 (T, Z) = 1\ H I (T, Z) ~

we obtain

,)



where

d2(~l 1\ 'P2) = o(~d~2 - o( ~2)cpl , 'iCPl' CP2 E H 1(T, 7l) .

Obviously, we have

Finally, we get

E;:; = E5u = coker(HO(B, 7l) ® H1(T, 7l) ~ H2(B, Z)) =

=cokel'(H1 (T,Z) ~ H2 (B,71)).

The cohomology dass ~ E Hl(OB(T)) ofthe T- principal bundle ): -.; B
has the fornl 4>(L; 122 0 AZ) and its characteristic dass has the fonll

(6)

where 122 E Pic( B) , A2 E A is a primitive element (i.e. there exists no positive
integer l ~ 2 with AZ = I~Z , ~Z E i\),m E N,m = g.C.d.(Cl(.cZ)) anel AO E A.
It follows that for any r.p E H1(T,Z) we have the equality o(rp) = n~cp(AO),

under the identification Hl(T, 7l) = AV = Ham(A, 7l).We get

E20 _ {Zm for c(e) i= 0
00 - Z for c(e) = 0 .

The second spect.ral sequence (5) degenerates at E2-level for torus principal
bundles with € = 0, since the d2- differential is determinecl by E (see [7], 4. anel
[2]). \Nith natural ielentifications, by (:3) we get:

E~ = E~o = HU(B, [JB) 0 H 2 (T, CJr ) = H 2 (T, LJr ) .

E~ = Ei' = H1(B, Oa) (9 H1(T, Gr ) .

t;;; = Eiu = 0 .

3. Nerün-Severi group für torus principal bundles

Let X -.:r B be a T -principal bundle over tbe curve B, elefined hy ~ E
H1(OB('T)) with c(~) i= 0 (i.c. )( is non-I\ähler). Let

Oe F'2 c F1 C Fo = H2 (:-\,71)

be the filtration induced by the first spectral seCl11ence (4). Then F'1. = E;;; ~
7l m is a torsion subgroup of Jl'1.(}{, 7l). Since both Fli F2 = E;; anel l'~J/ F, =
E~ are free, it follows TOl"8 ff'2(.y, Z) = F2 :;:: 7l m . vVe get thc exact seqllence:



Let
oC F2 C FI C Po = H 2 (X, CJx )

be the filtration induced by the second spectral sequence (5). Then, we get
the exact sequence:

The Neron-Severi group, denoted by IVS(X), is the kernel of the l11ap in

cohomology H2 (.X:, Z) ~ H 2(X, CJ x ), induced by the natural map Zx ~ CJx .
Since F2 ~ F2 = 0, we have F2 C N S(~X:) and

(9)

Using the exact seqllence of sIllall terms of the first spectral sequence (4) we
get

TorsNS(~X:) = im( fI 2
( B, Z) .:+ H 2(X, Z)) .

By functoriality of the spectral sequences we get the following COllllllutative
cliagram

where the first line is the exact seC(uence (7) and the seconcl lille is the ex­
act sequence (8). Since iVS(."'-\)/TorsIVS(X) ~ ker(i), we obtain the exact
sequence:

(10) 0 ---t ker('i') ---t iVS(.'\)/Tor8IV5'(."'-\) ---t kel'(i") ~ cok:e-r(i').

Lemnla liVe have ker( i') ~ H ont(.JB, T V
), where JB is the Jacobian vnriety

of the cun}(~ B J T V is fhe dual I,orus of fhe tOTUS T anrl If orn(.JB, T V
) 1:8 t.he

grau]} of honwmo7]Jhis'11ts 0/ g'J'oup lJurieties.

PFaof: By [8], Chap.I, 2, we have thc exact sequence

() -t 1\v ---t VV
---t T V ---t 0 ,
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where

Taking loeal seetions of these eonstant sheaves one gets an exaet sequenee of
sheaves on B

(11)

with the induced exaet eohomology sequence:

(12)0 --+ HO(B, AV) --+ HO(B, Oa) &; VV
--+ HO(OB(T V

)) --+ H1(B, AV) Ä

Ä H 1(B, Oa) 0 V
V

--+ H1(OB(T V
)) ~ H 2(B, AV) --+ o.

But
H1(B, AV) = H1(B, Z) &; H1(T, Z),

H1(B, OB) ® V
V

= H1(B, OB) (9 H1(T, Oy)

and j = i' by naturality. It follows

ker(i') = ker(H 1(B, AV
) -4 H 1(B, OB) 0 V

v
) ~

~ 'i'rn(HO(Oa(TV
)) --+ H 1(B, AV)) ~

~ coker(HO(B,OB) (9 V
V

--+ HO(OB(T V
))).

But HO(OB{T V
)) is the group of global holoillorphie maps B --+ T V and

is the subgroup of constant Inaps B --+ T V
, which ean be iclentified with the

points of T V (or, wit.h t.he t.ranslations of T V
). Let B --+ Ja be thc canonieal

holomorphie IllC\.P (det.ermined up to a translation of .JB). Given any hololIlor­
phie luap B --+ T V tllen, if we choose t.he proper origin on T V

, the holOlllorphic
I11ap B --+_Tv is the coolposition of the eanonical Illap B --+ .JBand au 1101110­

1l10rphislll froIn .Ja to T V (thc universal property of the Jacobian). It follows
the isolnorphislll

Lemma 2 lVe luwe

w/tere c(~) = lilA" E 1\.

s



Proo/: Fronl the previous diagram we get

h:eT(i") = {cdL) E NS(T) Id2 (cdL)) = O}.

Let {eI, ... , e2n} be a basis of the lattice A and let {eI, ... , e2n } be the dual basis
in the lattice AY. Any element E = cdL) E ßlS(T) can be written in the fonl1

(see [8], Chap. I, 2). By direct computation we obtain

d2 (cI(L)) = I::i<i lliidz(ei A ei ) = Ei<i lLii(o(ei)ei - o(d)ei ) =

= '/n~i<i (Lii (ei (..\U)ei - e-i (..\O)ei
) = mCI (L)( A0),

where we lnade the natural identifications

Bil(A x A,Z) = H01nz(A 0 A,Z) = Homz(A,A Y
).

The assertion follows. 0

For any line bundle L E Pic(T) we have the homomorphislll

(13) r.pL : T ---+ PicO(T) = T Y
, r.pL(X) = isom.class 0/ T;L 0 L-1,

where T:r; : T ---+ T is the translation with x E T (see [8]). The T-principal
bundle X ~ B being fixed, we can associate to any line bundle L E Pic(T)
an element in H1(OB(T Y

)) in the following way: Für the Cech l-cocycle (~ii)

defining üur T-principal bundle, ~ij : Ui n Ui ---+ T, we put

'flt := 'PL 0 ~ii : Ui n Ui ---+ T Y
•

Then (71t) is a Cech l-cocycle (r.pL is a hOIllorllorphism) and defines a eoho­
lnology dass in ffl(OB(T V

)), denoted by <PL(~).

Definition Let E. E !f 1(0B( T)) be fixed. For any L E Pic(T) the T V -prillcipal
bundle described by <PL(E.) will be called the associated T V -burulle to L.

Lemma 3 Let L E Pic(T) be (l line bundle. Then, the obstruction to extend
L to (l linc bundle on thc total spuce 0/ tlze fixerl T -principal bundle X ~ B is
the flssociated T V -bundle f,o L,. <PL(~).

Proo/: Let .ci be a. line hllndle on Ui x T such that for each point x E [Ji: we
have

(14)



Then, for each point x E Ui ,

Mx = (LilxxT) (SI L-1

is a line bundle of elegree zero on T, hence determines a point of PicO(T) = T V
•

In this way, the line bundle Li defines a holamorphie mapping

such that the line bundle

(15)

is isomorphie to Li, where Pi : Vi x T --+ T is the natural projeetion to the
seeond faetor anel P is the Poincare bundle of T V (which is CL line bundle Oll

T V x T). Conversely, if a holomorphic 11lapping <Pi : Ui --+ T V is given, then (15)
defines a line buudle Li on Vi x T with the property (14). Patching tagether
Li 's to obtain a fine bundle on ~)(, we need to have isomorphisIllS

(16) T~·.. LJ·lu·'xT ~ Lilu·'xT
"'J 'J 'J

for aU Vij = Vi nVi =f 0, where Teij is an automorphisIll of [Jij x T indueed by
the translation of T by ~ij (x) for eaeh x E Vij .

Since we may assuille that Li has the fornl (15), the iSOl110rphisill (1 G) can be
rewritten as

Note that for any line bundle A'! of degree zero on T, we have an isoillOrphisl11
T: Al ~ 1\1 for any translation Ta of the torus T.
On the other hanel, for eaeh x E Vij , the line bundle

deRnes an elell1ent of TV and we have a hololl1orphic mapping of (Jij to T V
.

This holOIl1ol'phic luapping is Ilothing hut

Theu, the exist.ence of an iSOl110l'pbism (17) is equivalent to the equalit,Y

( I S) I.. +"/ij t.pj = 'Pi 1

as the equality in HU(Uij , OU;j(TV
)).

If there exists CL line bundle L Oll )( such that for a point y E B, L1".-1 (11) IS

iSOlllOl'plIic to L, tllen

10



satisfy (14) and (16). Therefore, the equality holds for (i, j) with Uij i= 0.
Hence, the coeyde <PL(E) is zero in H1(B, CJB(TV

)). Conversely, if epL(E) is
zero in H1(B,LJB(TV

)), by ehossing a suitable open eovering {Ui } of B, we
may assluue that the equality (18) holels. Define a line bundle .ci on Ui x T by

Li = pi L 0 ('Pi x idTr(p)·

By (18) we have an isomorphism

Note that gij is uniquely eletermined up to the multiplieation of an element of
HO( Uij, CJir.. ). For i < j choose an isomorphislTI gij anel fix it. Put

'} .

9ji
-I <j= 9ij , I

9ii id.

9ijk = gki 0 9ij 0 gjk·

Since there is Cl. canonical iSOlllorphism of Aut( L!7r-1 (U)) to HO( 7r-
1(U), 0;-1 (U))

= HO( U, 0i;), the autOlllorphism gijk of Lk IU;jk xT eletermines and elenlent
a(gijd E HO( Uijk , CJÜ;jk)' Note that we have equalities:

a(gik 0 gijk 0 9kf)

a(Dijk 0 girnk)

= a(gijk) on Uijkl

a(gijk )a(gernk) on Vijklm .

By using these equalities, it is easy to show that {a(gijk)} is a two-cocycle with
values in OB' Since we have H 2

( B, OB) = 0, if necessarily, by choosing a finer
open covering of B anel ehallging the iSOlIlorphislll .rJij by the llluitiplication of
a. nowhere vanishing function, we lllay aSSUllle that

This meaus that 9ijk = 'ltl a.nel we can patch together the line bundles Li by
the isoillOrphisITl gij to obtain a line bundle [. on .J(. \Ve mayaiso asslUlle
that for a point :c E Vi we have !.pi ( x) = O. Then, we have an iSOITIOl'phiSlll
L 111"-1 (xl ~ L. This proves the leIllIua. 0

Lenlma 4 The h011l011l017Jhis17l ß : I.: e." ( i") --+ cuke.,,( i') is giVCH by t.h~ {;()1'1'(;­

8JJonde"c~ CI ( L) t-----+ <P L (~).

11



Proof: Let L E Pic(T) be a lille bundle. By Appel-Humbert Theorem (see
[8]. Chap.I, 2) one has L = L(H, 0'), where H is a hermitian form on V with
E(A x A) c Z (E = hnH) and a : A -+ U(I) is a map with

a(AI + A2) = ei 'lfE(.\I •.\2)a(Ada(A2)' Ai E A.

Let us denote by Jl the canonical projeetion V -+ T. By [8], Chap. II, 9, iC
a E V with p(a) = x E T, we have

'PL(H,a)(X) = isom.class 0/ L(O,1'a),

where ra : A --7 U (1) is the Inap

(19)

From the exact sequence (12) we get

By the previous lemmas it remains to show that the condition cl(L)("\U) = °
implies the condition C

V (11) = 0, where 11 = ~L(e). For any z E Ui n Vj we
chaose aij(z) E V such that p(aij(z)) = eij(Z) E T.Then

where 1'a ij(':) is given by the fornulla (19) for cd L) = E.
Since (~ij) is a cocycle we have Ujd z) - (lik( z) + aij( z) E A. ["lore preeisely, we
have

cls(ajdz) - (lid.:) + ai;{z)) = HIA
o = r;(~) E A = H 2(B, A).

Let us denote by pV the callonieal projection VV -+ T V and recall that

-v
V = H O'fnC-(wtilin. (V, C).

If l E \Iv "then pV (I) = L(O, a/), whel'e 0'/ : 1\ -+ (j (1) is the Inap

(see [8], Chap.II. 9). In order to define r;ve'l) in Cech COh0l110logy we call
~v

chaase Lij ;:; E V such t.hat

Then, the characteristic dass cV ("l) is gi yen by the 2-cocycle (Pi.ik;.:), where

v '2( v
Pijk;:; = ljk;.: -lik ;.: + lij;.: E A = [1 B, A ).

12



Hut, for all .\ E A, we have

Since a linear form l E V
V

is uniquely determined by its imaginary part, we
get CV(TJ) = 0 in H2(B, AV) .0

vVe have proved the following result:

Theorem 5 Let X ~ B be a T -principal bundle ouer the curve B, defined
by a coho7nology dass eE H l (CJB(T)) mith c(e) =1= 0 (i. e. X is non-J(ähler).
Then we have an exaet seqllence 0/ /ree abelian gr071pS

o-t Hom(JB , T V
) -t NS(X)/TorslVS(X) -t Fl(X) -t 0 ,

where N(.Y) is the SUbg7'OUP 0/ the lVeron-Severi group 0/ the torus T defined
by

i/(x) = {cl(L) E NS(T) I<PL(e) is the trivial torus bu,ndle }. 0

Remark. In the case T is an elliptic curve we have i/(X) = 0 (see [3]).

Remark. Clearly, a siInilar result holds in the case of a Kähler torus principal
bundle for the group lV8(.}{)/,rr· N 8(B) (see also the last section).

Example. Let T be a two-eliInensional complex torus with period matrix 0,
where

nt = (1 0 Tl a)
o 1 0 T2

wi th [,nTj > 0 , j = 1, 2. If t.he complex numbers TI, T2, aare algebraically
independent over the rational numbers Q then, it is well-known that T is not
algebraic, that is, T is not an abelian variety. Let Ej be an elliptic curve with
period Inatrix (1, Tj), j = 1,2. Then, there exists a holomorphic Inapping

such that rr is an El-principal bundle over E2 .

The lattice 1\ of T is generated by vectors (1,0), (0, 1), (T1 1 0), (a, TZ)' Put >.0 =
(Tl, 0). CllOose Cl point h of Cl curve B allel Inake a logari tillnic tranSfOl'IllatioIl
to obtain a T-principal bundle

where m is an arbitrary positive integer. Then; we have c(X) = 'rnAu alld )(
is nOll-Kältler.
Since the second coordinate of AO is zero, there exists a holomorphic rnapping



Then, any line bundle L on T, which is the pull-back of a line bundle L'}. on
Ez by rr, can be extended holomorphically to the one on X, since L'}. can be
extended to a line bundle on B x E2 • Hence, for our T-principal bundle X, we
have N(X) i- O.
Similarly, we can also coustruct a T-principal bundle over B with j\/()() -=J. 0
from aperiod matrix n

where (Im, Tm)t and (In, Tn)t are period matrix of tori and ais an 711, X n matrix.

4. A filtration on Pic(X)

In this section we reinterpret the results in the previous section geOInetrically.
We use freely the notation in the previous section. Let rr : )( -+ B be a
T-principal bundle as in the previous section. Choose a general point bEB
anel fix it. [n the following we identify the torus T with the fiber rr-1(b).
Restricting a line bundle [, on ).: to the fiber rr- 1(b), we have a natural grotlp
homomorphisITI

(20) Pic(X) -.:, Pic(rr-1(b)) = Pic(T)

Then keT .,. consists of isonlorphism classes of line bundles whose restrietion
to the fibre rr- 1(b) is trivial, hence the restriction to each fiber of 1r is a line
bundle of degree 0 on the torus nnder identification of the torus with each
fiber.

Let {Vi} be an open covering of B with trivialization

(21)

For each line bundle L belonging to ker r there exists a holoillorphic tnapping

with
L:!7f- l (Uj) :::: (t.pj x idTr(p),

where P is thc Poillcare bundle Oll P·icU(T) x T. Sinee any line bunelle of
degree 0 Oll tlte torus is inva.ria.nt: by thc translations, on Uj n U~~ =j:. 0 we hav(~

Beuee, the line blludle L def1nes a holOlTIOrphic mapping

(22)



Since the restriction .c11l"-1 (b) is trivial, the holomorphic mapping (22 ) satisfies

(23) tp(b) = [0].

The Une bundle C and the holomorphic mapping tp are related by

where 1\1 is a Ene bunelle on the curve B anel so*(P) is the line bundle on X
whose restriction to 7r- 1(Vj ) is ('Pi X idT t(P). Note that by the argument of
the proof of Lemma 3 we can patch together ('Pi x idT )*(P)'s to get cp*(P), since
the line bundle of elegree 0 on a torus is invariant under the translations. Also
note that there is a one to one correspondence between the set of holomorphic
mappings (22 ) with property (23 ) and Hom(JB,TV

).

Let HS consider a group homomorphism

(24) R : Pic(.':<) ~ Pic(T) -4 H 2 (T, Z).

The hOlllOlllorphislll R is essentially equivalent to a natural homomorphism

Pic(X)-+Pic(T)j PicO(T)

induced by the hOITIOmOrphism 'r. A line bundle .c belonging to ker R is the
one whose restrietion to each fiber of 7T" is of degree O. Note that by the proof
of Lemllla 3 each line bundle L E PicO(T) can be extended to a line bundle L
on )( in such a way that its restrietion to each fiber is iSOlllorphic to L. Hence,
there is an isolllorphislll

(25) ke1" Hf ~:eT 1" ~ PicU(T).

Define subgl'oups Pi of P'ic()';) by

(26) PI. = 7T"* Pic( B), Pt = ker T, Po = Pic( )().

Then, {P.} defines an decreasing filtration of Pic{X). By the above considera­
tion anel the ill'gulnents of the pl'eViOllS section we have the following theorenl.

Theorem 6 IVe hrwe the Jollowi71g isomorphisms.

(27)

(28)

f-{ mn( JB l PicU(T))

,..... {L E Pic(T) I <PL(~) = 0 }

where ~ E lf 1(B, 0 B(T)) i.5 the r:oho1rw/ogy dass correspol1rling /.0 the T­
principa/ bunrl/e 7T" : 4-\ --7 B und <PL(~) = 0 is rlefinerl in ~jS.o

1.5



Remark. Taking the ehern classes, \\'e have

(29)

5. Neron-Severi group for torus quasi bundles

Let T = VIA be an n-diInensional torus. By aquasi T-bundle 1f ; ){ --+ B over.
a curve B we mean that 1f is a T-principal bundle over B \ {b1l b21 ••• ,bt } and
that the fiber 1f-l(bj ) over the point bj is of the form mjTj where 'mj 2: 2 and
Tj is a torus. The fiber H!jTj is called a multiple fiber of the multiplicity lnj.

Ta construct such aquasi T-bundle we first generalize the notion of logarithnlic
transformation.

Choose points b1l b2 •.• 1 bk on Band put B' = B - {bI, b2l •.. ,bk}' For
each point bi fix a positive integer l1!i. "'vVe let ai be an elelnent of ~; A such
that the order of the point {ai] of the torus T corresponding to (Li is precisely
'mi. Let

be a coordinate neighbourhood of the point bi and put

By the rnapping

(30)

D i is an l11.i-sheeted ramified covering of D i • A holonl0rphic mapping 9i

~ x T --+ ~ x T defined by

is an analytic autOITIorphisnl of order n!i and gellerates the cyclic group Gi =
(gi) of order 'r7!i w here

e lllj = exp(2rrJ=Tlrnd·

Since the autOlllorphisrll 9i has no fixed points: the quotient Di x T le/i IS a
cOlllplex lnanifold. Let

(:32 )

be the cauollical quot.ient lllapping. By [Sil [(]] we deuote the point of the
quotient Illanifold D .. x TI Gi corresponding to a point (.:-;11 (C]) of D i x T. \V~

have a holOlllorphic lllapping

iri Di X T IG1 --+ Di

[Si: [(]] f-t .si" i .
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Over the punetured disk Di the holoITIOrphie mapping /Ti gives a T-prineipal
bundle, and over the origin 0 the equation

tri = 0

defines a divisor of a form miTj where Ti =T/([aiJ) is a torus obtained as the
quotient by a finite subgroup generated by the point [ad.

The ITIapping

(33)

is a well-defined holomorphic mapping and isomorphie. Therefore, we can
patch together Di x T/Gi , i = 1,2, ... ,k and B' x T by the isomorphisms ia;
to obtain a compact complex manifold X which is denoteel by

(34)

and is called the Illanifold obtained from B x T by means of logarithmic trans­
formations. There is a natural holomorphic mapping tr : X --+ B given by 1rj

on D i x T /G i aud the projection to the first faetor on B' x T. The fiber space
tr : X --+ B is a T -principal bundle over B' alld has multiple fibres with Inulti­
plicity mj, if nli 2: 2. In the Appendix we shall show that a11 quasi T-bundle
are obtained in this ITIanner.

In the following let us consider aquasi T-bundle 1r : ){ --+ B of the fornl
(34 ) anel we asStnne that

,ni 2: 2, -i = L, 2, ... ,e, ml+l = ... = mk = 1.

Let us consider geoITIetrica11y lille bundles on X. Choose a general point b
allel consider a natural restrictioB honlomorphisnl

(:35 ) r : Pic()() --+ Pic(1f- 1(b)) = Pic(T)

Let w; first consider the structure of ker 7". Note that for the ITIultiple fiber
r/liTi the line bundle [Td a,.c;;sociated with the divisor Ti of )( is an eleinent of
ker ,. and (Ti ]0m

; = ['mjTd is the pull-baek of the line bundle [bi] on the curve
B.

Let P'l be Cl subgrollp of Pic(~~) generated by 1r* Pic( B) anel [Ti], i =
1: 2: ... : f.. A line hundle L belonging to P'l is charaeterized by the fact that
the restrictioll of L to eaeh fi bel' 1r -I (c), c E B' is the tri vialline bundle.

Ta a line bundle L E ke.,. 1", by the sa1l}e argurnent as in §4, we can associate
a holOIllorphic Inapping

L7



The pull-back Ili (L: 1'11"-1 (Dd) defines also a holomorphic mapping

,pi : Di ~ PicO(T),

where Jli : DX T ~ rr-1(Da) = Di X T/Gi is a natural quotient mapping(32 ).
Then, on Di we have

-. '\<Pi = <P 0 Ai,

where '\i : D i ~ Di is defined in (30). This implies that the holoIllorphic
Inapping <p' ean be extendecl to a holomorphie mapping

(36)

As L: 1'11"-1 (b) is a trivial bundle" we have

(37) r.p(b) = {al.

Note that the set of holomorphic mappings (36 ) with property (:37 ) are
canonieally isomorphie to Hom(JB, PicO(.X:)). If 12 and )\11 in ker r give the
same holoIl1orphic Inapping (36 ), then the restriction of the Ene bundle 12 0
M- 1 to eaeh fiber rr- 1(c), c E B' is the trivial bundle, heuce is an elenlent of
P2 •

Lemma 7 The7'e e:r;ists a natural gr01lIJ iso'morphism

(38)

Proo/: To each line bundle .c E ke'1' l' we can assoeiate a holonlorphic Illapping
(36) with property (37). This defines an eleInentof Hanl.(.JB,P'lCU(T)). If
the mapping cp gives the zero elelnent of HO'm( JB, PicO(T)), r.p is the zero IlHlp.

Hence, the restriction of L: to each fiber rr- 1(c), c E B' is the trivial bundle.
Hence, L belongs t.o P2. This shows the injectivity.

Conversely, let r..p : B ~ T V be a non-constant holonlol'phic Inapping with
r.p( b) = [0]. Then, Oll )';' = rr- I (B') we can construct a line bundle .c' such
that .c' 1'11"-; (c) is Cl. line bundle of degree zero corresponding to the point <p( c)

for each c E B'. For Di , 'l = 1,2 ... , k, put

'Pi = rp 0 Ai.

Then, 'Pi defines a lille hundle Ei s11ch that Ei ISixT corresponds to 'Pi('~d, As
the line bundle Ei is inVariant under the group Gi 1 it defines a. line bundle Li
on Vi x T / G'j. By OUf cOIlst.ruction, .ci 1'11"-1 (On and .c' 111"-1 (On are iSOIllOl'phic.
Henee, .c;'s aud L' define Cl lille bundle .c on )( which corresponds t.o t.he
Inapping tp. This shows the sllrj~ctivityof tohe Il1apping j. 0

Next let 115 consider the inlage of the hOlnonlorphislll r.

18



Lemma 8 Jj a line bundle L oj T can be extended to a line bundle .t:. on X J

then L is invariant by the translations T[u;JJ i = 1,2, ... ,P.

Proot The puH-back Ci ;= ILi(.t:.I'II";l(Dj)) is invariant by the action of the

group Gil where ILi : Di X T -t Di X T/G i = 7r-
1(Di ) is the natural quotient

mapping(32). In particular, the restriction liloxr is invariant by the group,
generated by the translation T[uj]' Since liloxr has a form L C9 Iv! with degree
zero line bundle Iv! on T and M is invariant by aH the translations, the line
bundle L is invariant by the translation T[u;j.o

Let H be a subgroup of the torus T generated by rad, [U2],' .. ,[at). The
group H is iSOluorphic to Ao/ A where Au is the lattice generated by A anel a/s.
To any H-invariant line bllndle L on the torus T, we associate a cohOIuology
dass {1Jb} in H1(B, LJB(TV

)) as follows.
Let {Vj } be an open covering of the curve B such that Vi = Di for i =

1,2, ... ,P and that bi t/:. Vi n Vj for i =I j. Since the line bundle L is invariant
by the translation T[u;b though [2'11"A log ti] is multivalued

(39) ~[~Io t'l L 0 L-
1

2>ry-1 g I

is a well-defined line bundle on 7r-
1(Vi n Vj ) for i = 1,2, ... 1 eand j =J. i. Thell

there exists a holOlllorphic Inapping !.pij from Vij = Vi n Vj to T V such that
the line bundle (39 ) is the pull-back (fPij X idr)'"'(P) of the Poincare bundle.
Put

(40) , L ._ {tpi j if 1 ::; i ::; f, P< j
'1ij'- 0 iff.<i,j .

Then, it is easy to show that {11t} is a one cocycle and defines a cohonlology
clClliS [{'1G}] E H1(B, OB(TV

)).

Lemma 9 A Tl H -irwan:wlf liHt uundle L on the torus T = 7r-
1 (b) ean ue

exlended to the O1W on ); if arul only if the cohonwlogy dass ({f7h} 1 is zen).

Proof: Assurne that there exists a line bundle .t:. on X v't"hich is an extension
of L. Then: the R,.ull-back fLi'(.L:ln--1(u;)) of the restriction of L on 7r-

1(Ud,
/~ = 1,2, ... ,f, to Di X T can be expressed as

(41)

where <Pi Di ----t T V is a. holoillorphic lnapping. Since the line bundle
Iti(.L:I1r-I(U;)) is invariant IInder the group C;j, we have
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Hence, there exists Cl holomorphic mapping <Pi : Vi -r T V with

(42)

Since .c is aglobai line bundle, on Vii =1= 0 we have

(43) T[:lr):-rlogt;jL 0 (<pi X idTr(p) = L 0 (<Pi x idTr(p)·

This implies that we have

(44) L
Tlii = 'Pi - <Pi·

Hence, the cohomology dass is zero.
Conversely assun1e that the cohomology dass is zero, hence we have holo­

morphic mappings 'Pi : Vi -r T V which satisfy (44 ). For i = 1,2, ... ,I! define
<Pi by (42 ). Then the line bundle Ei = L 0 (<Pi X idTt(P) is invariant by the
action of the group Gi, hence defines Cl line bundle .ci on 7f-

1(Vt}. For J > f
put .ci = L 0 (c.pi x idTt(P). Since we have the equality (43 ), we can patch
together these line bundles and obtain a line bundle .c which is an extension
of L. 0

Now as in ~4 we introduce a decreasing filtration {p.} of Pic( )() by

(45) P2 = the subgroup generated by 'JT" Pic( B) and [Ti] 's,

(46) PI = keT '1', Po = Pic(X),

where n~jTi,i = 1,2, ... ,I! are all the multiple fibers of the quasi T-bundle
'JT : ){ ~ B. By the above arguDlents we have the following theorenl.

Theorem 10 lVF. have Ihe. following isomol'phisms.

(47)

(48)

Pli P2 '" IfO'ln(JB , PicU(T))

PU/PI '" {L E Pic(T)H I [{'7t}] = 0 }.o

Let us reinterpret t.he grOl1p { L E Pic(T)H I [{'7t}] = 0 } by 111eans of a t.orus
principal bundle associated with the quasi T -bundle 'JT : X: -r B.

Let Ao' be a lattice in the vectol' space V genel'ated by A ancl (/.j, -i =
1~ 2, . . . ~ f ancl pu t

(49 )

Then~ we have

1'0 = V/Au.

'To=T/H~

whel'e H is a subgroup of the t.Ol'US T genel'ated by [al], [a~], ... [ud. There is
a canonical surjective hOr1l0l1101'phiSI11

(.50) h : T --t Tu

of cOll1plex tori. The followillg lelllll1a is well-kIluwn allel easy Ln prove.
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Lemma 11 A Une bundle L on the torus T is invariant by the translations

T[a,lJ i = 1,2, ... ,f, if and only if there exists a line bundle Lo on To with

Put

(51) ,

with structure morphism tro : Y ~ B, which is a To-principal bundle.

Lemma 12 The1'e exists a holoTllorphic mapping

f:);~Y

such that the following diagram is commutative.

){ -4 Y

B = B

Moreove'r, f is unral1üfied outside the 11l71ltiple fibe1's.

Proof: There is a natural ullranlified holomorphic ITIapping

ff : B' x 'I -r B f x Ta.

We need to show that f' can be extended to a hololTIorphic mapping f of ):.
to Y. On Di x T/Gi let us define Ci. holomorphic mapping ji by

fi : Di X T/G i --+ Di X Ta

[Si, (Cl] 1-7 (s;ni, h([(])).

vVe need to show that these hololllorphic mappings are compatible to jf. By
our definition of the logarit.hnlic t.ransfornlation we have the following C01111l1U­

tative diagranl.

f' t

D~ x T
I

(s~ni, [( - 2;~ log sd)

D; x Tu -;..

21
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Here, [(la means the point of the t.orus Ta corresponding to C. The commuta­
tivity of the above diagram shows that the mappings f' and fi 's are cOlnpatible
and define a holomorphic mapping f : )( -+ Y over B. 0

Lemma 13 The quasi T -bundle X is [{äh/er if and on/y if Y is l(äh/er. Th(;

condition is equivCLlent 10 the equu/ity

(52)
k

Lai =0
i=l

Proof: Assurne that the equality (52 ) holels, hence, Y is Kähler. Let. w be a
Kähler form of Y. Note that f : X --+ Y is an abelian covering ramified along
the support of Ti of the multiple fibers. Hence, the pull-back f*w is positive
definite on )( \ Uf:::l Ti anel at each point of TJ....it is positive senli-definite. Neal'
the multiple fiber .,niTi, ."',( is isonlorphic to Dj x T IGi. As a (l,l)-fonn

~1 iJß(t 1(.12 + ISiI2
)

v=l

is C;i-invariant, it defines a Kähler farnIon Di x T IGi. Let Pi be a non-negative
COO-function in l$d2 satisfying

Then, a fonll

is posi ti ve definite on rr- 1(D i ( c2
/

m )3) anel Wi == 0 on rr- l (D i (2f.2
/

mi /3), where
we put Di(r) = { $i 118;1 < 1'}. Hence, we Illay regarel Wi cu; aglobai (1,1)­
form on .\'. Sincc, f*w is positive definite Oll X \ U1=1 Ti: allel Wi is positive
definite iIi a neighbourhood of Ti anel zero outside a cert.ain neighbourhood of
Ti: the form

t

af"w + LWi
i=l

is positi ve defini te Oll );, if we choose a sufficientl,Y large. Eence,){ is Kähler.
Conversely: a.sSllll1e that ){ is Kähler. Pllt

d = 'In} . m'2 ... m·t, rHu = LC i\tl {m'll 111'1, ... ,IHr}.

'vVe can always find a d-fold aLelian coverillg a : jj -t B of the curve B
branched at 1>1, V'll ... 1 bt nud a point UD E B \ {Vll U2l' .. lOe} such that a has
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(53)

li/mi ramification points {b~m)}, 'In = 1,2, ... ,d/mi, i = 0,1,2, ... ,e. Over
the points bj , P. < j:::; k, ais unramified. Put a-1(b j ) = {b;1),b;2), ... ,b~,d)}.

Then, the norm_alization X' of )( X B B has a natural strueture of a principal
T-bundle over Band it is isomorphie to

k dlm;

TI TI Lb(ml(miai,l)(B X T)
i==l m==l '

The natural holomorphic mapping Ö' : X ---t X is only branehed over 1r-
1(bo).

By the similar ar~lInent as above we ean show that X is Kähler if X is Kähler.
Then, by (52 ), X is Kähler if and only if

k dirn;

L L 'mjaj = O.
j==l m==l

The equality ean be rewritten a..<.;

k d k

L -mj(lj = ((LJ (Lj = 0.
i==l 'mi j;;}

Hence, the equality (52 ) holds and Y is also Kähler. This proves the lenlma.
o

Lemma 14 The subgro7lp rr- H2(B, Z) of H2 (X, Z) lS Cl finite group if unti
only 11

Proof: Since the holomorphie lnapping f : X ---t Y is finite, /T- H2(B, Z) is
finite if and only ifthe subgroup /T~H2(B,Z) in H2 (Y,71) is finite. The latter
group is finite if anel only if Y is non-Kähler. On the other hand, Y is nOll­
Kähler if anel only if

k

Laj =I 0.
i==l

This proves the lenuua. 0

Put

(.54)

(.55)

lV()() = {L E Pic(T)H I [{'1]t}] = 0 }

lV(Y) = {Lu E Pic(Tu) I tPLo(~O) = 0 }

where ~u E H1(B:OB(Tu)) is the cohonlology dass corresponding to the Tu­

prineipal bundle 7T"o : Y ---t B. Taking the dual of the hOnl01110rphisITI h : T ---t
To (.50 ) we have aB exact sequellce

(56)



(58)

where HV is a finite abelian group. Sheafifying the exact sequence (56 ) and

taking the cohomology, we obtain the following exact sequence.

(57) 0 --+ H 1(B, OB(To
V

)) ~ H 1(B, OB(TV
)) --+ H 1(B, H V

) --+ .

Lemma 15 Fot' a fine bund/e Lo on the tOTUS 1'0 put L = h'" Lo. Theu 'Wt:

have
hv ( 'PL o(~o)) = [{775}].

Proo/: vVe use the same open covering {Uj } of the curve B defined above.
Then, the cohomology dass ~o is given by a cocycle

{
2

7=il log tj if 1 ::; i ::; C, f < j
Cij:= 0""

if e< 'i,j.

Hence epLo(~O)) is given by a. cocycle

( ~ .= {4>ij if 1 ::; i ::; e, e< j
I) • 0 if e< i, j

where <Pij is given by

Tt
2lf

Älogt;JLo 0 Löl
= (c/>ij x idT )'" (Po).

Here Po is the Poincan~ bundle on PicO(To) x 1'0. Then it is easy to show that.
we have

I, v ( A. .. ) - 1,"'"
~ '+'1) - r I) •

This is the desired result. 0

Lemma 16
h'" ( iV(Y)) = lV(); ).

Praof: For a line bundle Lo E iV(Y) we let .co be a line bundle on Y which is
an extension of Lo. Then, f'" Ln is CL line bunelle on X which is an extension of
the line bundle h'" Ln, where f : ); -+ Y is the hololl1orphic lnapping in Lemrna
12. Hence_, we have h·(i\T(Y)) c i\'(X).

Conversely, take a line bunelle L E lV(.Y) auel chaose a line buudle Lu on
To with h'" Lu = L. By the above Lell1l11a 1.5 anel the eXCLct sequence (.57 ),
tPLo(~O) = O. Hence~ Lo E i\T(Y). This shows lV(X) c h·(iV(Y)). <)

By t.he above argtlIl1ent (lud t.he arguments in the previous sections we have

the following exact seql1ences.

(.59) 0 -t H ufn( JB, T V
) -t Pic( X) / P2 -;.. lV( )() --+ 0

(60) () -+ Hum(JBl Tt':) -t Pic(Y)/7f(~Pic(B)-+ iV(Y) -+ O.

Taking the ehern c1a..':ises of the lille bllndles~ finally we obtain thc following
theorern.
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Theorem 17 There exists an exact sequence

(61)

where F2 is a subgroup 0/ H2 (}{,'ll) generated by cl([Td), i = 1,2, ... ,e, anti

(62) N()() = { cI(L) [ L E Pic(X)H, [{1]t}] = 0 }.

The subgroup F2 is finite if and only if X is non-J{ähler. Jl1oreOve1', 'We hatJe

where

Proof: To each hOITIOmorphisln

we can associate a line bundle L on )( such that for each point C E B' the
restriction 'c[1I'_1 (c) corresponds to tp(c). Let us consider the first ehern class
Cl('c) of L. Note that we have an exact sequence

and fronl this exact sequence we have t.he exact sequence

The elenlent tp E Hom(JB1 OB(TV
)) gives an elelnent 'P E HU(B, OB(TY

)) with
ip(b) = [0]. Then the image of c(ep) E H1(B, RI.rr.'ll) to H2 ()(,'ll)/rr* H2 (B, Z)
is Cl (L) fiod rr* H 2(B, Z). Since we have an isomorphism

HO( B , OB (TV
)) /InlHU

( B, RI?T.Ox) :::: I!on/,( JB1 T V
),

by the exact sequence (G3 ) we have an inclusian

Ta show that t.he na.tural lllappiug

is injective, we need to consider the spectral sequence
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By the dimension reason, we have

E~2 = E~,2 = ker {HO(B, R2rr",Z) -+ H2 (B, Rlrr",Z)}

E~l _ E~,l = Hl(B, Rlrr",Z)

E;o = E;'o = coker {HO(B, Rlrr.Z) -+ H2 (B, Z)}.

The ~pectral sequence clefines the filtration {F.} on the cohomology grou}) ,
H 2 (X, Z) such that there are canonical isomorphisms

(64)

(65)

(66)

E2 ,O I"V F2 ,
00

EI,l I"V F1/F2 ,00

EU,2 I"V Fo/ Fl .00

It is easy to see that F2 = rr'" H 2(B, Z), hence by the above isolllorphislll (65 )
the natural mapping

is injective. Therefore, the natural Inapping

is also injective. The rest of the statenlents follow [rom the above arglunents.
This proves the theorem. 0

Re7nark. By the silnilar arguInents as in [5, Chap. TI, LeInma 1.6 anel
Lemma 7.3], the structure of the first homology gl'OUP ff t (X, Z) is given by

k

H1(X, Z) ~ Zal EB ... EB Zag EB Zßl EB ... EB Zßg ffi (Ao/CL ad),
i=l

where Au is the latt.ice in the vector space V generat.eel by A anel a/s auel

By virtue of Leillilla l:l , H 1 (~\', Z) lias torsion if and onl.1' if ).; is non-Ieihler.
Nloreover, if ){ is non-Kähler, there is a llon-canonical isorllorphislll

k

Tur H'2(.\, Z) ~ Tur Ao/(L: ([,).
i=l

Tltus, iIl this case, since Rl rr",Z allel fl.2 rr",Z are constant sheaves of fini te free
Z-nloelules, by tlle iSOlllOrphis111S (G4 ), (65 ) anel (G6 ), we cOllcillele that
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Appendix

In this appendix we shall show that all quasi T-bundle over a curve Bare
obtained from the product B X T by means of logarithmic transfornlations. Let
7T" : X -t B be aquasi T-bundle over the curve B. \Ve let mIT}, m2T2, . .. , 'mtT,
be all the multiple fibers of 7T". Put

bi = 7T" ( T j ), i = 1, 21 • •• , e.

Choose Cl. coordinate neighbourhood Di of bi and a local coordinate ti with
center bio We Il1ay assurne

Put

Then a hOlTIOITIOrphisnl

s.. I-t .,':li
• ....1

is an mj-sheeted cyclic covering. \Ve let ."X: be the normalization of the fiber
product X IDi x Di Di with a natural holomorphic mapping

Jlj : Xi -t Xi = 7T"-l(Dd·

At a point p E 1f-l(bd we can choose local coordinates (x, Yl,' .. ,Yn) where
the holomorphic mapping 1f is expressed as

t i = 1f((:r.,Yl, ... ,Yn)) = x mi
•

Then, Xi is locally given by the normalization of

Hence, JLi is a llnrcullified covering. Also the conlplex Inanifold Xi has Cl. struc­
ture of Cl. fiber space

7ri : )(j -r D i

over Di which is smooth over Di . Since .l;i -t D j is a T -principal bundle over
the punctured disk Di 1 it is easy to show that 7rj is a T-principal bllndle, hence
ITi is iSOI110rphic to t.he prod~t Di x T with the projection to the first factor.

By our constrllction Jti : .\.j -t .':(j is an n~i-sheeted cyclic llnranlifieel cover­
ing anel the cyclic Gi of order H/'i operates on )(i. A generator !Ji of the grollp
C;j has a farnl

(67)

!Ji : Di X T -t Di X T

( '~i, ((]) H (em i 5 i 1 [( + (Li])
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where [ai] is a point of the torus T of order mi. Then, the quotient manifold
Di X T IG i is isomorphie to Xi = 7r- 1(Dd. There is an analytie isomorphisIll

(68)

We let ){ be a cODlplex lllanifold obtained by patehing together X ­
U;:=17r- 1(bd and Di x T's by the isomorphisms f;/:

(69)
l

)( = (.\' \ Uf:=I 7r - 1(bi)) UDi x T.
i:=1

Then, the complex manifold ){ has a natural structure rr : ){ -f. B of a T­
principal bundle over the curve B.

Conversely, the quasi T -bunelle 7r : .){ -1> B is obtained [rOIll the T -pl'illcipal
bundle rr : X -1> B by means of the logarithIllie transformations:

(70)

by patehing together (){ \ Uf:=lrr-1(bi)) anel Di x T/Gi's by the isomorphisllll;

lUi'

By the remark in §1, the T-prineipal bundle 7f : )( -1> B is obtained froIll
B x T by nleans of logari thnlic transformations

Hence, by (70 ) allel (71 ) the quasi T-bunclle 7r : X -1> B is obtained [roll1
B x T by Ineans of logarithnüc tl'ansfonnations

Thus, any·C(uasi T-bundle over the curve B is obtained from B x T by Inea.llS

of logarithIllie transformations.
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