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0. Introduction

By the Neron-Severi group of a compact complex manifold X we mean the
kernel of the natural homomorphism H*(X,Z) = H*(X,Oyx). It is a subgroup
of H*(X,Z) generated by the first Chern classes of line bundles on X. In
this paper we shall study the Neron-Severi group for torus quasi bundles over
curves. Firstly, we study the case of torus principal bundles X = B over a
{complex, compact, connected, smooth) curve B, whose structure group is a
compact complex torus T = V/A. A T-principal bundle X 5 B is defined
by a cohomology class £ € H'(Og(T)), where Og(T) is the sheaf of germs of
locally holomorphic maps from B to T'. The cohomology class £ determines
a characteristic class (£} € H*(B,A). By a Theorem of Blanchard ([1]),
the total space X of such a T-principal bundle is a non-Kahler manifold if
and only if ¢(€) # 0. In the first two parts of the paper we present some
basic facts on torus principal bundles (see [7]) and we compute Leray spectral
sequences for the sheaves Zx and Ox. In the third part we define for any
line bundle L € Pic(T) an associated TV-principal bundle, described by an
element 4 (€) € HY(Og(TV)), where TV is the dual torus, and we compute
the Neron-Severi group for torus principal bundles. We state the main result
(Theorem 5):

"For a T-principal bundle X 5 B, defined by a cohomology class
¢ € H'(Op(T)),
we have an exact sequence of free groups
0— Hom(Jg,TV) = NS(X)/Fy = N(X) =0 ,

where Fy = n*NS(B) and N(X) is the subgroup of the Neron-Scveri group of
the torus T defined by

N(X) = {a(L) € NS(T) | ¢L(€) is the trivial torus bundle } |
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Jp is the Jacobian variety of the curve B and TV is the dual torus. If X is
Kahler Fy is isomorphic to NS(B) ~ Z and if X is non-Kdhler, Fy is the
torsion subgroup of NS(X) ”

In the fourth part we reinterpret the obtained results geometrically (see The-
orem 6).

Then, in the fifth part, we study the case of torus quasi bundles. By a quasi’
T-bundle 7 : X — B over a curve B we mean that 7 is a T-principal bundle
over B\ {bi, by, ..., b} and that the fibre m#='(b;) over the point b; is of the form
m;T; where m; > 2 and T is a torus (the fibre m;T; is called a multiple fibre of
the multiplicity m;). In the Appendix we show that all torus quasi bundles are
obtained from B x T by means of generalized logarithmic transformations. We
associate, canonically, a Ty- principal bundle mp : ¥ — B to a quasi T-bundle
m: X —= B and a holomorphic mapping f : X — Y, with Ty = T/H, where
H is a finite subgroup of the torus 7. Then we extend the computation of the
Neron-Severi group for torus quasi bundles (see Theorem 17).

For the case of elliptic surfaces see [3], [4].
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von Humboldt-Stiftung for support and both authors would like to express
their thanks to Professor F. Hirzebruch and Max-Planck-Institut fiir Mathe-
matik in Bonn for hospitality. This paper was prepared at the time we visited
this institution.

1. Basic facts on torus principal bundles

Let T = V/A be an n-dimensional compact complex torus, defined by a lattice
A C V in the n-dimensional complex vector space V. Canonical notation
concerning the torus 7" will be used:

To(T) = H(T,07) =V, H(T,07) = H(T,01) @V ,
HO(T, QL) = H(T,0r)Y = V¥, A = H(T,Z), H(T,Z) = A" .

If B is a compact complex manifold of dimension m, then X = B denotes
a T-principal bundle over B. Let Og(T) denote the sheaf of germs of locally
holomorphic maps from B to 7. The T-principal bundles are described by
cohomology classes € of H'(B,Og(T)) (see [6]). For a Cech l-cocycle (&;) the
function

fij UiN UJ - T
identifies (z,t) € Uy x T with (2,¢') = (2,&;(2)+t) € U; x T for all z € Uy N U;.

Taking local sections of the constant sheaves

0=2A=2VST—=0
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one gets an exact sequence of sheaves on the manifold B

(1) 05A—-00V -5 0p(T)—>0,

with the induced exact cohomology sequence

(2) | .. > HYOp(T)) - H(B,A) =» H'(B,05) @V —

— HY(Op(T)) S HY(B,A) > H*(B,0p)®V — ... .

The cohomology class € of the bundle in H}(Og(T)) determines a character-
istic class ¢(£) € H*(B,A) = H*(B,Z)® A.

Because transition functions of the T-principal bundle X 5 B act trivially
on the cohomology of fibre, we get natural identifications:

(3) RinZyxy =Zp®z H'(T,Z); R'n.0x = Op &c HY(T,Or) .
The transgression of the fibre bundle in integral cohomology is a map
§: H(T,Z) - H*B,Z).
Under the identification
HYT,Z)= Hom(A,Z) = A",

the characteristic class ¢(¢) € H*(B,Z)® A and the mapping § : H'(T,2) —
H*(B,Z) coincide (see {7], 6.1). The first possibly nontrivial d;-homomorphism

HY(B,R'n.0Ox) = H*(B,7.0Ox)
in the Leray spectral sequence of Oy is denoted by
c: HY(T,07) = H¥(B.Og) .
Recall for convenience the following result of Hofer (see [7], 7.1 and 7.2):
Proposition There is an injective map
G : Pic(B) g A = H'(OF) @z A = H'(Op(T))

compatible with taking characteristic classes, i.e. if & L@ Ag is « combination
of line bundles in Pic(B)@zA, then the characteristic class (&) of ®(L L@ Ag)
equals £ ¢ (L) @ M\ € H*(B,A).



o
Pic(B) @z A——— H'(O5(T))
¢y ®d J c

H*(B,Z)® A—— H*(B, A)

Moreover, if H*(B,C) has a Hodge decomposition, then the image of @, i.c.
the set of isomorphism classes of principal bundles constructed above, equals

im® = {Isom. classes of T — principal bundles withe =0} .

Remark. If B is a curve, then ¢ vanishes for dimension reasons.Thus, every T-
principal bundle over B comes (in an unique way) from the above construction.
The construction itself is a generalized logarithmic transformation applied to
the trivial T-principal bundle B x T (see [9]). Indeed, we can write L£; =
Og(Dy), with Dy a divisor on B; by choosing a sufficiently fine open covering
(U;) of B the transition functions of each Ly are expressed by a cocycle (flv(f)).
Now, identify (z,t;) € U; x T with (z,t;) € U; x T if and only if

Ak (k)
t; =1, z 1 i ,
J+ 271_\/__1‘ Og(flj )

for all z € U; N U; (this is exactly Hofer’s morphism ®).

Also we can construct a T-principal bundle over B by using logarithiic
transformations similar to the case of elliptic surfaces. Express the divisor Dy
as

Tk
Dy =3 m¥®
=1

Let U;k) be a coordinate neighbourhood of bgk) with local coordinate tg-k). We
may assume
k) _ 148 ()
UM ={t;7eC| |t;"| <e},
for a sufficiently small positive nuinber €. Let us consider a holomorphic map-
ping
(08 % T — U™ x T
‘m,g-k)/\

(*) CHR £ og £
(5, [Ch = (457, [(. - ﬁl%f, })

=
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Note that the mapping is an isomorphism. Hence, we can patch U}k) x T’s and
(B\ {{", ..., bg-k), ...}) X T by the isomorphisms lg-k) and obtain a T- principal
bundle over B. We denote the T-principal bundle obtained in this way by

Lb(ln(mﬁ”xl, 1)...Lb(n,r)(m5:),\,, 1)(B x T)

or by-
Lp, (A, D). Lp, (A, 1)(B x T)

Remark. By the above proposition and Blanchard's theorem ([1]) we can easily
show that a T-principal bundle
Ly, (ay,1)...Ly(a, 1)(B x T)

is Kahler if and only if Zf—=1 a; = 0.

2. Leray spectral sequences

Let X = B be a T-principal bundle over the manifold B. We consider the
Leray spectral sequences:

(4) El = HY(B, Rr.Zy) == HP*(X,Z)

(5) EP = H?(B, R'r.0x) = HP*(X,0x) .

By the results of Hofer (see [7]) the first spectral sequence (4) degenerates at
Ej-level (1.e. d. = 0 for » > 2) and the d;-differential is determined by the
map 6 : HY(T,Z) = H*(B,Z) (i.e. by ¢(£)).

Now, we suppose that B is a curve. By (3) we have:
B = E® = ker(ES* B EP) =

= ker(H%(B,Z)® H*(T,2) 3 HYB,Z)® H(T,Z)).
With the natural identifications

2

HYB,Z)=17, HB,Z)= 17, HT,Z)= \ H'(T,Z),

we obtain

292 = ker(H*(T,Z) 3 HY(T,Z)),



where
do(p1 A p2) = 8(1)p2 — (p2)er , Yoor, 02 € HY(T,Z) .

Obviously, we have
El=E)'=H(B,Z)®Q H'(T,Z)= H(B,Z)® A" .
Finally, we get
EX = E3 = coker(H*(B,Z)® H'(T, Z) 3 HY(B, Z)) =

= coker(H'(T,Z) 5 H*(B,Z)).
The cohomology class ¢ € H'(Og(T)) of the T- principal bundle X 5 B
has the form ®(% L) ® A?) and its characteristic class has the form

(6) (€)= (L)@ = mA € A = HY(B,A),

where £ € Pic(B), Al € Ais a primitive element (i.e. there exists no positive
integer [ > 2 with A2 =AY, A0 € A),m € Nym = g.c.d.(¢ (L)) and X € A.
It follows that for any ¢ € H'(T,Z) we have the equality d() = mp(A"),
under the identification H'(T,Z) = AY = Hom(A,Z). We get

20 _ Zm for C(ﬁ) # 0
E —{Z fore(¢) =0~

The second spectral sequence (5) degenerates at E,-level for torus principal
bundles with € = 0, since the dy- differential is determined by ¢ (see [7], 4. and
[2]). With natural identifications, by (3) we get:

EX = EX° = H°(B,0p) ® H*(T,Or) = HY(T,Or) .

EN=EY = HY(B,08)® H\(T,Or) .
E?U EZU —_ 0
5 =
3. Neron-Severi group for torus principal bundles

Let X = B be a T-principal bundle over the curve B, defined by £ €
H'(Op(T)) with ¢(€) # 0 (i.e. X is non-Kahler). Let

0CcF,CF CFy=HYX,Z)

be the filtration induced by the first spectral sequence (4). Then F, = EZ2) =
Z ., is a torsion subgroup of H*(X,Z). Since both Fi/F; = EL} and I/ F, =
E? are free, it follows Tors H*(X,Z) = F; 2 Z,,. We get the exact sequence:

(7) 0 — HY(B,Z)® HY(T,Z) — H*X,Z)/Tors H}(X,Z) =
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— ker(H¥(T,2) 3 H'(T,Z)) = 0.

Let i i i
0 C F2 C Fl C F()= H2(X,OX)

be the filtration induced by the second spectral sequence (5). Then, we get
the exact sequence:

(8) 0— HYB,Og)® H(T,Or) = H}(X,Ox) = H}T,Or) — 0.

The Neron-Severi group, denoted by NS(X), is the kernel of the map in
cohomology H*(X,Z) = H*(X,Ox), induced by the natural map Zx = Ox.
Since F; 5 Fy = 0, we have F C NS(X) and

(9) TorsNS(X) = F, = TorsH*(X,Z) = Z,, .

Using the exact sequence of small terms of the first spectral sequence (4) we
get
TorsNS(X) =im(H*B,Z) > H*(X,Z)).

By functoriality of the spectral sequences we get the following commutative
diagram

0 —’Fl/Fz e FU/F2 — Fo/F} — 0

i i i

0 — P.:‘] N FD - Fg/Fl — 0

where the first line is the exact sequence (7) and the second line is the ex-
act sequence (8). Since NS(X)/TorsNS(X) = ker(i), we obtain the exact
sequence:

(10) 0 — ker(i") = NS(X)/TorsNS(X) = ker(i") 5 coker(i').

Lemma 1 We have ker(:') = Hom(Jg, TV), where Jg is the Jacobian variety
of the curve B, TV is the dual torus of the torus T and Homn(.Jg,TV) is the
group of homomorphisins of group varieties.

Proof: By [8], Chap.l, 2, we have the exact sequence
0=AY 2TV =TV 50,
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where
A =HNT,Z), V' = H\(T,07), TV = Pic(T) .

Taking local sections of these constant sheaves one gets an exact sequence of
sheaves on B

(11) 05 A 2050V = 05(TY) =0,
with the induced exact cohomology sequence:
(12)0 = H°(B,AY) = H*(B,05)@ V" = HYOp(T")) = H'(B,AY) &

5 HY(B,0p)@ V" = HY(O(TY)) S HY(B,AY) — 0.

But
HI(B,AV) = H'(B,Z)® H'(T,Z),

H'(B,05)@ V" = H'(B,05) ® H'(T,Or)
and 7 =1’ by naturality. It follows

ker(i') = ker(H'(B,AY) & H'(B,05) @ V") =
= im(HY(Op(TY)) - H'(B,\Y)) =
= coker(HY(B,05)®@ V" — H(O(TY))).
But H*(Og(T")) is the group of global holomorphic maps B — TV and
im(H(B,05) @ V" = H(O(T")) =2V /A =TV

is the subgroup of constant maps B — TV, which can be identified with the
points of TV (or, with the translations of TV). Let B — .Jg be the canonical
holomorphic map (determined up to a translation of Jg). Given any holomor-
phic map B8 — T then, if we choose the proper origin on 7, the holomorphic
map B —-T" is the composition of the canounical map B — ./g and an homo-
morphism from .Jg to T (the universal property of the Jacobian). It follows

the isomorphism
ker(i') = Hom(Jg,TV). ©

Lermma 2 We hauve
ker(i”) = {ar(L) € NS(T) | e L)(A%) = 0},

where ¢(€) = mAY € A,



Proof: From the previous diagram we get
A:e'r(i”) = {C](L) S NS(T) | dz(cl(L)) = 0}

Let {ey, ..., €2} be a basis of the lattice A and let {€, ..., €2"} be the dual basis
in the lattice AY. Any element £ = ¢;(L) € NS(T) can be written in the form

E=Zicicjcmuize Ae | ai; €Z
(see [8], Chap. I, 2). By direct computation we obtain
d(er(L)) = Sigs wisdale A &) = Sies ais(8(e)ed — §(e)ef) =
= mTi (e (N6 = SO0)e) = mey(L)(V),
where we made the natural identifications
Bil(A x A,Z) = Homz(A @ \,Z) = Homgz(A,AY).

The assertion follows. o

For any line bundle L € Pic(T) we have the homomorphism
(13) oL : T — Pic"(T) =TV, pr(z) = isom.class of ToL® L™,

where T, : T — T is the translation with z € T (see [8]). The T-principal
bundle X < B being fixed, we can associate to any line bundle L € Pic(T)
an element in H'(Og(T")) in the following way: For the Cech 1-cocycle (&;;)
defining our T-principal bundle, &; : U;NU; - T, we put

'r]'»[‘j =ppo&;  UinlU; = TV,

Then (ml}) is a Cech l-cocycle (¢ is a homomorphism) and defines a colio-
mology class in H'(Og(T")), denoted by G (&).

Definition Let £ € H'(Opg(T)) be fixed. For any L € Pic(T) the TV-principal
bundle described by ¢3.(€) will be called the associated TV -bundle to L.

Lemma 3 Let L € Pic(T) be « line bundle. Then, the obstruction to extend
L to a line bundle on the total space of the fired T-principal bundle X 5 B is
the associated TV -bundle to L, $1(€).

Proof: Let L; be a line bundle on U; x T such that for each point z € U;, we
have

(14) c(Lilext) = (L)
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Then, for each point z € U,
M:r: = (£i|sz) @ L—l

is a line bundle of degree zero on T', hence determines a point of Pic’(T) = TV.
In this way, the line bundle £; defines a holomorphic mapping

Wi - U.‘ - TV,
such that the line bundle
(15) pi(L) ® (i x id7)"(P)

is isomorphic to L;, where p; : U; x T — T is the natural projection to the
second factor and P is the Poincaré bundle of TV (which is a line bundle on
TV xT). Conversely, if a holomorphic mapping ¢, : U; — TV is given, then (15)
defines a line bundle £; on U; x T with the property (14). Patching together
L;’s to obtain a line bundle on X, we need to have isomorphisms

(16) TE:-Ejlu.','xT = £i|U.‘ij

1

for all Uy; = U;NU; # B, where Ty, is an automorphism of Uy; x T induced by
the translation of T by &;;(z) for each z € U;;.

Since we may assume that £; has the form (15), the isomorphism (16) can be
rewritten as

(lT) TE-U(P;L) @ (LPJ x idT)*(p)lU,‘ij = (P:L) @ ((Pl X idT)-(P)lUiij .

Note that for any line bundle A of degree zero on T', we have an isomorphism
T:M = M for any translation T, of the torus 7.
On the other hand, for each = € Uj;, the line bundle

Tym(L) @ L™

defines an element of TV and we have a holomorphic mapping of U;; to TV.
This holomorphic mapping is nothing but

I]f} = (7 © Eij : (Jr,'j - TV
Then, the existence of an isomorphism (17) is equivalent to the equality
L
(18) 'f];j+95’j:99£ 1
as the equality in H(Uj;, Oy, (TV)).

If there exists a line bundle £ on X such that for a point y € B, L],-1(y) 18
isomorplic to L, then
Li=CLlyxr 1€ 1,
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satisfy (14) and (16). Therefore, the equality holds for (z,7) with U;; # 8.
Hence, the cocycle ¢p(€) is zero in H}(B,Og(TV)). Conversely, if ¢r(£) is
zero in H'(B,Og(TV)), by chossing a suitable open covering {U;} of B, we
may assume that the equality (18) holds. Define a line bundle £; on U; x T by

L; = p:L ® (t,o,' X ZdT)‘(p)
By (18) we have an isomorphism
9i; * Lilugxr = LiluyxT-

Note that g;; is uniquely determined up to the multiplication of an element of
H”(U;J-,O}'j'.).). For ¢ < j choose an isomorphism g;; and fix it. Put

gi = g5 1<
gii = 1d.

For Ui;e = Ui N U; N U 7!: @, put
Gijk = Gki O 9i; © Gjk-

Since there is a canonical isomorphism of Aut(Ll|,-1u)) to H(r7(U), O;-1 )
= H°(U,Oy;), the automorphism g of £k|uijkx—p determines and element
o(gije) € H(Uiji, O, ). Note that we have equalities:

U(g(k O Gijk nge) = 0(£]£jk) on U:'jkf

o(Gijk © gemk) = 0(Gije)0(Gems)  on Uijiem.

By using these equalities, it is easy to show that {o(gi;x)} is a two-cocycle with
values in O%. Since we have H*(B,O%) = 0, if necessarily, by choosing a finer
open covering of B and changing the isomorphism ¢;; by the multiplication of
a nowhere vanishing function, we may assume that

olgin) = 1

This means that g;x = ¢d and we can patch together the line bundles £; by
the isomorphism ¢;; to obtain a line bundle £ on X. We may also assume
that for a point « € U; we have p;(z) = 0. Then, we have an isomorphism
L|z-1(zy = L. This proves the lemma. o

Lemma 4 The homomorphism 3 : ker(:") — coker(i") is given by the corre-
spondence ¢ (L) — @p(€).

Il



Proof: Let L € Pic(T) be a line bundle. By Appel-Humbert Theorem (see
[8]. Chap.I, 2) one has L = L(H,a), where H is a hermitian form on V with
E(AXxA)YCZ(E=1ImH)and a: A — U(1) is a map with

a(A + Ag) = "ENMa(M)a(d), A € A.

Let us denote by p the canonical projection V — T'. By (8], Chap.IL, 9, if
a € V with p(a) =z € T, we have

et a(®) = isom.class of L(0,7,),
where v, : A — U(1) is the map
(19) Ya(A) = MEEN N e A
From the exact sequence (12) we get
coker(i') = ker(HY(Op(TY)) S HX(B, AY)).

By the previous lemmas it remains to show that the condition ¢,(L)(A%) =0
implies the condition ¢¥(n) = 0, where n = @.(€). For any z € U; N U; we
choose a;;(z) € V such that p(a;;(z)) = &;(z) € T.Then

TI':'Lj(z) = (P(Eij(z)) = L(017a;,‘(2))7

where 7,,,(z) is given by the formula (19) for ¢;(L) = E.
Since (&;;) is a cocycle we have aji(2) — aie(z) + ai;(z) € A. More precisely, we
have

cls(a;e(z) — ai(z) + a;5(2)) = mA°® = ¢(€) € A = H*(B,A).

Let us denote by p¥ the canonical projection VY = T and recall that
V' = Homg-aneitin. (V, C).
Ifie V" then p¥(l) = L(0,«y), where oy : A = U(1) is the map
a(A) = emmI) e A

(see [8], Chap.Il. 9). In order to define ¢Y(#) in Cech cohomology we can
choose ;.. € 7" such that

Imlij: = E(aij(z),).
Then, the characteristic class ¢¥(#) is given by the 2-cocycle (piji.;),where
Piskis = Lk = lik + lijie € AY = H*(B,AY).

12



But, for all A € A, we have
I'mp;,-k;z(A) = E(a,—k(z) —_ (z{k(z) + a,—,—(z),)\) = E(m,\o, /\) =0.

Since a linear form [ € V" is uniquely determined by its imaginary part, we
get ¢V(n) =01in H¥(B,AY) .0
We have proved the following result:

Theorem 5 Let X 5 B be a T-principal bundle over the curve B, defined
by a cohomology class ¢ € H' (Og(T)) with ¢(£) # 0 (i.e. X is non-Kahler).

Then we have an ezact sequence of free abelian groups
0= Hom(Jg,TV) = NS(X)/TorsNS(X) = N(X) =0 ,
where N(X’) is the subgroup of the Neron-Severi group of the torus T defined
by
N(X)={ci(L) € NS(T) | ¢r(€) is the trivial torus bundle }. o
Remark. In the case T is an elliptic curve we have N(X) = 0 (see [3]).

Remark. Clearly, a similar result holds in the case of a Kahler torus principal
bundle for the group NS(X)/n*NS(B) (see also the last section).

Ezample. Let T be a two-dimensional complex torus with period matrix 2,

where
t 1 0 T «
Q - ( 01 0 T2 )

with fm7; > 0, 7 = 1,2. If the complex numbers 71, 72, a are algebraically
independent over the rational numbers @ then, it is well-known that 7 is not
algebraic, that is, T is not an abelian variety. Let E; be an elliptic curve with
period matrix (1,7;), 7 = 1,2. Then, there exists a holomorphic mapping

m: T = E,

such that 7 is an E;-principal bundle over E;.

The lattice A of T is generated by vectors (1,0),(0, 1), (71,0), (o, 72). Put AY =
(11,0). Choose a point b of a curve B and make a logarithmic transformation
to obtain a 7T-principal bundle

X = Ly(mA, 1)(BxT),

where m is an arbitrary positive integer. Then, we have ¢(X) = mA® and X
is non-Kahler.
Since the second coordinate of A° is zero, there exists a holomorphic mapping

X = BxE;.

13



Then, any line bundle L on T, which is the pull-back of a line bundle L, on
£, by n, can be extended holomorphically to the one on X, since L, can be
extended to a line bundle on B x £;. Hence, for our T-principal bundle X, we
have N(X) # 0.

Similarly, we can also construct a T-principal bundle over B with N(X) # 0

from a period matrix
Qf = Im 0 1 «
0 I, 0 7, /°
where (I, 7, )" and (I, 7,)* are period matrix of tori and a is an m X n matrix.

4. A filtration on Pic(X)

In this section we reinterpret the results in the previous section geometrically.
We use freely the notation in the previous section. Let 7 : X — B bhe a
T-principal bundle as in the previous section. Choose a general point b € B
and fix it. In the following we identify the torus T with the fiber #7!(b).
Restricting a line bundle £ on X to the fiber 77*(b), we have a natural group
homomorphism

(20) Pic(X) 5 Pic(r~'(b)) = Pic(T)

Then ker r consists of isomorphism classes of line bundles whose restriction
to the fibre #~'(b) is trivial, hence the restriction to each fiber of 7 is a line
bundle of degree 0 on the torus under identification of the torus with each

fiber.
Let {U;} be an open covering of B with trivialization

(21) W U)y = U; xT
For each line bundle £ belonging to ker r there exists a holomorphic mapping
;U = Pil(T)y=TY

with

Llr=1y) = (pj x 1dp)"(P),
where P is the Poincaré bundle on Pic’(T) x T'. Since any line bundle of
degree 0 on the torus is invariant by the translations, on U; N Uy #  we have

@i = Ph
Hence, the line bundle £ defines a holomorphic mapping

(22) w: BTV

14



Since the restriction £],-1 is trivial, the holomorphic mapping (22 ) satisfies
(23) w(b) = [0}
The line bundle £ and the holomorphic mapping ¢ are related by

L~z (M)®e(P),

where M is a line bundle on the curve B and ¢*(P) is the line bundle on X
whose restriction to 7= (U;) is (¢; x id7)"(P). Note that by the argument of
the proof of Lemma 3 we can patch together {(¢; x1dr)*(P)’s to get ¢*(P), since
the line bundle of degree 0 on a torus is invariant under the translations. Also
note that there is a one to one correspondence between the set of holomorphic
mappings (22 ) with property (23 } and Hom(Jg,TV).

Let us consider a group homomorphism

(24) R: Pic(X) S Pie(T) S HYT,Z).
The homomorphism R is essentially equivalent to a natural homomorphism
Pic(X)—= Pic(T)/ Pic®(T)

induced by the homomorphism r. A line bundle £ belonging to ker R is the
one whose restriction to each fiber of 7 is of degree 0. Note that by the proof
of Lemma 3 each line bundle L € Pic®(T’) can be extended to a line bundle £
on X in such a way that its restriction to each fiber is isomorphic to L. Hence,
there is an isomorphism

(25) ker R/ker r ~ Pic’(T).
Define subgroups P; of Pic(X) by
(26) Py =7"Pic(B), P =kerr, P,= Pic(X).

Then, {P,} defines an decreasing filtration of Pic(X). By the above considera-
tion and the arguments of the previous section we have the following theorem.

Theorem 6 We have the following isomorphisms.

27) Py/P, ~ Hom(Jg, Pic®(T))
(28) PofPv = { L€ Pic(T)|pL(€) =0}

where £ € HY(B,0g(T)) is the cohomology cluss corresponding lo the T-
principal bundle 7 : X — B and @1(€) = 0 is defined in §53.0



Remark. Taking the Chern classes, we have
(29) Cl(PQ)——-FQ, Cl(P1)= Fl.
5. Neron-Severi group for torus quasi bundles

Let T = V/A be an n-dimensional torus. By a quasi T-bundle n : X — B over.
a curve B we mean that 7 is a T-principal bundie over B\ {b1,04,... ,0¢} and
that the fiber m=1(b;) over the point b, is of the form m;T; where m; > 2 and
T; is a torus. The fiber m;T; is called a multiple fiber of the multiplicity m;.
To construct such a quasi T-bundle we first generalize the notion of logarithmic
transformation.

Choose points by, by... b on B and put B’ = B — {b;,bs,... ,b;}. For
each point b; fix a positive integer m;. We let ¢; be an element of %A such
that the order of the point [a;] of the torus 7" corresponding to «; is precisely
m;. Let

D,‘:{t,'EC,|t,'|<£}

be a coordinate neighbourhood of the point b; and put

5{={.Sg EC[ S,‘I <€l/m‘ }
By the mapping
(30) . )\,‘ : ﬁ,‘ — D,‘
S s

D; is an m;-sheeted ramified covering of D;. A holomorphic mapping ¢; :

5,- xT — 5,- x T defined by
(31) g+ (56, [CD) = (emsiy [C+ @)

is an analytic automorphism of order m; and generates the cyclic group G; =
(gi) of order m; where

em; = exp(2mrv—1/my).
Since the automorphism ¢; has no fixed points, the quotient D; x T/G; is a
complex manifold. Let

(32) I DixT — D; x T/G,

be the canonical quotient mapping. By [s;,{¢]] we denote the point of the
quotient manifold D; x T/G; corresponding to a point (s,{¢]) of D; x T. We
have a holomorplic mapping

T —D\;XT/G,'—)'D.‘

N

[si. [Cl] = s
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Over the punctured disk D! the holomorphic mapping m; gives a T-principal
bundle, and over the origin 0 the equation

71','=0

defines a divisor of a form m;T; where T; = T/([«;]} is a torus obtained as the
quotient by a finite subgroup generated by the point [a;].
The mapping

b, : D:xT/G—D; xT
mia;

(33) {Si! [C]] = (3:'“, [C - 271’\/—_1 ]Og Sf])

is a well-defined holomorphic mapping and isomorphic. Therefore, we can
patch together D; x T/G;, 1 =1,2,... ;k and B’ x T by the isomorphisms &,
to obtain a compact complex manifold X which is denoted by

(34) Ly, (ay, my) Loy (ag,ma) - - Ly (ag,me)(B x T)

and is called the manifold obtained from B x T by means of logarithmic trans-
formations. There is a natural holomorphic mapping 7 : X — B given by m;
on D; x T/G; and the projection to the first factor on B’ x T. The fiber space
m: X — Bis a T-principal bundle over B’ and has multiple fibres with multi-
plicity m;, if m; > 2. In the Appendix we shall show that all quasi T-bundle
are obtained in this manner.

In the following let us consider a quasi T-bundle m : X — B of the form
(34 ) and we assume that

ITL,‘Z'Z, '.':=].,2,...,g, m¢+1=---=mk=l.

Let us consider geometrically line bundles on X. Choose a general point b
and consider a natural restriction homomorphism

(35) r: Pie(X) = Pic(n~}(b)) = Pic(T)

Let us first consider the structure of ker r. Note that for the multiple fiber
m;T; the line bundle [T}] associated with the divisor T} of X is an element of
ker r and {T;]?™ = [m,T;] is the pull-back of the line bundle [;] on the curve
B.

Let P, be a subgroup of Pic(X) generated by n*Pic(B) and (T3], + =
1,2,... €. A line bundle £ belonging to P is characterized by the fact that
the restriction of £ to each fiber #71(¢), ¢ € B’ is the trivial line bundle.

To a line bundle £ € ker r, by the same argument as in §4, we can associate
a holomorphic mapping

o B = Pi(T)=T".

17



The pull-back u;(L|s-1(p,)) defines also a holomorphic mapping
@i : Di = Pic(T),

where g; :’P x T — n=Y(D;) = D; x T/G; is a natural quotient mapping(32 ).
Then, on D} we have

_ Pi=¢ o,
where X; : D; = D; is defined in (30 ). This implies that the holomorphic
mapping ¢’ can be extended to a holomorphic mapping

(36) p: B Pi’(T)y=T".
As L|z-1() 1s a trivial bundle, we have

(37) o(b) = [0].

Note that the set of holomorphic mappings (36 ) with property (37 ) are
canonically isomorphic to Hom(Jg, Pic®(X)). If £ and M in ker r give the
same holomorphic mapping (36 ), then the restriction of the line bundle £ @
M™! to each fiber #=!(c), ¢ € B’ is the trivial bundle, hence is an element of
P‘z.

Lemma 7 There exists a natural group isomorphism
(38) J:ker v/ Py ~ Hom(Jg, Pic®(T)).

Proof: To each line bundle £ € ker  we can associate a holomorphic mapping
(36 ) with property (37 ). This defines an element of Hom(.Jg, Pic’(T)). If
the mapping ¢ gives the zero element of Hom(Jg, Pic®(T)), ¢ is the zero map.
Hence, the restriction of £ to each fiber 77'(c), ¢ € B’ is the trivial bundle.
Hence, £ belongs to P,. This shows the injectivity.

Conversely, let ¢ : B — TV be a non-constant holomorphic mapping with
@(b) = [0]. Then, on X’ = 7~!'(B')} we can construct a line bundle £’ such
that L'],-1(¢) is a line bundle of degree zero corresponding to the point ¢(c)

for each ¢ € B’. For D;, i = 1,2... K, put
@,‘:(I,OO/\{.

Then, ; defines a line bundle L; such that E,"_.,..XT corresponds to @;{s;), As
the line bundle L; is invariant under the group (;, it defines a line bundle £;
on D; x T/G;. By onr construction, L;|,~i(p;)y and L:'i,r—l([)'_'} are isomorphic.
Hence, L;’s and L' define a line bundle £ on X which corresponds fo the
mapping ¢. This shows the surjectivity of the mapping 5. o

Next let us consider the image of the homomorphism .
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Lemma 8 If a line bundle L of T can be extended to a line bundle L on X,
then L is invariant by the translations Tj,;), 1 =1,2,... L.

Proof The pull-back £; := 1 (Ll =1 (p,) is invariant by the action of the
group G;, where y; : D: xT = D; x T/G; = m~!(D;) is the natural quotient
mapping(32 ). In particular, the restriction Liloxr is invariant by the group.
generated by the translation Tj,;}. Since LiloxT has a form L @ M with degree
zero line bundle M on T and M is invariant by all the translations, the line
bundle L is invariant by the translation T{,;).0

Let H be a subgroup of the torus T generated by [a)], [aa],. .. ,[ad. The
group f is isomorphic to Ao/ where Ag is the lattice generated by A and a;’s.
To any H-invariant line bundle L on the torus T, we associate a cohomology
class {nk} in H'(B,Op(T")) as follows.

Let {U;} be an open covering of the curve B such that U; = D; for 1 =
1,2,... ,¢ and that b; ¢ U;NU; for 1 # j. Since the line bundle L is invariant
by the translation Tj,;, though [5 %= log t;] is multivalued

(39) :r[;ﬂ—'"‘_l log t.’]L ® L_l

is a well-defined line bundle on #=Y(U;NU;) for 1 = 1,2,... ,£ and j # . Then
there exists a holomorphic mapping ¢;; from U;; = U; N U; to TV such that
the line bundle (39 ) is the pull-back (¢;; x 1dr)*(P) of the Poincaré bundle.
Put

(40) i { 7 .

Yo ife<i;

Then, it is easy to show that {n%} is a one cocycle and defines a cohomology
class [{nf;}] € H'(B, Os(T")).

Lemma 9 An H-invariant line bundle L on the torus T = w~'(b) can be
extended to the one on X if and only if the cohomology class [{f},’}}] s zero.

Proof: Assume that there exists a line bundle £ on X which is an extension
of L. Then, the pull-back p;(L{-1(y;) of the restriction of £ on =~'({/;),
t=1,2,...,¢, to D; x T can be expressed as

(41) L@ (@i x idr)"(P),

where &; : D; = TV is a holomorphic mapping. Since the line bundle
15 (L|x-1(uyy) is invariant under the group G, we have

Pi(si) = @il em;si).
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Hence, there exists a holomorphic mapping ¢, : U; = TV with

(42) Pilsi) = wi(si™).
Since £ is a global line bundle, on U;; # @ we have
(43) Tsiriogrg L @ (wi X 1d7)*(P) = L ® (9; x idr)*(P).

This implies that we have

(44) e = w5 — i

Hence, the cohomology class is zero.

Conversely assume that the cohomology class is zero, hence we have holo-
morphic mappings ¢, : U; — TV which satisfy (44 ). For: =1,2,... £ define
@: by (42 ). Then the line bundle £; = L @ (@; x idr)"(P) is invariant by the
action of the group Gj, hence defines a line bundle £; on 7~ '(U;). For j > ¢
put £; = L ® (¢; X td7)"(P). Since we have the equality (43 ), we can patch
together these line bundles and obtain a line bundle £ which is an extension
of L. o

Now as in §4 we introduce a decreasing filtration {P,} of Pic(X) by
(45) P, = the subgroup generated by 7 Pic(B) and [T}]’s,
(46) Po= kerr, Py = Pic(X),
where m;T;, ¢ = 1,2,...,f are all the multiple fibers of the quasi T-bundle
7 : X — B. By the above arguments we have the following theorem.
Theorem 10 We have the following isomorphisms.
(47) P,/P, ~ Hom(Jg, Pic®(T))
(48) Po/Py =~ {LePie(T)"|[{n5}]=0}0
Let us reinterpret the group { L € Pic(T)H | [{q,ﬂ’}] = 0 } by means of a torus
principal bundle associated with the quasi T-bundle 7 : X — B.

Let Ay be a lattice in the vector space V generated by A and «;, ¢ =
1.2,... .0 and put

(49) Ty = V/As.

Then, we have

To=T/H,

where H is a subgroup of the torus T' generated by (1], [as], ... [we]. There is
a canonical surjective homomorphism

(50) h:T =1,

of complex tori. The following lemma is well-known and easy to prove.
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Lemma 11 A line bundle L on the torus T is invariant by the translations

Tieq, 1= 1,2,...,¢, if and only if there exists a line bundle Ly on Ty with
L=h1Lgo
Put
(51) Y = Ly, (a1,1)Ly,(ag,1) - -+ Ly, (ae, LY(B x To)

with structure morphism 7o : Y — B, which is a Tg-principal bundle.

Lemma 12 There ezists a holomorphic mapping
f: X->Y

such that the following diagram is commutative.

x 4 v
T | l m
B = B

Moreover, f is unramified outside the multiple fibers.
Proof: There 1s a natural unramified holomorphic mapping
/" B'xT — B x1T.

We need to show that f’ can be extended to a holomorphic mapping f of X
to Y. On D; x T/G; let us define a holomorphic mapping f; by

fi + DixT/Gi = D; x Ty
[s, [C] = (s A(CD))-

We need to show that these holomorphic mappings are compatible to f'. By
our definition of the logarithmic transformation we have the following commu-
tative diagram.

0 Drx TG — D xT
[si [C) = (s, (€ — F2He log si))
fl ) 4 L fi
(7 [Clo) = (s7,[C — 575 log(si™)]o)

w0 DTy - D; x T,



Here, [(]o means the point of the torus T; corresponding to ¢. The commuta-
tivity of the above diagram shows that the mappings f' and f;’s are compatible
and define a holomorphic mapping f: X — Y over B. ¢

Lemma 13 The quasi T-bundle X is Kahler if and only if Y s Kdhler. The
condition is equivalent to the equality :

k
(52) Z a; =0
=1

Proof: Assume that the equality (52 ) holds, hence, Y is Kahler. Let w be a
Kahler form of Y. Note that f: X — Y is an abelian covering ramified along
the support of T; of the multiple fibers. Hence, the pull-back f*w is positive
definite on X \ U‘_,T; and at each point of T, it is positive semi-definite. Near
the multiple fiber m;T;, X is isomorphic to D; x T/G;. As a (1,1)-form

\/:
2m

1 _ 2
A 161 + |sil)
p=1

is Gi-invariant, it defines a Kahler form on D; x T/G;. Let p; be a non-negative
Ce-function in |s;}* satisfying

1 |t] < €¥/™i/3
pilt) { 0 |t| > 2e2/mi /3.

Then, a form

sil*)}

-1 - L .
LB I3 G+
= v=1

is positive definite on 7~ '(D;(¢*/™/3) and w; = 0 on 71 (D:(26*/™/3), where
we put Di(r) = { s; | |s;] < }. Hence, we may regard w; as a global (1,1)-
form on X. Since, f*w is positive definite on X \ UL, T}, and w; is positive
definite i1f a neighbourhood of 7T; and zero outside a certain neighbourhood of
T;, the form

3
ofw+ Z wi
=1

is positive definite on X, if we choose « sufficiently large. Hence, X s Kahler.
Conversely, assume that X is Kahler. Put

d=my-mg---me, mog=LOM{m,,mq,... 10}

We can always find a d-fold abelian covering o : B — B of the curve B
branched at by, by,... ,br and a point by € B\ {0y, 02, ... ,bs} such that o has
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d/m; ramification points {8{™}, m = 1,2,... ,d/m;, i = 0,1,2,... ,¢. Over
the points b;, £ < j < k, o is unramified. Put ¢~!(b;) = {bgl),bgz), . (d)}
Then, the normalization X of X xg B has a natural structure of a prmcnpal
T-bundle over B and it is isomorphic to

k dfm;

(53) . H H Lb(ml miai, )(B xT)

t=t m=1

The natural holomorphic mapping & : X — X is only branched over w=*(by).
By the similar argument as above we can show that X is Kahler if X is Kahler.
Then, by (52 ), X is Kahler if and only if

& odf/m;

ZZma.—O

i=1 rn=1

The equality can be rewritten as

Z—m s -——-(lZ(L, =0Q.

1=1

Hence, the equality (52 ) holds and Y is also Kahler. This proves the lemma.
o

Lemma 14 The subgroup n"H*(B,Z) of H*(X,Z) is a finite group if and
only if

k

S ai #0.

i=1
Proof: Since the holomorphic mapping f : X — Y is finite, 7" H*(B,Z) is
finite if and only if the subgroup m;H*(B,Z) in H%(Y,Z) is finite. The latter

group is finite if and only if Y is non-Kaller. On the other hand, Y is non-
Kahler if and only if

This proves the lemma. o

Put
(54) N(X) = {LePieT)" [[{nf}] =0}
(55) N(Y) = {Ly€ Pic(Ty) | ¢r,(&) =0}

where & € H'(B,Op(T,)) is the cohomology class corresponding to the Ty-
principal bundle 7y : Y — B. Taking the dual of the homomorphism A : T —
Ty (50 ) we have an exact sequence

(56) 0= TY S TV 5 HY >0,
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where AV is a finite abelian group. Sheafifying the exact sequence (56 ) and
taking the cohomology, we obtain the following exact sequence.

(57) 00— HY(B,0s(TY)) S H'(B,0s(T")) = H\(B,H") - .

Lemma 15 For a line bundle Ly on the torus Ty put L = h™Ly. Then we
have

R (B, (60)) = [{m5}].
Proof: We use the same open covering {U;} of the curve B defined above.
Then, the cohomology class & is given by a cocycle

= ﬁ—_llogt{ fl <1<l 8<y
(58) G : {0 0 <i g

Hence @1,(€o)) is given by a cocycle
L= di; 1 <1<l E<y
M 0 ifl<i,y

where ¢;; 1s given by

Tz gt Lo ® Lo = (855 idr)™(Po).

Here Py is the Poincaré bundle on Pic%(Ty) x Tyy. Then it is easy to show that
we have
hY(éi5) = wij.

This i1s the desired result. o

Lemma 16

he(N(Y)) = N(X).

Proof: For a line bundle Ly € N(Y') we let Lo be a line bundle on Y which is
an extension of Lg. Then, f~L, is a line bundle on X which is an extension of
the line bundle h* Ly, where f : X — Y is the holomorphic mapping in Lemma
12. Hence, we have h*(N(Y)) C N(X).

Conversely, take a line buudle L € N{X) and choose a line bundle L, on
To with "Ly = L. By the above Lemma 15 and the exact sequence (57 ),

Z1,(&) = 0. Hence, Ly € N(Y'). This shows N(X) C h*(N(Y)). ¢

By the above argument and the arguments in the previous sections we have
the following exact sequences.

(59) 0 — Hom(Jg,TV) = Pic(X)/P, = N(X) =0
(60) 0 — Hom(Jg,T)) = Pic(Y)/myPic(B) — N(Y) — 0.

Taking the Cliern classes of the line bundles, finally we obtain the following
theorem.



Theorem 17 There exists an ezact sequence

(61) 0 = Hom(Jg,T") = NS(X)/F, = N(X) = 0,

where Fy is a subgroup of H¥(X,Z) generated by ci([T3]), i = 1,2,... 2, and

(62) N(X)={a(l)|Le PicX)", [{nf}]=0}.

The subgroup F, is finite if and only if X is non-Kahler. Moreover, we have
N(X) = h"N(Y)

where

N(Y) = {a(Lo) | Lo € Pic(Y), @ry(€) =0},
Proof: To each homomorphism
w € Hom(Jg,T")

we can associate a line bundle £ on X such that for each point ¢ € B’ the
restriction £|,_, (c) corresponds to ¢(c). Let us consider the first Chern class
c1(L) of L. Note that we have an exact sequence

0= R'7.Z— R'7.0x = Og(TY) =0
and from this exact sequence we have the exact sequence
(63) — H%B,R'r.0x) — H%B,0p(T")) > H'(B,R'7.Z) — .
The element ¢ € Hom(Jg, Op(T")) gives an element g € H*(B, Og(T")) with
@(b) = [0]. Then the image of ¢(¢) € HY(B, R'm.Z) to H}(X,Z)/m"H*(B,Z)
is ¢;(£) mod w*H?*(B,Z). Since we have an isomorphism

H(B,0g(TY))/ImH (B, R'7.0Ox) ~ Hom(Jg, T"),
by the exact sequence (63 ) we have an inclusion
Hom(Jg, Op(TV)) = H'(B, R'7.Z).

To show that the natural mapping

HY(B, R'n.Z) — H*(X,Z)/x H*(B,Z)
is injective, we need to consider the spectral sequence

EY" = H™(B, R'n.Z) => HP*(X,Z).
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By the dimension reason, we have
ES? = EQ* = ker {H°(B, R*n.Z) - H*(B, R'7.Z)}
EL' = Ey' = HY(B,R'r.Z)
EX = E}° = coker {H°(B,R'7.Z) » H*(B,Z)}.

The spectral sequence defines the filtration {F,} on the cohomology group
H?*(X,Z) such that there are canonical isomorphisms

(64) E:;O ™~ Fg,
(65) Eolél = F‘/FQ,
(66) E&Q s Fg/Fl.

[t is easy to see that F, = #*H?(B,Z), hence by the above isomorphism (65 )
the natural mapping

HY(B,R'n.Z) —» H¥X,Z)/n H*(B,Z)
is injective. Therefore, the natural mapping
Hom(Jg,0p(TV)) - HY B, R'r.Z) — H*X,Z)/n*H*(B,Z)

is also injective. The rest of the statements follow from the above arguments.
This proves the theorem. o

Remark. By the similar arguments as in [5, Chap. II, Lemma 1.6 and
Lemma 7.3], the structure of the first homology group (X, Z) is given by

k
H(X,Z)~Z® - © Loy ®LO @ - D LB, & (Ao/ (3 w)),
=1
where Ag is the lattice in the vector space V' generated by A and «;’s and
H(B,Z)~Zoa\ & - B Za, BLL B - D LY,

By virtue of Lemma 13 , H,(X,Z) has torsion if and only if X is non-Kahler.
Moreover, if X is 11011-I\¢|11et, thiere is a non-canonical isormorphism

A
Tor HY{X,Z) ~ Tor Ao/ (D a;).
. =1

Thus, in this case, since R'7,Z and R*n.Z are constant sheaves of finite free
Z-modules, by the isomorphisms (64 ), (65 ) and (66 ), we conciude that

Tor HY(X,Z) = n"H*(B,Z).
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Appendix

In this appendix we shall show that all quasi T-bundle over a curve B are
obtained from the product B x T by means of logarithmic transformations. Let
m: X = B beaquasi T-bundle over the curve B. We let m\Ty, moT5, ... ,m q;
be all the multiple fibers of m. Put

bi==(T), i=12,...,¢L

Choose a coordinate neighbourhood D; of b; and a local coordinate t; with
center b;. We may assume

Di={t;eC||ti<e}.
Put .
D; = {3,’ cC [ |S,‘| < GI/m‘ }
Then a homomorphism
E,' — D,‘
8§ > .S}"‘

is an m;-sheeted cy_t_:lic covering. We let i;, be the normalization of the fiber
product X|p, Xp, D; with a natural holomorphic mapping

T 5[, = X; =71"YDy).

At a point p € m~!(b;) we can choose local coordinates (z,yi,. .. ,y,) where
the holomorphic mapping = is expressed as

my

ti=rm({=,y1,...,4n)) =%
Then, X is locally given by the normalization of

g™ =,

8

Hence, ji; 1s a unramified covering. Also the complex manifold X; has a struc-
ture of a fiber space
7?,' : .\’H’: - 5,‘

over D; which is smooth over D;. Since X; = D; is a T-principal bundle over
the punctured disk D7, it is easy to show that 7; is a T-principal bundle, hence
7; is isomorphic to the product D; x T with the projection to the first factor.

By our construction j; 1 X; — X, is an m;-sheeted cyclic unramified cover-
ing and the cyclic G of order m; operates on lfl A generator g; of the group
G has a form

i B;XT —}E;XT
(67) (s, [C]) = (emisiy [C + ai])

N
|



where {¢;] is a point of the torus T of order m;. Then, the quotient manifold
D; x T/G; is isomorphic to X; = m~!(D;). There is an analytic isomorphism

{,.

D; xT/G; =D xT
(68) (s ldll = (57,6 = 5= log )

We let X be a complex manifold obtained by patching together X —
Ui_, 771 (b;) and D; x T’s by the isomorphisms £;':

(69) X = (X \ UL, 7w (5:)) O DixT.

i=1

Then, the complex manifold X has a natural structure 7 : X — B of a T-
principal bundle over the curve B.

Conversely, the quasi T-bundle 7 : X — B is obtained from the T-principal
bundle 7 : X = B by means of the logarithmic transformations:

(70) X = Ly, (ay,m1) Ly, (az, ma) - - Ly, (ar, me)(X),

by patching together (f\ Ul 7 H(by)) and 5:‘ x T/G:’s by the isomorphisms
Ly,

By the remark in §1, the T-principal bundle # : X — B is obtained from
B x T by means of logarithmic transformations

(71) X: = Lb(+1(a’+|v 1)Lf'r+2 (("'f+'21 1) T Lbk (aka 1)(8 x T) |

Hence, by (70 ) and (71 ) the quasi T-bundle 7 : X — B is obtained from
B x T by means of logarithmic transformations

X = Ly, (ar,my) - Ly (ag, me) L, (@egr, 1) - Ly, (@, 1)(B x T).

Thus, any-quasi T-bundle over the curve B is obtained from B x T by means
of logarithmic transformations.
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