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ENDS OF THE MODULI SPACE OF HIGGS BUNDLES

RAFE MAZZEO, JAN SWOBODA, HARTMUT WEISS, AND FREDERIK WITT

Abstract. We associate to each stable Higgs pair (A0,Φ0) on a com-
pact Riemann surface X a singular limiting configuration (A∞,Φ∞), as-
suming that det Φ has only simple zeroes. We then prove a desingulariza-
tion theorem by constructing a family of solutions (At, tΦt) to Hitchin’s
equations which converge to this limiting configuration as t → ∞. This
provides a new proof, via gluing methods, for elements in the ends of
the Higgs bundle moduli space and identifies a dense open subset of the
boundary of the compactification of this moduli space.

1. Introduction

The moduli space of solutions to Hitchin’s equations on a compact Rie-
mann surface occupies a privileged position at the cross-roads of gauge-
theoretic geometric analysis, geometric topology and the emerging field of
higher Teichmüller theory. These are equations for a pair (A,Φ), where A
is a unitary connection on a Hermitian vector bundle E over a Riemann
surface X, and Φ an End(E)-valued (1,0)-form (the ‘Higgs field’). We will
mostly be concerned with the fixed determinant case, i.e. we consider only
connections which induce a fixed connection on the determinant line bundle
of E and trace-free Higgs fields. Then the equations read

(1)
F ⊥A + [Φ ∧Φ∗] = 0

∂̄AΦ = 0.

Here F ⊥A is the trace-free part of the curvature of A, which is a 2-form with
values in the skew-Hermitian endomorphisms of E, and Φ∗ is computed with
respect to the Hermitian metric on E. We always assume that X is compact
below, and we also assume that the genus of X is bigger than 1.

The initial motivation for these is that, when Φ is the trivial rank 2
bundle, they are the two-dimensional reduction of the standard self-dual
Yang-Mills system, i.e., from X ×R2 to X. However, these equations make
sense for higher rank nontrivial bundles, and have also been studied when
X is a higher dimensional Kähler manifold [Si88, Si92]. Beyond this initial
presentation, they can also be studied by more purely algebraic and topo-
logical methods in terms of representations of (a central extension of) the
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fundamental group of X into the Lie group SL(r,C), r = rk(E) (see [Go12]
and references therein).

In his initial paper on these equations [Hi87], Hitchin established the
existence of a unique solution of these equations in the complex gauge orbit
of any given initial pair (A0,Φ0) which satisfy a stability condition slightly
weaker than the standard slope stability condition for E alone. He went on
to prove that the moduli space of solutionsM enjoys many nice properties.
In particular, when rk(E) = 2 and the degree of E is odd, then M is a
smooth manifold of dimension 12γ − 12, where γ is the genus of X. (In
other cases it is at least a quasi-projective variety, but we shall focus on
this simplest setting.) Furthermore, it has a natural hyperkähler metric g of
Weil-Petersson type, with respect to which it is complete. In the intervening
years, much has been learned about its topology and many other features.
However, surprisingly little is known about the metric structure at infinity.

In the past few years, however, a very intriguing conceptual picture has
emerged through the work of Gaiotto, Moore and Neitzke [GMN10]. As part
of a much broader picture concerning hyperkähler metrics on holomorphic
integrable systems, they describe a decomposition of the natural metric g on
M as a leading term (the semiflat metric in the language of [Fr99]) plus an
asymptotic series of non-perturbative corrections, which decay exponentially
in the distance from some fixed point. The coefficients of these correction
terms are given there in terms of a priori divergent expressions coming from
a wall-crossing formalism.

A further motivation is Hausel’s result about the vanishing of the image
of compactly supported cohomology in the ordinary cohomology [Ha99]. In
analogy with Sen’s conjecture about the L2-cohomology of the monopole
moduli spaces [Se94], he conjectured further that the L2-cohomology of the
Higgs bundle moduli space must vanish. Partial confirmation of this conjec-
ture were established shortly afterwards by Hitchin [Hi00] who showed that
the L2-cohomology is concentrated in the middle degree. Closely related
results about L2-cohomology of gravitational instantons, and partial con-
firmation of Sen’s conjecture, were obtained by Hausel, Hunsicker and the
first author [HHM05]. These papers suggest that results of this type about
L2-cohomology rely on a better understanding of the metric asymptotics on
M.

One other recent development is contained in the recent pair of papers
by Taubes [Ta13.1, Ta13.2]. His setting is for a closely related gauge theory
on three-manifolds with gauge group SL(2,C), but he notes there that his
results transfer simply (and presumably with fewer technicalities) to the case
of surfaces. He proves a compactness theorem for those equations focusing
on the specific problems caused by the noncompactness of the underlying
group (SL(2,C) rather than SU(2)). More specifically, he is able to deduce
information about limiting behavior of solutions which diverge in a specific
way in the moduli space. While the results in our paper are partly subsumed
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by those of Taubes, we hope that the constructive perspective adopted here
will be of value in the various types of questions described above.

We can now describe our work and the results in this paper. Our initial
motivation was to reach a more detailed understanding of the structure of
the space M near its asymptotic boundary, with the hope of using this to
obtain information about the structure of the metric g there. We do this by,
in essence, reproving Hitchin’s result for solutions which lie sufficiently far
out in M. We make here the simplifying assumption that the Higgs field Φ
is simple, in the sense that its determinant has simple zeroes. This implies,
in particular, the stability (and thus the simplicity) of the pair (E,Φ) in the
sense of Hitchin. We first consider a family of ‘limiting configurations’, con-
sisting of certain singular pairs (A∞,Φ∞) which satisfy a decoupled version
of Hitchin’s equations, namely

F ⊥A∞ = 0, [Φ∞ ∧Φ∗
∞] = 0, ∂̄A∞Φ∞ = 0.

Thus each A∞ is projectively flat with simple poles, while the limiting Higgs
fields are holomorphic with respect to these connections and have a specified
behavior near these poles.

Theorem 1.1 (Existence and deformation theory of limiting configura-
tions). Let (A0,Φ0) be any pair such that q ∶= det Φ0 has only simple zeroes.
Then there exists a complex gauge transformation g∞ on X× = X ∖ q−1(0)
which transforms (A0,Φ0) into a limiting configuration. Furthermore, the
space of limiting configurations with fixed determinant q ∈ H0(K2

X) having
simple zeroes is a torus of dimension 6γ − 6, where γ is the genus of X.

We also consider the family of desingularizing ‘fiducial solutions’ which
will be used to ‘round off’ the singularities in these limiting configurations.
These fiducial solutions are an explicit family of radial solutions on C, the
existence of which was pointed out to us by Neitzke, but since there does
not seem to be an easily available reference for them in the literature, we
provide a fairly complete derivation of their properties here.

With these two types of components, we now pursue a standard strategy
to construct exact solutions. Namely, we construct families of approximate
solutions, which lie in the gauge orbit of some (A, tΦ) for t large, and then
use the linearization of a relevant elliptic operator to correct these approxi-
mate solutions to exact solutions. This yields the

Theorem 1.2 (Desingularization theorem). If (A∞,Φ∞) is a limiting con-
figuration, then there exists a family (At,Φt) of solutions of the rescaled
Hitchin equation

F ⊥A + t2[Φ ∧Φ∗] = 0, ∂̄AΦ = 0

provided t is sufficiently large, where

(At,Φt) Ð→ (A∞,Φ∞)
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as t↗∞, locally uniformly on X× along with all derivatives, at an exponen-
tial rate in t. Furthermore, (At,Φt) is complex gauge equivalent to (A0,Φ0)
if (A∞,Φ∞) is the limiting configuration associated with (A0,Φ0).

In particular, we obtain Hitchin’s existence theorem for pairs (A, tΦ) when
t is large and det Φ has simple zeroes. The advantage of this method is that
we obtain precise estimates on the shape of these solutions. This mirrors
precisely what is obtained in [Ta13.1, Ta13.2], and it is not hard to deduce
from this that the Weil-Petersson metric g does indeed decompose as a
principal term (essentially given by the deformation theory of the limiting
configurations) and an exponentially decreasing error. While we are able
to capture the correct exponential rate, our method at present includes an
extra polynomial factor, so in particular we are not yet able to say anything
about the leading coefficient of the first decaying term.

To understand the entire end of the moduli spaceM (when the degree of E
is odd), one must also consider non-simple Higgs fields. When the simplicity
condition fails, the desingularizing fiducial solutions must be replaced by
some more complicated special solutions. These new fiducial solutions are
being studied in the ongoing thesis work of Laura Fredrickson, and it is
expected that these gluing methods will adapt readily to incorporate her
‘multi-pole’ fiducial solutions.
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2. Preliminaries on gauge theory and Higgs bundles

2.1. Holomorphic vector bundles. To fix notation, we briefly recall some
classical facts about gauge theory and holomorphic vector bundles. Good
general references are [Ko87, Chapter I and VII] or [WGP08, Chapter III
and Appendix].

Let X be a Riemann surface of genus γ ≥ 2 with canonical line bundle
KX , which we usually denote just as K. We also fix a metric on X in the
designated conformal class. Consider a complex vector bundle E → X of
rank r = rk(E) and degree d = deg(E), where by definition, d is the degree
of the complex line bundle detE = ΛrE. The slope or normalized degree of
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E is

µ = µ(E) ∶= deg(E)/ rk(E).
Up to smooth isomorphism, the pair (r, d) determines E completely [LeP97,
Chapter I.3]. We write GL(E) and SL(E) for the bundles of automorphisms,
and automorphisms with determinant one, of E, and set gl(E) = E⊗E∗, with
sl(E) the subbundle of trace-free endomorphisms. The sections Γ(GL(E))
and Γ(SL(E)) are the complex gauge transformations in this theory; these
are infinite-dimensional Lie groups in the sense of [Mi84], with Lie algebras
Ω0(gl(E)) and Ω0(sl(E)), respectively. A Hermitian metric H on the fibres
of E determines the bundles U(E,H) and SU(E,H) of unitary and special
unitary automorphisms of (E,H); the corresponding Lie algebra bundles
are u(E,H) and su(E,H). The sections Γ(U(E,H)) are the unitary gauge
transformations. For simplicity we usually omit mention of the metric H in
this notation.

The affine space U(E) of unitary connections (with respect to H) has
Ω1(u(E)) as its group of translations. The action of the unitary gauge
group U(E) on U(E) is the familiar one:

(2) dA ↦ dAg ∶= g−1 ○ dA ○ g = dA + g−1dAg.

In the sequel, we tacitly fix a base connection A0, which we may as well
assume to be flat, and then identify an arbitrary unitary connection A with
an element in Ω1(su(E)). The covariant derivative dA ∶ Ω0(E) → Ω1(E)
satisfies dH(s1, s2) = H(dAs1, s2) + H(s1, dAs2); in a local trivialization,
dAs = ds+As, where d is the usual differential and the connection matrix A
is a matrix-valued 1-form. Under a local change of frame or gauge g ∶ U →
GL(r), the connection matrix transforms as

A↦ Ag ∶= g−1Ag + g−1dg

which is consistent with Eq. (2). In a Hermitian frame (s1, . . . , sr), A is
u(r)-valued. These three perspectives, regarding A as a point in U(E), a
covariant derivative dA or as a connection matrix, are used interchangeably
below. In particular, A = 0 can mean that A is the base connection, that dA
is given locally as d, or that the connection matrix vanishes.

From the natural extension dA ∶ Ωp(E) → Ωp+1(E) we obtain the curva-
ture of A, FA = dA ○ dA ∈ Ω2(u(E)), which satisfies the familiar transforma-
tion rule

FAg = g−1FAg.

A unitary connection induces a unitary connection on any bundle derived
from (E,H), and in particular, this connection on detE is written detA.
By Chern-Weil theory, the degree of E equals

d = i

2π
∫
X

TrFA = i

2π
∫
X
FdetA.

We now explain the action of the complex gauge group on connections.
An atlas of holomorphic trivializations of E defines a holomorphic structure
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on E, and the Cauchy-Riemann operator ∂̄ acting on Cr-valued functions in
any local holomorphic chart yields a global pseudo-connection ∂̄E ∶ Ω0(E) →
Ω0,1(E), where ∂̄E ○ ∂̄E = 0. Conversely, any such pseudo-connection defines
a holomorphic structure. Since ∂̄2

E = 0 holds trivially on a Riemann surface,
any choice of pseudo-connection (which always exists) defines a holomorphic
structure on E. The space of pseudo-connections C(E) is once again affine,
and modelled on Ω0,1(gl(E)). In a local holomorphic trivialization, ∂̄Es =
∂̄s+αs, so that ∂̄E = ∂̄. We also write ∂̄α for ∂̄E when we wish to emphasize
the connection matrix. When there is no risk of confusion, we simply write
∂̄ for ∂̄E or ∂̄α. The complex gauge group Γ(GL(E)) acts on C(E) by

C(E) → C(E), ∂̄α ↦ ∂̄αg ∶= g−1 ○ ∂̄α ○ g = ∂̄α + g−1∂̄αg.

As before, the transformation rule for the connection matrix α under local
gauge transformations is

α ↦ αg = g−1αg + g−1∂̄g.

If A is a unitary connection (for some fixed Hermitian metric H), then
the projection of dA onto (0,1) forms,

∂̄A ∶= pr0,1 ○ dA,

is a pseudo-connection and hence determines a holomorphic structure; we
also define ∂A = pr1,0 ○ dA. Conversely, given the Hermitian metric H, then
to any pseudo-connection ∂̄α we can uniquely associate a unitary connection
A = A(H, ∂̄α); this is the so-called Chern connection, which has ∂̄A = ∂̄α.
This correspondence is given by

C(E) → U(E,H), α ↦ A(H, ∂̄α)

where ∂A = ∂A(H,∂̄α) is determined by the identity ∂̄(H(s1, s2)) =H(∂̄αs1, s2)+
H(s1, ∂As2). In terms of local connections matrices,

A(H, ∂̄α) = α − α∗.

The natural action of Γ(U(E,H)) on U(E,H) thus extends to an action by
elements of Γ(GL(E)) by

A(H, ∂̄α)g ∶= A(H, ∂̄αg)

or equivalently,

(3) dAg = ∂̄Ag + ∂Ag ∶= g−1 ○ ∂̄A ○ g + g∗ ○ ∂A ○ g∗−1.

Note that this reduces to the action of (2) when g ∈ Γ(U(E,H)). The
curvature transforms as

(4) FAg = g−1(FA + ∂̄A(G ⋅ ∂AG−1))g

where G = gg∗.
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2.2. Hitchin’s equations. Fix a Hermitian vector bundle (E,H) → X of
rank r and degree d. We shall be studying solutions (A,Φ) of Hitchin’s
self-duality equations [Hi87]

(5)
FA + [Φ ∧Φ∗] = −iµ(E) IdE ω,

∂̄AΦ = 0.

Here A ∈ U(E) and Φ ∈ Ω1,0(gl(E)) is called a Higgs field.
The unitary gauge group Γ(U(E)) acts on Higgs fields by conjugation

Φg ∶= g−1Φg and it is not hard to see that it therefore acts on the solu-
tion space of (5). Moreover, any solution (A,Φ) determines a Higgs bundle
(∂̄,Φ), i.e. a holomorphic structure ∂̄ = ∂̄A for which Φ is holomorphic:
Φ ∈H0(X,End(E)⊗K). To do so we simply forget the first equation in (5).
Conversely, given a Higgs bundle (∂̄,Φ), we ask whether ∂̄ can be extended
to a unitary connection A such that the first Hitchin equation holds. We
say that a Higgs bundle (∂̄,Φ) is stable if and only if µ(F ) < µ(E) for any
nontrivial proper Φ-invariant holomorphic subbundle F . (This Φ-invariance
means that Φ(F ) ⊂ F ⊗K.)

Example. The determinant of a Higgs field Φ is the holomorphic quadratic
differential det Φ ∈ H0(X,K2). Since any holomorphic section of K2 has
precisely 4(γ − 1) zeroes (counted with multiplicity) and we are assuming
that γ > 1, the set pΦ of zeroes of det Φ is nonempty, and we write X×

Φ =
X ∖ pΦ ⊊ X for its complement. (When there is no risk of confusion, we
simply write p and X×.) A Higgs field is called simple if the zeroes of det Φ
are simple; in this case, pΦ has precisely 4(γ − 1) zeroes, and by a standard
local computation, if p ∈ pΦ, then there exists a holomorphic coordinate
chart centered at p such that det Φ = −z dz2. We always work with such a
coordinate system near each p and write Φ = ϕdz so that det Φ = detϕdz2.
For instance, the so-called fiducial Higgs field Φfid

t , t < ∞ which will be
constructed in Section 3 is simple in this sense.

When the rank of E is 2 and Φ is a simple Higgs field, then necessarily
the Higgs pair (E,Φ) is stable. Indeed, if there were to exist a holomorphic
line bundle L ⊂ E which is preserved by Φ, then there are local holomorphic
coordinates and frames such that

Φ = ϕ(z)dz = (a(z) b(z)
0 c(z)) dz,

where a(z), b(z) and c(z) are holomorphic functions. Thus det Φ(z) =
a(z)c(z). Hence if this determinant vanishes simply at z = 0, then either
a(0) = 0 or c(0) = 0, but not both. On the other hand, a(z) and c(z) are
the eigenvalues of the coefficient matrix ϕ(z), and by assumption, trϕ = 0,
i.e., a(z) + c(z) = 0, so if one of these terms vanishes then so must the
other. We are grateful to Richard Wentworth for pointing out this simple
but important fact.
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More generally, (E, ∂̄,Φ) is called polystable if (E, ∂̄,Φ) = ⊕(Ej , ∂̄j ,Φj) is
a direct holomorphic sum of stable pairs (E, ∂̄j ,Φj) such that µ(E) = µ(Ej)
for all j. (Poly-)stability is clearly preserved by the action of the complex
gauge group.

Theorem A (Hitchin, Simpson). In the Γ(GL(E))-orbit of the Higgs
bundle (∂̄,Φ), there exists a pseudo-connection which can be extended to a
unitary connection A solving (5) if and only if (∂̄,Φ) is polystable. The
connection A is unique up to unitary gauge transformation.

This is due to Hitchin [Hi87] in the rank 2 case, and to Simpson [Si88, Si92]
for higher rank.

Remark. Theorem A is an existence theorem for a complex gauge trans-
formation: if A = A(H, ∂̄) is the Chern connection associated with the
polystable Higgs bundle (∂̄,Φ), then there exists (up to Γ(U(E))) a unique
g ∈ Γ(GL(E)) such that (A,Φ)g ∶= (Ag,Φg) is a solution to (5).

This result means that the moduli space

MGL(r, d) = {(∂̄,Φ) ∣ (∂̄,Φ) polystable}/Γ(GL(E))
of polystable bundles is identified with the space of solutions of (5) modulo
unitary gauge transformations:

MGL(r, d) ≅ {(A,Φ) ∣ solution of (5)}/Γ(U(E)).

Theorem B (Hitchin, Nitsure, Simpson). The moduli spaceMGL(r, d) is
a quasi-projective variety of (complex) dimension 2+ r2(2γ − 2). It contains
Ms

GL, the moduli space of stable Higgs bundles, as a smooth Zariski open
set.

This again due to Hitchin [Hi87] and Simpson [Si88] in the rank 2 and
higher rank cases, respectively, and also to Nitsure [Ni91], who proved it
using GIT methods.

Remark. If gcd(r, d) = 1, a polystable bundle is necessarily stable so that
MGL(r, d) is a smooth, quasiprojective variety.

Since Ω1(u(E)) ≅ Ω0,1(gl(E)) ∶= A, the solution space of (5) is a subspace
of A× Ā. There is a natural L2-Hermitian inner product

(6) ⟨(Ȧ, Φ̇), (Ḃ, Ψ̇)⟩ = i∫
X

Tr(Ȧ∗ ∧ Ḃ + Ḃ∗ ∧ Ȧ + Φ̇ ∧ Ψ̇∗ + Ψ̇ ∧ Φ̇∗),

and using this, A× Ā carries a natural flat hyperkähler metric. An infinite-
dimensional variant of the hyperkähler quotient construction [HKLR87] yields

Theorem C (Hitchin). The spaceMs
GL(r, d) carries a natural hyperkähler

metric; this metric is complete when gcd(r, d) = 1.

In this paper we fix the determinant line bundle of E. According to the
splitting u(r) = su(r)⊕ u(1), where su(r) is the set of trace-free elements of
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the Lie algbera u(r) and u(1) = iR, the bundle u(E) splits as su(E)⊕ iR. If
A is a unitary connection, then its curvature FA decomposes as

FA = F ⊥A +
1

r
Tr(FA) ⊗ IdE ,

where F ⊥A ∈ Ω2(su(E)) is the trace-free part of the curvature and 1
r Tr(FA)⊗

IdE is the pure trace or central part, see e.g. [LeP92]. Note that Tr(FA) ∈
Ω2(iR) is precisely the curvature of the induced connection on detE. Let
us fix a background connection A0 from now on and consider only those
connections A which induce the same connection on detE as A0 does, i.e.
A = A0 + α where α ∈ Ω1(su(E)); in other words, any such A is trace-free
“relative” to A0. We may now consider the pair of equations

(7)
F ⊥A + [Φ ∧Φ∗] = 0,

∂̄AΦ = 0,

for A trace-free relative to A0. Since the trace of a holomorphic Higgs
field is constant, we may as well restrict to trace-free Higgs fields Φ ∈
Ω1,0(sl(E)). There always exists a unitary connection A0 on E such that
TrFA0 = −ideg(E)ω, and with this as background connection, a solution of
(7) provides a solution to (5), even though the latter system is a priori more
stringent.

Define the moduli space

Mgauge
SL (r, d) ∶= {(A0 + α,Φ) ∣ solution of (7)}/Γ(SU(E)).

This does not depend in an essential way on the choice of the background
connection A0, we will choose A0 as convenience dictates.

The choices above correspond to fixing a holomorphic structure ∂̄detE on
detE. We set

MSL(r, d) ∶= {(∂̄,Φ) polystable ∣ ∂̄ induces ∂̄detE ,Tr Φ = 0}/Γ(SL(E)).
The Kobayashi-Hitchin correspondence asserts that

Mgauge
SL (r, d) ≅MSL(r, d).

The previous theorems carry over directly to the fixed determinant case,
so in particular MSL(r, d) is a smooth quasiprojective variety of complex
dimension (r2 − 1)(2γ − 2), with a hyperkähler metric which is complete
provided gcd(r, d) = 1.

Remark. If we were to consider the space of pairs (A,Φ) ∈ A0 × Ā0 which
solve (7) modulo the gauge group of the principal PU(r)-bundle, then non-
trivial isotropy groups necessarily occur, and hence the resulting moduli
space is singular, cf. Hitchin’s example [Hi87, p. 87]. It is therefore advan-
tageous to work in the vector bundle setting.

Conventions: For the rest of the paper, unless mentioned otherwise, we
restrict attention solely to the fixed determinant case for complex vector
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bundles of rank r = 2, and with degree d odd (so gcd(r, d) = 1). We also
write

M ∶=MSL(r, d), Gc ∶= Γ(SL(E)) and G ∶= Γ(SU(E));
these are the moduli space of Higgs bundles, and the complex and unitary
gauge groups, respectively. These assumptions imply that M is a smooth
quasiprojective variety of real dimension 12(γ − 1) with a complete hy-
perkähler metric.

3. The fiducial solution

Our first goal is to determine the model ‘fiducial’ solutions of Hitchin’s
equations for Higgs fields with simple zeroes. These are the elements of a
one-parameter radial family of ‘radial’ global solutions on R2, and are a key
ingredient in the gluing construction below. The limiting element of this
family is a pair (Afid

∞ ,Φ
fid
∞ ) which is singular at 0 and satisfies a decoupled

version of Hitchin’s equations:

(8) FAfid
∞

= 0, [Φfid
∞ ∧ (Φfid

∞ )∗] = 0, and ∂̄Afid
∞

Φfid
∞ = 0.

The other elements of the family, (Afid
t , tΦ

fid
t ), 0 < t < ∞, are smooth across

0, satisfy (5) (since E is trivial on C, µ(E) = 0) and desingularize the limiting
element. The existence of this family has been known for some time. Some
version of it appears at least as far back as the paper of Ceccotti and Vafa
[CeVa93], but see also the more recent paper of Gaiotto, Moore and Neitzke
[GMN13]. Its existence can also be deduced from the work of Biquard and
Boalch [BiBo04], although their method does not give the explicit formula
for it. In any case, we present an explicit derivation of this family of solutions
since this does not seem to appear in the literature. We are very grateful to
Andy Neitzke for bringing this family of fiducial solutions to our attention
and for explaining its main properties to us. We note that similar fiducial
solutions in more general settings, e.g. Higgs fields with determinants having
non-simple zeroes, or for higher rank groups, are being constructed in the
forthcoming thesis of Laura Fredrickson [F] at UT Austin.

We begin with a useful lemma.

Lemma 3.1. Let Φ and Φ′ be two Higgs fields on X with det Φ = det Φ′ such
that both Φ and Φ′ are normal on X×. Then there exists a unitary gauge
transformation g on X× such that Φg = Φ′.

Proof. Since X× is homotopy equivalent to a bouquet of circles, any complex
vector bundle over X× is topologically trivial. More generally, any fibre
bundle with connected fibre admits a global section over X×. In particular
we may identify Φ and Φ′ with functions ϕ, ϕ′ ∶X× → sl(2,C). Since ϕ and
ϕ′ are pointwise normal and have the same determinant, then locally on X×

we can find unitary gauge transformations g such that g−1ϕg = ϕ′. Hence

Cϕ,ϕ′ = {(p, gp) ∈X× × SU(2) ∣ g−1
p ϕ(p)gp = ϕ′(p)} →X×
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is a smooth fibre bundle. The typical fiber is diffeomorphic to the pointwise
stabilizer

StabSU(2) (
λ 0
0 −λ) = {(τ 0

0 τ̄
) ∣ τ ∈ S1}

which is a maximal torus S1 ⊂ SU(2). Since this is connected, there exists
a global section over X×. �

3.1. The limiting fiducial connection. We first determine the limiting
fiducial solution (Afid

∞ ,Φ
fid
∞ ), where Afid

∞ is flat and Φfid
∞ is normal. In fact, we

show that any pair (A,Φ) on C, where A is a flat unitary connection with a
simple pole at 0 and Φ is a normal Higgs field vanishing only at 0 and with
a simple zero there, can be modified by a unitary gauge transformation to
this particular model.

The construction below can be carried out either on all of C or else over
an open disc D centered at 0. To be specific, we suppose the latter. As
usual, D× =D ∖ {0}.

Let Φ be normal. If Φ is a simple Higgs field on D, there is a complex
coordinate z such that det Φ = −z dz2 on D. Fix a Hermitian metric H on E
and corresponding unitary frame so that E∣D× ≅D××C2. Define the limiting
fiducial Higgs field with respect to this frame by

(9) Φfid
∞ = ϕfid

∞ dz ∶=
⎛
⎝

0
√

∣z∣
z√
∣z∣

0
⎞
⎠
dz.

This is continuous on D and smooth on D×. By Lemma 3.1, since det Φfid
∞ =

det Φ, there is a unitary gauge transformation g on D×, unique up to the
unitary stabilizer of Φfid

∞ , which brings Φ into this fiducial form, that is,
g−1Φg = Φfid

∞ over D×. The infinitesimal complex stabilizer of Φfid
∞ is the

bundle
LC

Φfid
∞
∶= {γ ∈ sl(E) ∶ [γ,Φfid

∞ ] = 0}.
In this fixed unitary frame, γ ∈ Ω0(D×, LC

Φfid
∞
) if and only if

(10) γµ = µ( 0 1
z
∣z∣ 0) , µ ∶D× → C.

Note that γµ is skew-Hermitian if and only if eiθµ + µ̄ = 0 (where z = reiθ);
this reflects the fact that this bundle of unitary stabilizers is a nontrivial
S1-bundle over D× (cf. also the end of the proof of Lemma 4.6).

Proposition 3.2. Let A be a flat unitary connection over D× with respect
to which Φfid

∞ is holomorphic. Then there exists a unique unitary gauge
transformation g ∈ Γ(D×,SU(E)) stabilizing Φfid

∞ and such that

(11) Ag = Afid
∞ ∶= 1

8
(1 0

0 −1
)(dz

z
− dz̄
z̄

) .

Note that this limiting fiducial solution (Afid
∞ ,Φ

fid
∞ ) is defined with respect to

a fixed unitary fiducial frame.
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Proof. Write A = Ardr+Aθdθ and name the components of these coefficient
matrices with respect to the chosen fiducial frame as

Ar = ( iβ w
−w̄ −iβ) , Aθ = (iα v

−v̄ −iα)

where α, β ∶D× → R and v, w ∶D× → C are all smooth, and z = reiθ.
We now show how the fact that Φ is holomorphic and A is flat restricts

these coefficients, and then use this information to gauge away the off-
diagonal terms.

Φ holomorphic: We compute the terms in the equality

∂̄AΦfid
∞ ∶= ∂̄Φfid

∞ + [A0,1 ∧Φfid
∞ ] = 0.

First,

(12) ∂̄Φfid
∞ = 1

4r
− 1

2 eiθ ( 0 1
−eiθ 0

)dz̄ ∧ dz.

Next, using dr = 1
2(e

−iθdz + eiθdz̄) and dθ = 1
2ir(e

−iθdz − eiθdz̄), we have

A0,1 = 1
2e
iθ(Ar + i

rAθ)dz̄ =
1
2e
iθ (−

α
r + iβ w + i

rv

−w̄ − i
r v̄

α
r − iβ

)dz̄,

so that

(13) [A0,1 ∧Φfid
∞ ]

= 1

2
r1/2eiθ (e

iθw + w̄ + i
r(e

iθv + v̄) 2(−αr + iβ)
2eiθ(αr − iβ) − (eiθw + w̄ + i

r(e
iθv + v̄)))dz̄ ∧ dz.

Adding (12) to (13) and equating coefficients to zero gives α = 1
4 , β = 0, and

(14) eiθv + v̄ = eiθw + w̄ = 0.

We have used here the identity eiθu + ū = 2eiθ/2 Re(eiθ/2u) (for any u) to
separate into real and imaginary parts. Altogether, we have now obtained
that

A = ( 0 w
−w̄ 0

)dr + (i/4 v
−v̄ −i/4)dθ and

A0,1 = 1
2e
iθ ( − 1

4r w + i
rv

−w̄ − i
r v̄

1
4r

)dz̄
(15)

with v,w subject to (14).

Flatness: The equation FA = 0 expands as

∂rAθ − ∂θAr + [Ar,Aθ] = 0.

Substituting the expressions for Ar and Aθ above now give that Im(w̄v) = 0,
which is in fact the same as (14), and more significantly,

(16) ∂rv = iPw, where P = 1
i ∂θ +

1
2 .
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We now wish to find a gauge transformation gµ in the stabilizer of Φfid
∞

which simplifies A even further. We assume that gµ is the exponential of
some section γµ of the infinitesimal stabilizer bundle, so using the earlier
expression for γµ we have that

(17) gµ = ( cosh (eiθ/2µ) e−iθ/2 sinh (eiθ/2µ)
eiθ/2 sinh (eiθ/2µ) cosh (eiθ/2µ) ) =∶ ( η1 η2

eiθη2 η1
) ,

where the final equality defines η1 and η2. Note that although e±iθ/2 is only
defined on the slit domain D×

− =D× ∖ (−1,0), both η1 and η2 make sense on
all of D×.

Now, (A0,1)gµ = g−1
µ A

0,1gµ + g−1
µ ∂̄gµ, so we compute

g−1
µ ∂̄gµ = ( e2iθη2

2/4r e−iθDµ + 1
4re

iθη1η2

Dµ − 1
4re

2iθη1η2 −e2iθη2
2/4r

) dz̄,

where we have written

D = eiθ/2∂z̄eiθ/2

and are using the identity η2
1−eiθη2

2 = 1. Setting U = w+(i/r)v, and recalling
from (14) that w̄ + i

r v̄ = −e
iθU , then further computation gives

g−1
µ A

0,1gµ =
1

2
eiθ (−(1/4r)(η

2
1 + eiθη2

2) U − (1/2r)η1η2

eiθ((1/2r)η1η2 +U) (1/4r)(η2
1 + eiθη2

2)
) dz̄.

Adding these terms together yields

(18) (A0,1)gµ = ( − 1
8re

iθ e−iθDµ + 1
2e
iθU

Dµ + 1
2e

2iθU 1
8re

iθ ) dz̄.

Recall that our goal is to gauge away the off-diagonal components. To do
this, we must choose µ so that Dµ + 1

2e
2iθU = 0. Using that

D = eiθ (∂z̄ −
eiθ

4r
) , and ∂z̄ =

1

2
eiθ (∂r +

i

r
∂θ) ,

we write this equation, in terms of the operator P in (16), as

(19) (∂r −
1

r
P )µ = −U ∶= −w − i

r
v.

We solve this in a slightly unexpected way, by showing that the individual
equations ∂rµ = −w, Pµ = iv are compatible. Indeed, ∂rPµ = P∂rµ is the
same as ∂r(iv) = P (−w), which follows precisely from the flatness of A (as
must be the case!). Noting that P is invertible, we can now simply take
µ = P −1(iv), and this satisfies both equations.

The final point is that if we write P = −Q, where Q = P −1, then Q(eiθµ) =
eiθPµ, so that

Q(eiθµ + µ) = eiθPµ − Pµ̄ = eiθiv − (iv) = i(eiθv + v̄) = 0,
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by (14) again. Since Q is also invertible, eiθµ + µ̄ = 0, hence γµ is skew-
Hermitian and gµ is a unitary gauge transformation, so that Ag is still
flat. �

3.2. The desingularized fiducial solutions. We now find a family of
solutions (Afid

t ,Φ
fid
t ) of Hitchin’s rescaled equation

(20) Ht(A,Φ) = (FA + t2[Φ ∧Φ∗], ∂̄AΦ), t > 0,

which are smooth across z = 0 and which converge to (Afid
∞ ,Φ

fid
∞ ) as t ↗∞.

Since this limiting pair is purely diagonal and purely off-diagonal, respec-
tively, in the fiducial frame, it is natural to impose that Afid

t and Φfid
t have

the same form. Thus we make the ansatz that in the same fiducial frame,

(21)

Afid
t = ft(r)(

1 0
0 −1

)(dz
z − dz̄

z̄
) ,

Φfid
t = ϕfid

t dz = ( 0 r1/2eht(r)

r1/2eiθe−ht(r) 0
) dz.

We calculate that,

FAfid
t
+ t2[ϕfid

t ∧ (ϕfid
t )∗]

= ((1

z̄
∂̄zft −

1

z
∂̄z̄ft)dz ∧ dz̄ + 2rt2 sinh(2ht)) σ1

= (1

r
∂rft − 2rt2 sinh(2ht))σ1,

where σ1 = (1 0
0 −1

), and in addition,

∂̄Afid
t

Φfid
t = (∂̄z̄ϕfid

t − ft
z̄
[σ1, ϕ

fid
t ])dz̄ ∧ dz = 0.

After some computation, we are led to the pair of equations

∂rft(r) = 2t2r2 sinh 2ht(22)

ft(r) = 1

8
+ 1

4
r∂rht(r).(23)

Now apply r∂r to (23) and insert into (22) to get

(24) (r∂r)2h = 8t2r3 sinh 2h.

To simplify this, set ρ = 8
3 tr

3/2, so that r∂r = 3
2ρ∂ρ. Writing ht(r) = ψ(ρ) for

some function ψ, we obtain

(25) (ρ∂ρ)2ψ = 1

2
ρ2 sinh 2ψ.

which is t-independent. Once we identify a suitable solution of this equation,
we will have the solutions

(26) ht(r) = ψ(
8

3
tr3/2), ft(r) =

1

8
+ 1

4
r∂rht
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of the original system. The equation (25) is of Painlevé type. It is known
[MTW77], [Wi01] that there exists a unique solution which decays exponen-
tially and has a the correct behavior as ρ→ 0, namely

(27)

● ψ(ρ) ∼ − log(ρ1/3 (∑∞
j=0 ajρ

4j/3) , ρ↘ 0

● ψ(ρ) ∼K0(ρ) ∼ ρ−1/2e−ρ, ρ↗∞
● ψ(ρ) is monotonically decreasing (and hence strictly positive).

The notation A ∼ B indicates a complete asymptotic expansion. In the first
case, for example, for each N ∈ N,

RRRRRRRRRRR
ρ−1/3e−ψ(ρ) −

N

∑
j=0

ajρ
4j/3

RRRRRRRRRRR
≤ Cρ4(N+1)/3,

with a corresponding expansion for any derivative. The function K0(ρ)
is the Macdonald function (or Bessel function of imaginary argument) of
order 0; it has a complete asymptotic expansion involving terms of the form
e−ρρ−1/2−j , j ≥ 0, as ρ→∞.

All of these calculations were sketched to us in a personal communication
by Andy Neitzke, and we gratefully acknowledge his assistance.

From (27) we can now compute the asymptotics of ft(r) and ht(r).

Lemma 3.3. The functions ft(r) and ht(r) have the following properties:

a) As a function of r, ft has a double zero at r = 0 and increases monoton-
ically from ft(0) = 0 to the limiting value 1/8 as r ↗ ∞. In particular,
0 ≤ ft ≤ 1

8 .
b) As a function of t, ft is also monotone increasing. Further, limt↗∞ ft =
f∞ ≡ 1

8 uniformly in C∞ on any half-line [r0,∞), for r0 > 0.
c) There are uniform estimates

sup
r>0

r−1ft(r) ≤ Ct2/3 and sup
r>0

r−2ft(r) ≤ Ct4/3,

where C is independent of t.
d) When t is fixed and r ↘ 0, ht(r) ∼ −1

2 log r + b0 + . . ., where b0 is an

explicit constant. On the other hand, ∣ht(r)∣ ≤ C exp(−8
3 tr

3/2)/(tr3/2)1/2

uniformly for t ≥ t0 > 0, r ≥ r0 > 0.

Proof. Define η(ρ) = 1
8 +

3
8ρψ

′(ρ), where ρ = 8t
3 r

3/2, so that ft(r) = η(ρ). By
(25),

η′(ρ) = 3
8ρ(ψ

′′(ρ) + ρ−1ψ′(ρ)) = 3
16ρ sinh(2ψ(ρ)),

which implies that η′(ρ) ≥ 0 since ψ ≥ 0. In fact, (27) also implies that
limρ→∞ η(ρ) = 1

8 and

(28) η(ρ) ∼ 1

8
+ 3

8
ρ(− 1

3ρ
− 4a1

3a0
ρ

1
3 +O(ρ

4
3 )) = −a1

a0
ρ

4
3 +O(ρ

7
3 ),
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when ρ is small, so ft has a double zero at 0 as a function of r. This proves
a) and b). Substituting r = (3ρ

8t )
2/3 now gives

ft
r
= (8t

3
)

2/3 η(ρ)
ρ2/3 and

ft
r2

= (8t

3
)

4/3 η(ρ)
ρ4/3 .

The estimates c) thus follow from (28), which implies that η(ρ)/ρ2/3 and

η(ρ)/ρ4/3 are bounded for ρ > 0. Finally, d) also follows directly from (27).
�

Corollary 3.4. The solutions (Afid
t ,Φ

fid
t ) of the rescaled Hitchin equation

are smooth at z = 0. Further, they converge exponentially in t, uniformly in
C∞ on any exterior region r ≥ r0 > 0 to (Afid

∞ ,Φ
fid
∞ ).

Proof. The preceding Lemma gives that for fixed t, r1/2eht(r) ∼ c0 + . . . and
r1/2eiθe−ht(r) ∼ z + . . . as r → 0, and similarly, ft ∼ c1∣z∣2 + . . ., while if r is
fixed, then

(Afid
t ,Φ

fid
t ) Ð→ (Afid

∞ ,Φ
fid
∞ )

exponentially in t, uniformly in C∞ on any exterior region r ≥ r0 > 0. �

3.3. The complex gauge orbit of the fiducial solutions. We show now
that all of the fiducial solutions (Afid

t ,Φ
fid
t ) are equivalent under the complex

gauge action. Towards that end, define in the fixed fiducial frame the pair

A0 = 0, Φ0 = (0 1
z 0

) dz.

Proposition 3.5. 1. Over D, the fiducial solution (Afid
t ,Φ

fid
t ) is complex

gauge equivalent to (A0,Φ0). In particular, all fiducial solutions for 0 <
t < ∞ are mutually complex gauge equivalent.

2. Over D×, the limiting fiducial solution (Afid
∞ ,Φ

fid
∞ ) is complex gauge equiv-

alent to (A0,Φ0) by the singular gauge transformation

g∞ = (∣z∣
− 1

4 0

0 ∣z∣ 14
) ,

i.e., (A0,Φ0)g∞ = (Afid
∞ ,Φ

fid
∞ ).

Remark. From (27) it follows that Afid
t → A0 as t → 0. However, ht(r) ∼

− log 8
3a0

√
rt

1
3 for small t so that Φfid

t actually diverges as t→ 0.

Proof. The second assertion is a straightforward computation so we focus
on the first. For simplicity, omit the superscript ‘fid’ from all quantities. We
seek a complex gauge transformation of the form

g = (e
ut 0
0 e−ut

) ∈ Γ(D,SL(E)), ut = ut(r),
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so that (A0,Φ0)g = (Afid
t ,Φ

fid
t ). Since ∂z̄ = 1

2e
iθ∂r on rotationally symmetric

functions and A0 = 0, we have

g−1 ○ ∂̄A0 ○ g = ∂̄ + g−1∂̄g = ∂̄ + 1

2
eiθ (∂rut 0

0 −∂rut)dz̄.

On the other hand,

∂̄At = ∂̄ − ft (
1 0
0 −1

) dz̄
z̄
.

Thus g−1 ○ ∂̄A0 ○ g = ∂̄At if and only if

∂rut = −
1

4r
− 1

2
∂rht,

which has the solution

ut = −
1

4
log r − 1

2
ht.

Hence Ag0 = At; moreover

g−1Φ0g = ( 0 e−2ut

ze2ut )dz,

and e−2ut = r 1
2 eht , so that g−1Φ0g = Φt. �

4. Limiting configurations

We now start on the global aspects of this problem. As explained in
the introduction, our existence theorem for solutions of Eq. (5) involves
patching together copies of the fiducial solution with what we call a limiting
configuration. We have already explored these fiducial solutions, and our
goal in this section is to describe the other building block, the limiting
configurations.

Definition 4.1. Let (∂̄,Φ) be a Higgs bundle, where Φ is simple, and sup-
pose that H is a Hermitian metric on the complex vector bundle E. A
limiting configuration is a Higgs pair (A∞,Φ∞) over X× which satisfies the
decoupled Hitchin equations

(29) F ⊥A∞ = 0, [Φ∞ ∧Φ∗
∞] = 0, ∂̄A∞Φ∞ = 0,

and which agrees with (Afid
∞ ,Φ

fid
∞ ) near each point of pΦ, with respect to

some holomorphic coordinate system and unitary frame for E. Since we are
in the fixed determinant case, we require A∞ and Φ∞ to be trace-free, the
former relative to some fixed background connection.

The main objective in this section is to prove the following

Theorem 4.1. Let (∂̄,Φ) be a Higgs bundle with simple Higgs field. Then
there is a Hermitian metric H0 so that if A = A(H0, ∂̄) is the associated
Chern connection then the pair (A,Φ) is complex gauge equivalent via some
transformation g∞ ∈ Γ(X×,SL(E)) to a limiting configuration (A∞,Φ∞),
i.e., (A∞,Φ∞) ∶= (A,Φ)g∞.
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Remark. As we will see below (Section 6, Theorem 6.7), every limiting
configuration arises in this way.

There are several steps in the proof. In the next subsection we describe
a certain normal form for any simple Higgs field Φ on all of X. We then
consider the problem of using some of the remaining gauge freedom (i.e.,
only those gauge transformations which leave Φ in this normal form) to
transform an initial connection to one with vanishing trace-free curvature.
This requires a brief foray into the theory of conic operators. After these
steps we are left with a limiting configuration in the sense of Definition 4.1.
The final subsection considers the local deformation theory of the space of
limiting configurations.

4.1. Normal form for the Higgs field. Fix the holomorphic bundle
(E, ∂̄) and let Φ be a simple Higgs field. We now show that Φ can be
brought to a simple normal form by a complex gauge transformation. More
specifically, we can smoothly “off-diagonalize” Φ near each of its zeroes, and
make it normal away from these zeroes. Later in this section, we construct
from (E, ∂̄) (and an accompanying connection) a limiting configuration on
all of X. Using Proposition 3.5, we can then patch in a smooth fiducial
solution near each of the zeroes. The resulting pairs (A,Φ) are then the
first approximation to global solutions of Hitchin’s equations.

The transformation of Φ near a simple zero to this normal form is ele-
mentary.

Lemma 4.2. In a neighbourhood of any simple zero of det Φ, there is a
complex coordinate z and a local complex frame of E such that

Φ = (0 1
z 0

)dz, det Φ = −z dz2.

The frame can be chosen to be holomorphic if Φ is holomorphic.

Proof. Choose any complex frame for E near some p ∈ pΦ. Writing Φ = ϕdz
as usual, then since p is a simple zero, ϕ(0) must be nilpotent, but not the
zero matrix (for if it were, then detϕ would vanish like z2). Applying a
constant gauge transformation, we may thus assume that in some frame,

ϕ(z) = (a(z) b(z)
c(z) −a(z)) , with ϕ(0) = (0 1

0 0
) .

Since
√
b(z) is well-defined and smooth near 0, we can define the complex

unimodular gauge transformation

g(z) = 1√
b(z)

( b(z) 0
−a(z) 1

) ,

and then it is straightforward to check that g−1Φg takes the form in the
statement of this lemma. �
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Remark. If the Higgs bundle (∂̄,Φ) is described using spectral curves as
in [Hi87, Section 8], then Lemma 4.2 is also a direct consequence of the
pushforward-pullback formula for vector bundles (see for instance [Hi99,
Chapter 2, Proposition 4.2]).

Before modifying Φ with a gauge transformation on the rest of the surface,
let us choose a Hermitian metricH0 which is particularly well adapted to this
Φ. The important part of this definition is local near each zero pi ∈ pΦ. Thus
choose a coordinate disc (Ui, zi) centered at pi and a holomorphic frame so
that Φ∣Ui equals the expression in Lemma 4.2. Define H0 in Ui by declaring
this frame to be unitary. Now extend H0 arbitrarily on the remaining part of
X. Associated to H0 is its Chern connection A. The existence of a unitary
holomorphic frame near each puncture implies that the connection matrix
of A in this frame vanishes. Finally, using Proposition 3.5 we can choose a
complex gauge transformation g ∈ Γ(⋃U×

i ,SL(E)) such that (A,Φ)g agrees
with the fiducial solution.

We now wish to extend this g to the rest of X so that Φg is normal
outside the Ui. To motivate this, recall first that any invertible matrix
ϕ ∈ sl(2,C) may be conjugated (at a point) to be trace-free and diagonal.
However, this diagonalization is impossible to do consistently on X× because
the eigenspaces are interchanged when traversing a loop surrounding any one
of the pi. We settle instead on the less ambitious goal of conjugating it to a
normal matrix.

Define the subsets Dϕ and Nϕ of elements in SL(2,C) which diagonalize
and normalize ϕ, respectively, at any point. Fixing a basepoint gϕ ∈ Dϕ,
then

Dϕ = {gϕ (µ 0
0 µ−1) ∣ µ ∈ C∗} ∪ {gϕ ( 0 iµ

iµ−1 0
) ∣ µ ∈ C∗}

and

Nϕ =Dϕ ⋅ SU(2) = {gϕ (µ 0
0 µ−1)M ∣ µ ∈ C∗, M ∈ SU(2)} .

Because we have chosen the Hermitian metric H0, we can speak about
Hermitian adjoints and normal endomorphisms. Since any complex vector
bundle is trivial over X×, we can write Φ = ϕ⊗κ on this punctured surface,
where κ is a trivialization of K over X× and ϕ ∈ C∞(X×; sl(2,C)). There
is a smooth fibration Nϕ → X×, where each fibre Nϕ(x) is diffeomorphic
to N ∶= NId. If g ∶ U → SL(2,C) diagonalizes ϕ over U , then ĝ(x,N) =
g(x)N is a local trivialization of Nϕ over U . Since the complex square root
is well-defined over simply-connected sets, such a section g always exists
locally. However, the fibres N are homotopy-equivalent to SU(2) ≅ S3,
while X× retracts onto a bouquet of circles. There are thus no obstructions
to extending sections. This proves the

Lemma 4.3. Any normalizing local section g ∶ U → Nϕ on an open set
U ⊂ X× extends to a global section X× → Nϕ. In particular, there exists a
complex frame of E∣X× with respect to which Φ is a normal matrix.
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4.2. Gauging away the trace-free part of the curvature. We can at
last start the proof of Theorem 4.1, and do so with a general observation.
Given a Higgs pair (A,Φ) where Φ is simple, Lemma 4.3 produces a field
gauge-equivalent to Φ which is normal on X×, so we now assume that Φ
is normal. This normalizing complex gauge transformation is not unique,
however; we shall show how to use the remaining gauge freedom to transform
A to a projectively flat unitary connection, i.e., one for which F ⊥A = 0.

Recall now from Section 3.1 that the infinitesimal complex stabilizer of
Φ is a holomorphic line bundle LC

Φ = {γ ∈ sl(E) ∣ [γ,Φ] = 0}. Thus LΦ ∶=
LC

Φ∩su(E) and iLΦ are the skew-Hermitian and Hermitian elements. These
are real line bundles over X×. The Jacobi identity shows that LΦ is closed
under the bracket [⋅ , ⋅] = 0.

Lemma 4.4. If Φ is normal, and if A is a unitary connection such that
∂̄AΦ = 0, then F ⊥A ∈ Ω2(LΦ).

Proof. This is a purely local statement. Choose a unitary eigenframe for Φ,
so in some local complex coordinate z,

Φ = ( λ 0
0 −λ )dz.

The connection form α = α0,1 − (α0,1)∗ is determined by its (0,1)-part

α0,1 = ( a b
c d

)dz̄.

Now

∂̄AΦ = (( ∂z̄λ 0
0 −∂z̄λ ) + [( a b

c d
) ,( λ 0

0 −λ )])dz̄ ∧ dz

= ( ∂z̄λ −2bλ
2cλ −∂z̄λ )dz̄ ∧ dz = 0

implies b = c = 0, so

(30) α0,1 = ( a 0
0 d

)dz̄.

In particular, [α ∧ α] = 0, so FA = dα and hence

F ⊥A = (Re∂z(a − d) 0
0 Re∂z(d − a))dz ∧ dz̄,

as claimed. �

The bundles LΦ and iLΦ are parallel with respect to the induced unitary
connection on gl(E). Indeed, dAΦ = 0 (the (1,0) part of the derivative
automatically vanishes in this dimension), so [dAγ ∧ Φ] = dA[γ,Φ] = 0. In
particular, the connection Laplacian

∆A ∶= d∗AdA ∶ Ω0(isu(E)) → Ω0(isu(E))
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restricts to a map Ω0(iLΦ) → Ω0(iLΦ).
Proposition 4.5. If A is a unitary connection and γ ∈ Ω0(iLΦ), then
F ⊥
Aexp(γ) = 0 if and only if γ is a solution to the Poisson equation

(31) ∆Aγ = i ∗ F ⊥A.
Proof. By Eq. (4), if g ∈ Γ(SL(E)), then

F ⊥Ag = g−1(F ⊥A + ∂̄A(gg∗∂A(gg∗)−1))g.
Since γ is Hermitian, g = exp(γ) = g∗, and so Ag is projectively flat provided
that

(32) F ⊥A + ∂̄A( exp(2γ)∂A exp(−2γ)) = 0.

Computing in a local unitary eigenframe for Φ then gives

∂A exp(−2γ) = −2 exp(−2γ)∂Aγ
Ô⇒ ∂̄A( exp(2γ)∂A exp(−2γ)) = −2∂̄A∂Aγ.

Denote by Λ the contraction with the Kähler form ω of X. Then, by [Ni00,
Prop. 1.4.21-22],

2iΛ∂̄A∂Aγ = ∆Aγ − 2iΛ[FA, γ].
We use here the fact, which is straightforward to verify, that the induced
connection End(A) on End(E) has curvature satisfying FEnd(A)γ = [FA, γ].
However, by Lemma 4.4, Λ[FA, γ] = ∗[FA, γ] = ∗[F ⊥A, γ] = 0, so (32) becomes
∆Aγ = i ∗ F ⊥A. �

4.3. Indicial roots. At this point we have produced a Hermitian metric H0

and a complex gauge transformation g0 ∈ Γ(X×,SL(E)) such that (A,Φ)g0

consists of a normal Higgs field Φg0 and in an appropriate unitary frame,
(A,Φ)g0 is fiducial near each pi ∈ pΦ.

To simplify notation, let us replace (A,Φ)g0 by (A,Φ) until further notice
(near the end of this subsection). Because of the simple pole of A, the
Poisson equation (31) is an example of an elliptic conic operator, and we
shall appeal to the theory of these operators to describe how to solve it. We
refer to [MaMo11] and the references therein for more on this theory. To be
explicit, introduce polar coordinates in each punctured disk U×, and fix a
trivialization of iLΦ there to identify sections with functions γ ∶ U× → isu(2).
There is unitary frame in U× so that

(33) A = αdθ = 1

4
(i 0

0 −i)dθ.

The associated connection Laplacian is

∆A = ∇∗
A∇A = − 1

r2
(∇2

r∂r +∇
2
∂θ
) .

In the frame of (33), ∇r∂r = r∂r and ∇∂θ = ∂θ + α, hence

∆Aγ = −
1

r2
((r∂r)2γ + ∂2

θγ + 2[α,∂θγ] + [α, [α, γ]]) = −(∂2
r +

1

r
∂r +

1

r2
T )γ



22 RAFE MAZZEO, JAN SWOBODA, HARTMUT WEISS, AND FREDERIK WITT

where T is the r-independent tangential operator, acting on sections of the
restriction of su(E) over the S1 link. The coefficients of ∆A are smooth
away from pΦ, and are polyhomogeneous at these points. In other words,
near each such point, any coefficient a has a complete asymptotic expansion

(34) a ∼ ∑
j

Nj

∑
k=0

rνj(log r)kaj,k(θ),

with a corresponding expansion for each of its derivatives. We encode the
exponents which appear in this expansion as an index set {νj ,Nj} ⊂ C ×N,
which has the property that Reνj →∞ as j →∞.

Definition 4.2. A number ν ∈ C is called an indicial root for ∆A if there
exists some ζ = ζ(θ) such that ∆A(rνζ(θ)) = O(rν−1) (rather than the
expected rate O(rν−2)). We let Γ(∆A) denote the set of indicial roots of
∆A.

Thus ν is an indicial root provided there is some leading order cancella-
tion. It is not hard to see that ν ∈ Γ(∆A) if and only if −ν2 is an eigenvalue
for the tangential operator of ∆A and ζ is the corresponding eigenfunction,
i.e., (∇2

∂θ
+ ν2)ζ(θ) = 0. Proposition 4.7 below indicates the importance of

this notion. Before turning to this, however, we compute the indicial roots
for the connection Laplacian.

Lemma 4.6. The set of indicial roots of ∆A on sections of isu(E) is
Γ(∆A) = 1

2Z. On the other hand, Γ(∆A∣iLΦ
) = 1

2 +Z.

Proof. This is a local computation near each pi, so we work in the fixed
fiducial frame near any such point. Let {σ1, σ2, σ3} be the standard basis
of su(2), i.e.

(35) σ1 = (i 0
0 −i) , σ2 = ( 0 1

−1 0
) , σ3 = (0 i

i 0
) .

Then [σ1, σ2] = 2σ3, [σ2, σ3] = 2σ1, [σ3, σ1] = 2σ2 and the connection matrix
α in (33) equals σ1/4. Thus writing

ζ = iζ1σ1 + iζ2σ2 + iζ3σ3,

then

[α,∂θζ] = 1
2(−∂θζ

3iσ2 + ∂θζ2iσ3), [α, [α, ζ]] = −1
4(ζ

2iσ2 + ζ3iσ3),
and hence

∇2
∂θ

⎛
⎜
⎝

ζ1

ζ2

ζ3

⎞
⎟
⎠
=
⎛
⎜
⎝

∂2
θζ

1

∂2
θζ

2 − ∂θζ3 − 1
4ζ

2

∂2
θζ3 + ∂θζ2 − 1

4ζ
3

⎞
⎟
⎠
.

Thus ∇2
∂θ
ζ + ν2ζ = 0 if and only if

(36) (∂2
θ + ν2)ζ1 = 0, and

(∂2
θ − 1

4 + ν
2)ζ2 − ∂θζ3 = 0,

(∂2
θ − 1

4 + ν
2)ζ3 + ∂θζ2 = 0.
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The first equation here is uncoupled, and its indicial roots are the integers.
On the other hand, restricting the coupled system to the span of ζ`(θ) =
ei`θ/

√
2π, ` ∈ Z, then there is a homogeneous solution if and only if

det(−`
2 − 1

4 + ν
2 −i`

i` −`2 − 1
4 + ν

2) = 0,

which occurs precisely when ν = ±∣`± 1/2∣. Putting these two cases together
shows that every `/2, ` ∈ Z, is an indicial root.

Let us now compute the indicial roots for the restriction of ∆A to sec-
tions of iLΦ. In U , where Φ is in fiducial form, iLΦ is spanned by σ(θ) =
sin(θ/2)iσ2 + cos(θ/2)iσ3 (which equals −e−iθ/2γ1 in the notation of Sec-
tion 3.1). Write ζ(θ) = f(θ)σ(θ) with f(2π) = −f(0). Then ∇2

∂θ
ζ + ν2ζ = 0

if and only if ∂2
θf + ν2f = 0. The space {f ∈ H2(R) ∣ f(θ + 2π) = −f(θ)}

is spanned by the functions {ζ`+1/2}`∈Z, so this equation has a nontrivial
solution if and only if ν ∈ Z + 1/2. �

We finally turn to the problem of solvability of (31). To state the main
result, let us first introduce appropriate function spaces. Let Vb denote the
span over C∞ of the vector fields r∂r and ∂θ. The corresponding L2-based
weighted b-Sobolev spaces are defined as follows. First, for ` ∈ N, set

H`
b(su(E)) = {u ∈ L2(X) ∣ V1 . . . Vju ∈ L2(su(E)) for all j ≤ `, Vi ∈ Vb},

and then define, for δ ∈ R,

rδH`
b(su(E)) = {rδu ∣ u ∈H`

b(su(E))}.

Since the area form is rdrdθ, then locally near r = 0,

rν ∈ rδH`
b ⇔ ν > δ − 1.

This explains various index shifts below. We note, in particular, that

−1/2 < ν < 1/2⇔ 1/2 < δ < 3/2.

From the basic definitions,

∆A ∶ rδH`+2
b (iLΦ) → rδ−2H`

b(iLΦ)

is bounded for every δ and `. The main result shows when this map is
Fredholm.

Proposition 4.7. Fix a real number ν /∈ Γ(∆A∣iLΦ
) and define δ = ν + 1.

i) The operator

∆A ∶ rδH`+2
b (su(E)) → rδ−2H`

b(su(E))

is Fredholm, with index and nullspace remaining constant as δ varies
over each connected component of 1 + (R ∖ Γ(∆A)).
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ii) Suppose that ∆Aζ = η ∈ rδ−2H`
b(su(E)), where ζ ∈ rδL2(su(E)).

Then ζ ∈ rδH`+2
b (su(E)). If η is polyhomogeneous, then so is ζ,

and the exponents in the expansion of ζ are determined by the expo-
nents in the expansion for η and the indicial roots νi ∈ Γ(∆A) with
νi > δ − 1. In particular, any element of the nullspace of ∆A is poly-
homogeneous, with terms in its expansion determined entirely by the
indicial roots in this range.

This is a straightforward adaptation of [MaMo11, Proposition 5 and 6].
The proof can be found in [Ma91]

The particular result needed for our immediate purposes is the

Proposition 4.8. The mapping

(37) ∆A ∶ rδH`+2
b (iLΦ) → rδ−2H`

b(iLΦ)

is an isomorphism when 1/2 < δ < 3/2.

Proof. Since the interval (−1/2,1/2) contains no indicial roots, Proposi-
tion 4.7 shows that this map is Fredholm. The final statement of that
result shows that any element of the nullspace of (37), with δ in this range,

is polyhomogeneous with leading term r1/2. We shall show below that this
implies that the nullspace is trivial. One further general remark is that the
adjoint of (37) with weight δ can be identified with the corresponding map
with weight 2− δ. Since the interval (1/2,3/2) is invariant under this reflec-
tion, it follows that the cokernel is also trivial, or in other words, (37) is an
isomorphism as claimed.

Thus it suffices to check that this mapping is injective, and we avail
ourselves of the fact that if ∆Aγ = 0 with ϕ ∈ rδL2

b , 1/2 < δ < 3/2, then γ is

polyhomogeneous with leading term r1/2.
Set X×

ε =X× ∖⋃Bε(pi). With γ as above, we have

0 = ∫
X×
ε

⟨∆Aγ, γ⟩ = ∫
X×
ε

∣dAγ∣2 + ∫
∂X×

ε

⟨∂νγ, γ⟩.

Since γ ∼ r1/2 and ∂νγ ∼ r−1/2, and the length of ∂X×
ε is of order ε, the

boundary term tends to zero. This proves that γ is parallel with respect to
A. However, since it vanishes as r → 0, it must be identically 0. This proves
the result. �

We apply this as follows. Let A be the connection obtained at the end
of the last subsection. Although it has simple poles at the points of mΦ, it
is flat in a neighborhood of these points. This means that the right hand
side of (31) vanishes near each pi, hence the solution γ of this equation is

polyhomogeneous and vanishes like r1/2 at these points. We obtain, there-
fore, a complex gauge transformation g1 = expγ such that Φg1 = Φ and the
trace-free part of the curvature of Ag1 vanishes.
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Resetting notation back to the initial Higgs pair (A,Φ), we have now
produced a gauge-equivalent Higgs pair (A,Φ)g0g1 consisting of a projec-
tively flat unitary connection A and a normal Higgs field which is fiducial
near the punctures in a certain unitary frame. Note that Ag0g1 may not
be in fiducial form, but applying Proposition 3.2 gives a unitary gauge
transformation g2 ∈ Γ(⋃U×

i ,U(E)) which stabilizes Φg0 and which can
be extended to a global unitary gauge transformation over X×. Finally,
g∞ = g2g1g0 ∈ Γ(X×,SL(E)) is the complex gauge transformation for which
we have been searching. This finishes the proof of Theorem 4.1. ∎

4.4. Deformation theory of limiting configurations. Fix a holomor-
phic quadratic differential q and consider limiting configurations (A∞,Φ∞)
with det Φ∞ = q. We want to study the moduli space of these up to
unitary gauge transformations. By Lemma 3.1 again, we see that if Φ∞
and Φ′

∞ are Higgs fields with det Φ∞ = det Φ′
∞ and which are normal on

X× = X ∖ pΦ∞
, then there exists a gauge transformation g ∈ Γ(X×,SU(E))

such that g−1Φ∞g = Φ′
∞. This leads us to study the solutions of

∂̄AΦ∞ = 0, F ⊥A = 0

up to the action of the stabilizer of Φ∞ in Γ(X×,SU(E)). Writing A =
A∞ + α, α ∈ Ω1(su(E)), this system is equivalent to

[α ∧Φ∞] = 0, dA∞α + α ∧ α = 0.

Lemma 4.9. For α ∈ Ω1(su(E)) and Φ ∈ Ω1,0(sl(E)) normal the following
statements are equivalent:

i) [α ∧Φ] = 0;
ii) α ∈ Ω1(LΦ).

Proof. Decompose α = α1,0 +α0,1. Then [α∧Φ] = [α0,1 ∧Φ] for dimensional
reasons. Computing locally, i.e. writing α0,1 = αz̄ dz̄ and Φ = ϕdz, we get

[α0,1 ∧Φ] = [ϕ,αz̄]dz ∧ dz̄.
Assuming that [α ∧ Φ] = 0 we therefore obtain α0,1 ∈ Ω0,1(LC

Φ). Similarly,

α1,0 ∈ Ω1,0(LC
Φ∗). Now if Φ is normal, then LΦ = LΦ∗ , such that α ∈ Ω1(LΦ).

The converse is trivial. �

The determination of the infinitesimal deformation space amounts to a
cohomology computation:

Lemma 4.10. If all zeroes of q are simple, then

dimRH
1(X×;LΦ∞

) = 6γ − 6,

where γ is the genus of X.

Proof. Since L∞ is a real line bundle,

χ(X×;LΦ∞) = χ(X×) = 2 − 2γ − k
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where k = ∣p∣ is the number of zeroes. There are no parallel sections since
LΦ∞

is twisted near each pi, i.e., H0(X×;LΦ∞
) = 0. With M = X ∖Bε(p)

(so ∂M is a union of k circles), Poincaré duality yields

H2(X×;LΦ∞
) =H2(M ;LΦ∞

) =H0(M,∂M ;LΦ∞
) = 0.

Therefore

dimRH
1(X×;LΦ∞

) = k + 2γ − 2 = 4γ − 4 + 2γ − 2 = 6γ − 6

as claimed. �

We see finally that in the long exact cohomology sequence for the pair
(M,∂M), the natural map

H1(M,∂M ;LΦ∞
) Ð→H1(M ;LΦ∞

)
must be an isomorphism.

Corollary 4.11. The moduli space of limiting configurations with determi-
nant equal to a fixed holomorphic quadratic differential q with simple zeroes
is a torus of dimension 6γ − 6.

Proof. The action of g ∈ StabΦ∞
on a connection A is given by

g−1 ○ dA ○ g = dA + g−1(dAg) = dA + dA log g

where g is a section of a nontrivial circle bundle (and log g a multivalued
section of LΦ∞

). Therefore the moduli space under consideration is simply
the quotient of the de Rham cohomology space H1(X×;LΦ∞

) by the lattice
of classes with integer periods. The result thus follows from the previous
lemma. �

Remark. This is consistent with [Hi87, Theorem 8.1], where it is shown
that the space of Higgs bundles (∂̄,Φ) with fixed determinant and with
simple zeroes is a (3γ − 3)-dimensional Prym variety (and thus a (6γ − 6)-
dimensional real torus).

5. The linearized problem

5.1. Linearization of the Hitchin operator. For any Hermitian vector
bundle V → X with connection ∇, denote by W k,p(V ) the usual Sobolev
space of sections s with ∇js ∈ Lp, j ≤ k; we adopt the usual shorthand,
writing Hk(V ) when p = 2, etc. More generally, we also consider W k,p

sections of fibre bundles.
Since we are in the fixed determinant case, we fix a background connection

A0 now and consider the Hitchin operator

Ht(A,Φ) = (F ⊥A + t2[Φ ∧Φ∗], ∂̄AΦ)
for connections A which are trace-less relative to A0 and trace-less Higgs
fields Φ. We further consider the orbit map

(38) O(A,Φ)(γ) = (A,Φ)g = (Ag,Φg), g = exp(γ).
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Our ultimate goal is to find a point in the complex gauge orbit of a given
Higgs pair (A,Φ) which is in the nullspace of Ht = 0. Since the condition
that ∂̄AΦ = 0 is preserved under the complex gauge group, we in fact only
need to find a solution of

(39) Ft(γ) ∶= pr1 ○Ht ○ O(A,Φ)(exp(γ)) = 0.

More explicitly, we wish to solve

F ⊥Ag + t2[Φg ∧ (Φg)∗] = 0, g = exp(γ).
Using the continuity of the multiplication mapsH1⋅H1 → L2 andH2⋅H1 →

H1, it is straightforward that the three maps

Ht∶H1(Λ1 ⊗ su(E) ⊕Λ1,0 ⊗ sl(E)) → L2(Λ2 ⊗ su(E) ⊕Λ1,1 ⊗ sl(E)),

O(A,Φ)∶H2(isu(E)) →H1(Λ1 ⊗ su(E) ⊕Λ1,0 ⊗ sl(E)),(40)

Ft∶H2(isu(E)) → L2(Λ2 ⊗ su(E)),
are all well-defined and smooth.

We now compute the linearizations of these mappings. First, the differ-
ential at g = Id of (38) is

Λ(A,Φ)γ = (ΛA(γ),ΛΦ(γ)) = (∂̄Aγ − ∂Aγ∗, [Φ, γ]),
so when γ ∈ Ω0(isu(E)),

Λ(A,Φ)γ = (∂̄Aγ − ∂Aγ, [Φ, γ]).
Next,

DHt (
Ȧ

Φ̇
) = ( dA t2([Φ ∧ ⋅ ∗] + [Φ∗ ∧ ⋅ ])

[Φ ∧ ⋅ ] ∂̄A
)(Ȧ

Φ̇
)

whence

(DHt ○Λ(A,Φ))(γ) = ((∂A∂̄A − ∂̄A∂A)γ + t
2([Φ ∧ [Φ, γ]∗] + [Φ∗ ∧ [Φ, γ]])

[Φ ∧ (∂̄Aγ − ∂Aγ)] + ∂̄A[Φ, γ]
) .

The first component is precisely DFt(γ). Using that ∂̄AΦ = 0, as well as the
fact that [Φ∧∂Aγ] = 0 for dimensional reasons, the entire second component
vanishes. Now recall from [Ni00, Prop. 1.4.21 and 1.4.22] the identities

2∂̄A∂A = FA − i ∗∆A, 2∂A∂̄A = FA + i ∗∆A,

as well as
[Φ ∧ [Φ, γ]∗] = −[Φ ∧ [Φ∗, γ]],

to rewrite

(41) DFt(γ) = i ∗∆Aγ + t2MΦγ,

where
MΦγ ∶= [Φ∗ ∧ [Φ, γ]] − [Φ ∧ [Φ∗, γ]].

Applying −i∗ ∶ Ω2(su(E)) → Ω0(isu(E)) finally yields the operator

Lt(γ) = ∆Aγ − i ∗ t2MΦγ.
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Observe that

Λ(A,Φ)∶Ω0(sl(E)) → Ω1(su(E)) ⊕Ω1,0(sl(E))
DHt ○Λ(A,Φ)∶Ω0(isu(E)) → Ω2(su(E)) ⊕Ω1,1(sl(E))

and Lt∶Ω0(isu(E)) → Ω0(isu(E)),

are all bounded from H1 to L2, or H2 to L2 respectively.
Remarkably, Lt ≥ 0:

Proposition 5.1. If γ ∈ Ω0(isu(E)), then

⟨∗Ltγ, γ⟩L2 = t−2∥dAγ∥2
L2 + 4∥[Φ, γ]∥2

L2 ≥ 0.

In particular, Ltγ = 0 if and only if dAγ = [Φ, γ] = 0.

This follows directly from the

Lemma 5.2. For γ ∈ Ω0(isu(E)),

⟨−i ∗MΦγ, γ⟩ = 4∣[Φ, γ]∣2 ≥ 0.

In particular, MΦγ = 0 if and only if [Φ, γ] = 0.

Proof. Fix a local holomorphic coordinate z so that Φ = ϕdz, hence Φ∗ =
ϕ∗dz̄. Then

[Φ∗ ∧ [Φ, γ]] = −[ϕ∗, [ϕ, γ]]dz ∧ dz̄,
and − [Φ ∧ [Φ∗, γ]] = −[ϕ, [ϕ∗, γ]]dz ∧ dz̄,

so that

MΦγ = −([ϕ∗, [ϕ, γ]] + [ϕ, [ϕ∗, γ]])dz ∧ dz̄.
We use the Hermitian inner product ⟨A,B⟩ = TrAB∗ on sl(2,C). Its ad-
invariance yields that ⟨[H,A],B⟩ = ⟨A, [H∗,B]⟩ wheneverA,B,H ∈ sl(2,C).
Therefore

⟨[ϕ∗, [ϕ, γ]], γ⟩ = ∣[ϕ, γ]∣2 and ⟨[ϕ, [ϕ∗, γ]], γ⟩ = ∣[ϕ∗, γ]∣2 = ∣[ϕ, γ]∣2,
and since 2i ∗ 1 = −dz ∧ dz̄, we deduce that

⟨MΦγ, i ∗ γ⟩ = ∣[ϕ, γ]∣2∣dz ∧ dz̄∣2 = 4∣[ϕ, γ]∣2,
as claimed. �

In parallel with this discussion, fix ϕ ∈ sl(2,C) and consider the operator

Mϕ ∶ isu(2) → isu(2), γ ↦ 2([ϕ∗, [ϕ, γ]] + [ϕ, [ϕ∗, γ]]).
Calculating as above,

(42) ⟨Mϕγ, γ⟩ = 2∣[ϕ, γ]∣2 + 2∣[ϕ∗, γ]∣2 = 4∣[ϕ, γ]∣2.
Clearly Mϕ is Hermitian with respect to ⟨⋅ , ⋅⟩ and satisfies g−1(Mϕγ)g =
Mg−1ϕgg

−1γg when g ∈ SU(2).
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Lemma 5.3. If ϕ ∈ sl(2,C), then Mϕ ∶ isu2 → isu2 is invertible if and only
if [ϕ,ϕ∗] ≠ 0. If [ϕ,ϕ∗] = 0 for some 0 ≠ ϕ ∈ sl(2,C), then Mϕ has a
one-dimensional kernel.

Proof. Assume first that kerMϕ ≠ {0}. According to Eq. (42), there exists
γ ∈ isu(2), γ ≠ 0, such that [ϕ, γ] = 0. Since γ has two distinct eigenvalues,
there must exist a unitary basis in terms of which both γ and ϕ are diagonal.
In particular, ϕ is normal, i.e. [ϕ,ϕ∗] = 0. Conversely, if ϕ is normal, then
kerMϕ = {γ ∈ isu(2) ∶ [ϕ, γ] = 0} is non-trivial, and this kernel is one-
dimensional when ϕ ≠ 0. �

Now take ϕ to be the fiducial Higgs field,

ϕ = ϕfid
t = ( 0 ∣z∣ 12 eht(∣z∣)

∣z∣ 12 eiθe−ht(∣z∣) 0
) .

Lemma 5.4. There is a uniform bound

sup
z∈D1(0)

∣ϕfid
t (z)∣ ≤ C

for some constant C > 0.

Proof. As in Section 3.2, substitute ∣z∣ 12 = (3
8 t
−1ρ) 1

3 . Uniform boundedness

of the upper right entry ∣z∣ 12 eht(∣z∣), 0 ≤ ∣z∣ ≤ 1, is equivalent to uniform
boundedness of the function

ρ↦ (3

8
t−1ρ)

1
3 eψ(ρ), 0 ≤ ρ ≤ 8t

3
,

where ψ is the function appearing in (25). Since ψ decays exponentially as
ρ → ∞, it suffices to show that this map is also bounded for ρ → 0. This
follows easily from the asymptotic expansion (27). Uniform boundedness of
the lower left entry amounts to boundedness of the function

ρ↦ (3

8
t−1ρ)

1
3 e−ψ(ρ)

on the same interval, which can be proved as above. �

Finally, we state the

Corollary 5.5. There is a constant C > 0 such that

sup
z∈D1(0)

∣Mϕfid
t (z)

∣ ≤ C.

5.2. Local analysis of the linearization at a fiducial solution. In this
section we analyze the linear operator Lt on the disk D =D1(0), computed
relative to a fiducial pair (Afid

t ,Φ
fid
t ), with the goal of determining sharp

bounds for the norm of its inverse Gt. In what follows, we often omit the
bundles from the function spaces. We also replace the H2 norm with the
equivalent graph norm for the standard Laplacian ∆ = −((r∂r)2+∂2

θ)/r2, i.e.

∥u∥2
∆ = ∥u∥2

L2 + ∥∆u∥2
L2 .
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We consider both ∆ and

Lt ∶= ∆Afid
t
+ t2MΦfid

t

with Dirichlet boundary conditions, or equivalently, on the common domain
H2(D)∩H1

0(D). Because of the nonnegativity of t2MΦfid
t

and the positivity

of the leading part, it is clear that

Lt∶H2(D) ∩H1
0(D) → L2(D)

is injective, and since it is also self-adjoint, it is an isomorphism. Thus it
has an inverse

Gt ∶= L−1
t ∶L2(D) →H2(D) ∩H1

0(D).
We are interested in understanding the norm of this inverse as t ↗ ∞. We
do this by reducing Lt to a family of ordinary differential operators.

Trivialize the bundle isu(E) by the constant sections {τ1 = iσ1, τ2 =
iσ2, τ3 = iσ3}, cf. Eq. (35), so [σ1, τ1] = 0, [σ1, τ2] = 2τ3 and [σ1, τ3] = −2τ2.
Now consider the decomposition

isu(E) = ⟨τ1⟩ ⊕ ⟨τ2, τ3⟩ =∶ iV ⊕ iV ⊥,
where iV = span{τ1} and orthogonality is with respect to ⟨A,B⟩ = tr(AB)
on isu(2). This splitting is parallel for the connection Afid

t = 2ftσ1dθ. The
restriction of ∆Afid

t
to iV is the scalar Laplacian, whereas

∆Afid
t
∣
iV ⊥

= − 1

r2
((r∂r)2 + ∂2

θ + (−16f2
t −8ft∂θ

8ft∂θ −16f2
t
))

acting on pairs (a2, a3)⊺ = a2τ2+a3τ3. Conjugating by M = (1 1
i −i) provides

a decoupling:

M−1 ○∆Afid
t
∣V ⊥ ○M = − 1

r2
((r∂r)2 + ∂2

θ + (−8ift∂θ − 16f2
t 0

0 8ift∂θ − 16f2
t
))

= − 1

r2
((r∂r)2 + ((∂θ − 4ift)2 0

0 (∂θ + 4ift)2)) .

This is reduced further by restricting to the Fourier modes {φ`}`∈Z, leading
to the family of operators

(43) P ±
`,t = −

1

r2
(r∂r)2 + 1

r2
(` ± 4ft)2.

As for the potential, with respect to the basis {τ2, τ3},

Mϕfid
t
∣
iV ⊥

= 8(∣z∣ cosh(2ht) +Re z − Im z
− Im z ∣z∣ cosh(2ht) −Re z

) ,

so

M−1 ○Mϕfid
t
∣
iV ⊥

○M = 8(∣z∣ cosh(2ht) z
z̄ ∣z∣ cosh(2ht)) .
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These calculations show that we can reduce Lt to the subspaces

E` = ⟨ϕ`τ2, ϕ`−1τ3⟩ ≅ L2((0,1), rdr) ⊕L2((0,1), rdr).
To collect all these decompositions in one place, we have reductions of the
standard Laplacian:

P ∶= ∆ =⊕
`∈Z

(P` 0
0 P`−1

) , P` = −
1

r2
(r∂r)2 + `

2

r2
,

the connection Laplacian:

Pt ∶=M−1 ○∆Afid
t
○M =⊕

`∈Z
(P

−
`,t 0

0 P +
`−1,t

) ,

and finally Lt = ⊕L`,t, where

L`,t ∶= M−1 ○ Lt ○M ∣E` = (P
−
`,t 0

0 P +
`−1,t

) + 8t2r (cosh(2ht) 1
1 cosh(2ht).)

The operators L`,t are self-adjoint when we impose Dirichlet boundary con-
ditions at r = 1 and the condition that solutions be bounded at r = 0.

We now use these reductions, and the fact that L2(D) = ⊕`∈ZE`, to prove
the

Proposition 5.6. There exists a constant C > 0 such that

1. ∥Gt∥L(L2,L2) ≤ C.

2. ∥Gt∥L(L2,H2) ≤ Ct2.

Proof. Let λ denote the smallest positive eigenvalue of P0. Thus

⟨P ±
`,tψ,ψ⟩L2 = ⟨(P0 + r−2(` ± 2ft)2)ψ,ψ⟩L2 ≥ ⟨P0ψ,ψ⟩L2 ≥ λ∥ψ∥2

L2

for all ψ ∈ C∞0 (0,1), and hence in the Friedrichs domain.
Now denote by Q±

`,t and Qt the inverses of P`,t and Pt, respectively. We

have that ∥Q`,t∥L(L2,L2) ≤ λ−1 for all ` and t, so if v = ∑`∈Z v`ϕ` ∈ L2(B),
then

∥Qtv∥2
L2 = ∑

`∈Z
∥Q`,tv`∥2

L2 ≤ λ−2∑
`∈Z

∥v`∥2
L2 = λ−2∥v∥2

L2 .

However, MΦfid
t

≥ 0, so Pt ≤ Lt and therefore ∥Gt∥L(L2,L2) ≤ ∥Qt∥L(L2,L2).

This proves the first part.
It remains to show that ∥∆Gtv∥L2 ≤ Ct2∥v∥L2 for all v ∈ L2(B). First

write

L`,t −∆∣E` = (V
−
`,t 0

0 V +
`−1,t

) +Wt =∶ V`,t +Wt,

where

V ±
`,t ∶=

(` ± 4ft)2 − `2
r2

= 16f2
t ± 8`ft
r2

, Wt ∶= 8t2r (cosh(2ht) 1
1 cosh(2ht)) .

Also set G`,t ∶= L−1
`,t .
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When ` ≠ 0, the potentials r−2(` ± 2ft)2 are bounded below by κ`2 for
0 < r < 1 where κ > 0 is independent of ` and t, cf. Lemma 3.3, and Wt ≥ 0.
Hence for these values of `,

⟨P ±
`,tψ,ψ⟩L2 ≥ κ`2∥ψ∥2

L2 , ψ ∈ C∞
0 (0,1),

and so

∥G`,t∥L(L2,L2) ≤ κ−1`−2(44)

Now use Lemma 3.3 to deduce the bounds

sup
r∈(0,1)

∣V ±
`,t(r)∣ ≤

⎧⎪⎪⎨⎪⎪⎩

Ct4/3, ` = 0,

C`t4/3, ` ≠ 0.

and
sup
r∈(0,1)

∣Wt(r)∣ ≤ Ct4/3.

Together with (44), for t ≥ 1, we see that

∥∆Ltv∥2
L2 ≤ ∥(M−1 ○Lt ○M −∆)Gtv∥2

L2 + ∥M−1 ○Lt ○MGtv∥2
L2

= ∑
`∈Z

∥(V`,t +Wt)G`,tv`∥2
L2 ≤ Ct4∑

`∈Z
(1 + `)2∥G`,tv`∥2

L2 + ∥v∥2
L2

≤ Ct4∑
`∈Z

(1

`
+ 1

`2
)2∥v`∥2

L2 ≤ Ct4∥v∥2
L2

where C is independent of t. �

Corollary 5.7. For all u ∈ H2(D) ∩ H1
0(D), we have ∥u∥H2 ≤ Ct2∥u∥Lt,

where ∥u∥Lt is the graph norm for the operator Lt.

6. Gluing construction

We are now in a position to prove the main gluing theorem. The strat-
egy is the standard one: we construct a family of approximate solutions to
Ft(γ) = 0, then use the invertibility of the linearized operator to perturb
these approximate solutions to exact solutions.

6.1. Approximate solutions. Let H(E) denote the bundle of Hermitian
sections of SL(E). Now consider the map

Ft∶H2(H(E)) → L2(Λ2 ⊗ su(E)),
Ft(g) = F ⊥Ag∞ + t2[Φg

∞ ∧ (Φg
∞)∗],

computed at a limiting configuration (A∞,Φ∞). Write X int = ⋃p∈pD×
1 (p)

for the union of the punctured discs, and assume that (A∞,Φ∞) is in fiducial
form in each of these. To be concrete, assume that the radii are all equal to
one. We also set Xext =X ∖ X̄ int.

Define the family of complex gauge transformations

gt = exp(γt), γt = (−
1
2ht 0
0 1

2ht
)
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on X int; by Proposition 3.5,

(Afid
t ,Φ

fid
t ) = (Afid

∞ ,Φ
fid
∞ )gt

on X int. Our approximate solution is obtained by gluing (Afid
t ,Φ

fid
t ) on X int

to (A∞,Φ∞) on Xext. Thus, choose a smooth cut-off function χ∶X → [0,1]
with suppχ ⊆X int and χ(z) ≡ 1 for z ∈ ⋃p∈pD1/2(p). Then

(45) gapp
t (z) ∶= exp(χγt)

is a family of smooth gauge transformations on X× with

gapp
t = gt on ⋃

p∈p
D1/2(p) and gapp

t = Id on Xext.

The new pair

(Aapp
t ,Φapp

t ) ∶= (A∞,Φ∞)g
app
t

is smooth and coincides with the fiducial solution (Afid
t ,Φ

fid
t ) on⋃p∈pD1/2(p),

and with (A∞,Φ∞) on Xext.
We claim that if the limiting configuration (A∞,Φ∞) is constructed from

an initial pair (A,Φ), as in Section 4, then (Aapp
t ,Φapp

t ) is complex gauge
equivalent to (A,Φ) by a smooth gauge transformation defined over all of X.
Indeed, recall from Section 4 that in a suitable holomorphic frame around a
zero p ∈ p of det Φ, the connection matrix of A vanishes and Φ is of the form
of Lemma 4.2. To transform (A,Φ) into (Aapp

t ,Φapp
t ) we apply the gauge

transformation

Gt = g∞gµpgµf g
app
t

where

● g∞ is a normalizing gauge transformation which puts (A,Φ) into
fiducial form on a neighbourhood of the zeroes of det Φ. It is ob-
tained by using Lemma 4.3 to extend the locally defined gauge trans-
formation g∞ from Proposition 3.5 to a smooth normalizing gauge
transformation on X×.

● gµp = exp(γµp) is the Hermitian gauge transformation in the stabi-

lizer of Φfid
∞ which gauges away the central part of the curvature.

This is obtained by solving the Poisson equation for γµp (cf. Propo-
sition 4.5 and Proposition 4.8).

● gµf = exp(γµf ) is the unitary gauge transformation which fiducializes

A
gµp
∞ (cf. Proposition 3.2).

● gapp
t is the complex gauge transformation from (45).

Proposition 6.1. The complex gauge transformation Gt admits a smooth
extension across any point p ∈ p. In particular, (Aapp

t ,Φapp
t ) is complex

gauge equivalent to (A,Φ) over X.

Proof. First note that we only need to prove continuity of the extension.
Indeed, we can bootstrap the identity

dGt = GtAapp
t −AGt
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since Aapp
t and A are smooth connections. Since Gt is smooth on X×, the

discussion is completely local. We proceed in three steps.

Step 1. The coefficient µp of the solution γµp (as in Eq. (10)) of the Poisson
equation has an expansion of the form

µp ∼ (C0 +C1e
−iθ)r

1
2 +O(r

3
2 ).

This follows directly from the indicial root calculation for the Laplacian
∆A in Section 4.3.

Step 2. The coefficient µf of γf has

µf ∼ (C0 −C1e
−iθ)r

1
2 +O(r

3
2 ).

In particular, µp + µf decays like r
1
2 as r → 0.

Indeed, µf is the solution of

Pµf ∶= (−i∂θ + 1
2)µf = iv,

where v is the upper right entry of the dθ-component of A
gµp
∞ (see Section 3.1

for the notation and calculations). Using the transformation formula (18)
for the (0,1)-component of the connection shows that

iv = re−2iθDµp + reiθDµp,
where

D = 1

2
e2iθ(∂r +

i

r
∂θ −

1

2r
).

Furthermore, since γµp is Hermitian, µ̄ = eiθµ. It follows that

re−2iθDµ + reiθDµ = r∂rµ
so that µf is the solution of the ODE

Pµf = r∂rµp.
This implies that µf has an expansion in powers of r1/2 and Step 2 follows
from a comparison of coefficients.

Step 3. We now can check continuity of the gauge transformation Gt at
r = 0.

By Proposition 3.5 we know that

g∞ = (r
1
4 0

0 r−
1
4

) .

Furthermore, gapp
t = g−1

∞ up to multiplication by a smooth gauge transforma-

tion, which can be ignored here. By Step 2, µ = µp +µf = 2C0r
1/2 +O(r3/2),

so that

gµpgµf = gµ = ( cosh(eiθ/2µ) e−iθ/2 sinh(eiθ/2µ)
eiθ/2 sinh(eiθ/2µ) cosh(eiθ/2µ) )
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and finally

(r
1
4 0

0 r−
1
4

)( cosh(eiθ/2µ) e−iθ/2 sinh(eiθ/2µ)
eiθ/2 sinh(eiθ/2µ) cosh(eiθ/2µ2)

)(r
1
4 0

0 r−
1
4

)

= ( cosh(eiθ/2µ) r−
1
2 e−iθ/2 sinh(eiθ/2µ)

r
1
2 eiθ/2 sinh(eiθ/2µ) cosh(eiθ/2µ)

) .

This is easily seen to have a limit as r → 0. �

Starting from the initial pair (A,Φ) associated with a Higgs bundle (∂̄,Φ)
with simple Higgs field Φ, we have thus arrived at a complex gauge equivalent
pair (Aapp

t ,Φapp
t ). The latter can be regarded as an approximate solution in

the following sense.

Lemma 6.2. There exist C, δ > 0 such that for t≫ 1,

(46) ∥Ft(gapp
t )∥L2 ≤ Ce−δt.

Proof. By the definition of (Aapp
t ,Φapp

t ), it suffices to estimate the error on

X int ∖ ⋃p∈pD1/2(p). From the properties of ht in Lemma 3.3 we see that

gt converges to the identity on X int ∖ ⋃p∈pD1/2(p) like e−ct as t → ∞. In
particular, both terms on the right in

Ft(gapp
t ) = F ⊥

(A∞)g
app
t

+ t2[(gapp
t )−1Φ∞g

app
t ∧ (gapp

t )−1Φ∞g
app
t )∗]

converge exponentially in t to 0 (cf. Eq. (4) for the curvature term). This
gives (46). �

6.2. Global linear estimates. Let Lt be computed at the pair (Aapp
t ,Φapp

t ).
We now establish estimates for Gt = L−1

t ∶L2(isu(E)) → H2(isu(E)). Let
λt(X) > 0 be the first eigenvalue of Lt = ∆Aapp

t
+t2MΦapp

t
on X, and λt(X int),

resp. λt(Xext) the first Neumann eigenvalues of Lt on X int and Xext, respec-
tively. To be clear, the domain of the Neumann extension on either of these
regions is

{u ∈H2(isu(E)∣Xint/ext) ∣ (dAtu)ν = 0}
where ν is the unit normal ν. The key result which allows us to extend the
estimates above to the whole of X is the domain decomposition principle,
see for instance [Bä, Proposition 3], which states that

λt(X) ≥ min{λt(X int), λt(Xext)}.

Lemma 6.3. For t ≥ 1, there is a uniform lower bound

λt(X) ≥ λ > 0.

Proof. We proceed in two steps.

Step 1. We have Aapp
t = 2fχ,tσ1dθ, where 8fχ,t = 1 + 2r∂(χht), so we can

analyze Lt via a Fourier reduction as in Section 5.2. Noting that MΦapp
t

is
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positive on iV , we obtain that Lt is strictly positive on this subbundle. On
the other hand, Lt ≥ ∆Aapp

t
on iV ⊥. This requires checking that the operator

Dϕ ∶= −r−2(r∂r)2 + 16r−2f2
χ,t

with Neumann (rather than Dirichlet) conditions at r = 1 is strictly positive.
To see this, observe that the summands of D are non-negative. If Lϕ = 0,
then integration by parts shows that ∂rϕ = fχ,tϕ = 0, whence ϕ = 0.

Step 2. Note that Lt ≥ ∆Aapp
t

+MΦapp
t

when t ≥ 1. Now

∫
Xext

⟨(∆A∞ +MΦ∞
)γ, γ⟩ = ∫

Xext
∣dA∞γ∣2 + ∫

Xext
4∣[γ ∧Φ∞]∣2.

In particular, the kernel of the Neumann extension of ∆A∞+MΦ∞
consists of

parallel sections γ of iLΦ∞
. As explained in Section 4.2 and Section 3.1, this

is a twisted line bundle, so γ = 0. We conclude that this Neumann extension
is invertible on Xext, and hence has a positive first eigenvalue. Thus there
exists λext > 0 such that

λt(Xext) ≥ λext > 0.

The result now follows if we set λ ∶= min{λint, λext}. �

Corollary 6.4. ∥Gtv∥L2 ≤ C∥v∥L2 for C = λ−1.

We now use the t-dependent Sobolev space H2
t ∶= domLt, endowed with

the graph norm

∥u∥2
Lt = ∥u∥2

L2 + ∥Ltu∥2
L2 .

Clearly, ∥Gtv∥Lt ≤ C∥v∥L2 for all t ≥ 1 and some C independent of t. Note
that H2

t =H2 for all t, but the norms are not uniformly equivalent as t↗∞.

Lemma 6.5. If u ∈H2(isu(E)), then ∥u∥H2 ≤ Ct2∥u∥Lt.

Proof. Using cut-off functions, write u = uint +uext with suppuint ⊂X int and
suppuext ⊂X ∖⋃p∈pD1/2(p). Then by Corollary 5.7 we have

∥uint∥H2 ≤ C(1 + t2)∥u∥Lt .

On X ∖⋃p∈pD1/2(p), consider the linear operator

L̃t ∶= ∆A∞ + t2MΦ∞

with Dirichlet boundary conditions. Then L̃t is invertible and we write
G̃t ∶= L̃−1

t . Now

∥L̃tu∥L2 ≤ ∥Ltu∥L2 + ∥(L̃t −Lt)u∥L2

and since At converges to A∞ and Φt converges to Φ∞ exponentially in t,

∥(L̃t −Lt)u∥L2 ≤ Ce−δt∥u∥L2 .
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In addition,

∥∆A∞u∥L2 = ∥∆A∞u + t2MΦ∞
u − t2MΦ∞

u∥
≤ ∥L̃tu∥L2 + t2∥MΦ∞

u∥L2

≤ ∥L̃tu∥L2 + t2 sup ∣MΦ∞
∣∥u∥L2 ,

which leads to the estimate

∥∆A∞u∥L2 ≤ ∥Ltu∥L2 +Ct∥u∥L2 +Ct2∥u∥L2 .

This gives the claim since the graph norm of ∆A∞ is equivalent to the stan-
dard H2-norm . �

Summarizing we proved the following global linear estimate.

Proposition 6.6. Let (Aapp
t ,Φapp

t ) be the approximate solution from Sec-
tion 6.1. Then the inverse Gt to Lt = ∆Aapp

t
+ t2MΦapp

t
satisfies

∥Gtv∥H2 ≤ Ct2∥v∥L2 .

6.3. Deforming the approximate solutions. We are now finally pre-
pared to give the argument which shows how to perturb the approximate
solutions (Aapp

t ,Φapp
t ) to an exact solution of Hitchin’s equations when t≫ 1.

Theorem 6.7. Let Bρ be the closed ball of radius ρ around the zero section
in H2(isu(E)). Then there is a value m > 0 and a unique Hermitian γt ∈
Bt−m such that, when t is sufficiently large, (At,Φt) ∶= (Aapp

t ,Φapp
t )exp(γt)

solves the rescaled Hitchin equations.

Remark. Theorem 6.7 gives a solution to the original Hitchin equations for
the Higgs bundle (∂̄, tΦ), when the parameter t is large, which is complex
gauge equivalent to the initial pair (A, tΦ) as shown by Proposition 6.1. In
this way, Theorem 6.7 provides a constructive proof of Hitchin’s existence
theorem (when tΦ is large). We can regard Theorem 6.7 as a desingular-
ization theorem for limiting configurations. This shows in particular that
any limiting configuration arises from a Higgs bundle. In this way we can
think of the real 6γ − 6-dimensional torus of limiting configurations from
Corollary 4.11 as a boundary stratum of Hitchin’s moduli space obtained by
projectivizing the fibre det−1(q) for a fixed determinant q ∈H0(X,K2) with
simple zeroes.

The solution γt is obtained using a standard contraction mapping argu-
ment. To do this, we study the linearization Lt, computed at (Aapp

t ,Φapp
t ).

The argument relies on controlling the following quantities:

● the norm of the inverse L−1
t , and

● the Lipschitz constants of the linear and higher order terms in the
Taylor expansion of Ft.

The first of these was handled by Proposition 6.6, but we must now study
the nonlinear terms in Ft in greater detail.
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For g = exp(γ), γ ∈ Ω0(isu(E)), we have

O(A,Φ)(g) = (A,Φ)g = (A + g−1(∂̄Ag) − (∂Ag)g−1, g−1Φg),
and consequently,

Aexpγ = A + (∂̄A − ∂A)γ +RA(γ)
Φexpγ = Φ + [Φ, γ] +RΦ(γ).

The explicit expressions of these remainder terms are

(47) RA(γ) = exp(−γ)(∂̄A(expγ)) − (∂A(expγ)) exp(−γ) − (∂̄A − ∂A)γ

(48) RΦ(γ) = exp(−γ)Φ expγ − [Φ, γ] −Φ.

We then calculate that

(49)
Ft(expγ) = F ⊥(Aapp

t )exp(γ) + t2[(Φapp
t )exp(γ) ∧ (Φapp

t )exp(γ))∗]
= pr1Ht(Aapp

t ,Φapp
t ) +Ltγ +Qt(γ)

where, in full detail,

Qt(γ) =dAapp
t

(RAapp
t

(γ)) + t2[RΦapp
t

(γ) ∧ (Φapp
t )∗] + t2[Φapp

t ∧RΦapp
t

(γ)∗]

+ 1

2
[((∂̄Aapp

t
− ∂Aapp

t
)γ +RAapp

t
(γ)) ∧ ((∂̄Aapp

t
− ∂Aapp

t
)γ +RAapp

t
(γ))]

+ t2[([Φapp
t , γ] +RΦapp

t
(γ)) ∧ ([Φapp

t , γ] +RΦapp
t

(γ))∗].
Lemma 6.8. The approximate solution satisfies

∥Aapp
t ∥C1 ≤ Ct

on the disk D1(0), so that for any Hk+1 section γ, k = 0,1,

∥dAapp
t
γ∥Hk ≤ Ct∥γ∥Hk+1 ,

and moreover,
∥Ltγ∥L2 ≤ Ct2∥γ∥H2 .

Proof. We have

Aapp
t = fχ,t (

i 0
0 −i)dθ,

where fχ,t(r) = 1
8 +

1
4r∂r(χht)(r), see Section 6.1. Clearly fχ,t has the same

asymptotics as ft; thus fχ,t is uniformly bounded in t.

Now recall from Section 3.2 that ft(r) = η(ρ), ρ = 8t
3 r

3/2, where η(ρ) =
1
8 +

3
8ρψ

′(ρ). Then

∂rft(r) = 4tr1/2η′(ρ),
and we already know that η′(ρ) = 3

16ρ sinh(ψ(ρ)). Since ψ(ρ) ∼ − log ρ as
ρ→ 0 and ψ(ρ) ∼ e−ρ as ρ→∞, we see that limρ→0 η

′(ρ) = limρ→∞ η
′(ρ) = 0.

This gives that 0 ≤ η′(ρ) ≤ C0 for some constant C0 > 0. Altogether,

∣∂rft∣ = ∣14∂rht +
r
4∂

2
rht∣ ≤ C1t

for some constant C1 > 0 which also yields the desired estimate for ∣∂rfχ,t∣.
�
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Lemma 6.9. There exists a constant C > 0 such that

(50) ∥Qt(γ1) −Qt(γ0)∥L2 ≤ Cρt2∥γ1 − γ0∥H2

for all 0 < ρ ≤ 1 and γ0, γ1 ∈ Bρ.

Proof. The proof has two steps. To simplify notation, write (A,Φ) for
(Aapp

t ,Φapp
t ).

Step 1. We first check that if ρ ∈ (0,1] and γ0, γ1 ∈ Bρ, then

∥RA(γ1) −RA(γ0)∥H1 ≤ Ctρ∥γ1 − γ0∥H2

∥RΦ(γ1) −RΦ(γ0)∥H1 ≤ Ctρ∥γ1 − γ0∥H2 .

We begin by estimating the difference of the first two terms on the right in
(47):

∥ exp(−γ1)(∂̄A(expγ1)) − exp(−γ0)(∂̄A(expγ0)) − ∂̄A(γ1 − γ0)∥H1

≤ ∥(exp(−γ1) − exp(−γ0))∂̄A(exp(γ1))∥H1

+ ∥ exp(−γ0)(∂̄A(exp(γ1) − exp(γ0))) − ∂̄A(γ1 − γ0)∥H1 ∶= I + II.

Writing exp(γ) = 1 + γ + S(γ), then we have

∥I∥H1 ≤ C0∥ exp(−γ1) − exp(−γ0)∥H2∥∂̄A(exp(γ1))∥H1

≤ C1t∥γ1 − γ0∥H2∥γ1 + S(γ1)∥H2

≤ C2tρ∥γ1 − γ0∥H2 ,

and similarly,

∥II∥H1 =∥(1 − γ0 + S(−γ0))(∂̄A(γ1 − γ0 + S(γ1) − S(γ0)) − ∂̄A(γ1 − γ0)∥H1

≤∥∂̄A(S(γ0) − S(γ1))∥H1

+ ∥(−γ0 + S(−γ0))∂̄A(γ0 − γ1 + S(γ0) − S(γ1))∥H1

≤C0t∥S(γ0) − S(γ1)∥H2

+C0t∥ − γ0 + S(−γ0)∥H2∥γ0 − γ1 + S(γ0) − S(γ1)∥H2

≤C1tρ∥γ1 − γ0∥H2 ,

where we have estimated ∥S(γ0) − S(γ1)∥H2 ≤ ∥γ0 − γ1∥H2 ∑k≥1 ρ
k/k! ≤

Cρ∥γ0 − γ1∥H2 . These estimates together with analogous ones for the terms
involving ∂At give the stated Lipschitz estimate for RAt . The corresponding
estimate for

RΦ = exp(−γ)Φ expγ − [Φ, γ] −Φ

and the estimates

∥RA(γ)∥H1 ≤ Ctρ, ∥RΦ(γ)∥H1 ≤ Cρ, γ ∈ Bρ,

follow in the same way.
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Step 2. We can now prove the claim. First,

(51)

Qt(γ1)−Qt(γ0) = dA(RA(γ1) −RA(γ0))

+ t2[(RΦ(γ1) −RΦ(γ0)) ∧Φ∗] + t2[Φ ∧ (RΦ(γ1) −RΦ(γ0))∗]

+ 1
2[((∂̄A − ∂A)γ1 +RA(γ1)) ∧ ((∂̄A − ∂A)γ1 +RA(γ1))]

− 1
2[((∂̄A − ∂A)γ0 +RA(γ0)) ∧ ((∂̄A − ∂A)γ0 +RA(γ0))]

+ t2[([Φ, γ1] +RΦ(γ1)) ∧ ([Φ, γ1] +RΦ(γ1))∗]

− t2[([Φ, γ0] +RΦ(γ0)) ∧ ([Φ, γ0] +RΦ(γ0))∗].
By Lemma 6.8,

∥dAt(RAt(γ1) −RAt(γ0))∥L2 ≤ C(t + 1)∥RAt(γ1) −RAt(γ0)∥H1

and we then apply Step 1. The remaining terms are bilinear combinations
B(ψ, τ) of functions ψ and τ with fixed coefficients, which can be estimated
as

∥B(ψ1, τ1) −B(ψ0, τ0)∥L2 ≤ ∥B(ψ1 − ψ0, τ1)∥L2 + ∥B(ψ0, τ1 − τ0)∥L2

≤ C∥ψ1 − ψ0∥H1∥τ1∥H1 +C∥ψ0∥H1∥τ1 − τ0∥H1 .

The desired estimate follows from Step 1 again. �

Proof of Theorem 6.7. From (49),

Ft(exp(γ)) = pr1Ht(Aapp
t ,Φapp

t ) +Ltγ +Qt(γ),

and since Lt is invertible, the solutions of this equation are the same as the
solutions of

γ = −L−1
t (pr1Ht(Aapp

t ,Φapp
t ) +Qt(γ)).

Thus consider the map

T ∶Bρ →H2(isu(E)), γ ↦ −L−1
t (pr1Ht(Aapp

t ,Φapp
t ) +Qt(γ)).

We claim that for ρ sufficiently small, T is a contraction of Bρ, from which
we immediately obtain a unique fixed point γ ∈ Bρ. To prove this, use
Proposition 6.6 and (50) to get

∥T (γ1 − γ0)∥H2 = ∥Gt(Qt(γ1) −Qt(γ0))∥H2

≤ Ct2∥Qt(γ1) −Qt(γ0)∥L2 ≤ Cρt4∥γ1 − γ0∥H2 .

Thus T is a contraction on the ball of radius ρt = t−4−ε for any ε > 0.
Furthermore, since Qt(0) = 0, then by Proposition 6.6 and (46),

∥T (0)∥H2 = ∥Gt(pr1Ht(Aapp
t ,Φapp

t )∥H2 ≤ Cte−δt.

Thus when t ≫ 0, ∥T (0)∥H2 < 1
10ρt, so the ball Bρt is mapped to itself by

T . �
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