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ON ETA-FUNCTIONS FOR NILMANIFOLDS

WERNER BALLMANN

To the memory of Friedrich Hirzebruch

Abstract. Motivated by index formulas for Dirac type operators
over negatively curved Riemannian manifolds of finite volume, we
study η-functions of certain differential operators on nilmanifolds.

1. Introduction

The index theorem of Atiyah, Patodi, and Singer for elliptic differ-
ential operators of first order over closed manifolds M with boundary
involves the η-invariant of an associated formally self-adjoint elliptic
operator of first order over ∂M . By definition, the η-invariant of such
an operator A is the value at 0 of the η-function of A, for s ∈ C with
sufficiently large real part given by the absolutely convergent series

(1.1) η(A, s) :=
∑
λ

sign(λ)|λ|−s,

where the summation is over the non-zero eigenvalues of A, each eigen-
value occuring as often as its multiplicity requires. The η-function of A
is a meromorphic function in the (whole) complex plane, see [3, p. 74].
It is a priori not clear whether η(A) = η(A, 0) is finite. However, in
relevant cases it is, by the work of Atiyah, Patodi, and Singer, see for
example [3, Theorem 4.5].

Our work on the η-function was motivated by index problems for
generalized Dirac operators over non-compact Riemannian manifolds
with pinched negative sectional curvature and finite volume. A neigh-
borhood of infinity of such manifolds is of the form (0,∞) ×M0 with
Riemannian metric of the form dt2 + gt, where gt is a family of Rie-
mannian metrics on M0, see [6]. The connected components of the
cross sections Mt = {t} ×M0 are infra-nilmanifolds; for so-called neat
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lattices in symmetric spaces of negative sectional curvature they are of
the form Γ\N , where N is a nilpotent Lie group of a specific Heisenberg
type. The η-invariant of importance here is the limit, as t→∞, of the
η-invariants of the induced operators over Mt, see [4, Theorem 8.10].
Up to sign, its so-called high energy part is given by the asymptotic
η-invariant of associated operators over the connected components of
the cross sections Mt, by [4, Theorem 9.29], and the η-function of such
operators is the objective of our study.

To set the stage, let N be a simply connected nilpotent Lie group
of dimension n, endowed with a left-invariant Riemannian metric and
the spin structure induced by the Lie algebra n of left-invariant vector
fields on N . Denote by Cliff(n) and Σn the complex Clifford algebra
and the complex vector space of spinors associated to n, respectively,
and recall that Σn is a Cliff(n)-module.

Let Γ ⊆ N be a lattice and τ : Γ→ U(V ) be a unitary representation
of Γ on a finite dimensional Hermitian vector space V . We refer to τ
as the twist. For ease of notation, we extend τ trivially to a unitary
representation on Σn ⊗ V ,

(1.2) τ : Γ→ U(Σn ⊗ V ), τ(γ) := id⊗τ(γ).

Associated to τ , we obtain a Hermitian vector bundle

(1.3) Eτ = N ×τ (Σn ⊗ V )→ Γ\N,

where the elements of Eτ are Γ-orbits {(γx, τ(γ)w)} in N × (Σn ⊗ V ).
Sections of Eτ correspond to maps

(1.4) σ : N → Σn ⊗ V such that σ(γx) = τ(γ)σ(x),

for all γ ∈ Γ and x ∈ N . Clifford multiplication by vector fields on
the factor Σn commutes with τ , since τ acts trivially on Σn. Hence
Clifford multiplication on Eτ is well-defined. Levi-Civita connection
and left-invariant flat connection on N induce Hermitian connections
on Eτ , and, with respect to both, Eτ turns into a Dirac bundle in the
sense of Gromov and Lawson, see [8].

Example 1.5 (Spinor bundles). Spin structures of Γ\N are determined
by representations τ : Γ → {±1} ⊆ U(1). The corresponding spinor
bundles are given as Eτ = N ×τ (Σn ⊗ C).

Fix an orthonormal frame X1, . . . , Xn of n. Then the (flat) Dirac op-
erator A on sections of Eτ induced by the left-invariant flat connection
on N can be written as

(1.6) Aσ =
∑

Xj · dσ(Xj),
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where the dot indicates Clifford multiplication. In the case where N
is the Heisenberg group and τ is the trivial representation, this oper-
ator occurs in the work [5] of Deninger and Singhof on e-invariants.
Ideas from their article were important for the determination of the
asymptotic high energy η-invariant in [4, Section 9].

It is easy to see that A is a formally selfadjoint and elliptic differential
operator of order one with symbol

(1.7) σA(dϕ)σ = gradϕ · σ.

Denote by L2(Eτ ) the space of square integrable sections of Eτ . We con-
sider A as an unbounded self-adjoint operator in L2(Eτ ) withH1(Eτ ) as
domain of definition, where H1(Eτ ) denotes the space of all H1-sections
of Eτ , that is, of square integrable sections σ of Eτ with square inte-
grable weak derivatives. If F ⊆ N is a fundamental domain for the
action of Γ, then

‖σ‖2
L2 =

∫
F

|σ|2 and ‖σ‖2
H1 =

∫
F

(|σ|2 + |dσ|2)

if we identify sections σ of Eτ with maps N → Σn ⊗ V as in (1.4).
We are concerned with the η-function η(A, s) of A as an unbounded

self-adjoint operator in L2(Eτ ). Note that the η-function of A is the
sum of the corresponding η-functions for the decomposition of V into
irreducible representations of Γ. Thus we may assume throughout that
τ is irreducible.

It is shown in [4, Theorem 9.31] that the η-function of A vanishes
identically if the center CN of N has dimension at least two. Thus we
can restrict our attention to the case where CN is of dimension one.
Note that this is precisely the interesting case in the representation
theory of nilpotent Lie groups.

We choose X1 as a generator of CN . The center CΓ = Γ∩CN of Γ is
infinite cyclic and is generated by ζ := exp(`X1), for some ` > 0. Then
Γ\N is foliated by closed geodesics of equal length `, the translates of
CΓ\CN . For convenience, we rescale the metric so that ` = 2π.

Theorem 1.8. Up to the normalization ` = 2π, the η-function of A
does not depend on the left-invariant Riemannian metric on N .

Remarks 1.9. 1) Via Malcev polynomials, Γ determines N . Thus we
may consider the η-function of A as an invariant of the pair (Γ, τ).
2) In [2], Atiyah, Patodi, and Singer discuss the stability of η-invariants
of twisted versions of the standard Dirac operators, see Theorems 2.4
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and 3.3 in loc.cit. They normalize by considering differences of such η-
invariants and get strong stability properties. For the operators consid-
ered here, we do not need to take differences, but the stability property
is much more restricted.

The only simply connected two-step nilpotent Lie groups with one-
dimensional center are the standard Heisenberg groups Hm. We think
of Hm as Rm × Rm × R with group law given by

(1.10) (x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z + z′ + 〈x, y′〉).

Let Dm be the set of m-tupels d = (d1, . . . , dm) of natural numbers
such that di divides di+1, 1 ≤ i < m. Then, for any d ∈ Dm,

(1.11) Γd := {(x, y, z) | x, y ∈ Zm, z ∈ Z, di divides xi}

is a lattice in Hm. Gordon and Wilson showed that the isomorphism
type of Γd is determined by d and that, up automorphism of Hm, any
lattice in Hm is equal to some Γd, see [7, Section 2]. Note that (0, 0, 1) is
in the center of N and that, for any irreducible unitary representation
of Γd, τ(0, 0, 1) acts by multiplication with e2πic, for some constant
c ∈ (0, 1].

Theorem 1.12 (Theorem 10.47 in [4]). For any irreducible unitary
representation τ of Γd and any left-invariant Riemannian metric on
Hm with ` = 2π as above, we have

η(A, s) = d1 · · · dm dimV
∑

w≡c,w 6=0

ε(w)|w|m−s,

for all s ∈ C with sufficiently large real part, where τ(0, 0, 1) = e2πic id
and where ε(w) = sign(w) if m is even and ε(w) = −1 if m is odd.

The results of the present article can be used to simplify the proof
of the above theorem in [4]. We explain this in Section 4 below.

For c > 0 and Re s > 1, the Hurwitz zeta function ζc is given by the
infinite sum

(1.13) ζc(s) =
∑

k≥0
(k + c)−s.

For each c > 0, ζc can be extended to a meromorphic function on the
complex plane, defined for all s 6= 1, and with a simple pole at s = 1,
where the residue is equal to 1. We have ζ1 = ζ, the Riemann zeta
function. Setting ζ0 := ζ, the formula in Theorem 1.12 turns into

η(A, s) = d1 · · · dm dimV {(−1)mζc(s−m)− ζ1−c(s−m)}.
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2. First steps

Recall that we consider the case where the center CN of N has dimen-
sion 1. Throughout, we choose the first vector X1 in the orthonormal
frame X1, . . . , Xn of n as a generator of the Lie algebra of CN . The cen-
ter CΓ = Γ∩CN of Γ is infinite cyclic and is generated by ζ := exp(`X1),
for some ` > 0. Then Γ\N is fibered by closed geodesics of equal length
`, the translates of CΓ\CN . We multiply the Riemannian metric of N
by (2π/`)2, and then ` = 2π. This changes the spectrum and the
η-function of A by a factor of (`/2π)2 and (2π/`)2s, respectively.

We may assume that the representation τ of Γ is irreducible. Then
there is a constant c ∈ R such that, for ζ = exp(2πX1) as above,

(2.1) τ(ζ)v = e2πicv,

for all v ∈ V 1. We obtain a corresponding Fourier decomposition,

(2.2) L2(Eτ ) ∼= ⊕w≡cL2(Eτ , w),

where ≡ stands for congruence modulo integers and where L2(Eτ , w)
denotes the space of maps σ in L2(Eτ ) such that

(2.3) σ(xetX1) = eiwtσ(x),

for all x ∈ N . Now L2(Eτ , w) is invariant under Clifford multiplication
with left-invariant vector fields. In particular, A is well defined on
L2(Eτ , w) with domain H1(Eτ , w) = L2(Eτ , w)∩H1(Eτ ). For a section
σ in H1(Eτ , w), we have

Aσ = X1 · dσ(X1) +
∑
j>1

Xj · dσ(Xj)

= iwX1 · σ +
∑
j>1

Xj · dσ(Xj)

= wω0σ +
∑
j>1

Xj · dσ(Xj),

(2.4)

by (2.3), where ω0 denotes the unitary involution given by Clifford
multiplication with iX1. We obtain

A(ω0σ) = −wσ − iX1 ·
∑
j>1

Xj · dσ(Xj)

= 2wσ − ω0Aσ.

(2.5)

Therefore, the anti-commutator of A and ω0 on H1(Eτ , w) is 2w id or,
in other words, A − wω0 and ω0 anti-commute on H1(Eτ , w). The

1Arguing as in [4, Section 10.1], we get that c is a rational number. Compare
also with the displayed equation in Remark 4.9 below.
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crucial point in (2.4) and (2.5) is that Xj is parallel with respect to the
flat connection, and we actually need this only in the X1-direction.

Denote by L(w, α) the eigenspace of A in L2(Eτ , w) with respect to
α and set

(2.6) L±(w, α) = {σ ∈ L(w, α) | ω0σ = ±σ}.

For σ ∈ L(w, α), we have

(2.7) Aσ = ασ and A(ω0σ) = 2wσ − αω0σ.

There are three cases with respect to possible contributions of ±α to
the η-function of A.

Proposition 2.8. We have
(1) L+(w, α) = 0 if α 6= w and L(w,w) = L+(w,w) if w 6= 0;
(2) L−(w, α) = 0 if α 6= −w and L(w,−w) = L−(w,−w) if w 6= 0;
(3) dimL(w, α) = dimL(w,−α) if α 6= ±w.

Proof. Let σ ∈ L+(w, α) be nonzero. Then ασ = (2w − α)σ, by (2.7),
and hence α = w. Hence L+(w, α) = 0 if α 6= w. Conversely, assume
that w 6= 0 and let σ ∈ L(w,w) be nonzero. Then,

A(σ − ω0σ) = −w(σ − ω0σ),

by (2.7), and hence σ − ω0σ ∈ L(w,−w). Since w 6= −w, L(w,w) and
L(w,−w) are orthogonal, and hence σ− ω0σ is orthogonal to σ. Since
ω0 is unitary, we have ‖ω0σ‖ = ‖σ‖ and conclude that σ = ω0σ. This
proves (1), and the proof of (2) is analogous.

For the proof of (3), we may assume α 6= 0. We get, for σ ∈ L(w, α),

A((ω0 − w/α)σ) = 2wσ − αω0σ − wσ
= −α(ω0 − w/α)σ,

by (2.7), and hence (ω0−w/α)σ ∈ L(w,−α). Applying this to ±α, we
obtain linear maps

(ω0 − w/α) : L(w, α)→ L(w,−α)

(ω0 + w/α) : L(w,−α)→ L(w, α)
(2.9)

which satisfy

(ω0 − w/α)(ω0 + w/α) = (ω0 + w/α)(ω0 − w/α)

= 1− w2/α2.

If α 6= ±w, then the right hand side is nonzero and, therefore, the
above linear maps are isomorphisms. �
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Corollary 2.10. For all s ∈ C with sufficiently large real part,

η(A, s) =
∑

w≡c,w 6=0

{dimL(w, |w|)− dimL(w,−|w|)}|w|−s. �

Remark 2.11. Recall the normalization of the Riemannian metric from
the beginning of the section. Without that normalization, there are
factors of appropriate powers of `/2π in our formulas.

3. The inert η-function

For σ : N → Σn⊗V and X ∈ n, we write X(σ) := dσ(X). With this
notation, we have

(3.1) Aσ = X1 ·X1(σ) +Bσ,

where B is a formally self-adjoint differential operator.

Proposition 3.2. For all smooth sections σ of Eτ , we have

A2σ = −X1(X1(σ)) +B2σ.

Proof. Straightforward, using that X1 is in the center of n. �

Let N̄ := CN\N = N/CN , a nilpotent Liegroup of dimension n− 1.
Since the Riemannian metric on N is right-invariant under the center
CN of N , N̄ carries a left-invariant Riemannian metric such that the
projection

(3.3) N → N̄

is a Riemannian submersion. The projection factors through the action
of Γ and results in a Riemannian submersion and principal S1-bundle

(3.4) Γ\N → Γ̄\N̄
with closed geodesics of length 2π as fibers, where Γ̄ = CΓ\Γ.

For any w ≡ c, we can extend the representation τ of Γ to a unitary
representation of the subgroup G of N generated by Γ and CN by

(3.5) τw(exp(tX1)) := eiwt id .

Since CN commutes with all γ ∈ Γ and w ≡ c, τw is well defined. The
set Eτ,w of G-orbits in N × (Σn ⊗ V ) is a vector bundle over Γ̄\N̄ .
Sections of Eτ,w correspond to maps

(3.6) σ : N → Σn ⊗ V
satisfying both, (1.4) and (2.3). Considered in this way, the space of
square integrable sections of Eτ,w is equal to L2(Eτ , w). Furthermore,
B descends to an elliptic differential operator Bw on Eτ,w, up to ho-
mothety unitarily equivalent to B on L2(Eτ , w). The following result
is immediate from Proposition 3.2 or also from (2.5).
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Proposition 3.7. Under the identification of L2(Eτ,w) with L2(Eτ , w),
we have

A2σ = w2σ +B2
wσ.

In particular, kerBw = L(w,w)⊕ L(w,−w). �

Now we observe that ω0 is a super-symmetry of Eτ,w which anti-
commutes with Bw and, hence, it gives rise to an operator B+

w from
(sections of) E+

τ,w to E−τ,w, where E+
τ,w and E−τ,w denote the eigenbun-

dles of ω0 for the eigenvalues 1 and −1, respectively. For the Fredholm
index of Bw, we have indB+

w = dimL(w,w)−dimL(w,−w), by Propo-
sition 2.8. Hence we arrive at a formula which expresses the stability
of the η-function:

Theorem 3.8. For all s ∈ C with sufficiently large real part,

η(A, s) =
∑

w≡c,w 6=0

sign(w) indB+
w |w|−s. �

Proof of Theorem 1.8. Under a change of the left-invariant Riemannian
metric on N , the associated Fredholm operators B+

w vary continuously
so that there index remains unchanged. �

4. The case of the Heisenberg lattices

We discuss now the proof of Theorem 1.12. Simplifying the corre-
sponding discussion in [4, Section 10.2], we can assume from the outset
that the standard basis of the Lie algebra hm of Hm is orthonormal, by
Theorem 1.8. We label the standard basis such that the non-vanishing
Lie brackets between the basis vectors are given by

(4.1) [X2j, X2j+1] = X1, for 1 ≤ j ≤ m,

so that X1 generates the center of hm as above.
By the choice of orthonormal basis (X1, . . . , X2m+1) of n, we ob-

tain an identification Σn = Σ2m+1. Adding a perpendicular line to n,
spanned by a unit vector X0, we get a further identification Σ2m+1 =
Σ+

2m+2. Clifford multiplication ωj with iX2jX2j+1, 1 ≤ j ≤ m, is a
unitary Hermitian involution of Σn. The involutions ωj commute pair-
wise, hence we have an orthogonal decomposition into simultaneous
eigenspaces,

(4.2) Σn = ⊕Σε

with ε = (ε1, . . . , εm) ∈ {±1}m, where dim Σε = 1 and where ωj acts
on Σε by multiplication with εj. We obtain a corresponding orthogonal
decomposition of Eτ ,

(4.3) Eτ = ⊕εEτ,ε,
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where ωj acts by multiplication with εj on Eτ,ε. We also obtain Fourier
decompositions

(4.4) L2(Eτ,ε) ∼= ⊕w≡cL2(Eτ,ε, w),

where L2(Eτ,ε, w) = L2(Eτ,ε) ∩ L2(Eτ , w).
By straightforward calculation and (4.1), the square of A is given by

A2(σ) = ∆(σ) +
∑
j<k

Xj ·Xk · dσ([Xj, Xk])

= ∆(σ) +
∑
j≥1

X2j ·X2j+1 · dσ(X1)

= ∆(σ)− i(ω1 + · · ·+ ωm) · dσ(X1),

= ∆(σ) + w(ω1 + · · ·+ ωm) · dσ(X1),

(4.5)

where ∆ = − tr Hess denotes the standard Laplace operator of N , here
acting on maps from N to Σn ⊗ V .

Now it is shown (along standard lines) in [4, Formula 10.30] that
L2(Eτ,ε) is d1 · · · dm dimV |w|m times the standard representation of
Hm associated to the linear maps hm → R which sends X1 to w. Hence
∆ has eigenvalues w2 + |w|(2p1 + · · · + 2pm + m) on these, labeled by
integers p1, . . . , pm ≥ 0, and all with multiplicity d1 · · · dm dimV |w|m.

By our discussion further up, we only need to consider the possible
eigenvalue w2 of A2, thus simplifying the corresponding discussion on
page 1952 in [4]. By what we just found and (4.5), w2 is an eigenvalue
of A2 precisely for the choices

p1 = · · · = pm = 0 and ε1 = · · · = εm = − signw.

The rest of the proof is along the lines in [4]: Since ω0 commutes with
the ωj, it leaves the subspaces Σε invariant. Moreover, since

(4.6) ω0 · · ·ωm = im+1X1 · · ·X2m+1

acts as identity on Σ2m+1, ω0 acts by multiplication with ε1 · · · εm on Σε.
NowX1(σ) = iwσ, for any σ in L2(τ, w). Hence the eigenspace for A2 in
L2(τ, w) with eigenvalue w2 is an eigenspace of A with eigenvalue w if m
is odd and |w| ifm is even. Since the multiplicity is d1 · · · dm dimV |w|m,
we obtain, for all s ∈ C with sufficiently large real part and even m,

(4.7) η(A, s) = d1 · · · dm dimV
∑

w≡c, w 6=0

sign(w)|w|m−s.

For odd m, we get

(4.8) η(A, s) = −d1 · · · dm dimV
∑

w≡c, w 6=0

|w|m−s.
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This finishes the proof of Theorem 1.12.

Remark 4.9. In terms of Theorem 3.8, we get

indB+
w = ε(w)d1 · · · dm dimV |w|m,

where ε(w) = sign(w) for even m and ε(w) = −1 for odd m. Are there
formulas of a similar nature in the general case? What this comes down
to is the discussion of the kernels of the operators Bw, by Theorem 3.8.
I suspect that the kernels are trivial in many cases.
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