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Abstract

The polylogarithin function Li,, plays an important role as a regulating map for K-groups of an
algebraic number field F in that it gives a map on the generalized Bloch group B,,(F) which is
conjectured to be an explicit candidate for the K-group Ky, _,(F). This is known—up to torsion—
for m=2 and 3 and expected for all m.

One of the most important features of Ls,, is that it conjecturally satisfies functional equations which
occur in the definition of B,,(F). A good understanding of these functional equations as well as a
construction of a new and basic one enabled Goncharov to give a proof of Zagier’s conjecture for
m=3. This conjecture asserts in general that the Dedekind zeta function for F at the point m is
expressible in terms of (a modified version of) Li,, .

Little has been known about (non-trivial) functional equations of higher logarithms. There were few
examples given by Kummer, and later also by Lewin and Wechsung, up to order m=5 but until
recently no example at all was known for order greater than 5.

We give the first families of functional equations in two variables up to the 6-logarithm.

0. Motivation

The classical polylogarithm Li,,(2) for m € N is defined by
o zn
m = —Q C, < 1,
Lim(z) \;1 — z€ 2|

and has an analytic continuation onto the cut plane C - (1,00) (in the case m = 1 one
recognizes the well-known power series expansion of —log(1l — z)).

One can associate to this multi-valued function Li,, a one-valued function P, (cf.
chapter 1) which is defined on all of C and shares certain important properties with Lip,
(e.g. the form of functional equations).

A fundamental invariant in algebraic number theory is the Dedekind zeta function of
an algebraic number field F

1
C‘(S) = ATf Ads
" 2‘: N(4)

where the summation is taken over all integral ideals A # 0 in F' and N denotes the
norm function which associates to each ideal its “volume” (a certain natural number).

(r is defined a priori for R(s) > 1 and can be continued analytically onto the whole
complex plane.



The following results provided a first link between the two functions given above:
— Dedekind’s classical class number formula relates the residue of {F at the point 1 to
Liy .
— Humbert established a relation between Li and (r(2) for imaginary quadratic num-
ber fields F (cf. [Th], chap. 7).

A conjecture of Zagier connects the value (r(m) of an algebraic number field F with
the function P, . Roughly speaking, the value (r(m) for m € N should be expressible
in terms of products of Pp(z;), z; € F.

In order to give a more precise statement, we introduce the following notation: let n
be the degree of F over Q, 1 and 27, the number of real and complex embeddings,
respectively. Then we define d(m) = ry if m is even, d(m) = r; + 72 if m is odd and
m > 1. We write Ap € Z for the discriminant of F' and Z[F] for the free abelian group
on F. Finally we extend P, linearly onto Z[F].

Then a more precise statement of (a part of) Zagier’s conjecture is the

Conjecture (Zagier)

There are formal linear combinations §; € Z[F|, j = 1,...,d(m}, such that for

Pm(£5)

pmin—dim) )
—— det | P, J ,
|AFr|z ( (& )>j,a

where ¢ € Q* and ¢ runs through all d(m) embeddings of F' into C.

(r(m) =g

The case m =1, d(1) = r1+r2—1 is a consequence of Dirichlet’s theorem mentioned
above, for m = 2 the conjecture has been proved by Suslin [Su] and (in a weaker form)
by Zagier [Zg-I], and the case m = 3 was shown by Goncharov [Go] (and independently
by Yang [Yal).

Borel {Bo] proved a corresponding result for certain fundamental invariants of a field
F —the higher algebraic I—groups K, (F') defined by Quillen [Qu]—as well as a regulator

map (introduced by Borel) rg';)r : Kym—1(F) — R40™ namely (using the notation above)

Theorem (Borel)

xm(n—d(m)) o
(r(m)=gq ‘—l“m— det ("Bor(’Yj ))

ho

for certain v; € Kym—1(F) and a g€ Q.

In his pioneering work [Bl] Bloch investigated the case m = 2 and tried to give a
)

constructive version By(F) of K3(F). He connected 7'5?0,_

to the function D = P, given

above (the Bloch-Wigner dilogarithm) which reflects the role of the function r$) on

K3(F).

Suslin [Su] showed that Bloch’s map from By (F) to K3(F) is actually an isomorphism
(up to tensoring with Q). Therefore functional equations for the dilogarithm somehow
reflect the structure of I3(F).



In order to generalize this situation for any m it was necessary to produce
1) a single—valued version of Li,, (we have called it P,, above) and
2) a generalized version B,,(F') of Bloch’s constructively given group Bz(F).
The former has been given by Ramakrishnan (iinplicitly) and by Zagier [Zg-B] and Wojt-
kowiak [Wo-A] (explicitly), the latter was found by Zagier [Zg-T] and enabled him to
formulate the conjecture named after him which relates K,,—1(F) and B,,,(F). Borel’s
theorem then implies the conjecture stated above.

The stronger form of the conjecture has undergone a motivic interpretation in the
work of Deligne and Beilinson [BD] and they were able to give a partial proof: there exists
a canonical map v : By (F) = Kom-1(F) such that 7*53";1 o~ = P, . The surjectivity of
~ has not been proved yet.

As a consequence, functional equations for P, reflect some structure of Kopm—_1(F).

For m = 3 Goncharov [Go] gave a complete proof of Zagier’s conjecture in the course
of which a new functional equation for the trilogarithm P; plays a crucial role.

Until recently, only functional equations up to order m = 5 were known. The first

ones for m = 4,5 have been given by Kummer, some others can be found in papers of
Wechsung [We-K] und Lewin (e.g. [Le-S], chap. 6).

The considerations above motivate the quest for further functional equations to obtain
more insight into the structure of algebraic K —groups (which are very difficult to handle)
as well as the motivic cohomology of a field, their most important feature being that the
“right” ones (for which we can’t give a candidate so far) should play a dominant role in a
proof of Zagier’s conjecture.

Using a criterion given by Zagier [Zg-T), the search for functional equations reduces
to the search for solutions of an algebraic problem.

In this paper we want to develop an approach for a construction of solutions of the
latter problem and therefore for the construction of functional equations of a certain type.
We give evidence for its usefulness by constructing whole families of functional equations
up to order m = 6. This approach slightly resembles an attempt given by Wechsung
[We-L].



1. Notations and definitions

In this chapter we introduce our objects and the calculus that we will use in the subsequent
chapters.

(1.0) Notation
P1. denotes the projective line over the field F', P!(F) the set of F—rational points.

(1.1) Definition
The dilogarithm function Liy is defined for z € C, |z| <1, by

oo n

Lis(z) =Y 2—2 .

n=1

(1.2) Properties

Liz can be analytically continued onto C — [1,00) via the integral representation

dt
)

Liy(2) = —foz log(1 —t¢) "

z € C—[l,OO),

It is a multi-valued function which jumps by 2=ilog|z| if one crosses the line (1, 00) and
it 1s essentially determined by a functional equation in two variables called the five term
relation (or Abel relation) since it relates five L1y —terms. For various forms of this equation
cf. [Le-P}, ch. 1.5. In this functional equation certain correction terms (i.e. products of
logarithms and a rational multiple of 7?) occur which make it rather cumbersome to deal
with.

A one-valued function that satisfies the same functional equation without correction terms
can be obtained by the following modification (killing the monodromy of Li; ) where
denotes the imaginary part.
(1.3) Definition

The Bloch- Wigner dilogarithm D is defined on P!(C) as

D(z) = Py(2) = S(Liz(z) + log |z| log(1 — 2)), z € C—{0,1},

(1.4) Properties

The function D
(i) is real-analyticon C — {0,1},
(ii) is continuous on P!(C), and



(iii) satisfies the following functional equations

D(m)—l—D(y)—l—D( 1*$)+D(1_my)+9(11_y)= ., z,y€C, ay#1,

D(z) + D(%) —0, D(z)+D(1—g)=0.

(iv) D is characterized (up to a multiple in C) by the properties (1)-(ii1) (cf. [Bl], [Du)).
(1.5) Definition
The classical polylogarithm Lip(2) for any m € N for z € C,|z| < 1, is defined by

n

o0
Lin(z Z .

We call m the order of Li,, .
(1.6) Property

Li,, has an analytic continuation onto C — (1,00) and can be regarded as a multi-
valued function on C —{0,1}.

(1.7) Definition
Zagier’s modified polylogarithm for m € N, |2| < 1, is given by

@) = B (30 2 (el 1))

r=0

where R,, denotes the real part for odd m and the imaginary part for even m, and
B, is the r—th Bernoulli number (By = 1,8, = —1/ yBy = 1/6,...). For |2| > 1,
P, (z) is given via the functional equation

(1.7.1) Pu(z) = (=1)"' Py, (%) .

(1.8) Properties
Py, is real-analytic on C — {0,1} and can be extended continuously onto P!(C).

We put Prp(0) = Pp{c0) =0 and Pp(1) = { g(m), gt}znlji;dd’

where ((s) denotes the Riemann zeta function.

(1.9) Remark

A similar function with less nice properties (with logarithmic poles in 0 as well as
“correction terms” in functional equations) had been given before by Ramakrishnan (im-
plicitly) [Ra] and Zagier (explicitly) [Zg-B}; Wojtkowiak [Wo-A] defined a function that
plays the same role in our investigations as the one given above since it agrees on the
groups that we consider.

For these P, m > 2, the following conjecture has been stated:



(1.10) Conjecture

(i) Each P, satisfies a non—trivial functional equation . n;P, (r,-(tl ey tn)) where
the arguments are rational functions 7;(¢;,...,%,) In several variables t; and integer
coefficients n;.

(11) For each m there is a functional equation that characterizes P, and implies all
other functional equations for P, .

Here we call a functional equation ¢rivial if it is a consequence of the inversion relatson
(1.7.1) and the following distribution relations (cf. [Le-P], (7.41)):

(1.10.1) P, (z") =n™"! Z P (¢2), n € Nso.

¢n=1
(The inversion relation is in some sense also a distribution relation: put n = —1 in the
above.)

(1.11) Definition

An element Y _mng[z] in Z[X], the free abelian group on X, is called effective, if
ny, >0 Vzé& X and for some zg € X: ng, > 0.

The support T of Y. _nglz] is defined to be T = {z € X | n, # 0}.
Now we give an algebraic counterpart for our function P, .

(1.12) Definition

For an abelian group A we define the second wedge power A’(A) as the following
subgroup of the Z-module A%? = A®z A:

A (A) = (a®b~ b@a]abe A).
We write

aAb=a®b - bQa.

(1.13) Remark

We have
aANb=—-bAa, aAa=0.

(1.14) Definition

For any field F' we define the following homomorphism f; on generators by

Po=p; i Z[PYF) - AFY),
[f]'—)f/\(l_f)s f;éO,l,oo,
[0], {1], [oo] = 0.
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Interesting in our context are elements € € Z[P!'(F)] belonging to the kernel of 8,
(modulo 2—torsion). We want to emphasize that we are working in the multiplicative
group of a field F', and the terminology “up to 2—torsion” just means that we can neglect
the element —1 € F'* (e.g. replace (—a)Ab by aAD).

(1.15) Remark

Up to 2—torsion we have

o) = [125]) = 0 ([F24])
=—ﬂz([;])=—ﬁz([1“z]):‘ﬁ=’-([zi1]>'

(1.16) Definition

For an abelian group A and k € N we define the k-th symmetric power Sym*(A)
as the invariants under the symmetric group Sp acting on the k-th tensor power A®* =
AQ®z...®z A (k factors) by permutation of the factors:

SymF(A) := (A®...@A)™
We write

" =a®...Qac Symk(A).

After tensoring with Q we denote the monomial elements in Symk(A) ® Q by

1 .
a1 ®...0a := i Z Ae(1) ® ... Q ay(r) € Symk_(A) ® Q.
) cESy

Occasionally we abbreviate “a; ©...0a; € Sym*(A)®Q” by “a;®...Cax € Sym*(4)”.

We use the basic fact that for the elements in Sym*(4) ® Q there is a polarisation
property, i.e. the a® with a € A generate Sym*(4)® Q.

(1.17) Remark

Let M be a free module over an integral domain R of rank r and with basis {u;}i_; .
Let R[zi,...,z,] be the polynomial ring over R in r variables.

There is an R—module isomorphism

Sym”* (M) @Sym =~ Rlzy,..., 2,
k>0
iy, @ .. Oy, M Ty ooy, k€N

Having chosen such an isomorphism we can identify identities in Sym® (M) with identities
in a suitable polynomial ring.



(1.19) Remark

(i) From the definitions we immediately get for each z € F
Br([2]) = 2202 @ Ba([2]).

(ii) For B, there are the following inversion and distribution relations ({ runs through
all the n-th roots of unity in F if n > 0,and weput ( =1 if n=-1):

Bu([") =™ Y Bu([C2]), n€N or n=-1,

¢n=1

Finally we formulate Zagier’s criterion revealing the connection between the analytic func-
tion P, and the algebraic homomorphism §,, which has been fundamental for our inves-
tigations. Hereafter we concentrate mainly on S, .

(1.20) Criterion (Zagier)
Let n; € Z, z;(t) € C(t)*, ¢ € I (index set).
For £(t) =3, nilzi(t)] € Z[C(¢)*] the following holds

Bm((t)) =0 = Pp({(t)) = constant.

Here fBm : Z[C(1)%] — Sym™ H(C(#)*) @ A*(C(t)*) is the homomorphism given
above and Py, is extended linearly, i.e. P (3, ni[zi(t)]) = X, niPm(zi(2)) .

(1.21) Example m =3,

1 1

26010+ [ + [1- 1) =0 in C0* © A (€%,

According to the criterion (1.20) above we have
Py($)+ Ps(1/(1 =)+ Ps(1 - 1/t) =C

where C' is a constant (indeed, C' = {(3), which is obtained by putting ¢t =0).



2. Separation of variables

In this chapter we give the basic intermediate result (proposition (2.12)) for the examples
examined in chapters 3 and 4. There we always have two (finite) subsets XY in a field
F as well as arguments “in two variables”, i.e. of the form f(z)g(y) for z € X, ye Y.
Using the aforementioned result, we succeed in separating the images of these arguments
under f,, in a certain way. In the subsequent chapters we will investigate the separated
terms obtained in this manner.

(2.0) General assumption
Let F be a field of characteristic 0, F an algebraic closure of F'.
Denote by P! the projective line over F which we identify with the point set P'(F).
For a € Z we put
at = max(e, 0),
o~ = min(a, 0).
For a rational function ¢ : P! — P! we denote the (mapping) degree by deg(¢) and
the support of the divisor of .¢ by supp(¢) = ¢~ ({0, 00}).

(2.1) Definition

Let ¢ : P! = P! be a rational function (defined over F).

Then Y C P! is called full with respect to ¢ if ¢7'¢(Y) =Y.

We call Y C P! truly full with respect to ¢ if actually |¢7'¢(y)| = deg(¢) Vy €Y
(i.e. no element of Y is a critical point of ¢, ¢'(y) #0 for y € Y7). :

Our goal is to find sets ¥ and “big” collections @ of rational functions with given support
T such that Y is truly full with respect to ¢ for all ¢ € @.
(2.2) Simple properties
Let ¢ : P! = P! be a rational function (defined over F), of degree deg(¢).
(i) ¥ Y Cc P! with |Y| = deg(¢) and [¢(Y)| =1 then Y is (truly) full wr.t. ¢.
(ii) If Y7 and Y, are full w.r.t. ¢ then Y; UY? is.
(iii) For deg(¢) =1,1e. ¢(z) = %}_’%, (¢ %) € GLy(F), each subset ¥ C P! is truly full

w.r.t. ¢.
(iv) Y C P! (truly) full wrt. ¢ = Y C P! (truly) full w.r.t. ‘C”;—’s—i‘g , (¢ 3) € GLo(F).

In particular, ¥ ¢ P! (truly) full wr.t. ¢ = Y C P! (truly) full w.r.t. 1/¢.
In addition, supp(¢) = supp(1/¢).
Therefore we shall from now on restrict ourselves to listing only one of the two func-

tions ¢,1/¢.

T . (z —1)2
(v) Foreach f € F {f,1/f} isfull wr.t. ¢(z) =

(and truly full for f # £1).
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(vi) Foreach f € F {f,1~f} isfull w.r.t. é(z) = 2(2 — 1) (and truly full for f # 1/2).

(vii) Foreach f € F {f, f/(f=1)} isfull w.r.t. ¢(z) =

2
Z 7 (and truly full for f #0,2).

z_.

(2.3) Examples

(i)

(i

(2.2)(iii),(v),(vi),(vii) imply: for f € F, X = {, %, f; 1, 7 -J: T T i f,l— f} is

closed under the involutions ¢ — 1/z, e = 1—=z, z— z/(z — 1), therefore

2
X is full w.r.t. each of the functions ¢(z) = ;, z(z — 1), Z—,
(z — 1)? z—1
X is truly full for f ¢ {-1,0,1/2,1,2}.
Also X is truly full wrt. ¢(2) =z, 2 — 1, zi—l (deg(¢) =1).
= f 1-f —-f1-1J) }
Let f € F, -1,0,1/2,1,2}, Y = , , d
et f féd / } {1—f+f2 1—f+f21—f+ f2 an

&(z) = 2%(z - 1).
-1

Then 0= { - =7 oy
Thus Y is truly full w.r.t. ¢.
Asin (i) Y is also truly full w.r.t. ¢(z) =z, z — 1,

} and |Y| =3 = deg(¢).

z
z—1

We are interested in functions with zeros ¢~'(0) and poles ¢~'(c0) in P!(F) or even in
{0,1,00}. They are (up to constant factors) in 1-to-1 correspondence with the elements
of Z[F].

More precisely, for each subset T C F there is a correspondence between Z[T] and the
set of those normed rational functions ¢, for which ¢~'({0,00}) C T U {o0}.

This motivates the following definition.

10



(2.4) Definition
Let a =Y, ai[t] € Z[F].
(1) We associate to a the following rational function (on the affine line over F'):

dalz) = H (z —t)*, VzeF.
teF
(ii) We also put
$x(z)=[[ (= -0 vzeF,
teF

(i.e. ¢F = “numerator” of ¢,, 1/¢; = “denominator” of ¢, )

(@) = max (Yt~ Y o7 ) = desta)

(iii) as well as

(iv) and
_J1, it Sat=-Yar,
x(a) {0 otherwise,
Le. x(a)=1,if ¢a(c0) ¢ {0,00}.
(v) Finally we define the support of A C Z[F] as

supp(A) = | J {t € F | a, # 0}.

a€A

In many examples we will have a € Z[{0,1}] and F will be chosen in such a way that Y’
already lies in F and is full w.r.t. several rational functions. We introduce the following
notations for simplicity.

(2.5) Notation and definition

(1) (r,s) =7r[0} + s[1] € Z[{0,1}] for r,s € Z, therefore ¢, ,(2) = 2"(z —1)°.
(ii) Y C F iscalled (truly) full wrt. ACZ{F] if Y is (truly) full w.r.t. all ¢,, a € A.

With these notations, example (2.3)(1) can be written as
X is full wrt. {(1,-2), (1,1), (2,-1), (1,0), (0,1), (1,-1)}.

11



(2.6) Lemma

Let a =3, a:(t] € Z[F], let C € F* such that Y = ¢;'(C) C F and |Y| = d(a)
(therefore Y 1is truly full w.r.t. ¢, ).
Then for an indeterminate = and a certain A\,(C) € F

<z
1- d)C(' = H (z—y) - N(C),
yEY
where
-2 if g (00) = o0
2.6.1 MN(C)={TT o ’
( ) () {1—- —'i"‘ém) otherwise.

Also for each ¢ € supp({a}) one of the following two factorisations holds

(;f) ; f —y N if a; > 0,
(2.6.2) A(C) =
-@ . —1~—, if a; < 0.
ey Y
Proof For a certain D € F we obtain
(2.6.3) 1—¢§”=—ﬁi?)(ﬂ@ﬂ-C@EWDH)=—¢%@-Ilw—y%D,

yeyY

since the expression in brackets is a polynomial with zero set Y (note |Y| = d(a)).
(2.6.1):  ¢a(00) = 0o : deg(¢p)) > deg(1/¢;), the highest coefficient of ¢F is 1,
therefore D = 1.

$a(00) # 00 ¢ limzeo (95 (2) - HyEY (z —y)) = 1, whence D = ¢,(c0) — C.
(26.2): ar>0 = ¢(t)=0, D' =%l ] o (t—y), therefore

1
$a () Hye‘x’ (t—y) '

,\u(C)=iCJ-=—

a<0 = ((;ba(t))ﬂl =, transforming (2.6.3) gives

1 1 1 D
da(z)  C ¢F(a) ]'[’(:L-_y).,c_’,

Substituting t yields




(2.7) Proposition

Let a =3, a4t] € Z[F], T the support of a, v € F such that da(z) € F*.
For C € F* assume Y = ¢;(C) C F and |Y| = d(a).
Then the following identity holds in A*(F*) (up to 2-torsion):

5o ([#2)]) = S T + 5 Som00te-1)

yey teT yeYy

_ U
+ Z ar y, :82([3:_75

tLueT

]) — x(@B((C)).

Proof Using Lemma (2.6) and (1.13) we get

s ([7]) =7 o (s I -

= H(2) A d7 () + 45(2) A4 (@) — CAdr(e) + 2XEAT] (2 —)

C
ye€Y
+ T ()Y AXN(C) + ¢7(z) AX(C) — C A NS(C)
= ¢a(z) Ny (x) — CAg( ¢a($ MG
yeY

1
a+' T —
t o N

teT

a, - (r - ¢i(t)
+ EZT T ( t)ACHyey(t—y)

—-é, if ¢o(00) = o0,
— CAX 1, if ¢a(00) = 0,
1— %, if da(o0) = 1.

=H(:1:—t)“f+/\l—_[(m—u)“:—-6'/\¢ 2:)-}- /\H (z—1y)

te”T ueT yeY
S Y ale-Aw-1) - Y @0 Ag ()
€T yey 1eT
+ Z (z —u)% Al (u) — H (x —u)® AC — x(a)B2([C))
ueT u€T

and because of [, (z —u)* = ¢ (z) and (1.13) two summands cancel and we get

13



o (|22)) =2 AT -0 + T S alw-0AG-9) - x@HIC)

yeyYy teT yey
+ -—
n Z (:L‘—t) (.‘L‘—u)a“
) 3
t,ueT t—u

since we have the following factorisation up to 2-torsion (using (1.13) again)

af a,
T —1\" T —u\ ¢
> (=) (=)
(ueT U — U

=Y (z = )% A(z—u)' — Z(;c—t)“a*/\ (H(t—u)ﬂi)

tu€l teT ueT
—Z(H(u—-—t)“?) (z — u)ls —I—Z (u —1t)° /\(t——u)“:
ueT \teT teeT
= (H (s — t)at*) A (H (a - u)“u“) —S (-0 ngr(e)
teT ueT teT
- Z T (W) A (2 —u)™
ueT

and the claim follows by

=) (=) == (=) 0
(2.8) Corollary

Let a =3, at] € Z[F], T the support of a, © € F such that ¢.(z) € F*.
For C € F* assume Y = ¢;1(C) C F and |Y| = d(a). Then for each m € Ns;
the following identity holds in Sym™ ?(F*) ® /\Z(Fx) (up to 2-torsion):

() - (47 () e

2]\ ©m=2)
() e al-nat-1)

ty

b (B Ve (8 e m ([22Y]) - xwme).

t,ue€T
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Analogously (interchanging the roles of z and y):

For B € F* assume X = ¢ (B) C F and |X| = d(a).

Then for y € F such that ¢.(y) € F* the following identity holds (up to 2-torsion)
in Sym™ *(F*) @ \*(F*):

- (lawl) = Gin) @ () Mo
L (G2 el ne-1)

$a(y) t o
B \°(m-2 ( y—u
(&) o (g e (5] - novam)
(567 3 o ([2=]) - xwmm)
¢
(2.9) Remark
Let M be a free module over a ring R. Then an R-module homomorphism
A: M — R induces for all £ € N an R-module homomorphism
MBF — &1
k
mi®...0my r—)ZmI ®...®,\(mj)®...®mk
=1
and thus also an R-module homomorphism
Sym* (M) — Sym* (M)
9 o Az) - 200D,
(2.10) Remark (“tensor derivation”)
Let A C Z[F|, T =supp(A) C F be the support of A and let v € N.
Let {a®},ea C Sym*(Z[T]) Z-linearly dependent with Yacan(a)a® =0.
Then for each homogeneous polynomial p(z) of degree j(p) in z = (21,...,21)) we
have _
Z n(a) p(a) P*—i) =,
a€A

Proof If weevaluate a monomial of degree 7 in a € A then the result can be interpreted
as the successive application of j homomorphisms of abelian groups (i.e. Z-modules) as
in remark (2.9), and the linear relation in the claim is the homomorphic image of the
assumed relation. ' &

(2.11) Notation We use the notation MUN for the disjoint union of two sets M, N .
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(2.12) Proposition

Let X,Y C F be finite subsets and A = AxUAy C Z[F] satisfying

(i) X is truly full wrt. Ay,
(i1) Y is truly full w.r.t. Ay,

(ii1) ()eF" Vace A,z e X,yeY.

$a(y)
Let T = supp(A) and for some m € Ny, assume the following Z-linear dependence
relation:
(2.12.1) Y n(a)a®m! =0.

a€A

Then the following identity in Sym™ 2(F*) @ A*(F*) holds (up to 2-torsion):

S YT, ([

T€EX y€Y acA

(2.12.2) s
- Y Gw) e(Zaaa([izi) - xomten)
T3 e (5 )O(m_2)®(mzejTa,+a: 5 ([2=4]) - @ s06u00)
Proof

For fixed z,y € F with property (iii) the map h : (4) — F*, hia)= za((ﬂ?;’ is a
al¥y

homomorphism of abelian groups, therefore (2.12.1) also implies

(2.12.3) Y n(a) (zzgg)@m_l -

a€A

and using remark (2.10)

O(m-2)
(2.12.4) Z n(a)a, (¢a($)> =0 VteT.

From (2.12.3) we get

0= ¥ % Yot (&) 0w

z€X y€Y a€cA




' €7  dalz)

= nla L $a(2') o -
R TE P (sba(y)) oy
1

I

@'€47  da ()

Ba(z) \ " ,
(2.12.5) + n(a) — p ®(z—1y')
z ﬂGZAY sev 4@ y'e¢§ba(y)<¢“(y)) ’
_ n(a) ( da(z) " o
-y aGe) e I w-w
+

Wy a€Ax
Om-—1
n{a) { ¢a(z
X)) o Q1 e
.y a€Ay v E€PL ba(y)
Analogously we conclude from (2.12.4)

n(a olT O(m=2)
(2126)0 = > " :;Ea—)) (igy;) ®Y a y, (y-He@ -1

T,y a€Ay €T pigp; ' ¢a(x)

(a ol O(m-2) ,
S ID R C - ) INN) DD SRV LICEE

z,y a€Ay €T yepr daly)

The homomorphic image of identity (2.12.5) under the map
Sym™ N (FX)®@ F* — Sym™ %(F*)® /\2(Fx),
FACHLI y > 2@(m—2) & (zAy),
yields together with the homomorphic image of (2.12.6) under the map
Sym™ (FX*)@ F* @ F* — Sym™ 2(F*)@ A\*(F*),
2O(m=2) o Y@z 200m=2) (y A z),

the corresponding relations in Sym™ ~2(F*) @ A*(F*). Summarising, we get

_ n(a) [ $a(z) )"
0= 2 Fa (qba(y)) ®

Y GEAX

dalz’ '
®(¢f(y))’\ [I w2 (y_t)/\(m_t))

1"6‘15:1450(:‘:) teT T €¢‘a_1¢ﬂ(r)

+Z z n(a) ( : )>®(m—2)®

z,y a€Ay

®(-(%‘{:(%A Z (z-9y") + Za, Z (y'—t)/\(z—-t)) .

y' Eda Pa(y) LET  yepr " ga(y)
The identity in the claim now follows from corollary (2.8).
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As an immediate consequence we obtain a simple criterion for elements in ker(8,,) of
arbitrary order m.

(2.13) Corollary

Let X,Y C F be finite subsets and A= AxUAy C Z[F] having the properties

(1) X is truly full wrt. Ax,

(i) Y is truly full war.t. Ay,

¢a($) X -
i) ——= e F Vae A,z e X,yeY.
(1) ba(y)
(iv) Each a € A is effective.

For an m € N5, assume the following Z-linear dependence relation:

Z n(a) a®m1 = .

acA

Then

Sy age(5nl)-

TeX y€Y aEA

Proof Va € A the following properties (i),(ii) are satisfied.
(i) Vt,u € F: afey =0 and (ii) x(a) =0.
Now we use proposition (2.12). %

Of course it is our goal to choose sets X,Y in such a way that A becomes as large as
possible since we have much better chances of constructing elements in ker 3,, for bigger
m.

(2.14) Example m=3, f,g€ F, f% -1,0,1/2,1,2, g #1/2, T ={0,1}, with

the notation introduced in (2.6). (2. ) ) vi) show that
f 1-f
= trul =
X {1—f+f2’ f+f2’1—f+f is truly full wr.t. Ax = {(2,1)},
YV ={g,1 — g} is truly full w.r.t. Ay ={(1,1), (1,0), (0,1)}.

The relation
(2,1)9% = 2(1,1)9? - 2(1,0)%? + (0,1)®* = 0

immediately implies the relation

Bs(€) =0

for the divisor

= 2 (5[] - o) 2l [55))

VEY

18



and Zagier’s criterion (1.20) yields
P;(¢) = const.
If we put e.g. = = oo we can see that the constant must be zero.

(2.15) Remark Since z*(z — 1) takes only one value on X and y(y — 1) takes only
one value on Y we can write the above divisor in the following form:

g 22 T (-1

with zg € X, yo € Y arbitrary, where the last divisor now has 17 instead of 24 terms.

(2.16) Metaphor In proposition (2.12) we have succeeded to “separate” the two
sets X and Y in the last two factors of the tensor product—on the right hand side of
(2.12.2) there occur only expressions whose factor in /\2(F *) depends either on X or
on Y. Now we divide the remaining (m — 2) factors, i.e. the part in Sym™ ?(FX), of
the resulting expressions into “mixed terms” like a zipper and investigate ¢(X) and r(Y)
separately.

19



3. Examples and investigation of mixed terms

(3.1) Example m arbitrary

Let reN, (= V1€eF.
A = {[0],7[0]} C Z[{0}], dyg(2) =1, _
z,y € F, X ={¢’a}i_; isfull wrt. A: ¢q(¢Pz) =2" Vi=1,...,r.

These assumptions together with (2.13) yield for each m € Ny, the well-known distribu-
tion relations (cf. (1.10.1)) using the following condition which is trivially fulfilled

n(r[0]) - v™ 1 + n([0]) - 1=0 (choose n(r[0]) =1, n([0]) =r™"1).

r r ]
P, (;—r) — ol ZP’“ (C’ 5) = const (in y).
=1

We obtain the constant by substituting y =0: it is 0.

(3.2) As an immediate consequence of proposition (2.12) we get examples for elements
in ker #2. In this chapter we derive such elements and we formulate the obstruction for
extending the results to higher m, i.e. the vanishing of the “mixed terms” (3.11x).

(3.3) Example m=2

(1) Let d(a) =1 Va e AC Z[F|, T =supp(A), and XY C F.
Then each (non-trivial) Z-linear relation ) . ,n(a)a = 0 induces via proposition
(2.12) a {non-trivial) linear relation among the J;—images of the following set:

¢a($) Tr—u Yy—u | N - - .
{[¢a(y)]’ [.’C—t]’ [y—t]’ [¢a($)]a[¢a(y)] : EA,JE}', GA, ¢, ET}.

(The assumption implies for each @ € F: {z} is truly full w.r.t. A.)

In particular,

1. d([t])) = d([t] = [u]) =1 Vt,u € T, t # u, thus the obvious relation
([ = [e]) - [t} + [u] =0

already produces a (non-trivial) element in ker 8, via (i). More precisely, using proposition
(2.12) one obtains the following variant of the five term relation (Abel relation):

b (E L0 - Co+ B+ B0 -555) =0 wwer

z—uy—t y—1 y—1u T —1 y—1

2. Further relations spring to mind: for each & € N and each sequence (tq,...,%x),
t; € T, we obtain a cycle

iz([ti] ~ [tiz1]) =0, (t mod k),

20



and the fp-relation that results according to proposition (2.12) is obviously a sum of k
five term relations as given in 1.

In the case k = 3, F = Q(z,y), this gives a special case of a relation found by
Wechsung [We-L| reproduced in [Zg-A], p.394, in the following way (with P, instead of
Ba)

33.1) Y B ([DV(titisnrujousen)]) =0, Viiu; € PYC)  (i,5 modulo 3),

¥

The specialisation of (3.3.1) mentioned above can be found by putting {¢;,¢2,3} C T,
U1 =z, up =y and uz = co.

Indeed the result obtained by this specialisation is equivalent to the “full” relation (3.3.1)
which we can recover by introducing a new variable u3 and symmetrising in wuq, uz,u3 .

(if) Let ¢ € Z[F] with support T, let ¥ C F' be a finite subset, truly full w.r.t. c.
Let z € F and A= {c,[t],[t] = [v] | t,u €T, t # u}.

There is a non-trivial relation )7 . 4n(a)a = 0 where n(c) # 0, and we obtain a

reduction of the expression
T
> ([55))

¥EY

to “simpler” rational arguments, 1.e. each argument is a product of two rational linear
transformations (one in z, one in y) —see also the relations found by Rogers (Ro] and
Zagier [Zg-D] (in full generallty)

(3.4) Example m=3

Let ¢ € Z|F), T the support of ¢, A= {c,[t],[t] — [u] | t,x € T, t # u}.
We write ey, = [t] — [u] for t,u €T, t# u.

¢®? € Sym?(Z[T]) can be written as a lincar combination of the [¢]°? and e;, ®?:

1
c®? + § Z‘: CyCy e:u®2 = ( Z Cu)(z Cr[ﬂez) .
t#u

ueT teT

Assume further
(i) c is effective (cf. (1.11)) und
(il) Y C F is a finite subset, Y is truly full w.r.t. ¢, hence truly full w.r.t. A.
Proposition (2.12) implies for ¢ € F (we observe f3([z]) = —B2([1/z]), nlew) =
%ctcu n(c) and x(ew) = 1)

21
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%% (66

g 5 e () e (- (22)) - ((24)
£ 5 e (20) o (22]) + m((22])

+ 3 2 e (55) o (2 ([2=5]) 2 (555)))
i = 3 s (w08 [3])+ 20 ((0))

_;zW(c).(;;g@zzﬁus:m

taueT yeY
—-u T—1
o 5 e (1222 on( [32])
tuer ery T —1u

Examining the calculation above we observe that in order to produce a fz—relation it is
sufficient to have the two final sums with mixed terms vanish. Under the assumptions (i)
and (ii) both sums are already zero:

I

.+_

(3.5) Lemma

Let ¢ € Z[F), ¢ be effective and T be the support of c.
Let ¥ C F be truly full wr.t. ¢, [Y| =d(c).

Then (3.5.1) and (3.5.2) hold (modulo 2-torsion):

(3.5.1) you

=1 Vt,u €T,
veY y-

(3.5.2) Yooy b ({

])=0 VYu €T mit ¢y > 0.
teT yeYy

Proof
(3.5.1): This follows immediately from (2.6.1) and ¢.(c0) = oo, since ¢.(t) =0,
¢-(t) =1 (analogously for u ).
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The final equality uses (3.5.1) and v Av=0.

Now it follows

Yoedy w-thaly—u) =) (H(y—t)c‘) Ay —u)
teT yeyY ¥ t
(M=) # (T-).

and the left hand side equals the right hand side up to sign in the final expression—this is
an immediate consequence of (2.6.2). o

(3.6) Corollary

Let ¢ € Z[F), ¢ be effective , let T be the support of c.
Let Y C F be truly full writ. ¢, |Y|=4d(c), A= {c,[t],[t] = [u] | t,u € T, t # u}.
Then

>z s (6] -

yeY a€Ad

Proof The final sum in (3.4.1) vanishes because of (3.5.1).

For the second to last sum we compute

23



(=)o (e

)

t,ueT yeY
g egs(32)
ueT teT yeY
peperreza()
teT u€T yeYy
- ze(mer)os (32
u€T teT yEY .
) ()
teT uel yeEY Ly —u
iET ueT  yeYy
-(HH Jeseza (=)
ueT teT  yeyY
and (3.5.2) implies that this sum also vanishes. &

(3.7) Remark  For arbitrary ¢ € Z[F| there is a general and rather simple S5—relation
with arguments from the left hand side of the equation in corollary (3.6) (in a complicated
form essentially due to Wojtkowiak [Wo-B]) which we are not yet able to deduce in an
illuminating way using our approach.

An analogous procedure as in the case m = 3 treated above, this time for X and Y,
yields for m = 4:

(3.8) Proposition
Let b,¢ € Z[F], b,c be effective, d(b),d(c) > 1,
let X C F be truly full w.r.t. b and Y C F be truly full wrt. ¢, T = supp(A).
Let A= {bc,[t],It] =[] | t,u € T, t # u}, and for certain n{a) € Z let the following

equation be satisfied

(3.8.1) > n(a)a® =0.

a€A

Then in Sym*(F*) ® A*(F*) we have

> x X ([07)-

z€EX yeY a€A

owa- 3 5 5o - [528) 2 [4)

s€X yeY t,ueT




—t  y-— -
- (i=eim) e (R [5=]) -+ (=)
c—u y—t y—1 T—u
(=) en([=]) - (=) en (D))
T—u y—1 y—1 T—u
Proof As an intermediate step we use proposition (2.12)

> 2 S (7))

TEX yeY acA

Y T S e (B e (a([121]) - s ([E21]).

T€EN yeEY tuerT

Expanding as in (3.4) yields the claim—note that

(F(2)9(1)®* = f(2)®2 +2- f(z) ® g(y) + 9(v)®? .

(3.9) Remark

In order to obtain an clement in ker 8y under the assumptions of proposition (3.8) it
is sufficient to satisfy

(3.9.1) > Z,@a ([

:::E)\

(3.9.2) Y nlew) Y (ifi) @6 ([

t,auecT reX yeY

j|>:(] Yt,ueT and

=)

as well as the corresponding equations (3.9.1') and (3.9.2’) where the roles of  and y are
interchanged.

Proof For v;,w;,z; € F* we have
Z ;i Qi@ G([z:]) =0 = sz‘ ® vi ® Po([z]) =0,

hence

Y (v Owi) ® Ba([zi]) = 0,

r—t - -
D e =)
T—-u y-—t y—t

and

J:Yy
_ z—t y—u Yy —u
> - (e en (=)

and using (3.9.1) and (3.9.1") the second row of the right hand side of (3.8.2) vanishes. ¢
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(3.10) Remark  Under the assumptions made in proposition (3.8) (i.e. b, ¢ effective)
equations (3.9.1) and (3.9.1") hold (use (3.5.1)), therefore only equations (3.9.2) and (3.9.2')
have to be satisfied.

In the next chapter we will see that the assumption |T| = 2 is sufficient to fulfill (3.9.2)
and (3.9.2), and in this case there is an even stronger result than the one in (3.8), namely
b,c can be arbitrary elements in Z[F] (not necessarily effective), cf. theorem (4.5).

In analogy with remark (3.9) we now want to establish additional conditions for the case
of arbitrary m that are sufficient to produce an element in ker 8, —in the situation of
proposition (2.12). (We will unzip in the sense of (2.16).)

(3.11) Notation
(i) For AC Z[F]weput A™ ={a€ A|3It,u€ F aa, <0}.
(ii) Let X,Y C F be finite subsets, A = AyUAy C Z[F] and T = supp(A), then we

define for m € Ny, and £ =0,...,m — 2 the following “mixed term” in
Sym®(F*) @ \*(FX)

(3.11%)
RD(0Y, Ax, Av) = ) ZEZ)) (Z ¢a(:v)®’°) O ¢aW)® " @ falbay)
a€A zeX vEY
where
Z afa; I:%], fac Ax™,
ay = tueT y—
x(a) [6a(y)] if a€ Ay,
(0] otherwise.

(3.12) Proposition
Let X,Y C F be finite subsets and A = AxUAy C Z[F] satisfying the properties

(i) X is truly full w.r.t. Ax,
(i1) Y is truly full wr.t. Ay,

vy ¢a($) X - -
1 F Va X Y.
(1ii) ¢a(y)€ cEA,zeX y€E

For m € N5; assume the following Z-linear dependence relation:

Z n(a) a®m! = 0,

acA

and let
RM(X)Y, Ax, Ay) = RO(Y, X, Ay, Ax) =0, if k> 0.
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Then

= 5 55 (2]) - i soainn

z€X y€Y acA
where the expressions f(A, X, [Y]),g(A,Y,|X|) € Sym™ 2(F*) @ A*(F*) depend only
on A, Y and |X]|.
Proof We put T = supp(A).
We transform the right hand side of (2.12.2) using the following identity

f Om—2 m—2
g k=0

where c(m, k) = (=1)"2=F (™) This gives

IPIPIE TA(EE1)

T€EX yEY acA

= Z_: c(m,k)(z Z Z Z((Z)) $a(2)% © $a(1)°" 2N © 3 afa; By([1= u])

-1
k=0 yEY z€X a€AdAx t,ueT y

+ 3 T 3 S 6@ 04" ©x() e (6a(0))

T€X y€Y acAdy

d(a)

-Y Y Y e on@o e 3 dta m(E)
)
)

T —t
y€Y z€X a€Ay tueT

SX S Y et 06u@2 N 6 @) b () )

z€X y€Y acAyx

LS

m—

= 3" c(m, k) (RP(X,Y, Ax, Ay) — RI(Y, X, Ay, Ax))

k=0
= ¢(m,0) (RES)(X, Y, Ax, Ay) — RO(Y, X, Ay, A,\')) by the assumption.
From this the claim follows since e.g. Rf,?)(X, Y, Ax,Ay) only depends on A, Y and

the cardinality of X . (Note that for a € A— A~ and v € T we have a; =0.)
&
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(3.13) Corollary
Let X, X' Y,Y' C F be finite subsets and A = AxUAy C Z[F] having the proper-
ties
(1) X,X’ are truly full wr.t. Ax,
(i1) Y,Y' are truly full wr.t. Ay,

(iii) zag; eF* Vae A, zeX,yeY, and

(iv) [XI=I[X"], [¥Y]=1[¥"].

For m € N5; assume the following Z-linear dependence relation:

Z n(a) a@m-1 — 0,

a€A

and let
R (XY, Ax, Ay) = RI(Y, X, Ay, Ax) =0, ifk>0.

Then up to 2-torsion §,,(£) =0, where

- (S 0l-Z 2 R

ea€EA ‘€N yeyY y) reX y' ey

-y TS = (55))

' €X! y€Y o eX y ey’




4. Families of functional equations up to order m = 6

The case |T| = 2, where T is the support of a subset A C Z[F], is of special
importance to us since in this case the situation has proved to be simple enough to construct
functional equations in 2 variables up to order 6. We want to exhibit these in the following,.

(4.0) General assumption

In this chapter we always compute modulo 2-torsion in a field F of characteristic 0
and we let A C Z[{0,1}]. (Each set {t,u} of 2 elements in F can be transformed into
{0,1} using a rational linear transformation.)

We first collect some basic facts using notation (2.5).

(4.1) Lemma
Let Y C F be truly full w.r.t. ¢ = (cg,¢1), €0 >0, ¢1 € {0,—co} and ¢ca = —co—c1 .
Let |Y| =deg(c) and C =y (y — 1) VyeY.
Then the following identities hold

_ +C, if co+c1 >0,
(4.1.1) H y= {:i:l otherwise,
yeY
_ :l’:C, lf cy > 0,
(4.1.2) [JTa-y =<4, f0>ea>—c,
yey :I:% otherwise,
y +1, if ¢¢ >0,
(4.1.3) 11 y—1 _{iC‘, if ¢; <0,
yE€Y
(4.14) S e -)"" @By =0  VkeNo,

yeyYy

@i IY aw=x Y a((]) =2 a((-1),

1
yeY yeY Y

(4.1.6) Zﬁ4<cocz[y]+c1cz{liy] + cocy [1—;}]) =0.

yeY

Proof
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(4.1.1): For ¢g+ ¢; < 0 we have ¢.(00) =0, and (2.6.1) implies

—z%(g — 1) = (. ) =L ifcote >0,
(4.1.7) C—z(z—1) —g(m—y)¢c(m) {C’, ot <0
v

Since ¢g > 0 we obtain, putting z =0,
1, if ¢ >0,
C:H( y) < (=1)= if ¢cg>—-c; >0,
y (-1)C, if o< —cy.

1)
1)
(4.1.2): If ¢1 >0 then C=-][, (1-y) (put x=1 in (4.1.7)).
If ¢; < 0 then multiply (4.1.7) by (¢ (fc)) =(z—1)"° and put z = 1. It follows
_ oy -1, ifcg+e¢ >0,
_1_];[(1 y) {C, if cg+e¢1 <0.
(4.1.3): Follows directly from (4.1.1) and (4.1.2).
(4.1.4): Modulo 2-torsion we get

ay Bly)=cy yr(l-y)= Zﬂ\i —Zy/\C

. i :EC)/\C, if Co>!cl|, .
- (H y) N = { (£1) AC  otherwise because of (4.1.1)
y

=0,
and by assumption y®{y — 1)** is independent from y € Y.
(4.1.5): Since f2(ly]) = ﬁg([ll—y]) we obtain

e (clit - [2=]) = 3 (c® — ()™ ) o i)

1-—-
= Z (y — 1) 1 ®B2([y]) =0  because of (4.1.4).
y

The second equation is treated analogously.
(4.1.6): From remark (1.19) and S([y]) = ﬁg([]“i—y]) =pa({1 - i]) we deduce

234 (coc2[y] +0102[1 - y] oen |1 i])

coca y® +C]C2(1 i y)®2 + cocy (1 — %)02) ® B2([y])

Z ® B2([y]) = by (4.1.4). o
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The following lemma determines the coefficients of an equation of the form

Z n(a)a®* =0, A C R%
aCA

(4.2) Lemma

Let A C R?, |A| = r > 1, where the elements of A are pairwise linearly independent.
Then we have

1
(4.2.1 a®r= = 0.
) ; H det(a,a’)

a'€Ad-{a}

where det denotes the determinant function in R?.

Proof Lagrange’s interpolation formula yields for a set {;}i—; € C and a polynomial
f(z) of degree < 7:

(4.2.2) f(z) = g i TI ( © =, )

oy i —;

(Proof: Both sides are polynomials of degree < r and coincide for z =7;, i =1,...r. )

If we put f(z) =z™ !, m < r, and compare the coefficient of z"~! on both sides of
(4.2.2) we obtain

First let §; #0 Vi. We put + = i -}\L for two variables X, Y, then we get

= | A, an _ _(a.‘X+ﬁ;Y)"'—‘
Vi Y; ﬁi ,BJ - ﬂi ,6_',- /ﬁtﬂ] d f(%) — (6,‘X)m_]

Putting A; = Hj;é;‘

;I_' gj we deduce

12 BiBi (c:X +BY)™1 |, groi-m .
0= G =X HﬁjZ A (X ey

In particular, for m=r -1

1 .
0= E (X + 6, Y) 2.
- o o
|

Bi B

31




This equation holds also if one of the §; vanishes by a continuity argument.
Remark (1.17) now proves the claim. o

We now come back to our main examples (2.3) for which we can score many useful prop-
erties (almost in abundance).

(4.3) Lemma
Let te F, X = {1 &L, =, %,1—!} C Z[P'(F)]. Then

t? ¢

(4.3.1) Y Bu(fz]) =0  for m=2,3,4,6.
zeXN

Proof  For m even Bn([z] +[z7!]) = 0.
X is closed under inversion, therefore the claim follows for m = 2,4, 6.

For m =3

Bs ([z]+[ ! ]+{1-1D=0 (cf. (1.21)) and Bs(fz] —[=z"'])=0. &

11—z T

(4.4) Notation
(i) For two divisors £1,&2 € Z[F) we write

'51. =& (mOd kerﬁm): if ﬁm(él) = 4817!(62) '

(ii) We have an operation of S3 on P!(F) that is generated by the involutions

1
f =
f
We call this operation the “usual” operation of Sj3.
(iii) For a = (ap,a1) € Z[{0,1}] we write n(ag,a;) = n(a) and d(ap,a;) = d(a).

f—=1-1.

Now we want to formulate the result indicated already at the end of (3.10).
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(4.5) Theorem
Let b= (bo,b1), ¢ = (co,c1) € Z? such that det(b,c) # 0 and %f, & ¢{0,-1,00}.
Let A = {b,¢,(1,0),(0,1),(1,-1)}.
Let X,Y C F be finite subsets satisfying the conditions
(1) X is truly full w.r.t. b,

(i1) Y is truly full wrt. ¢ and
(i11) iaE;EFX Vae A, zeX, yeY.

Then up to 2-torsion

S S e Y A+ Y S Cunl] (mod k)

aCA reX yeYy T€X o€Sa yeY €Sy

for certain coefficients B; ,,Cy . € Q and 1/n(a) = H det(a,a’), a € A.
a'€A—{a)
Proof Let byg,co >0 and |X|=d(b), |Y]=d(c).
We denote B = ¢p(z) Ve € X, C=¢.(y) VyeY.
We put Ax = {b,(1,0),(0,1),(1,-1)}, Ay = {c}, then
Ay € {b,(1,-1)}, Ay C {c}.

1
o' €A—{a} det(a, a’)

Vac A = Zn(a)aes =0.

(4.2) implies n(a) =
H aCA

I) First we will show ng)(X,Y, Ax, Ay) = ng)(Y, X, Ay, Ax) =0 for k=1,2.

(i) k=1.
RX Y A, A =3 3 Y ”E £) © $aly) @ atar By ([L1])

z€X y€eY a€A a Y
n(b - o 1

=207 b b b I;m @y% y*o(y — 1)) @ Ba([y])
+a(l,-1)(-1)- Y = — © Z —— ®B2([v])

zeXN EY
n(b) 0, b >0 0 1
=aa“{mb~w} ) Bo Y. (vl - 1)) @ a(ly))

yey
+191 b >0 Y
—ntn,-0-{ Fpor 120 0% 7Ly,
For b; > 0 both terms vanish.
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For by < 0 we deduce from ), 4n(a)a® =0 and (2.10) the equation

n(b)bob; b1 4 n(c)eoe; ¢ + n(1, ~1)(~1)(1,-1)®' = 0.

Hence
0=n(b)bobr-BO ), (v*°(y — 1) & fally])
yeY
-n(l,-1)-BO Z — ® Al
er
+n(c)eocs - BO Y. (y®(y = 1)™) ® Ba([u])
yeY

but the final term vanishes because of y®°(y — 1) =C Vy €Y and (4.1.4).
Analogously one can show Ri])(Y, X, Ay, Ax)=0.
(i1) & =2. Since x(a) =0 for a € Ay we have

2)® @ afa o ([L=2])

Ri?')(X, Y,Ax, Ay) = v

z€X yey a€A}

P> zézi e e i )

reX a€AY} yeY
=0 by (4.14).

Also for a certain ¢ € Sym®(FX)

-1
R,(;z)(Y,X,Ay,.A)\ Z Z Z a ®2®a0a1 32([’12:5 ])

€N yeY e_,q—

-5 S @, -1) ) ®ﬁz([mi1])

T€EX yeY

=¢® Y. Ar((s) =0 by (414).

T€EXN

(II) Finally we want to examine the case k£ =0.

RO(X,Y, Ax, Ay) = |X| Y Z (y)“@ab*a?ﬁz([yT—l])

)

yEYae_A“
= x| (S ey PNREEDLIG =)
y \@2 y—1
-nu,-ug(y—_-{) oa(L1) ).
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For b > 0: R{(X,Y, Ax, Ay) = [X|n(L,-1) T ey B ((555])
For b; <0 we deduce from ), 4n(a)a® and (2.10) the equation

n(b)b; 492 + n(c)e; ¢®? —n(1,-1)(1, -1)9% 4+ n(0,1)(0,1)°% = 0.

Hence for by > —b;

0=y bt 2 (0w = ") ® Ba(ly)

_ (_i%n(l, -1y (y-i-ﬂoz ® Ba2({y])

yeY
bo 2
+ E(_bjn(o’l) . yg}:, (y — )% ® B([y]),

and since |X| = d(b) we obtain using (4.1.4)

1 bt S -0 o)

a1, X () 06l

yeY

= d(b)((d—tz"l5 - Un(l,-1)- Y (y%l)@2 ® Ba2([y])

yey

dIZb) n(0,1)- Z(y—l)m@ﬁz([y])).

yeY
bo > —b1 > 0 implies d(b) = by and on the right hand side we are left with
bon(0,1) Y Ba([1 o).
yeY
If —by > by then d(b) =b; and we deduce in an analogous way
bin(1,0) ) Ba((y))-
yeY

Summarising, we have

n(1,-1) 3, Ba( [y'l]), if b >0,
RO(X,Y, Ax, Ay) = |X| ¢ n(0,1) T, Bs(1 = y)), if bo > —b; >0,
- n(1,0) >, Ba(lw}), if 0<bp<—by.
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Similar computations show

o (1, -1, A ([2]), i 1 >0,
R4 (YaXaAYvAX):lYl ( ; Z ﬂ [1—'12] if ¢o>—cy >0,
—n(l ,O)Z Ba([x}), if 0<cp<—cy. o

Let us recall a result from the representation theory of S;, the symmetric group on 3
variables.

(4.6) Lemma

Let sgn be the sign character on S3. We consider the 2-dimensional irreducible
representation V' of S3. Then we have the following dimension formula for the vector
space of invarjants

(4.6.1) dim (Sym* (V)) { t j,+ 1 ic:cl:}llcerzwilse (med 0
6 ’
max(0, [252]), if k=4 (mod 6),

] k 7 san =
(4.6.2) dim (Sym*(V')) {LLE_B J+1 otherwise.

Lemma (4.6) for the Sz-invariants and the Sz—antiinvariants is only needed in the explicit
form given in lemma (4.8) below.

(4.7) Remark

In the theory of modular forms the dimension formula for the vector space of modular
forms of weight 2k coincides with the dimension formula for the §3 —invariants given above.
An explanation is given by the fact that we can consider the 2-dimensional representation
of S; on the vector space spanned by the 3 Eisenstein series to an elliptic curve E with
a given non-trivial 2-torsion point P. The pairs (E, P) are parametrised by I'(2)\H.
Ss operates as a projective representation on the homogeneous polynomials in 2 variables
(the latter correspond to 2 of the 3 Eisenstein series mentioned above).

Further evidence for the fact that good examples for elements in ker 3, might be
motivated by the theory of modular functions is provided by the fact that the j—invariant
for SLy(Z) can be expressed in terms of the “j-invariant” A for I'(2)\H:

joy =t AN

AZ(N —1)2
This rational expression plays an exceptional role in the most interesting of our examples:
J(u) — j(t) decomposes into linear factors (one factor is v — ¢, the S;-invariance of the
expression implies that each u —t7 for ¢ € 83 constitutes a factor, and for reasons of
degree this gives the whole decomposition).

The field extension Q(7) of Q(X) is rational and Galois.
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This suggests looking for (rational) Galois extensions such that j can be expressed in
terms of the “j—invariants” for a congruence subgroup I' of SLy(Z). This together with a
certain set of subgroups U; of the factor group SL2(Z)/I' should give arguments for the
“main part” of a functional equation for polylogarithms of high order (where the arguments

are of the form [, ;:i: o € U; ). The most promising candidates are e.g. I'(3),['(5).

(4.8) Lemma

Let a,b,z,y € F', let S3 operate on the set {a,b,c = —a — b} by permutation.
Let |o| denote the signature of ¢ € 3. Then we have

6, if k=0,
R if k=1,
(4.8.1) XS: (@ +Y)" = 0 442 4 ab+ 62)(a? — 2y + 42), if k=2,
7€ 3abla + b)(2z —y)Wz +y)(2y — ), i k=3.
. 0 if k=0,1,2,4
_ Io'l k _ B Pk Bt B
(482) 3 (D"oter + 00" ={ S0 pyoa t iy s ente —v), § ko3

O’ESa

Proof (4.6.1) implies that the (S3—invariant) sum in (4.8.1) vanishes for & = 1 and
decomposes for £ =0,2,3,4,5,7 into a product of two polynomials (one polynomial in a
and b and another one in z and y). An analogous situation holds for the antiinvariant
sum in (4.8.2) because of (4.6.2).

One immediately computes the relation given above. & -

(4.9) Corollary

Let t € FX — {1}, let S; operate on P!(F) in the usual way.
Then (up to 2-torsion) we have for ag,¢; € Z:

(4.9.1)
6, k=0,
e k=1,
Z ((t7)%(t° — 1)"1)O ={ 4(a +apay +a?)- (12—t (- 1)+ (t - 1)9?), k=2,
gESy t? t —1)2
€s 3a0a1(ao+a])(t_l)G)t(t——l)@(( 7 ) ), k.=3,
(49.2) Y ()Mo - 1))
0633
07 k= 01112’41
i
{3((10 — (L])(an +a])(a0 +2(11) 20 (i — 1) O] (t _ 1), kE=3.

Proof According to remark (1.17) we can identify identities in Sym*(M) for a free
module M with the corresponding polynomial identitics. We transform (4.8) into the
corresponding identity in Sym®(M) and set © = ¢t and y = 1 —¢. This implies the
statement. ¢
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(4.10) Lemma  For (o,f) € {(2,-1),(1,-2),(1,—1)} we have

(4.10.1) (o —B) = (o +af + %)

2
d(a, B) - o

After these preparations we now formulate the main theorem.

(4.11) Theorem
Let ¢ = (co,c1) € Z* such that £ ¢ {0,1,00,—1/2,-1,-2},
A {(co,1),(2,-1),(1,-2),(1,1),(1,0),(0,1),(1, - 1)} C Z2.

Let X = {1, 1,5, 4, 1 T t} CF forate F,andlet Y C F be a finite subset.
If ¢ € A then we assume Y is truly full w.r.t. c.

Then for m = |[A| — 1 the following holds (up to 2-torsion):

3PS A1 IEDILEEED o SR R YETS

yeEY z€X acA YEY TES,

for some coefficients B, Cy,r € Q. Here n(a) = 1/[[,1¢ 4—(a) det(a,a’) and S3 operates
in the usual way.

Remark The coefficients B;, Cy - can be computed effectively as can be seen from
the proof. It is not necessary to actually determine their values since we can proceed as
n (3.13), i.e. we introduce another pair (X,Y") with the same properties and take the
alternating sum of the corresponding expressions for X, X', Y, Y".

Proof (of theorem) Without loss of generality let co > 0.

We put Ax = A—{c}, Ay ={c}NA.

X is truly full w.r.t. Ax (cf. examples (2.3)). Also we have (with the notation of
(3.11))

AR = {210, (1,2, (1, =)}, A7 = { e} DA foe <6

For the sake of simplicity and without loss of generality we finally assume that Y is
irreductble, 1.e.

(4.11.1) Y| = {;l(C), if ce A,

otherwise,

(The general case now follows by simply combining several such irreducible Y's,
thereby adding the corresponding formulas.)

Lemma (4.2) provides us with the relation

(4.11.2) 0= Z n(a) @M1,

acA
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1, if a=(1,-1),

Note that for a € A we have: a5 =0 and x(a) = {O therwi
otherwise.

I) We first show that the following mixed terms vanish
RE(X Y, Ax, Ay) = R(Y, X, Ay, Ax) =0, fork=1,...,m—2.
() k=1, m>3.

RD(X,Y, Ax, Ay) =0, since Y (z®(z-1)")"" =0 Yac A by (4.9).
zeX

(i) k=2, m>4.

RO(X,Y, Ax, Ay)
na m—
(a) apa Z (z%°(z — ©? 5 Z oy —1)™) Om=4) ® Ba(ly]).

agAy d( ) zeX vEY

Using the homomorphism

Sym™ "1 (F*) = Sym™*(F*),
a®lm—1) apay{ap — ay) -a®™=1) we deduce from (4.11.2) and (4.10)

0= Z n(a)apai(ap —ay) - a®(m—14)

acA
= Z n{a)apai(ap — a1) - q®m—*)
a€A—
a ay
= n(c) coci(co —e1) - @1 1 9 Z 0 (ad + apas +ad)a O(m—4),

aEA_

Because of (4.9.1) this implies for a certain é(c) € Q and each yp € YV

0=3 E% > @@ -0 T e Y (rm-1")"" " 0 fi(l)
a€AY z€X yeY
+6(0) Y (@(e — 1)) 0 (5w - V)" e 3 Ba(lu)).
z€X yeY

If c€ A then ), yey B2([y]) = 0 because of (4.1.4) and the last summand vanishes.
If ¢¢ A then alre'ldy n(c) =0, hence also §(c) = 0.
In each case the claim is proved
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(iii) k=3, m>5.

RI(X,Y, Ax, Ay)
38 aom Y (= = 1)) 0 3 (v -1")"""" @A)

a€AY z€X yeYy

Using the homomorphism
Symm'"l(Fx) — Sy1nm_5(F"),
a®in—1) apay(ag — ay)(ap + a1) - a®m=5) we deduce from (4.11.2) and (4.10)

0= Z n(a)aoa;(ag — ay)(ao + al)aO(m”5) '

acA

In this equation the coefficients of (1,0), (0,1), (1,~1) and (1,1) are annihilated.
We have: ag — a; = 3 is independent from a € {(2,—1),(1,—2)} and thus

0 = n(c) coes(co — €1)(co + ¢1) @™ 13 Z n(a)aoa; (ap + a1 ) a®™=9)
a€{(2,~-1),(3,-2)}

We deduce
0 =n(c) coci(co — c1){co + c1) Z (y*(y — l)cl)a(m—m ® B2([y])
yeY

+3 Y n@am(at+a) Y @@ -1V @ ().

ae{(?‘s_l)u(l!_z)} yEY

The first sum vanishes because of (4.1.4), the second one can be transformed (note that
—apa, = d(a) is independent from a € {(2,-1),(1,-2)} ):

0= Z n(a) (3(10(11((10 + a )) Z (y"o(y - l)al)o(m—s) ® Ba2(ly])
a€{(2,-1),(1,—2)} yey
=- 3! Z aoas (3aoar(ao + @) S (y*°(y — 1)*)°" ™ @ By (ly)),
a€Ay yeY

and so, by (4.9.1), k=3,

-Y % oo 3 (a%(e - P ™y~ 1) @ ().

a€Ay z€EX yeyYy

(iv) k=m - 2.
RU™D(X,Y, Ax, Ay) =0 by (4.1.4),
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(v) RP(Y,X, Ay, Ax)

_n(c) - co Co @(m 1—k) (12 1
_mcgﬁyezy(y (y OTEZ;\ _ ®ﬁ2([ ])
+n(l,—-1)(=1) Z (y jJ— 1)®k 5 Z (x_i_l)@(m—z—k) ®ﬁ2([m ; 1])
yey reX

=0 by (4.9.2) and (1.15),

fm-2-k=0,1,24.

We still have to examine the case m — 2 —-% = 3 (ie.
C = ¢.(y) for any—and hence all—y € Y').

R(Y, X, Ay, Ax)

m =06,k =1) (we put

=28 ¥ 0w -0)% 0 X (0PI - 1) 0 i)
yeY gES,
©3
z ;C@ CO—CI)(2CO+CI)(CO+2C1)‘tQ(t_l)(D%)@ﬁ?([t])

)Y () e ren-ne ) e s,

yeY y-—1

Since m = 6 we must have |A| = 7 and ¢ lies in A, so using (4.11.1) we get d(c) =
2 yey L and using (4.1.3) we have to show

0, ifc; >0
0=n(c)c0-{c]’ ;fz<0}'3(60—Cl)(200+01)(60+201)'001

B oy ao JED®, e >0
n(l,-1)-3-2 {(iC)Ol, ifey <0

If ¢; > 0 then each of the two summands vanishes.

If ¢; < 0 then the claim follows from (4.11.2) if we apply the following homomorphism:
Sym®(F*) = Z, a®®) s aga; (ap — a1)(2a0 + a1)(ao + 2a).

IT) We want to analyse the case k =0 in more detail in order to be able to describe the
right hand side of the equation in the theorem. (Note that x(c) =0.)

() ROX,Y, Ax, Ay) = [X| T 29 0 3 ooy - 1)2)° 2 @ (1))

d
L@

From (4.11.2) we deduce after applying the homomorphism
Sym™ 1 (F*) = Sym™ %(F*),

41



a®™=1 o (gg — ay) - @M=
0= n(a)(ao — @) a®" 2,
a€A

and since the coefficients of (2,—1) and (1, —-2) are multiplied by the same factor (i.e. 2)
we obtain with the abbreviation A, = {(2,~-1),(1,~2)}:

3 Z n(a)a®m=? = — Z n(a)(ag — ay) a®™=2 =

acA; aEA—Ay
ag a O(m-2)
> na) Y (vely-1™) ® Ba(ly))
a€A, yeyY
1 a ayyO(m—2
=—3 2 nl@)w-a) ) @@ -1 9 b))
acA—Ag yeyYy
On the right hand side the sums for a = (1,1) and for ¢ = ¢ are annihilated (by (4.1.4)),
thus we get because of d(a) = —aga; for a € Ay, introducing the abbreviation A4; =

{(1’0))(07 1)1(1’ _1)}:

aoaJZ vy - 1)") "7 @ Bo(ly])

ac Ay yeyY
=3 Z ()(ao —a1) Y (5*°(y — ™) @ Bo(ly))
GEA1 yeY
=§Zﬂm(n(lao)[y]-l-n(o,l)[l—y]—gn(ls—l) yﬁ )
yeY

Altogether we derive the following equation (where |X|=6)

RO(X,Y, Ax, Ay) = 2} fm (n(l, o] +n(0,1)[1 = ] +n(1,-1) [ ])

yeY y—1

(i1) For RO(Y,X, Ay, Ax) the only case left to consider is m = 5 (otherwise the
expression disappears by (4.9.2)).

RO(Y, X, Ay, Ax) =|Y| % ey Y (2%(z — 1)) @ B([z))

( ) z€X

~ e, -0 Y (-25) @ fala)

rEX
= Y15 e +3(eo = en)eo + er)(co + 261) 10 (t — 1) © - © ()
+HYIn(1,-1) Y (=)

reX
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We can polarise:

t 1 t—1,0:
tol-no Ty =5 (0 (7 (1)),

_ t 1—t
and obtain
3.t®(t—1)®t_%®ﬁz([t])=ﬁs([t]+[tzl] =%Z
r€EXN
hence

RO, X, Ay, Ax) = |Y|<2”£8) et el (co—c1)(2c0+¢1 )(co+2¢1 ) +n(1, —1) )J;(ﬁs [2]) .

¢

(4.12) Examples
(1) Let C=(2,1) and Ag ={C,(2,—1) (1, 2) ( 1), ( )3(0
We have d(c) = 3,d(a) = 2 for a € {(2,-1),(1,-2),(1
ae {(1’0)’(01 1)1(1’_1)}
Let t,u € F, X ={y, }’ttl’ = -t and Y= {3 et 1 lu_-;-luﬂ’ :Egz]-;uuﬁ)
Y is truly full wrt. ¢, X is truly full wrt. Ao — {c}.
Theorem (4.11) yields for A C Ay and m € N5y where m = |A] — 1, certain

coefficients n("‘)(a), ae A, and B,C,,C>,C3 € Q

1,-1)}.

1) (
1)} and d(a) = 1 for

3

(4.12.1)

n( ™ (g
Z ZZ [ ] ZB[T]+Z Cl +Cz[1 y]-I-C'a[ ]) € ker B .

T€X y€Y a€A z€X yeY

(i) m=6, A= Ag. The coefficients n{®(a) are given by lemma (4.2) (we multiply
by the lem of the denominators). The triple sumn in (4.12.1) is independent from
X by (4.11), and specialising u = 0 we obtain an expression for the remaining
sums in (4.12.1) with integers B, Cy,Cs,Cs given in the following table (cf. also

[Zg-A)).
« | @y -2 @-) @) -1 01 (1) B & G G
W@ | -3 -4 -5 20 60 -9 180 0 120 -180 -360
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(i) For m < 6 and certain A, [A] = m+ 1, we take the coeflicients ng-m)(a) again

from lemma (4.2) (multiplied by the lem of the denominators), and just like in (i)

elements n\™ = Z ngm (@) [ da(2)] | k In the following th
;= ) in ker 3, emerge. In the following three

aEA d)a(y)

short tables we give several ng-m) of this kind for m = 5,4 and 3. Here a row
corresponds to the coefficients of an element in Z[F] as in equation (4.12.1).

m=2>5

a (2,1) (1,-2) (2,-1) (1,1) (1,-1) (0,1) (1,00 B € Cy Cs
n{(a) -9 4 -5 40 0 -9 180 0 0 180 —360
n{®(a) 3 2 5 —-10 -30 0 -9 90 60 0 180
n{™ (a) 3 —8 —5  —20 60 90 0 —180 —120 —180 O

m=4

a 2,1) (1,-2) (2,-1) (1,1) (1,-1) (0,1) (1,00 B C; Cp Cs
n{"(a) 7 4 5 -20 -20 30 -60 0 0 0 0
n$P(a) -1 0 0 3 -1 -3 6 0 -6 0 0
n{"(a) 1 0 3 0 8 -6 -24 0 0 -—36 0O
n{"(a) -1 3 0 6 -10 15 15 0 0 0 =90
n{(a) 0 4 5 1 -27 9 —-18 0 -42 0 0
n{(a) 0 1 -4 -5 9 18 27 0 0 63 0
n"(a) 0 -5 ~1 4 18 -27 -9 0 0 0 126

m=3

a (2,1) (1,-2) (2,-1) (1,1) (1,-1) (0,1) (1,0) B C C» Cj
n{¥(a) 1 0 0 —2 0 1 -2 0 0 0 0
n{®(a) 1 0 3 0 —4 0 -12 0 0 0 0
n{(a) 1 6 0 0 -1 -15 0 0 0 0 0
n{¥(a) 9 4 -5 -20 0 0 0O 0 0 0 0
n(a) 1 0 0 0 2 3 =6 0 -12 0 0
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(2) Let ¢,t,u € F where i* = —1, X—{t,i,ftl,ﬁ,l‘j,l—t}, c=(3,1),

= (U; )J L= (1+u-|~152, —l—utiu(24u), —u (1+u)—i (14+2u), u—1 (——1 +u2)),

_ [Tis; Uk
Y= { (U + Up)(Us + Us)(Us + Ul)}

Y is truly full w.r.t. c.
Just as in (1) we deduce several functional equations for 2 < m < 6.

(3) Of course we obtain further elements in ker 8, by taking linear combinations of the
expressions in (1} and (2) as well as by specialising one of the “variables” u,7. In
both cases we are going to destroy certain symmetries, though. As an example we
want to give a specialisation of (1)(i) to m =6, t = u.

The following element ¢ € Z[Q(u))] is in the kernel of S :

{= 63{2 23}'*'83?-4,—1,4}+5B{_—2—25} 403{_2 -1,1} 1208{_2 ~1,3}
+180 B, 0 4y = 3608, 4 1y =208 ,,,, +120Bf, _, _,, — 1908, _, ,,
+540 By | oy — 360 B, | o) + 544 B, |y,

where we put

{81,112,(13} Z [i HJJE(J)]

oESy =1
and (y;)}=; is Y asin (1) with any ordering (S; operates by permutations).

(4) Finally, for each element in ker 3, we can produce several elements in ker #,,_; via
a certain derivation process: for a homomorphism ¢ : F* — Z we associate the linear
map g : Z[F] = Z[F) defined on generators by [z] — ¢(z)[z]. Each such map will

suffice (cf. {Zg-A], s.1).
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