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Cancellation of Hyperbolic Forms and
Topological Four-Manifolds

IAN HAMBLETON () AND MATTHIAS KRECK

This is the second in a series of three papers about cancellation problems (referred
to as [I], [II] and [III]). The general questions for this part are:

(i) if M,M' N are quadratic modules with M L N =2 M' L N,isM = M'?

(i) if X,Y are topological 4-manifolds with finite fundamental group and X §(5? x $?)
homeomorphic to ¥ §(S5? x §?), is X homeomorphic to Y7

In part [III}, the techniques developed here will be used to study smooth structures
on algebraic surfaces with finite fundamental group, extending the results of [12]. We
also obtain classification theorems for four-manifolds (up to homeomorphism) in some
special cases, extending the results of [8] and [10], [11].

We begin by stating some of our algebraic results (proved in §1). The general
stable range condition for cancellation of hyperbolic forms over orders (e.g. integral
group rings Zz, 7 a finite group) is free hyperbolic rank > 2 [2, (3.6), p.238]. Thisis a
special case of the general results on cancellation over noetherian rings due to A. Bak
[1], H. Bass [2], and L. N. Vaserstein [24]. It is also known that this assumption can
be weakened to a local rank condition at all primes (compare [3, Thm. 1]).

Let R be a Dedekind domain and F its field of quotients. and recall that a lattice
over an R-order A is an A-module which is projective as an R-module. Let 4 and
B be orders in separable algebras over F' [6, 71.1, 75.1], and suppose that there is a
surjective ring homomorphism ¢ : A — B. We obtain an improvement in the stable
range, assuming some local information about the lattices. The problem is to show that
certain groups of elementary automorphisms act transitively on unimodular elements
or hyperbolic planes in quadratic modules, and as in [I] our result gives information
about transitivity over A from corresponding information over B. The arguments in §1
are modelled closely on the ones given in [2].

In [I] we introduced the following definition: a finitely generated A-module L has
(A, B)-free rank > 1 at a prime p € R, if there exists an integer r such that (B" @ L),
has free rank > 1 over A,. Here A, denotes the localized order A® R(py. In the extreme
case B = 0, this is just the condition that Ly has a free direct summand. In the other
extreme case A = B, there is no condition on L.

Similarly, we will say that a quadratic module V has (A, B)-hyperbolic rank > 1 at
a prime p € R if there exists an integer r such that (H(B") @ V), has free hyperbolic
rank > 1 over A,.

1 Partially supported by NSERC grant A4000 and the Max Planck Institut fur Mathematik
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The other terms used in the statement below are defined precisely in §1 or in [2,
pp. 80, 87]. Note in particular that a unitary module is a (A, A)-quadratic form on a
finitely-generated projective A-module. A totally isotropic submodule is one on which
the quadratic form is identically zero.

Theorem A: Let V be a (A, A)-quadratic module over a unitary (R, ) algebra (A, A)
and put (M,[h]) =V L H(A). Suppose that there exists a surjection of orderse: A —
B such that V has (A, B)-hyperbolic rank > 1 at all but finitely many primes. If U;(A)
acts transitively on the set of unimodular elements in H(B @ B) of fixed length, then
for any unitary module N, M L N = M' L N implies M = M'.

An important special case for the geometric applications is B = Z. We check that
for B = Z, the condition on “transitive action” in Theorem A is satisfied (1.21), hence
can be omitted from the statement.

The topology of 4-dimensional manifolds can be studied by stabilizing with con-
nected sums of $2x $? away from the boundary (compare [26], [5], [14]). The connected
sum of X with r copies of §2 x $? is denoted X §r(S5? x §?). To recover information
about the original manifold we must prove a “cancellation theorem”.

Theorem B: Let X and Y be closed oriented topological 4-manifolds with finite

fundamental group. Suppose that the connected sum X fr(S? x §?) is homeomorphic
toY§r(S% x §?). If X = X, f (5% x S?), then X is homeomorphic to Y.

This was proved in [11, (1.3)b] for closed manifolds with finite cyclic fundamental
group (with certain restrictions on wy). Note that the assumption that X splits off one
S$? x S§? cannot be omitted in general. There are, for example, even simply—connected
closed 4-manifolds which are stably homeomorphic but not homeomorphic because they
have non-isometric intersection forms. Examples of distinct but stably homeomorphic
manifolds with the same equivariant intersection form were constructed in [16].

The analogous result where M = M, § 2(S* x $*) holds for all compact topolog-
ical 2k-manifolds (k¥ > 2) with finite fundamental group, without assumption on the
boundary (compare [8]). This was proved for topological 4-manifolds in [11, (1.3)a].
Essentially the same argument in higher dimensions proves the result for smooth or PL
manifolds of dimension 2k > 6.

For special fundamental groups we have a result similar to Theorem B about man-
ifolds with non-empty boundary (see §3).

Theorem B': Let M and N be compact oriented topological 4-manifolds with finite
fundamental group, and let A = Z[m1(M)]. Suppose that the interior connected sum
M § r(5? x §?) is homeomorphic to M } r(S* x 5?) by a homeomorphism inducing
the identity on the boundary. If (i) Uy(A) acts transitively on the set of unimodular
elements in H(A @ A) of a fixed length, (ii) L{(A) = 0, and (iii) M = M, § (S? x §?),
then the identity map on the boundary extends to a homeomorphism of M with N.

Again the similar result holds for smooth or PL manifolds in higher dimensions.
In the 1-connected case assumptions (i) and (ii) are satisfied (see Lemma 1.21), and
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the results of {4, 5.6] show that assumption (iii) can not be dropped or replaced by
assuming that the intersection form of M is isomorphic to that of N.

To obtain the geometric applications, the algebraic results are combined with
topological surgery in dimension four due to M. Freedman [9], and the technique of
C. T. C. Wall [26] and S. Cappell and J. Shaneson [5] for constructing diffeomorphisms
of 4-manifolds (see §2). The same methods in various geometric contexts give further
results which we list below.

Applications:

(i) The conditions in Theorem B’ on Z[r ()] are restrictive but do hold for fundamen-
tal groups # = p X o, where p has odd order and ¢ is a cyclic 2-group. It can be applied

to classify manifolds with a prescribed boundary and fundamental group of this form
(see §3):

Corollary 3.6: Let M and N be compact oriented topological 4-manifolds with
m1(M) = p X 0. Suppose that the interior connected sum M § (8% x §%) is homeomor-
phic to M § r(S? x S?) by a homeomorphism inducing the identity on the boundary. If
M = M, { (5% x S?), then the identity map on the boundary extends to a homeomor-
phism of M with N.

(i1) By applying Theorem B’ to the case where the manifold has cyclic fundamental
group and lens space boundary, we obtain information about the existence and unique-
ness of locally flat simple embeddings of 2-spheres in a 1-connected 4-manifold N. These
problems were studied in [17] for homology classes of odd divisibility. For the notation,
see §4.

Theorem 4.5: Let N be a closed 1-connected topological 4-manifold.

i) Let z € Hy(N;Z) be a homology class of divisibility d # 0. Then z can be represented
by a simple locally flat embedded 2-sphere in N if and only if

KS(N)=(1/8)(c(N) —z - z)(mod 2)
when z is a characteristic class, and if

ba(N) 2 i, |o(N) = 24(d = §)(1/d)e -,

ii) Any two locally flat simple embeddings of $? in N representing the homology class
z are ambiently isotopic if by(N) > |o(N)| + 2 and

_ . _ . ‘2 .
bao(N) > 8%, lo(N) = 2j(d —j)(1/d")x - z|.
(iii) Another geometric problem which has been studied recently [7], [30], is the classi-

fication of pseudo—free actions (i.e. semi~free with isolated fixed points) of finite cyclic
groups on l-connected 4-manifolds. Here we assume that the fixed-point set of the
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action is non-emply: free actions, or equivalently 4-manifolds with finite cyclic fund-
amental group, will be classified in [III].

In Corollary 4.1 we improve on the results of [30, 3.1], [31, Thm. A]:

Corollary 4.1: Let M be a closed, oriented, simply-connected topological 4-
manifold. Let G be a finite cyclic group acting locally linearly and pseudo—freely on
M, preserving the orientation, with M non-empty. Let My denote the complement
of a set of disjoint open G-invariant 4-disks around the fixed points, and assume that
My/G =W § (8% x §%), where OW = O(M,/G). Then the action (M, Q) is classified
up to equivariant homeomorphism by the local fixed—-point data, the signature, type,
and Euler characteristic of M and the Kirby-Siebenmann invariant of My /G.

The “local fixed—-point data” is the equivalence class of pairs consisting of the tangential
G-representations at the fixed points together with, when M is spin and |G| is even, a
preferred set of spin structures on the lens spaces bounding My/G. If M is spin and
|G| is even, then My /G has two spin structures whose restrictions to 3(My/G) give the
preferred set.

The “type” of M is the parity, even or odd, of its intersection form. We also remark
that KS(Mo/G) = KS(Mo) = KS(M) when G has odd order, since connected sum
with the Chern manifold changes the Z/2-valued Kirby-Siebenmann invariant.

Acknowledgement: Some of the results of §1 were contained in our preprint “On

the cancellation of hyperbolic forms over orders in semi-simple algebras”, Max Planck
Institut (1990).

§1: Cancellation of Hyperbolic Forms

We adopt the notation and conventions of Bass in [2, pp.61-90, 233] for (A, A)-
quadratic modules (M, [h]) over a unitary (R, A)-algebra (4,A). For our geometric
applications it is convenient to introduce also (A, A)-Quadratic modules. By this we
mean triples (M, {(—,—),[q]), where [g] : M — A/A is a (A, A)-quadratic form (see
[2, pp. 80-81}) and (z,y) = ¢(z + y) — ¢(z) — ¢(y) is the associated hermitian form.
There is a functor from the category of (A, A)-quadratic modules to the category of
(A, A)-Quadratic modules, induced by setting [g](z) = [h(z,z)]. This functor is an
equivalence of categories when M is a projective A~module. However the second notion
is the one usually encountered in geometric applications as a quadratic refinement of
the intersection form on the kernel of w;. The quantity [¢g](z) = [h(z,2)]. is referred to
as the length of z.

A unitary module is a non-singular (A, A)-quadratic form on a finitely generated
projective A module. Since R is a Dedekind domain, X = max(Ry) has dimension
d = 1, where Ry C R is the subring generated by all norms ¢t (¢ € R). Note that
A = 1. The form parameter A is ample at m € X if given a, b € A[m], the semisimple
quotient of An there exists » € A[m] such that

(1.1) A[m}(a + 7b) = A[m]a + A[m]b.
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In [2, §2, p.218ff] there is a discussion of this condition. If R = Z and A = {a — Aa|a €
A}, the minimal form parameter, then A is not ample at any prime when A = 1 and
A is not ample at 2 if A = —1. Let A4, C Ry be the ideal such that A is ample at all
m ¢ V(Ar) = {p € X | Ax C p}, and da the dimension of the closed set V(A ) in X.
Note that dy <1 for all A, and dy < 0 when A is ample at all but finitely many primes.

If (M, [h]) is any (), A)-quadratic module over A [2, p.80], then a transvection [2,
p.91] is a unitary automorphism ¢ = 64,4, : M — M given by

(1.2) o(z) =z + u{v,z) — vA(u,z) — ula(u,z),
where u, v € M and a € A satisfy the conditions
(1.3) h(u,u) € A, {(u,v) = 0,h(v,v) = a (mod A).

Note that (z,y) = h(z,y) + Ah(y,z) is the associated hermitian form. Transvections
for (A, A)-Quadratic modules are defined using the quadratic form [¢] in these formulas
instead of h. For any submodule L C M,

L+ = {z € M|{z,y) =0 forall ye L}.

If M =M L M"is an orthogonal direct sum, with L' C M' a totally isotropic
submodule (i.e. h(z,y) = 0 (mod A) for all z, y € L'), and L" C M", then we define

(1.4) EUM' L';L") = (0y,ap|u € L' and v € L").

We will need the relation (see [2, p.92]): if a : (M,[h]) = (M',[A']) is an isometry,
then

-1 _ ¢
(1.5) QO00ua w0 & =04y 400

where o € U(M,{h]) and o' € U(M',[}]).

The hyperbolic rank of a (A, A)-Quadratic module (M, [h]) is 2 1 if (M,[h]) =
H(A) L (M',[A"]), where H(P) denotes the hyperbolic form on P & P [2, p.82] and
elements denoted by pairs z = (p,¢) with p € P, ¢ € P. Here we are using the notation
P for the dual module P* regarded as a right A-module in the usual way. Since we will
always be working with P containing at least one distinguished A-free direct summand,
we will write P = poA @ Py, P = goA @ P, and denote the element

(p,q) = (poa + p1,90b + q1).

In [I, §1] we introduced various subgroups of elementary automorphisms of L& P,
including E(P), E+(L,P), E+(Po,L @ Py) and their D-analogues, where £ is a two-
sided ideal in A. These are defined by products of certain elementary automorphisms.
For the O-analogues we assume that the elementary automorphisms are = id (mod O).
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Groups of transvections were used in [2, pp.142-143] to describe two important
subgroups of U(H(P)), namely H(E(P)) and EU(H(P)). For the O version of the
first, we take H(E(P;9)). For the second, define

EU(H(P); D) = (0u,a,0 € BU(H(P))|u,v € Py, PO, or P).

An automorphism 7 € GL{L @ P) is realized by a transvection oy q v if 0y ¢ v(z) =
r(z)foralze e LG PCV L H(P).

The main result of this section is a unitary analogue of the transitivity result in
(I,§1]. Before stating it, we need two lemmas.

Lemma 1.6: Let V be a (A, A)-Quadratic module which has (A, B)-hyperbolic rank
> 1 at a prime p € Ry, for which Ayis maximal. Then

(i) V contains a totally isotropic submodule L which has (A, B)-locally free rank > 1
at all but finitely many primes, and H{(LQr F)CV g F

(i)if P> A" and f : P — L is an A-homomorphism, let r =14 f € E{(P, L) where f
is extended by zero on L. Then there are elements ¢; € P, v; € L(1 <1 <r) such that
o0 =[]0 € EUH(P),P;V)and o(z) =7(z) forallz € L& P CV L H(P).

Proof: (i) Since A4, is maximal, we can write A, = B' x C' and work over the C’ factor
V' of V. Then V' has free hyperbolic rank > 1 and for L, we choose a maximal rank
totally isotropic C'-free direct summand with H(L,) C V;. Let L = L, NV and compare
it to a direct sum of copies of the A-lattice C := ker{e : A — B}. Since Cp = C' we
may choose a direct sum N = C" with the same R-rank as L and so Ny = L. Therefore
N and L are full lattices on the same F-vector space (F is the quotient field of R), and
hence agree at all but finitely many primes. If we further avoid all the primes where A
is not maximal, then L has (4, B)-free rank > 1 at the remaining primes.

(i) Let {qi,...,¢r} be a basis for P. Then there exist v1, ..., v, € L such that f(z) =
——Z:\v,'(q,-, z) forallz € P. s

Corollary 1.7: Let (M,[h]) =V L H(P), where P is a free A-module, and L C V
is a totally isotropic submodule. Every element of EL(P,L;9), can be realized by a
product of transvections in EU(H(P), P; VD).

Proof: This follows directly from the definitions and Lemma 1.6. »

Lemma 1.8: (A. Bak [2, (3.11),p.241)}) Suppose that (C,A) is a semisimple unitary
algebra over (R, ). Assume either that (i) P has free rank > 2, or (ii} A is ample in
C and P = C. Writez € H(P) as ¢ = (poa + p1,90b + q1). Then there is an element
o € H(E(P))-EU(H(P)) such that o(z) = (poa’ +p},90d' +4¢}) and O(z) = Aa'. In case
(i), o € EU(H(P,),Q; H(P,)) where Q = P, or Py, and in case (ii) o0 € EU(H(P,)).

Definition 1.9:  Let (N, [h]) be a (A, A)-Quadratic module. An element z € N is
[h]-unimodular if there exists y € N such that (z, y) = 1.

If (N, [h]) is non-singular then an element is {h]-unimodular if and only if it is unimod-
ular.
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Definition 1.10: Let ¥ denote a simple involution invariant factor of A[m], for some
prime m € max(Ry). A form parameter A is called ample at (m,§) if the projection of
A to § is ample. If A is ample at (m, ) for all factors of C[m] in a splitting A[m] =
B[m] x C[m] of semisimple rings, then we say that A is (A, B)-ample at m.

The following is our main result in the quadratic case.

Theorem 1.11: Let V be a (A, A)-Quadratic module and put (M, [h]) =V L H(P)
where P = pg A@® p1 A is A-free of rank 2. At all but finitely many primes m € max(Rp),
assume either that V has (A, B)-hyperbolic rank > 1 or that A is (A, B)-ample. For

any two-sided ideal © in A and any b € A, the subgroup of
G(D) = (EU(H(P),Q; VD), H(E(P; D)) - EU(H(P); ))

fixing e.(po + qob), where Q = PO or P, acts transitively on the set of [h]-unimodular
elements = € M of a fixed length {b] € A/O such that £ = py + gob(modD) and
eo(2) = eu(po + qob).

The first part of the proof will be stated separately:

Lemma 1.12: Let z = (v;p,q) € M be a [h|-unimodular element with z = po +

gob(mod D) and e.(z) = €.(po + gob). Then, after applying an element from G1(D) we
may assume that p is unimodular.

Proof: (i) Let g = []{m|m € §} where § is a finite set in X containing all the primes
at which A is not maximal, or V does not have (A, B)-hyperbolic rank > 1 (resp. A is
not (A4, B)-ample). Then A[g] = Blp] x C and we may achieve “O(z) = Aa over Alg]”
using (1.8) and the fact that P is free of rank 2. Note that nothing needs to be done
over B or over any simple factor of A[g] in which the ideal O has zero reduction. This
step uses EU(H(P,),Q; H(P,)) where Q = P, or Py.

At all primes not in §, we may assume (by Lemma 1.6) that V' contains a non-zero
totally isotropic submodule L which has (A, B)-free rank > 1 (resp. A is (4, B)-ample).
(ii) Let ¢ C Ro be an ideal, maximal such that At C Aa, and put X' = V(¢), X} =
V({t+Aa), d} = dim X}. Let r : A - A’ = A/At be the natural projection and note
that dim X' =0 and dim X} < 0. As in [2, p.244] we see that m ¢ X' for all m € S,
hence t # 0 and A’ is semilocal. We have O(p1,q1 + qob) + Aa = A and so O(wpy,
(g1 + b)) + 7(Aa) = A’. Over B’ = B/Bt we do nothing. Over the complementary

factor C' of A', apply [2, (2.5.2) p.225] to find an element u € 7Py O such that u projects
to zero over B’ and

O(wp1 — ub) + O(rqy) + m(Aa) = A
(Note that this already holds over B’ by assumption. Choose z € P;O such that 7z = u

and €,(z) = 0. Since t and g are relatively prime, we can choose z € (P19) - g.
Note that op,0,. € EU(H(P);O) by [2, (3.10.2),p.142]. Then

o(z) = z + po{z,z) — z(po, z)
=(v;p1 — zb+ po(a + {(z,q1)),9) .



Hyperbolic Forms and Four-Manifolds 8

Therefore
O(p1 — 2b) + O(q1) + A{a + (z,q1)) + At = A.

But At C Aa and A(a + (z,q1}) € O(q1) + Aa, so after these changes, we may assume
that

(1.13) O(p1) + O(q1) + Aa = A.

(iii) If 7V has hyperbolic rank > 1 over C' we can choose an isometry a : 7V =
H(C') 1L W' and extend it to an isometry of 7V 1 H(wP) by the identity on H(xP).
We now apply case (i) of (1.8) to the element a(n(p1, ¢1)) € H(C') L H(xP,) over the
semisimple ring C’, where A’ = B’ x C’. This uses an element o/ € EU(H(rP,), 7Q;
H(C")) where @ = PO or P;. By (1.5), a1 oo’ 0oa € EU(H(nP,), 7Q; 7V). Then
there exists a lift o of a™? 0 ¢’ 0 & to U(M, [R]) which lies in EU(H(P,),Q; VD). If 7A
is ample, case (ii) of (1.8) applies, and this uses an element of EU(H(wP,); D). After
moving z = (v;p,q) by ¢ we get

A=0(p1)+ At+ Ae C O(p1) + Aa = O(p).

Finally note that after this change p is unimodular and e.(z) = e.(po + gob), where
b= hp(z,z) mod A.

The Proof of Theorem 1.11
(i) By Lemma 1.12 we have p unimodular. Since h(p,p) = 0, we can split H(P) =
H(pA) L H(pA)*. If H(pA) = pA®pA, where p € P then 04,1, € EU(H(P),P;VD)

and

opdx(z) = z+p(Av,z) — 2P, z) — pAd(p, 7)
= (0;p,¢)

(ii) We now have an element z = (p,¢) € H(P) with p unimodular and A + g4 = A4,

where p = ppa + p1. Recall that V contains a non-zero totally isotropic submodule

L which has (A, B)-free rank > 1 at all but finitely many primes. Furthermore, V'
contains H(L') by construction. We claim that after applying a suitable transformation
in G1(0), we can assume that = = (v; po, ¢), with v € L and a possibly different g.

By [I, (1.6)], there exists an element 7 € E4+ (P, L; ) fixing e.(po) such that after
applying 7, z = (v; p, q¢) with z = pge+v unimodular and Aa+O(v)+ At = A. By (1.7),
T can be realized by a transvection in G (). Now notice that z € Py @ L is actually [h]-
unimodular and A(z,2z) =0 (mod A). First, z is [A']-unimodular in V' L H(P}) since it
lies in the non-singular subspace H(L') L H(F;). Therefore (V L H(P),z) + At = A.
However, (H(Pp),z) = Aa and At C Aa, hence (V L H(P),z) = A.

We now refer to [I, (1.8)] for a sequence of elementary automorphisms moving
poa + p1 + v to po. To realise 1y € Ey(zA, P1;9) by an isometry, we find a unitary
submodule H(zA) CV L H(P,) and then work inside H(2A4) L H(P,). Let z € H(zA)
denote a complementary basis element. By [2, (3.10.4), p.143]

H(r:|:a0p,) = 0 C EU(H(2A),24; P1D) C EU(H(P);9) - EU(H(P,), PLO; VD).
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The remaining automorphisms can be realized by Corollary 1.7.

After this we have £ = (v,po, ¢) and we finish by repeating step (i) above, which
does not alter the P-component. The result is z = (0;po,¢). The proof is completed
by applying the following Lemma. «

Lemma 1.14: Let z = (po,q) € H(P) with eu(z) = eu(po + qob) and z = po +
gob(mod ). Then there is an element 0 € EU(H(P); D), fixing €.(po + qob) such that
o(z) = po + qob. If = is hyperbolic, then we can obtain o(z) = po.

Proof: Write ¢ = gob—gq1 € goADP;. The transvection o, 0,4, belongs to EU(H(P); D)
by [2, (3.10.1), p.142], and

oT =T — () (qO,m) - qu(ql,:B)-

Note that (gi,z) = 0 since z has no component in P, and {(go,z) = {go,po) = 1, so
or = ¢+ q1 = (po, gob). We are now finished if ¢ was only unimodular. If z was a
hyperbolic element, then h(ox,oz) = h(po, gob) = b (mod A), and so b € A, since z and
o(x) are isotropic.

In the hyperbolic plane poA + g, 4, the element X, (—b) = ( 7) € EU(H(P))
transforms po + gob into pp (the notation X4 is from [2, p.130}). «

In the following definition we suppose that (M,[h]) = V L H(P) is a (A, A)-
Quadratic module where P = pgA @ p1 A. We recall the following notation from [I]: if
N is a submodule of M and G C GL(M), then G(N) = {4 € Glg(N)=N}. If M =
M, & M; and G C GL(M), then (by definition) G(N) = {g € G| (g ® 1p,)(N) = N}.

Definition 1.18: Let N C (M,[h]) be a (A, A)-Quadratic submodule, containing
H(P), and © = Ann(M/N). Let No = N0 H(P). A subgroup Go C U(H(P)) is
(N, H(P,), €)-transitive if

(i) Go(N) acts transitively on the images in No /Ny N MO of the elements poa + gob of
a fixed length which are unimodular (mod D).

(ii) for each [b] € A/A, the subgroup of Go(N) fixing po + qob(mod D) acts transitively
on the images in H(e.(P)) of the [h]-unimodular elements x € NN H(P) of fixed length
[6] such that = = po + gob(mod O).

Example 1.16: If N = M so that O = A, then Go C U(H(P)) is (N,H(P),¢)-
transitive if G acts transitively on the images in H(e.(P)) of the [h]-unimodular ele-
ments of fixed length.

The unitary transitivity conditions are related to the linear transitivity conditions
given in [I, Definition 1.9]. In the following statement we let o9 € U(H(P,)) be the flip
automorphism oo(po) = ¢o,00(go) = po. The metabolic form on an A-module L @ L
with isotropic summand 0 @ L is denoted Met(L).

Lemma 1.17: Let N C M = H(P) L Met(L) be a (A, A)-Quadratic submodule of
finite index containing H(P,), and let Ny = NN (P@® L). If Go C GL(P) is (N1, po,€)-
transitive, then the group (H(Gq),00,G1(D)) is (N, H(F,), €)-transitive.
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Proof: When poa + ¢ob is unimodular (mod9), then a or b is a unit (mod ), and
after at most multiplication by —1 and interchanging po,go we can get a = 1(mod O).
By using a suitable element of H(Gp), we can get pg + gob (mod D).

If z € NNH(P) is [h]-unimodular of length [b] and = = pg + ¢gob( mod D), we apply
Lemma 1.12 with B = 0 and then an element of H(Gy), by [I, Definition 1.9(ii})], to get
&x(2) = €u(po + qob). =

Lemma 1.18: Let N C (M,[h]) = V L H(P) be a (A\,A)-Quadratic submodule,
containing H(Py), and O = Ann(M/N). Let N=H(P;) LN' and N'"=NnV.

(i) Suppose that N has finite index in M and that there exists a subgroup Gy C
U(H(P)) satisfying the condition in Definition 1.15 (i). If ¢ € N is an [h]-unimodular
element with length [b], then there exist elements ¢y € EU(H(P,),Py;N'), o2 €
EU(H(Py),Py; N'), and 8; € Go(N) such that z' = g36101(z) has z' = py + gob(mod
). :

(1'1')) Suppose that there exists a subgroup Go C U(H(P)) satisfying the condition in
Definition 1.15 (ii). If + € N is an [h]-unimodular element with length [b] and z =
Po+gob(mod O), then there exist elements 8, € Go(N) and 03 € EU(H(P), PO; N"D)
, 04 € EU(H(P),P;N"D) such that ' = 048;03(z) has e.(z') = e.(po + god) and
z' = po + gob(mod ).

Proof:

(i) Write (p,q) = (poa+ p1,90b+ ¢1) as above. We begin by working over N/N N MD to
arrange for poa + gob(mod ) to be unimodular. By assumption, N = H(pyA) L N',
and N’ is a quadratic submodule of finite index in V' L H(p;A). There exists some
y € N such that (z,y) =1 and so (N',v) + O(poa) + O(geb) = A. Choose w € N' so
that (v, w) + Aa + Ab contains 1; put ¢ = (v,w). From [I, (1.3)], there is a 2 € Py such
that O(po + z¢c) + O(go) = A. Now apply the transvection oy = 7, ., to z, and then
the H(Pp)-component pga + gob of z will be unimodular (mod ). This isometry lies
in EU(H(Py), Po; N').

Now there exists 6, € Go(N), so that after applying 6;, z = (v;po,q)(mod
©0). By repeating step (i) of the proof of Theorem 1.11, we find an element o2 €
EU(H(Py), Py; N') to get = po + gob(mod D).

(i1) We now assume that z = py + gob( mod D) and try to obtain the condition on e,(z).
Since P is free of rank 2, it follows as above that we may assume (p, ¢) is unimodular.
More precisely, there exists some y € N such that (z,y) = 1 and so (V,v}+0(p)+0(q) =
A. Let w € V be the V-component of y. Since z = po + ¢ob(mod O), we may assume
that the w € VO. Now (v,w) 4+ O(p) + O(q) contains 1, and we let ¢ = (v,w). From
[I, (1.1)] with a = O(g), there is a z € PO such that O(p + 2¢) + O(¢q) = A. Now apply
the transvection 03 = 0, ., to z. This isometry lies in EU(H(P), PO; VD).

Since the subgroup of Go(N) fixing po + gob(mod O) acts transitively on the set
of unimodular elements of fixed length in H(e.(P)), we may assume after applying
62 € Go(N) that e.(z) = €.(v;po, qob), where b = hp(z,z) mod A. Finally, apply again
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step (i) of the proof of Theorem 1.11, we find an element oy € EU(H(P),P; N"D) to
get €u(7) = eu(po, qob). =

Theorem 1.19: Let V be a (A A)-Quadratic module which has (A, B)-hyperbolic

rank > 1 at all but finitely many primes, and let N C (M,[h]) =V L H(P) be a

(A, A)-Quadratic submodule of finite index, containing H(P,), and © = Ann(M/N).

Suppose there exists a subgroup Go C U(H(P)) which is (N, H(P,), €)-transitive.
Then the subgroup G(N) of

G = (Go, EU(H(P),Q; V), H(E(P)) - EU(H(F)))

stabilizing N acts transitively on the set of [h]-unimodular elements of a fixed length in
N, and the set of hyperbolic pairs and hyperbolic planes in N.

Proof: The same reduction used in [2, (3.5),p.237] shows that it is enough to prove that
G acts transitively on the set of [h]-unimodular elements of a fixed length in N. One
can check that G contains all transvections ap, 4,5 With v € (pg)-'- =V @ H(P)DpA
(see [2, (3.11),p.143] and [2, (5.6),p.98]). Now we apply Lemma 1.18 and Theorem 1.11.
The isometries used all preserve N.

The special case when 9 = A and N = M will be used later.

Theorem 1.20: Let V be a (A, A)-Quadratic module which has (A, B)-hyperbolic rank
> 1 at all but finitely many primes, and put (M, [k]) =V L H(P). Suppose there exists
a subgroup Gy C U(H(P)) such that e.(Go) acts transitively on the set of unimodular
elements in H(e.(P)) of fixed length €.([h)(z)). Then

G = (Go, EU(H(P),Q; V), H(E(F)) - EU(H(P)))

where Q = P or P, acts transitively on the set of [h|-unimodular elements of a fixed
length, and the set of hyperbolic pairs and hyperbolic planes in M.

Proof of Theorem A: The argument is the same as for [2, (3.6), p.238] using our
(1.20).

We conclude this section with a few useful remarks.

Lemma 1.21: Let P = poZ @ p1Z. For any ideal q C Z, the group H(SLy(Z;q)) -
EU(H(P;q)) acts transitively on unimodular elements x € H(P) of fixed length [b],
with £ = po + gob(mod q).

Proof: Let z = (poa, p1¢; god, ¢1¢) be a unimodular element in H(P) with a = 1(mod
q), d = b(mod q) and ¢,e = 0(mod q). We may assume that e = 0 after applying an
element of H(SLy(Z;q)), so there exists an integer r = 0 (mod q) such that c+rdisa
unit (mod a). Then

X+(?'_E]\r)($) = (pﬂaa pl(c + T‘d), qo<, 0)
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so that O(poa) + O(p1(c + rd)) = Z. We may therefore assume in the beginning that
for z = (poa,pic; god, q1€), a and ¢ are relatively prime. Using a suitable element of
H(SLy(Z;q)) (see [I, (1.15)]) we get = = (po, 0; qob, g1€) and after applying X_( %%

the result is (po, 0; gob, 0), where [b] is the length of z. s

Remark 1.22: For any surjection of orders ¢ : A — Z, the subgroup G1 = H(E,(A))-
EU(H(A ® A)) C Uz(A) has the property that e,(G1) = H(GL3(Z)) - EU(H(Z & Z)).

Lemma 1.23: Let V be a (A, A)-Quadratic module and set (M, [h]) =V L H(P) with
P = A. Let 09 € U(H(P)) be the isometry interchanging the standard basis elements
Po,qo0. If (4,A) is a local unitary ring, then

G = (EU(H(P),Q;V),H(GL(P)) - EU(H(P)),1 L o0)

acts transitively on the set of [h]-unimodular elements of a fixed length in M, and the
set of hyperbolic pairs and hyperbolic planes in M.

Proof: Again it is enough to prove transitivity on the set of [h]-unimodular elements of
a fixed length. Let z = (v;poa, gob) be an [h]-unimodular element. Then after applying
a suitable transvection from EU(H(P),Q;V) we may assume that (poa,gob) € H(P) is
unimodular. Then since A is local, we may apply oy is necessary to assume that a is a
unit. Now, after using an element of H(GL(P)) we get £ = (v; po, gob) and we finish by
using step (i) of the proof of Theorem 1.11.

Remark 1.24: For A = —1 and any form parameter A, U(H(Z)) acts transitively on
unimodular elements of fixed length in H(Z).

§2: The Proof of Theorem B

In this section we apply the algebraic cancellation theorems to prove our main
geometric cancellation result for four-manifolds.

Proposition 2.1: Let X be a closed oriented topological 4-manifold with finite fund-
amental group, and let A = Z[r(X)]. There is an A-submodule V of my(X) which
supports a (A, A)-Quadratic refinement of the intersection form on X for A = 1 and any
form parameter A. In addition, V has (A, Z)-hyperbolic rank > 1 at all but finitely

many primes.

Proof: We take the submodule
V = ker ({wq, =) : m(X) — Z/2)

on which the intersection form Sx has a quadratic refinement ¢ : V — A/{v—v} defined
as in [28, Chap. 5]. '

Next we check that V has (A4, Z)-hyperbolic rank > 1 at all odd primes not dividing
the order of 71 (X). Since X is a closed manifold, the components of the multi-signature
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of Sx are all equal. On the other hand, from [10, 2.4] we know that m2(X), is
isomorphic to the localization of I @ I* @ A¢, where I denotes the augmentation ideal
of A. Tt follows that the components of S$x are indefinite at all non-trivial characters
of m(X). Since Sx is unimodular when restricted to Vj, for p as above, we conclude
that V}, has hyperbolic rank > 1 at each non-trivial character.

We need the following result of Cappell-Shaneson. In the statement a standard
basis for the summand H2(S5? x $%,Z) of Ho(X §(S5?* x §?),Z) is denoted {po,go}-

Theorem 2.2: (5, 1.5] Let X be a compact, connected smooth (topological) mani-
fold of dimension four, and suppose X = X, {(S5? x §?) for some manifold Xo. Let
w € Hy(X;A) with wo(H(w)) = 0 and let a € A = Z[x(X)] be any element such
that p(w) = a(modA). Then there is a base point preserving diffeomorphism (homeo-
morphism) ¢ of X §(S? x S?) with itself which preserves local orientations and induces
the identity on w1 (X §(S5? x S?)), so that ¢.(po) = po, ¢«(g0) = go + w — poa, and
$(€) = € — (£ w)po for £ € Ha(X; A).

In order to prove Theorem B, we need to realize transvections by homeomorphisms
of X §r(S% x §?). For the rest of this section we fix the notation

Kma(X) = ker({wq, =) : m(X) — Z/2)

for the submodule of the intersection form on Hy(X; A) on which a quadratic refinement
is defined. We denote by H(Pp), where Py = py A, the summand of Hy(X §(5? x §2); A)
given by H,(S? x §%; A). As further copics of $? x §? are added to X by connected
sum, we denote all these hyperbolic factors of the intersection form by H{P). Note that
Theorem 2.2 allows us to realize the transvections o, 4,v by self-homeomorphisms of
X §(S? xS?) for any v € Kma(Xo) with (v, po) = 0, in the case when X = X, §(5? x §?).
Cappell and Shaneson use this to realize many isometries (see [5, Thm. A2]), but the
conclusions given are not in the exact form we need.

Corollary 2.3: Suppose that Km(X) = Vy L Vi with V, non-singular under the
intersection form Sx. Then for any transvection opa, on Kn(X) L H(Py) with
p € Vo L Py and v € Kmy(X), the stabilized isometry o4, @ Idys2x52) can be
realized by a self-homeomorphism of X §3(5? x §2).

Proof: First we consider a unimodular isotropic element p € V5 L Py. Since V, L
H(P) is non-singular, p is automatically a hyperbolic element and thus by Freedman
[9] we can resplit X §(S%xS$2) = X' §(5%x.5?) such that pis represented by $? x*. Thus
Op,a,0® Ids2 < 52 can be realized by a self-homeomorphism on (X' (5% x §2))§ (5% x S?)
for all v € Kmp(X) with (v,p) = 0.

Next we consider the transvection o, ,, for an arbitrary p € Vo L Py, but assume
that v € K7y(X) is isotropic. Then we write p = 3 p; with p; € ¥ L Py unimodular
and {v,p;) = 0. This uses the fact that A = Z[m;(X)] and Py, =@ A. We obtain:
Tpow = Ov0,—p = Tyg T, = [1opi0,0. Thus 0,0 @ Idgz2xs2 is realizable by a

self-homeomorphism on (X f (5% x S%))§ (5% x S?), since 0p,,0,5 § Idsixs2 is realizable.
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Finally werealize an arbitrary transvection op 4, § Id2(s2 x s2), of the form required,
by a homeomorphism on (X §(S5?% x S§%))§(S? x §?). We use the fact that v can be
expressed as v = Y_ v; with v; € Kmy(X) L Hy(S? x §% A) isotropic and {v;,p) = 0.
Thus 05,00 @ Ida(s2x52)y = [[0p,0,0; ® Ids2xs2 which by the considerations above is
realizable.

Corollary 2.4: Let Xy be a topological 4-manifold, V = Km(Xy) and consider an
element ¢ € EU(H(P),Q;V), for Q = P, P, as an isometry of the intersection form
of Xo}2(S? x 5%). Then stabilized isometry o @ Idy(s2xs2) can be realized by a self-
homeomorphism of Xo §4(S? x 5?).

Proof: By definition (1.4) the group EU(H(P),Q;V) is generated by transvections
Op,a,w With p € P or P and v € V fulfilling the conditions of a transvection. It is enough
to consider the case p € P. Now Corollary 2.3 applies with the splitting Km2(X) =
V 1 H(A) with H(A) the first summand of H(P). This shows that for each ¢ €
EU(H(P),Q;V), the isometry ¢ & Idy(s2xs2) can be realized by a self-homeomorphism
on (Xo §2(5% x S$?))§2(S? x §%). «

Proof of Theorem B: By induction it is enough to consider the case r = 1. Let
f:XE(S? x §%) = V(5% x $?) be a homeomorphism. We will apply Theorem 1.20
and Corollary 2.3 to show that there is a self-homeomorphism g of X §3(5% x S§?) such
that (f § Id)- g induces the identity on the hyperbolic form corresponding to § 3(5? x $?)
in Hp(X §3(5% x S?);4). Then it follows that X and Y are s-cobordant [14]. By
Freedman [9] X and Y are homeomorphic.

To begin, we apply Theorem 1.20 together with Lemma 1.21 to

V & H(P) C Hy(Xo §2(5% x §%); A),

where P=A® A and V = Kmy(Xo). This gives an isometry
@ € G =(EU(H(P),Q;V),H(E(P)) - EU(H(P))),

where @ = P or P, such that f, - ¢ induces the identity on H,(2(S? x S$?);4) C
Hy(Xo §2(5% x §2); A). We finish the proof by showing that for each ¢ € G, ¢ @ Id
can be realized by a self-homeomorphism on X § 4($? x $?). Note that by definition
G C Aut(H2(Xo §2(5?% x §2); 4)).

The elements of EU(H(P),Q; V) are handled by Corollary 2.4. In addition, we
have to realize an arbitrary element in H(E(P))- EU(H(P)), stabilized by the identity,
by a self-homeomorphism of (X, §4(5? x 5?%)). This follows again from Corollary 2.3

and the considerations above since this group is generated by transvections o, 4, with
p € Py or Py (2, p.142-143]. «
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§3: Applications to Manifolds with Boundary

In this section we prove Theorem B’, and Corollary 3.6. The other geometric
applications, Corollary 4.1 and Theorem 4.5, are postponed to §4. We begin with

Lemma 3.1: Let My be a closed 4-manifold, and A = Zm(My). If L{(A) = 0 then,
for every element o of Uy(A), there is a self-homeomorphism of Mo f (r + 2)(S? x §%)
for some r > 0 inducing1 L o L 1 on (H2(My),S5m,) L H(A® A) L H(A").

Proof: Since L{(A) = 0, for any element o of Uz(A), there exists an integer r > 0 such
that ¢ L 1 is in the subgroup RLU( 4,y defined in [5, p.526]. But by [5, Thm. A.2]
any element of RLU(,49) is realizable by a self homeomorphism of M § (r +2)(5? x §?)

which induces the identity on 1 (Mo) and on Ha(Mp).

The Proof of Theorem B': The proof follows the steps of the proof of Theorem B to
obtain geometric cancellation of the (5% x S?) factors. The necessary algebraic cancel-
lation is provided by the special case of Theorem 1.20 with A = B, using our assumption

on U(A). The realization of unitary automorphisms by self~homeomorphisms follows
from (3.1) and (2.4). «

Now we will verify the assumptions of Theorem B’ for special fundamental groups.

Lemma 3.2: Let P be a free A-module of rank two, and N = H(poA) ® ;p1O @
Py C H(P), where O is an involution-invariant two-sided ideal in A. Suppose that
the form parameter A is (A, B)-ample at m, for all but finitely many primes, and that
there is a subgroup Go C U(H(P)) satisfying condition (1.15)(ii). In addition, let
I' € GL(P) such that the subgroup of ', fixing po (mod D) and e.(po), acts transitively

on unimodular elements € P with ¢ = py (mod D) and e.(z) = ex(po)-
Then the subgroup G(N) of

G = (Go, H(T')) - EU(H(F); V))

acts transitively on the set of unimodular elements in = € H(P) of fixed length [b], such
that £ = pg + p1b(mod O).

Proof: Let £ = (p,q) € H(P) be a unimodular element with z = pe + p1b(mod O),
and apply first Lemma 1.18 (ii) and then Lemma 1.12. After this we may assume that
p is unimodular, and then use an element of H(T') to get = = (po,q). We complete the
proof by using Lemma 1.14. »

Remark 3.3: Note that when A =1 and § is a field with trivial involution, then A is
not ample at (m,§) for any odd prime. Our assumption above is therefore very special.
It does however apply to finite group rings A = Z{p x o] and B = Z[Z/2}, where p has
odd order and o is a cyclic 2-group.

Lemma 3.4: Let B = Z[Z/2] and P be a free B-module of rank two. Let O C B an
involution-invariant ideal and N = H(psB) @ p1O & P c H(P). Then for the group

Go = (H(5L:(B; D)) - EU(H(P); D)),
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and for each [b] € B/A, the subgroup of Go(N) fixing po + gob(mod D) acts transitively
on the [h]-unimodular elements z € N of fixed length [b] such that z = py + gob(mod

).

Proof: The group ring B of the cyclic group of order two is the pull-back:

2(2/2] —— 1z
.| |
Z — Z/2

If « € H(B @ B) is a unimodular element, we first apply (1.21) to e4(z), and obtain the
relation ey (z) = €4(po + gob). This implies e_(z) = e_(po + gob) (mod 2), and uses an
element of H(SL2(Z;q+))- EU(H(P;q+)), where g4+ = €4(q). To lift this element to Gy,
notice that g4 = g— (mod 2), so we can lift into H(SLy(Z;q-))- EU(H(P;q-)) over the
Z_ corner. We now apply (1.21) again, this time to e_(z), with the ideal 2q_ and get
an element o_ € H(SLy(Z;2q-)): EU(H(P;2q-)) such that o_(e—(z)) = e—(po + qobd).

This element can be lifted over the Z, corner to give an element of Gg. »

Corollary 3.5: Let A = Z[p X o], where p has odd order and o is a cyclic 2-group.
Then Uy(A) acts transitively on unimodular elements in H(A @ A) of fixed length.

Proof: We apply Lemma 3.2 and Lemma 3.4 with O = A or B respectively. For the
group I needed in Lemma 3.2 we can take G Ly A) since A satisfies the Eichler condition.
The group Go = (H(SL2(A)) - EU(H(P))) satisfies condition (1.15) by Lemma 3.4.

Corollary 3.6: Let M and N be compact oriented topological 4-manifolds with
m1(M) = p x 0. Suppose that the interior connected sum M § (5% x $?) is homeomor-
phic to M § r(S? x S?) by a homeomorphism inducing the identity on the boundary. If
M = M, { (5% x 5?), then the identity map on the boundary extends to a homeomor-
phism of M with N.

We finish this section by considering a very special case of the question (see [3]):
under what conditions does a quadratic or hermitian form contain a hyperbolic direct
summand H(P), for P projective ? For any A-module L, let rank4(L) = k if k is the
largest integer such that L, contains a direct summand A(kp), for all primes p € R.

It is convenient to define the “essential rank” of a hermitian (resp. quadratic) form
U by ess-ranka(U) = ranka(Uo) if Uy is a hermitian (resp. quadratic) submodule of
minimum rank such that U = Uy L H(P) for some finitely-generated projective P.
Thus the quantity ranks(U)— ess-rank(U) is twice the (projective) hyperbolic rank
of U. If A = ZG for some finite group G, then LC denotes the submodule fixed by G.
If L has a hermitian (resp. quadratic) module then L€ is a hermitian (resp. quadratic)
submodule with values in A¢ 2 Z.

Theorem 3.7: Let (Ly,{h1]) be a non-singular hermitian form over A = ZG where
G = Z/d is a finite cyclic group, and the involution on A maps g — ¢! for all g € G.
Suppose that L, is a finitely-generated free A-module with ess-rank,;(p) (L1, [h1]) =
b > 0 for all rational primes p. If d # 2,3, assume that b > 3. Given a splitting
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(L1, [R1])¢ = (N,[k]) L H(Z"), there exists a hermitian submodule (L, [h]) such that
(L1, [M]) = (L, [b]) L H(A") and (L, [A])® = (N, [k]).

Proof: We first construct the form L and then prove it is isomorphic to L;. In applying
the results concerning “transitivity on unimodular elements” we can mostly work inside
the quadratic submodule of L;, since transvections extend to the whole module. The
argument is divided into various steps. Note that L, is free over A of rank b + 2r with
r > 0, and we assumed that b > 3 unless d = 2,3 (the case d = 1 is vacuous).

If T denotes an involution-invariant maximal order containing A in QG, then T' =
T, ild, where T'; = Z[(;]. Under our assumptions in (4.5)(i), the induced hermitian
modules I'; L, are all indefinite and have rank > 3.

(i) We first consider the problem of splitting off H(I'") from I'L;. For each factor of
the maximal order we will show that I';L; = J; L H(I'T) for some hermitian module of
rank b. Then we let J = @{J; : 1|d}.

When i = 1 we use the given splitting of L = N L H(Z"). If i is divisible by an
odd prime, then I'; L; admits a quadratic refinement since the trace map is onto. By [27,
Thm. 11}, there exist quadratic modules J; over I'; so that J; L H(I'[*) = I';L;, and
each J; has the minimum rank consistent with the multi-signature, and the requirement
that J; L H(T';) hasrank > 3 over I';. We add hyperbolics to some of the J; as necessary
to assume that they all have the same rank b.

If ¢ = 2, the fact that b > 0 allows us to write [';Ly = J; 1 H(Z"). Finally, if
i = 2* for some integer k > 2 then the required splitting follows from

Lemma 3.8: Fori=2F >4, ess-rank(li L) < b.

(ii) Next we consider the problem of splitting off H(/i;) from ZP ® Ly. If p is odd, this
form has a quadratic refinement and hence we can reduce modulo the radical, where the
problem is trivial. If p = 2, we may suppose that d is a power of 2 (otherwise a quadratic
refinement exists again), and hence that A, is a local ring. Then any hermitian form
splits into an orthogonal direct sum of one and two-dimensional forms. Now we claim
that ess-rank(zg ® L) < b. This follows by induction from the pull-back diagram

Z5[Z/2Y) —  Zo(Z/2%1)
ol !
Zo(Cox) — FofZ/281)

and the fact that ess-rank(I’;L;) < b. To lift a splitting over A, given one over the
corners of this pull-back square, we must lift enough automorphisms o of U = Up L
H(P) over F3[Z/2%~1] to act transitively on hyperbolic pairs in U. This problem can
be studied over the quadratic submodule of U by the methods of §1. By Lemma 1.8
or Lemma 1.23, we need only lift certain transvections and H(F2[Z/2¥~1]*), together
with the “flip” isometry of a hyperbolic plane which interchanges the standard basis
elements. In these cases, the lifting can be done over Z,(Z/2%~! ).

It follows that Z, ® L splits off the required number of hyperbolic summands. Let
L, denote an orthogonal complement: Z, ® L, = L, L H(A;;).
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(iii) We consider the completions Ji = I1 Zp ® Ji over the product I'; of the p-adic
completions at all primes p|d. These are unimodular forms over the rings of integers in
local fields, and we will apply the classification theory of such forms (see [22]). If p is
odd, then the forms are detemined by the rank and determinant. It follows that the
forms are standard, i.e. either hyperbolic or isometric to {(a) L ... L (1) [13, 7.1,8.2],
[19, 92:1). If p = 2, the forms Z, ® J;, i = 1,2 are again standard of the same type [19,
93:15, 93:18]. If p = 2 and ¢ is not a 2-power, then the trace map Z[(;] = Z[¢; + ()
is onto and so the global form T';L, admits a quadratic refinement. It follows that the
forms are determined by the rank.

We are left with the forms Zg ® J; over ramified rings of integers with non-trivial
involution. For these, unimodular forms are classified by the rank, determinant, and
the norm ideal n(J;): the ideal in ZQ[<|] generated by the values (u,u) for all elements
u € J; [13, 10.4]. It is easy to see that either the form represents a unit, or the form
admits a quadratic refinement. In the first case, the norm ideal is the whole ring and the
formis (a) L ... L (1). In the second case, we can write & = (u,u) in terms of the basis
(1,V/=1,¢%,¢7%|1 < a < 2¥72), if i = 2F. Then o = & implies that the the coeficient
of \/—1 is zero, and those of {?,{~° are equal. Hence « is a non-unit implies that the
coefficient of 1 is even and so « is a trace. When a quadratic refinement exists, the rank
is even and we may reduce modulo the radical to see that ess-rank(Zz ®Ji) L2

{iv) One consequence of the local classification given in step (iii) is the fact that can-
cellation of hyperbolics is possible over each factor of . Another is that when the rank
b > 3, then J; splits off a hyperbolic plane H(T;).

Now we claim that for each p|d, the forms 2,, ® J and fp are isometric. Indeed,
by construction they are stably isometric to I',L, and cancellation of hyperbolics is
possible over I‘ It follows that Z ®J == L at primes dividing d. Let L over A be the

pull-back of the forms L over A and J over F Then I'; L = J;, for all ¢ and Z QL = L
for each prime p|d.

(v) The final step i is to show that L L H(A")= L,. Forthisitis enough to show that for
any isometry « of JLH (P), P = I'r, which is the identity in the I component, there
exists a liftable isometry o € U(J L H( )) such that ca = 8 L 1 for some f € U(J).
Here liftable means that o i1s the product of isometries which come from the forms over
T or A. This proves that L | H(A") 2 L,. It follows that L is a stably-free A-module
and hence (by cancellation of modules) L is a free A-module.

To esablish this, we remark again that by Lemma 1.8 or Lemma 1.23, ¢ can be
assumed to be a suitable product of transvections and isometries of the hyperbolic plane
In particular o has determinant 11, and elements with determinant —1 are only needed
when b =1 or 2 since J; ® 2,, splits off a hyperbolic plane whenever its rank b > 3.
Under our assumptions, b < 2 only occurs if d = 2,3. A second remark is that an
isometry is liftable if it is congruent modulo some power of d to a liftable isometry.
Indeed, since d* I - A for some lnteger s, a matrix for an isometry of the form (1 + d*f)
with respect to a free basis of J L H(P) can be chosen with entries in A, giving an
isometry (1 + d*1) of L.

Write 0 = @o;, where o; is the component of o over f‘,-. To 1ift the component
of o2, we need to lift the transvections given in Lemma 1.8, together with those of the
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form ((1) (1)) or 8 agl), a € Z;‘ when b = 1,2. Suppose first that b > 3. The
transvections can be lifted over I'; modulo some high power of d. We then compose
o with an isometry over A, and may assume that o; is the identity for : = 1,2. Now
if b = 1,2 and d = 2 the completion at p = 2 is the only prime to consider. For
p = 2, we use the global flip over J; L H(Z) and are left with an element of the form

Y= (g agl) with a € 25‘ However, the units (1,a) € I', @ T, can be lifted (modulo

squares) to units in Z,{Z/2]. Thus we again get o; is the identity for 1 = 1,2 and
we are done if d = 2. For d = 3 and b = 1,2 the argument is similar: we Lift units
(1,a) € T'y @ T'3. To complete the case d = 3 we need only lift transvections.

To lift the components of ¢ over I';, where z # 1,2, we use [23 5.12]: the group
SU(J; L H(TY)) is dense in SU(J; L H(T)). Slnce each o; is now a product of
transvections (which have determinant 1), this can be done using isometries over I' and

Ax

The Proof of Lemma 3.8: Under our assumptions, U = I';L; rank (b + 2r) over

= Z[(y], with b > 3. The ring R has non-trivial involution since k > 2. Let
S=Q[x]and R=2Z®R, 5§ =2 ®S. Here Z denotes the product of all the p-adic
completions of the integers. We will prove the Lemma by using the pull-back square
[29]:

R - §
Ll
R — &

Then U is the pull-back of forms U over R and Us over S via an isometry o : (U ® §) =
(Us ® Z). From the local classification, ess-rank(U) < b. Since a form over the global
field S represents zero if and only if it represents zero at all places [22, 10.1.1, 6.6.5],
we conclude that ess-rank(Us) < b as well. Fix some splittings U = Uy L H(R') and
Us =Ug L H(S") consider the induced hyperbolic summands over S. Since b > 3, we
can find a product ¢ of transvections by Lemnma 1.8 such that coa = # L 1 preserves
a hyperbolic summand H($"). It follows that ess-rank(U) < b. »

Remark 3.9: With only minor modifications, the argument just given would prove the
analogous statement to Theorem 3.7 for forms on many non-free modules. For example
if Ly = Z'® P with P free, the same conclusion holds. The only additional facts needed
are in [19, 102.9, 102.10], to show that the genus equals the class for the form I'; L;.

§4: Group Actions on Four-Manifolds

We now give some direct applications of cancellation methods to group actions on
topological 4-manifolds.

Corollary 4.1: Let M be a closed, oriented, simply-connected topological 4-manifold.
Let G be a finite cyclic group acting locally linearly and pseudo—freely on M, p-
reserving the orientation, with MY non-empty. Let M, denote the complement of
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a set of disjoint open G-invariant 4-disks around the fixed points, and assume that
My/G =W § (S? x §%), where OW = O(M,/G). Then the action (M,G) is classified
up to equivariant homeomorphism by the local fixed—point data, the signature, type,
and Euler characteristic of M and the Kirby-Siebenmann invariant of M, /G.

The definition of “local fixed-point data” was given in the Introduction.

The Proof of Corollary 4.1: Let G = Z, be a finite cyclic group action acting
semi-freely and locally linearly on a 1-connected 4-manifold M. We also assume that
the action is orientation-preserving and has a non-empty fixed point set consisting of
isolated fixed points. Then we can consider the free action of G on My = M — |JU;,
where the U; are small open G-invariant neighbourhoods of the fixed points. Let us
define X = (M — |JU;)/G and 8;X = 0U;/G. If G acts on another 4-manifold M’
with the same fixed point data, then we choose a homeomorphism of 0X to 0X'. The
actions are equivalent if one can extend this to a homeomorphism from X to X'.

We note that since the action is not free, M is spin if and only if X is spin. To
see this, note that M spin implies that we(X) comes from H?(G,Z/2), which maps
isomorphically onto H?(8;X,Z/2). But §;X is spin. The converse is clear.

If n is even and M is spin, choose a spin structure on X and consider its restriction
to 0;X. Since there are precisely two spin structures on X, the spin structure on 90X
1s unique up to a simultaneous change on 9; X for each i. We call the equivalence class
of spin-structures on 90X the spin fized point data. We say that the local fixed point
data in two different actions are equivalent if there is a homeomorphism of X to 90X’
preserving the spin fixed point data. If n is odd, there is a unique spin structure on X
and 90X, so we do not need to remember it.

Now suppose that M and M’ have the same signature, type, Euler characteristic
and equivalent local fixed point data. Then X and X' also have the same signature
and Euler characteristic. Since X is spin if and only if M is spin, the wq-types of X
and X' are the same. If in addition they have the same K S-invariant, then it follows
from a result of [14] that the actions are stably G-homeomorphic. More precisely, it is
shown in [14] that a homeomorphism between 80X and 9X' (which preserves the spin
structure if X and X' are spin), extends to a homeomorphism between X §r(5% x S?)
and X'§r(S? x §?%) for some integer r. Here the connected sum is away from the
boundary. Since we assume in the statement of Corollary 4.1 that X = W § 5% x S2%, we
are done by Theorem B'. »

We finish with another application, this time to the existence and uniqueness of
locally-flat topological embeddings of 2-spheres in simply-connected 4-manifolds. To
prepare for this we need the following sharpening of Theorem B' (in a special sit-
uation). Let X; and X, be compact oriented 4-manifolds with same boundary Y.
If Y is non-empty, we will assume that (YY) — m(X;) is surjective for i = 1,2.
We call a map a:m(X;) — m(X2) compatible if it commutes with map induced
by the inclusions from Y to X;. Similarly a map f: H*(X;) — H?*(X3) is called
compatible if it commutes with the restrictions to H2(Y) and if the induced map
B*:H*(X,Y)/Tors — H?*(X;,Y)/Tors is an isometry (here and in the following al-
1 homologies are with coefficients in Z). The “w;-type” of a manifold X with cyclic
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fundamental group is (I) if wo(X) # 0, (I1) if we(X) = 0, and (III) if wz(X) # 0 but
WQ(X) =0.

Proposition 4.2: Let X; and X3 be compact oriented 4-manifolds with same w2 -type,
KS-invariant, same boundary Y and same fundamental group G = Z /d. Suppose that Y
is empty or my(Y) — m1(X;) is surjective. Then for any pair of compatible isomorphisms
o and f there is a stable homeomorphism from X, §7(S? x §?%) to X, §r(S% x §2) rel.
Y inducing o and § @ id.

Proof: Abbreviate Hy(X,)/Tors by H. Consider the following three fibrations B(I),
B(II) and B(III) over BT op, which are the normal 1-types of X; with we-type (I), (II)
and (III) respectively. The total space is in all cases K(G,1) x K(H,2) x BTopSpin.
The map to BTop is given by a vector bundle E; x E; X v, where in case (I): E;
is trivial and E3 a complex line bundle with wy(E;) = we(X1) € Hom(H,Z/2); in
case (II): E; and E, are trivial; and in case (III): E; is a complex line bundle with
uf(wi(E1)) = wi(X1) and E; is trivial. Here u; is a classifying map of the universal
covering of X;. Let g; be a map from X, to K(H,2) inducing Id on Hy/Tors. Then
ur X g1: X1 — K(G,1) x K(H,2) is a 2-equivalence and the difference of the tangent
bundle of X; with the pullback of E; x E; admits a spin-structure. Choose a spin-
structure to get a lift #;: X — B of the normal Gauss map which is a 2-equivalence,
i.e. a normal 1-smoothing [14].

Since « is compatible we can choose uq: X2 — K(G,1) such that (ug)ea = (uy)..
Consider ¢g; as an element of H2(X; H) and let g2: X7 — K(H,2) represent B((g1).
As before uy and g define a normal 1-smoothing 7; of Xy in B. Since a« and f are
compatible we have u1|Y ~ u2|Y and ¢1|Y ~ ¢2|Y. Finally choose the spin-structures
so that they agree on Y (which is possible since if Y is not empty, H'(X;;Z/2) —
HYY;Z/2) is surjective). Thus our normal 1-smoothings agree on Y.

Lemma 4.3: For B = B(I),B(II) or B(III) the map given by the signature, the
KS invariant and the fundamental class injects Q4(B) into Z @ Z /2 ® Hy(K(H,2),Z).

Before we prove this Lemma we finish the proof of Proposition 4.2. Since the
signature and the fundamental class are determined by the intersection form and jg*
is an isometry, X1, 7; and X3, 7, are B-bordant rel. boundary. Thus there is a stable
homeomorphism rel. boundary from X, to X; commuting with the maps to K(H,2)
[14]. »

The Proof of Lemma 4.3: We apply the Atiyah-Hirzebruch spectral sequence with
E%-term H;(M(E, x Eg);QJT-'OPSPi"). The d-differential from H;(M(E, x Ez);§) to
H.‘_g(M(El X Ez), QQ) is the dual of Sq2 + wz(E] x Eg) and from H,(M(E] X EQ), QD)
to Hi—o(M(Ey x E;); Q) is the composition of the reduction from Z = Qg to Z/2
and the dual of S¢? + w2(E, x E2). A simple calculation shows that the E*°-term has
Z = QT°PSP'™ on the spot (0,4), a subgroup of Hy(K(H,2) on the spot (4,0) and , in
case of type (I) or (III} Z/2 on the spot (2,2). Thus the proof is finished if one has in
case (I) or (III} a manifold with a normal B-structure, signature 0 and KS non-zero.

Such manifolds are given by the difference of the closed Es manifold and the Enriques
surface in case (III) or CP?2§9CP? in case L. 4
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Corollary 4.4: Suppose that X, and X, satisfy the assumptions of Proposition 4.2,
and addition assume that X1 = X| § §% x S?. Then any pair of compatible isomorphisms
« and B can be realized by a homeomorphism between X and X, rel. boundary.

Proof: Note that H = ¢,(72(X;)). Then the statement follows by cancellation as in
the proof of Theorem B from Theorem 1.20 and Corollary 2.4. «

The method of cancellation can be used effectively to study the existence and clas-
sification of locally flat 2-spheres representing a given homology class z € H,(N;Z),
where N is a closed 1-connected topological 4-manifold. Then z = dy with y primitive
and d is called the divisibility of z. Such embeddings are called simple if the fundamen-
tal group of the complement is abelian (and hence isomorphic to G = Z/d). Denote
y -y by m, and let bz(/N) and o(N) denote the rank and signature of the intersection
form on Hy(N,Z).

Following the original idea of V. Rochlin [21] (compare [17]), these embedding
problems will be studied via an associated semi-free cyclic group action: if f: $2 = N
is an embedding representing a homology class of divisibility d, then there is a d-fold
branched cylic covering (M, G) over N, branched along f(S?).

Theorem 4.5: Let N be a closed 1-connected topological 4-manifold.
i) Let x € Hy(N;Z) be a homology class of divisibility d # 0. Then « can be represented
by a simple locally flat embedded 2-sphere in N if and only if

KS(N)=(1/8)(¢(N)~z-z)(mod 2)
when z is a characteristic class, and if

(V) 2 max, lo(N) = 24(d = §)(1/d)a - al.

i) Any two locally flat simple embeddings of S* in N representing the homology class
z are ambiently isotopic if bo(N) > |o(N)| + 2 and

b2 (N) > 28, |o(N) — 25(d — j)(1/d")z - z|.

If d is odd this result was asserted in [17] (under a weaker assumption for part
(i1)), but their argument has a gap which we do not see how to overcome. It occurs on
[17, p.410] where they claim that: “[H,(N), A, z]@® H(Z") splits off a copy of H(Z™1)”
for large enough r. This appears to contradict the example contained in [17, Remark
4.5] which is geometrically realizable by part (i). Their proof of part (i) also appears
to be incomplete. In particular, the results of [1] apply to transitivity on unimodular
elements of the same length, not to “primitive” (i.e. indivisible) elements as claimed in
(17, p.407]. In addition, the proof of [17, 4.3] is incorrect. The strong approximation
theorem does not say that “6®; can be lifted to an isometry or € SAut([P,h,z] @
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®H(T'"))”, but only provides such liftings modulo a power of d. In particular, an
approximate lifting may not preserve the H(I'") summand.

Proof: We assume d > 1, and leave the necessary changes for the case d = 1 to the
reader.

i) We will use the connection mentioned above between simple locally flat 2-spheres
and semi-free locally linear actions of G = Z/d with fixed point set S? on 1-connected
topological 4-manifolds. The correspondence is given by the ramified covering along
5% and in the other direction by the embedding of the fixed point set $? into the
orbit space. Since l-connected 4-manifolds are classified by the intersection form and
the KS-invariant it is enough to construct for ¢ € Hy(N) a locally linear G-action
on a l-connected manifold M as above with corresponding KS-invariant such that the
following pointed hermitian forms are isomorphic: (Hz(M/G),[M€]) 2 (H2(N),z). To
concentrate attention on the differences between our approach and that in [17], we
refer the reader to that source for background, motivation and some facts about the
geometric set-up.

It is easy to construct a G-action on a manifold M with the right KS-invariant such
that for some r the pointed hermitian modules are isomorphic: (H2(M/G),[MC]) =
(Hy(N)@® H(Z"),z ©0) [17, Thm. 2.1]. Now H,(M) is a stably free A-module [17,
Theorem 3.4], thus we assume that it is free. Suppose that there is an hermitian
A = ZG-module L and a class « € LE such that (L L H(A"),a®0) = (Ho(M), [MC)).
Then one can cancel the H{A") geometrically to realize (H2(N),z). This was carried
out for free G-actions in [10] and the same proof works here (compare [17, Prop. 4.1]).

Lemma 4.6:  There is a hermitian module L such that L L H(A") & Hy(M) and
LC = H,y(N).

It follows that there is a primitive class 2z’ € LY such that 2’ has same norm as
z = [MS] € Hy(M)®. Then z' 0 and z are primitive elements of the same length.

Lemma 4.7: There exists an isometry p on Ly L H(A®) such that p(z' ®0) = 2

Thus the pointed hermitian forms I L H(A™? 2'@0) and (H2(M) L H(A?),z260)
are isomorphic finishing the proof of (i).
i1) By our assumptions we have by(N) — |o(N)| > 4. Thus N = N' 5% x §2 for some
manifold N'. Choose a class z in Hy(N') of the same type, divisibility and norm as z.
By [25] the group of isometries acts transitively on elements of same type, divisibility
and norm and thus we can assume that z = z @ 0. Now the uniqueness statement is
a consequence of part (i), Proposition 4.2 and the fact that homeomorphisms acting
trivially on homology are isotopic to the identity ([15, Thm. 1] and [20]).

By part (i), we know that there is a simple embedding f; : §2 — N’ representing
z. Let fp : S — N be any simple embedding representing z = z 0. Let X; = N — v,
where v; denotes a small tubular neighborhood of f;(§%) in N, and the boundaries
90X, = 0X,. We first check that the the ws-type is the same for X; and X;. Let
z = dy where y is a primitive class with y - y = m, and assume that d is even. Then
X is spin if and only if X; is spin, since the map H?(N,Z/2) — H?*(X;,Z/2) is an
injection. If X; is non-spin, then its normal 1-type is the same as X, § CP2§ CP? and
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so the intersection form on H2(X1,Z) is odd. But Hy(X,Z) = {v € Hy(N)|v-z =0},
and so the intersection form on X, is also odd. Therefore both have the same w,-type.
In the final case, X is non-spin, but X, is spin, so w(X1) is the pull-back of some class
Wy € H*(m(X1),Z/2). But then (wz,v) = 0 and X; has an even intersection form,
similarly for Xa.

The existence of a compatible isomorphism J follows from the fact that we have and
isomorphism between (part of) the cohomology exact sequence of the pair (X;,0X;):

H*(X;,0X;) — H?(X)) — H3(9X;)
i ! l
{ve Hy(N)|v-z=0} — Hy(N)/(z) — H(N)/{(z,{v € H(N}|v-z=0})

Let 8 be the map induced by the identity on Hz(N). By Corollary 4.4 there is an
ambiant homeomorphism from (N, f1(5?) to (N, f2(5?) inducing the identity on Hs. »

The Proof of Lemma 4.6: We will use the fact that the quantity o; = (o(NV) —
2j(d—=7)(1/d*)z - z) is just the formula derived by Rochlin [21] for the signature of the
eigenspace of Ly ® C on which G operates as exp(2#ij/d) (compare [17]). It follows
from the inequality by(N) > max|o;| that b2(N) > 3 unless d = 1,2 or 3. The signature
of T'x Ly is the sum of the o; over all j such that k¥ = d/(d,j). When i =1, we use the
given splitting (Hz(M/G),[MC]) = (Ho(N)® H(Z"),z ® 0). The result now follows
from Theorem 3.7.

Proof of Lemma 4.7: The argument uses the same basic strategy as the proof of
Theorem 3.7 but is much easier. We use the pull-back square

A = 7
! [}
I* — ZJ/d

and consider first the images of the elements z,z’ @0 in I'; L; (i.e. under the augmenta-
tion map projection A — Z). It is enough to find an isometry p;, with p;(22' 0) = 2z,
so we may consider the problem of transitivity of the unitary group on such elements
in the quadratic submodule. By stabilizing the form by H(P), P = Z*, we can find a
product of transvections

p1 € (EU(H(P),Q; L), EU(H(P)), H(E(P)))

which has the required property over I'yL;. The images of z,2’ @ 0 are zero in I* and
hence it is enough to lift the reduction of p; (mod d) over I'*. Since the map I* — Z/d
is surjective, this element can be lifted to a product of transvections in Ly L H(A%). »

The arguments in the proof of part (ii) of Theorem 4.5 also give a statement anal-
ogous to [17, 2.5]:

Theorem 4.8: Let N be a closed 1-connected topological 4-manifold, such that
N = No§(8? x §%). Any two locally flat, simple, embeddings $? — Ny, representing
the same integral homology class, are isotopic in N.
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