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General introduction

Here we roughly summarize the contents, and comment on the
methods and expositjon,of this book. For more precise statements,
and a more detailed discussion of the contents, we refer to the
subsequent separate introductions to chapters 1 resp. 2 - 4 resp.

5.

0.1 Summary
Let G be a complex semisimple Lie group. We study

(1) the geometry of nilpotent orbits in the Lie algebra g of

G, and

(2) the classification of primitive ideals in the enveloping alge-

bra b(g);
A "péimitive ideal” is a kernel of an irreducible infinitesimal
representation {for simplicity, assume with trivial central cha-
racter in this summary). Our principal object is to gain insight

into (1) and (2) simultaneously, and to understand their relation.

Originally, both topics appeared fairly unrelated, and evolved for
some time quite independently into highly cultivated research areas,
with remarkable theories. For an excellent exposition of (2)>see for
instance [Jal. However, both (1) and (2) have been related to irre-
ducible representations of the Weyl group W, by fundamental! work

of T.A. Springer resp. A. Joseph, with some superficial similarities
on one hand indicating some deep relations-(as was suggested'from
the outset by conjectures of Borho resp. Jantzen [B21),but with in-

triguing discrepancies on the other hand, which remained a mystery



for several years.

As an illustration for the non-expert reader, let G = SL(n,C),
where W 1is the symmetric group of n letters (in fact, of the
n eigenvalues of a matrix). Then

(1) a "nilpotent orbit" is a conjugacy class of nilpotent n by

n matrices, and is specified by a partition of n (theory of Jor-
dan normal form), whereas

(2) a primitive ideal is specified by a Young standard tableau
(theory of Joseph's Goldie rank polynomials [Jal).

Here both Springer's resp. Joseph's W representations are equi-
valent to the one specified by the corresponding Young diagram

(Frobenius' theory of representationsof the symmetric group}.

We give a reformulation of both Springer's and Joseph's irredu-
cible representations in a uniform fashion, in terms of character-

istic classes of cone bundles on the flag variety X of G.

(1) To a nilpotent orbit, we attach a bunch of cone bundles in the
cotangent bundle T*X as follows: Take the preimage under the
(Kostant-Souriau) momentum map T*X — g, and decompose its clo-
sure into irreducible components.

(2) For a primitive ideal J, we obtain a cone bundle by locali-
zing the left module U(g)/J as a D-module on X (Beilinson-Bern-

stein localization), and taking its characteristic variety in T*X.

Qur “"characteristic classes" are then given in both cases by the (Fulton-
MacPherson) Segre classes of these cone bundles, as lowest degree
term of the product with the Chern class of T*X. The characteristic

class of a primitive ideal, when interpreted as a harmonic polynomial
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(Borel's picture of the cohomology of X), turns out to be pro-
portional to Joseph's Goldie rank polynomial, while the bunch of
characteristic classes attached to a nilpotent orbit identify with
the canonical basis of Springer's representation; so Joseph's re-
presentation becomes conceptually identified with a “special" [L]

one of Springer.

We only recall here [Jal that this representation is finally open

to explicit computation (recently extended to rank < 5 by Borho-

)

*
Steins) ‘in terms of integer matrices, as a consequence of the

Kazhdan-Lusztig conjecture, proved by Beilinson-Bernstein and Bry-

*)

linski-Kashiwara.

0.2 Methods

Qur treatement 1is based on three relatively new methods:

We use the intersection homology approach to (1) as developed in

joint work of the first and third author [BM11, [BM2] (in chapter
1), resp. the D-module approach to (2) as developed in joint work
of the first and second author [BB1], [BB3](in chapter 5), and we

furthermore introduce here (in chapters 2 - 4) equivariant K-theory

on T*X as a unifying concept, which provides an elegant common
frame work for the simultaneous investigation of nilpotent orbits
and primitive ideals in terms of characteristic classes, and makes
their relations appear quite natural. This new perspective was out-
lined in [BBM21, and is presented in full detail here. Let us men-

tion that there is some minor overlap with parallel work of Vietor

Glinsburg [Gi] .

*) See the notes added in proof at the end of chapter five.



0.3 Exposition

Since this book is a research report in the first place, we
do not make a systematic attempt to be self-contained here; in
particular we make free use of [BM1], [BM2] resp. [BB1], [BB3]
in the proofs of chapters 1 resp. 5. More explicitly speaking,
the work of the first and third author on nilpotent orbits and
Weyl group representations, resp. the work of the first and the
second author on primitive ideals and their characteristic va-
rieties, are taken for granted, as a kind of basement for the
ideas we build up here. It also goes without saying that we always
have to build on some (back-)ground, in algebraic groups (chapters
1,4), in topology (chapter 1), in algebraic geometry (chapters 2,
4), in representation theory (chapter 5), or non-commutative ring
theory (5.10-12), although we do spend some care on keeping the
necessary prerequisites down to a minimum. We give full statements
or at least references for material used from other sources; we
spend some effort to make our fundaméntal definitions and the state-
ment of main results easily accessable, and to make the logical de-
pendencies between different chapters explicit, where they exist;
the core material of the individual chapters can then be studied

independently.

S0 our presentation does not lack ambitions towards independent
readability: To return to our above picture, the reader is in-
vited into the building, or into his favourite chambre, without
having to worry too much about those parts of the basement, or

buildung ground, or other chambres, he might be unfamiliar with.



-8-

In fact, our purpose is not so much presentation of individual items
of new research (that do occur at various places), but primarily our
unified perspective or understanding of certain known results, which

we therefore wish to reprove here in full detail. This includes e.qg.

(i) a very concrete construction (due to Joseph-Hotta) of Springer!'s
irreducible W representation in terms of integer matrices

(due to Hotta-Lusztig) (4.14),
(ii) the irreducibility of Joseph's W representation (5.13}),

(iii) the irreducibility of the associated variety of a primitive
ideal (5.14) (alias the relation between nilpotent orbits and

primitive ideals suggested in [B21),

(iv) the equivalence (due to Barbash-Vogan) of Joseph's with

Springer's representation (5.14),
(v) Joseph's computation of Goldie ranks of primitive ideals (5.18).

While (i), (iii)}, (iv) have appeared only in research articles so
far, (ii) and (v) have already been central themes in Jantzen's

book [Jal (following Joseph), so let us explain the point of our new
exposition here. In [Jal, (ii) depends on (v), which in turn de-
pends on several chapters of hard non-commutative algebra in that
book. Qur point is to totally avoid this core part of [Jal, and

to logically separate (ii) from (v), that is to treat the classi-
fication of primitive ideals, and the analysis of their Goldie

ranks, as two separate purposes. Another point is to show all of
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the five above mentioned results (along with others) arise in a

closely related way in our geometric approach.
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INTRODUCTION to CHAPTER 1

Summary.

A nilpotent orbit GL] in a complex semisimple Lie algebra gives rise

to a collection of cone bundles on the flag variety, by taking the closed compo-
nents of its preimage under Springer's resolution of singularities. Using the
generalization of inverse Chern classes of vector bundles to Segre classes of cone
bundles due to Fulton and the third author,we attach to each such cone bundle a
characteristic class in the cohomology of the flag variety, which is interpreted.
as a harmonic polynomial on the_Cartan subalgebra. Using the intersection homology
approach to the study of nilpotent varieties as in [BM1], [BM2] we show that this
collection of polynomials transforms under the action of the Weyl group according
to Springer's irreducible representation Py which is usually constructed from

Uu by quite different means.

Introduction.

Consider the set N of all nilpotent complex n by n matrices (n >2).
With respect to the action of the group G = SL(n,8) by conjugation, N de-
composes into finitely many conjugacy classes. By the theory of Jordan normal
form, these classes (or "nilpotent orbits") are in bijective correspondence to
the partitions of n. On the other hand, the classical theory of representations
of the symmetric group due to Frobenius and Young classifies the irreducible com-
plex linear representations of Sn by the same set of combinatorial objects,
i.e. the partitions of n. Here we realize the symmetric group Sn as the group
of permutations of the eigenvaluesof the diagonal matrices, to identify it with
the Weyl group W of G = SL(n,f). In conclusion, this may be used to set up a
bijective correspondence between the set of nilpotent orbits of G in its Lie

algebra g, and the set of classes of irreducible representations of its Weyl

group W.
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The more recent (1976) theory of T.A. Springer [S1] gives a very elegant,

deep geometrical explanation for this correspondence, and simultaneously gene-

ralizes it to the case of an arbitrary complex semisimple Lie group G as fol-

lows. Given a nilpotent element u€ N, we denote Gh its G orbit (conjugacy

class), and XY the variety of all flags (maximal chains of linear subspaces in

¢") which are preserved by u. Then Springer constructs a linear W action on the

cohomology H*(xU) of this variety. This action commutes with the obvious action

of the isotropy group Gu, and ii irreducible on its invariants HZd(Xu)Gu in the

highest nonzero cohomology grg%%i(of degree 2d = diqRXu). The resulting irreducible

representation of W will be refered to as Springer's representation p, corres-

ponding to the nilpotent orbit Gh. In our example 6 = SL(n,f), Springer's
correspondence Uur——-+ Py gives an intrinsic description of the bijection des-
cribe@ above in completely classical, but more superficial (combinatorial) terms.
For an arbitrary semisimple group G, this correspondence turns out to be injective,
that is to say different nilpotent orbits GL # e; correspond to non-equivalent
representations pu$ﬁ Pys but it is no longer surjective in general, and Springer's
theory explains more precisely why this is so, by relating the "missing" irreducible

W representations to non-trivial local systems on some of the nilpotent orbits.

After Springer's original version [S1], this remarkable theory has been
further investigated and improved in several respects. We can only mention here
some of the many research contributicons by various authors. Various alternative
constructions of Springer's W action on H*(X!) have been given by Springer
himself [S2], by Kazhdan-Lusztig [KL], Slodowy [S1], and Lusztig [Lul; for a
detailed account of why all these very different approaches yield essentially
the same W action, we may refer to Hotta [Hol, appendix, and Spaltenstein [Spl,
§ 2. An explicit calculation of the correspondence ﬂhl-——o P, was carried out

by Shoji (G classical [Sh1l, type Fa [Sh21), Springer(pype G, [S11), resp. Alvis
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and Lusztig (types E6’E7’E8 [AL]). This latter calculation:and even the complete
tabulation of the W action on the full cohomology groups H*(x4)  (in all de-
grees) by Beynon and Spaltenstein [BS1, had to make use of certain new formulae
for the multiplicities in Springer's representations on H*(xY) obtained by two

of us in [BM11, [BM2].

In these last menticoned papers, a reformulation of Springer's theory of

Weyl group representations was given in terms of intersection homology theory.

It seems to us that this new approach, which will also provide essential methods ~
of proof for our present paper, offers a more satisfactory, most natural conceptual
frame-work to understand Springer's theory. One of its key points is to relate the
multiplicities of Springer's W representation on Hx(x") to the local Betti’
numbers of the intersection homology groups .of closuresof nilpotent orbits. This
means that Springer's representation is - up to equivalence - completely des-
cribed by certain numerical topological invariants of the singularities of the
closures of nilpotent orbits. The precise formula [BM1] relates two a

priori unknown sets of numbers; however, its structure offers an opportunity for

recursive calculation, which eventually yields complete knowledge of both sets

of numbers.

As a consequence of [BM1], we may say that we totally know Springer's re-
presentations - but only up to equivalence. Let us suggest now an even more am-
bitious goal: To refine our geometrical analysis to an internal description of
the representations themselves, in terms of matrices with respect to a suitable
fixed vector-space basis; all items in this description should be defined or
interpreted in geometrical terms. We do not know at present how to achieve this

for the full W representation on H*(Xu), but we do know such a description

at least for Springer's irreducible representation Py and the purpose of our
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present paper is to explain this in some detail.

Qur description of the representation Py is in terms of characteristic

classes of cone bundles on the flag variety X, which are constructed from the

nilpotent orbit Gu as follows: Take the preimage of OL in the cotangent bundle
T*X (which maps onto the nilpotent cone N under the so-called momentum map},
and then decompose its closure into irreducible components K1,...,Kr. These are
cone bundles on X (i.e. locally trivially fibred over X by conical sets of
covectors) o?qﬁimension d = dim x". Using the notion of Segre class s{K) of

a cone bundle K in the sense of Fulton and the third author [Ful, which coin-

cides with the inverse Chern class c(K)'1 in the special case of a vector-

bundle K, we may define our characteristic class Q(K) as the lowest degree

homogeneous term in H*(X) of c(T*X)s(K). Then Q(K1),...,Q(Kr) are cohomology
classes in HZd(X), which we may interpret as well as degree d homogeneous
harmonic polynomials on the Cartan subalgebra ("Borel picture" of H*(X)). Using
the methods of [BM1], we show that we may pass from Springer's original repre-
sentation space for Py to the vector-space spanned by these r polynomials

by composition of various canonical, W equivariant isomorphisms. The classes
Q(K1),...,Q(Kr) turn out to be linearly independent, and hence provide a basis

for our representation space. Now the representation Py can be described

with respect to this basis in terms.of certain integer matrices, which have non-
zero entries only for those indices i, j for which Ki intersects K. in

J
codimension < 1.

More precise formulae for this matrix representation (cf. 1.15 below) were
previously found by R. Hotta [Ho2] in a somewhat different geometrical setting
and were later used in [Hol to identify certain W representations constructed

by A. Joseph [J1] with Springer's Py
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Hotta's formulae hold for our characteristic class.basis without change. .
Moreover, as we shall explain in detail in a subsequent paper, our new approach
may be used to reprove these formulae, independently of Hotta's work, and even
in such a way, that the above mentioned identification with Joseph's construction

becomes simultaneously apparent.
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Introduction to chapters 2-4,

Our object here is to suggest, as a part of our general program

outlined in [BBMZ], that equivariant K-theory provides a very appropriate

frame~work for the simultaneous study of nilpotent orbits in a semisimple Lie

algebra, and primitive ideals in the enveloping algebra.

To make this slightly more precise, let us first sketch very briefly
some of the crucial techniques from equivariant Krtheory.whicp are frequently
chapters

used throughout thgae 'Y . We investipate here primarily the equivariant

K-theory of a semisimple Lie group G , acting on the flag variety X = G/B ,

and on its cotangent bundle TﬁX . This means, in other words, that we work

*
in and with the Grothendieck ring KG(X) (resp. KG(T X)) of the category

of G -equivariant vector bundles (or equivalently, of coherent sheaves) on

X (resp. on T*X) . On the other hand, let E be a single cotangent space

of X at some point fixed by the maximal torus T < G , so that T acts
linearly on the vector space E . Then our key technique, frequently employed
in this paper,consists in switching from G-equivariant X-theory on X to
T-equivariént K-theory on E . This is performed as follows : Starting from
equivariant sheaves on T*X , Wwe restrict them to the zero section on one hand,

and to a single fibre on the other hand, which gives isomorphisms
K0 TR T K (8)
G CARIR

The point of this manipulation is now that for a linear action of a torus on
a vector space, equivariant K-theory can be carried out very conveniently

in terms of calculations with formal characters. On the other hand, the link

to purely geometrical considerations as in our §1 (in terms of characteristic
classes in the cohomology of the flag variety) is made simply by the homomor-

phisms
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K (%) + K(X) -}'H*(x) ,

where the first arrow forgets the G action, and the second maps a vector
bundle to its Chern class. In conclusion, this shows how we can translate
statements from a context most convenient for computations (formal characters)
into a context most convenient for geometrical interpretation (cohomology of

the flag variety), and vice versa.

Let us next summarize very roughly the contents of individual chapters.
In chapter 2, we have collected a few generalities about equivariant K-theory,
which are basic for the subsequent chapters; this chapter is very short, and
is mainly meant to help the reader unfamiliar with this theory to read the
other chapters. — In chapter 3, we offer a somewhat systematic treatment of

the equivariant K-theory of linear torus actions. We assume that the torus

acts with positive weights (as in the case of T acting on E as above),

to make sure that formal characters exist. Let us note here that chapter 3

may also be viewed — to some extent - as a systematic study of multigraded

modules over multigraded rings. For some readers, it could therefore be of interest
independently of any applications to semisimple Lie theory. Specific topics
treated in §3 include for example the characterization of Grothendieck's
y-filtration in terms of codimensions of supports (theorem 3.10), or also in

terms of order of growth of "Hilbert functions" of graded modules (3.18).

Applications of the general formalism as exposed in chapters 2 and 3
to nilpotent orbits in the Lie algebra g = Lie G resp. to primitive ideals
in the enveloping algebra U(g) are elaborated in chapters &4 resp.,S;

As the reader will realize, some of the formal results
stated and proved in chapter 3, turn into signifieant items of nilpotent orbit

or primitive ideal theory, if one learns to translate them appropriately into
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these fields of applications. For example, the dimension formula in theorem 3.10
translates into the (well-known) formula expressing the Gelfand-Kirillov
dimension of a primitive ideal as a function of the degree of its Goldie rank
polynomial (cf. [BBM2], proposition 3). A similar example gives Joseph's
well-known formula saying how to compute his Goldie rank polynomials from multi-
plicities of Verma modules, and hence from the Kazhdan-Lusztig polynomials

(see e.g. [B1], 6.9, or [Jal), an embryonic, formal version of which is propo-

sitionm 3.9.(¥).

Let us now explain the applications to nilpotent orbits contained
in chapter 4. As usual, we consider the G- equivariant map m of the cotangent
bundle T*X into the Lie algebra g known as Springer's resolution or the
Kostant—Souriau moment map (cf. [BB]I). For the collection of ("orbital")

cone bundles K K_ attached to a nilpotent orbit o in g (that is

IR R

the irreducible components of wbleh) , we have already defined in chapter 1
certain characteristic classes Q(Ki) in HZd(X) , where d is the common
codimension of these bundles in T*X . Since v is G equivariant, these cone
bundles are even G-equivariant, and so they determine classes in Kg(x)

(the degree > d part of KG(X) with respect to <y-filtration). Therefore,
our notion of characteristic classes Q(Ki) can be refined into that of
"equivariant characteristic classes" QG(Ki) in the equivariant cohomology

2d . .. . d d+1
group H, (X) , which is isomorphic to KG(X)/KG

(X) . By means of the Borel
picture of fhe (resp. equivariant) cohomology of the flag variety, an adapted
version of which is reviewed right at the beginning of chapter 4, we may
interpret both Q(Ki) resp. QG(Ki) as polynomials on the Cartan subalgebra,

and then the former can be considered just as the harmonic part of the latter.

Actuélly, this is only a fact about general G-stable cone bundles (4.6);
but the "orbital cone bundles" Kl""’Kr have the following remarkable

property in addition : Their equivariant characteristic classes turn out to
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be harmonic -(4.7), and so to actually coincide with the "purely geometrically"

defined characteristic classes of chapter 1.

This fact is established in chapter 4 only as a by-product of a much
stronger result : We prove directly, by an argument partially following Joseph
[J1], that the classes QG(KI)"'°’QG(KF) transform under a simple reflection in
the Weyl group according to a certain formula, which was first given by Hotta
for the canonical basis of Springer's representations (see 4.14). In combination
with our previous work on the 'purely geometrical"” level in chapter 1, this
provides a nmew approach to the results of Hotta and Joseph [Hol, [J1], and
even to Hotta's original transformation formula [Ho2], if onme likes. Thus we
reprove in a quite natural fashion the coincidence of Weyl group representations
constructed by Joseph resp. Springer, which Hotta had established [Ho] only

in a rather indirect manner.

Since Hotta's transformation formulae are fairly sophisticated (see
4.14), one has to accept a fair amount of effort for proving them, as we do
here. However, we wonder whether there is a simple elegant argument proving
the harmonicity of QG(Ki) more directly, without reproving Hotta's results.
For the case G = SLn , or more generally for Bﬁ a "special" orbit (in the
sense of Lusztig [L]) , an easy proof is obtained by arguing via the equivariant
characteristic classes (of the characteristic cycles) of primitive ideals,
for which we, curiously enough, do have an easy direct proof of harmonicity

(see chapter 5).

- 1< . “fasbary 701
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Introduction to chapter 5

~The systematic study of primitive ideals of the universal en-
veloping algebra U(g) of a complex Lie algebra g was initiated
by J. Dixmier. Obviously, one of the motivations he had in mind was
to support our understanding of irreducible Lie group representations,
which was greatly advanced under the influence of Harish-Chandra
and I.M. Gelfand and their schools, by contributing an additional,
purely algebraic new tool. It was clear from the outset that the
primitive ideal, the kernel of an irreducible infinitesimal repre-
sentation of the corresponding Lie group, could carry only rela-
tively rough infofmation about the representation. But as it turned
out soon, that amount of information was already sufficiently so-
phisticated to be of high interest, and in the sequel, the evo-
lution of theoretical insight into the primitive spectra turned in-
to a dramatic series of research developments, heavily interacting
with representation theory and several other fields in mathematics.
As a result of these events, non-commutative algebra was dramati-
cally advanced, and was more seriously interrelated in a variety of
- often unexpected - ways with various other important developments

in mathematics.

To be slightly more specific, one has to distinguish the three cases

g solvable resp. semisimple, resp. general, which showed remarkably

different developmentsin both respects, history and result. Remark-
ably enough, the original initiative is due to Dixmier in each case,

roughly 20, resp. 15, resp. 10 years ago. In the solvable case, a

fairly satisfactory theory was achieved by the early seventies, with
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contributions, due to Conze, Duflo, Rentschler, Vergne, and others:
The so-called Dixmier map established a continuous (and conjecturally
bi-continuous) bijection of the primitive spectrum Prim U(g) with
the coadjoint orbit space g*/G, see [Dil or [BGR] for detailed

accounts. The general case, after Dixmier's initial work in the

late seventies, was theoretically penetrated by work of Duflo, Moeg-
lin,and Rentschler,which essentially achieved (by the mid eighties)

a reduction to the semisimple case, see [MRI] and [D21. Beeﬂlmi[hél

There is not (yet?) such an easy way of summarizing the history and

main achiévements in the semisimple case, to which the present book

is intended to make another contribution. So we do not attempt to
systematically review the complicated history, nor the present situa-
tion, of this subject as a whole. Let us try, however, to sketch some
very rough features of it, which may help to put our present contri-
bution into an appropriate perspective. For this purpose, let us
roughly split the development of the subject over the past 15 years

into three 5 year periods. The first one was a phase of first explo-

rations of the subject, and its link up with the theories of highest
weight an Harish-Chandra modules. Dufio's characterization of the
primitive ideals [D]) established the intimate relation of the sub-
ject with work of Verma, Bernstein-Gelfand-Gelfand, Jantzen, and
others on highest weight representations, and early papers of Jo-
éeph, [BJ], and others exploited the achievements of this link up.
On the other hand, the[nxmier-Khﬂllovorbit.method, which had been

so succesful in the solvable case, was realized to be inadequate

for dealing with the semisimple case for various reasons, }n the

first place because of the phenomenon of non-trivial Goldie ranks.

The Goldie rank of a primitive ideal J in U(g) 1is the rank
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of the matrix ring (over a skew field) obtained from U(g)/J by
appropriate localization (in the sense of Ore). A Dixmier map

g*/6 —» Prim U(g) was defined for g = sl in (B4} and was pro-
ven to be injective in [BJ]. It was clear a priori that it could
surject at most onto the "completely prime" (i.e. Goldie rank one)
part of Prim U(g); that it actually does was only recently
established by Moeglin [M1l.However, this approach fails for simple
Lie algebras other then sl , and misses the ideals of Goldie rank
> 1, so seemed (and still seems) hopelessly inadequate, although
optimistic experts may still hope an appropriate modification to

extend the orbit method may ultimately be found. For a summary

of this exploration phase of the subject, and the emerging problems,

see [B2].

The second 5 year period saw most dramatic transformations of the
subject. In the first place, the problem of classification of all
primitive ideals was reduced to the problem of computing multipli-
cities in Jordan-Holder series of highest weight modules (by work
of Jantzen, Joseph, Vogan and others), which in turn were conjec-
turally interpreted by Kazhdan-Lusztig [KL} in terms of topology:
(in fact, intersection homology) of Schubert varieties. And this
conjecture was soon proved by Beilinson-Bernstein [BeBel, and
Brylinski-Kashiwara [BK] by means of the Riemann-Hilbert corres-
pondence to modules of differential operators (D-modules) on the
flag variety. Since Kazhdan-Lusztig had simultaneously provided

a combinatorial recipe to compute those multiplicitiés, the set
theoretic classification of primitive ideals could thus be con-

sidered to be done - at least in principle - as a result of this
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sequence of events. On the otﬁer hand the combinatorics involved
(for a major Lie group like E8, say) is so prohibitively compli-
cated, that in practice the relation thus revealed was sometimes
even applied to prove combinatorial statements by means df primi-
tive ideal theory, rather then the converse. So in the second
place, there was still the need for.a more adequate classification
theory of primitive ideals . Such a theory emerged - completely
independently of the development mentioned before - from extensive
work of A. Joseph culminating in [J3] in his beautiful bijective
correspondence between primitive ideals (of a specified central
character) and bases of certain irreducible Weyl group represen-
tations. Joseph's method consisted in a complicated analysis of
Goldie ranks of primitive ideals, using very heavily very sophis-
ticated ring and representation theory. For an excellent exposition
of Joseph's beautiful theory (along with much further material

from this "second 5 year period"), we refer to [Jal. For an ex-
position of the proof of the Kazhdan-Lusztig conjecture and related

material, we refer to [Mil.

The present book deals with, and contributes to, the third of those

5 year periods. This one is characterized by the purpose of gaining
geometric insight into the classification already achieved. The
(smooth) change from period 2 to this period 3 was marked e.g. by

such papers as Joseph's [J1], which revealed a relation from Goldie
rank polynomials to nilpotent orbits, and Barbasch-Vogan's [BV11],
(Bv2l, which first indicated "experimentally" that Joseph's irre-
ducible Weyl group representation must be deeply related to Springer's,
a relation which was theoretically understood first by Hotta-Kashi-

wara [HKI. A crucial achievement of this "third period" was to
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establish the simple relation between primitive ideals and nilpo-
tent (coadjoint) orbits that had been suggested in [B2J], or in other
words the irreducibility of the associated variety of a primitive
ideal; this was done first for integral central characters in
[BB11, and in general by Joseph [J2]. Simultaneously, the various
reformulations of Springer's Weyl group.representations, discussed
in the previous chapters of this book, and appropriate for our pre-
sent investigation of primitive ideals, were developed [BM11, [J1],
[Hol. Also, the geometric tool of associated varieties (in g*) was
refined to that of characteristic varieties (in T*X) of the D-

module corresponding to a primitive ideal, see [BB1], [BB3], and

V. Ginsburg [Gil; cf. also Kashiwara-Tanizaki [KT1I.

Let us just mention the existence of more recent intriguing work

of Barbaidp—Vogan on "unipotent primitive ideals" in [BV3l, and
further new work of Joseph [J5], Hotta-Kashiwara [H31, which indi-
cate further deep relations between nilpotent orbits and primitive
ideals, which remain to be fully integrated into a unifying theo-
retical picture in the future. Let us also mention in this context,
that a "reastauration attempt" of the Dixmier-Kirillov orbit method
was made by Vogan [v2], but turned out [MG] to.be not yet fully

successful.

The list of more recent developments, which we complement by pointing
out new interactions with ring and representation theory in [M2]

and [LSS], seems to promise fhat there might be yet another 5 year
period of further evolution of the subject to come. We hope that

our present contribution, which aims at putting some essential achieve-
ments of "periods 2 and 3" into a unified geometric perspective,

might be helpful to prepare for it.
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Let us now summarize what we do in the present chapter 5. Roughly

speaking , it splits into three parts. In the first part (5.1-5.9)

we introduce our notion of a characteristic class attached to a

primitive ideal J of U(g), and identify it as a character poly-
nomial of a related highest weight module. This characteristic
class P(U(g)/J)}) 1is a cohomology class in H*(X) defined as follows:
Take the characteristic cycle € on T*X. of the (Beilinson-Bern-
stein) localization of the left module U(g)/J, and define
P{U(g}/J) := Q(C) to be the characteristic class of that cycle,
in the sense of chapter 1. The identification of P(U(g)/J) with
a character polynomial is a very crucial point, and so we offer
two alternative proofs. The first one (in 5.6) is very short now,
but depends heavily on the corresponding results about nilpotent
orbits proved in chapter 4. The second one (in 5.9) requires the
introduction of a G equivariant version of our characteristic
class concept (see 5.8), but seems more satisfactory and more

natural then.

In the second part of the chapter (5.10-5.14), we reprove the irre-

ducibility of Joseph's Weyl group representations (5.13) and of
associated varieties (5.14) in our picture. Let us state here our

version of the classification theorem for primitive ideals:

Theorem: Let J be a primitive ideal (with trivial central charac-

ter) of U(g). Let ¢ be the nilpotent orbit which is dense in the

associated variety of J. Let J J be the set of all primi-

1> "r

tive ideals corresponding to & in this way. Let bi T = P(U(g)/Ji)

i=1,...,r. Then:

1""’Pr are linearly independent.

They span a W submodule in H29(x) (Note 2d = codim @.)

for
a) Those characteristic classes P
b)
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¢) This W representation is equivalent to Springer's P

Moreover, our Pi is proportional to Joseph's Goldie rank poly-

nomial attached to Ji’ hence the equivalence of our version of
stating the classification theory with Joseph's [J31, (Jal. The
above version summarizes the more detailed statement of théorems

in 5.13 and 5.14. The reader interested in more details will also
realize that the above version differs from the statements actually

given in 5.13,5.14 by the choice of scale factors (the equiva-

lence of both versions following from corollary 5.11}, which we
arrange in the text in a certain new, more natural ("translation
invariant") fashion by definition 5.11. Let us also draw attention

to the point that we minimize efforts in non-commutative algebra

(which is implemented essentially in 5.10).

In the third and final part of this chapter (5.15-5.18), our pur-
pose is to reprove also Joseph's beautiful results about the com-
putation of Goldie ranks of primitive ideals. In doing this, we

draw attention to a crucial factorization of polynomials (5.17)

due to Joseph and D. King [Kil, [J1]. Finally,we simultaneously
obtain formulas for the behaviour of characteristic cycles and
our characteristic classes of primitive ideals under '"coherent

translation”.

For the expert readers, let us briefly comment on our choice of

attitude as to allowance for central characters. While [BB11,

[BB3] and also these introductions are formulated only for trivial
central characters, it is necessary for our purposes in the second
and third part of the present chapter, that we allow for arbitrary

regular integral central characters. We do not consider non-inte-
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gral central characters here, because that would require a lot of
additional basic preparations in D-modules (which will anyway be

provided by Milicié's book [Mil). Nor do we consider non-regular

central characters, because it is clear from [Jal for the experts,
how to extend all results to the "walls". One essential reason for
this choice was not to obscure the essential points of our new
perspective by a lot of additional technicalities and notational
machinery. We hope that this choice might help to invite, and en-
courage newcomers in the subject,and that the experts will accept

this as an excuse.

W. Borho, MPI fir Mathematik, Bonn,

December 1987

Note added in Proof (January 18, '88):
We just received a thesis by Anna Melnikov, Weizman Instituts (Rehovot),

which among other things overlap with computations of Andreas Steins,

BUGH (Wuppsrtel), in cases 33, 84’ and As, and also disproves stimulating

racant conjectures by Anthony Joseph and Colette Moeglin.

We also wish to add that the proof of the Kazhdan-Lusztig conjecture,
a quantum leap in the evolution of the field, was based on a so-called

Riemann~Hilbert correspondence rsvealed by Kashiwara-Mebkhout.
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§1. A description of Springer's Weyl group representations in terms of characte-
pringe yi 8

ristic classes of cone bundles,

Our "algebraic varieties" are reduced, and defined over an algebraically
closed base field k of characteristic 0 . We restrict attention to the case
k = € whenever we find it convenient for topological interpretations. If not

otherwise stated, we consider (co) homology etc. with coefficients in k .

1.1. Segre classes of conme bundles [FM], [Ful.

A cone in a vector-space is a union of lines through the origin. Let
Y be a non-singular algebraic variety. A cone bundle over Y is an algebraic
variety K equipped with 1, an action of the multiplicative group k* (or
Gm) , and 2. a morphism K > Y making K a fibre bundle over Y , which admits
a closed embedding into a vector bundle E over Y , respecting both data 1.
and 2..(In particular, each fibre of K is embedded into the corresponding fibre

of E as a closed comne.)

Each cone bundle K over Y determines a certain ''characteristic class"

* *
s{(K) in the cohomology ring H (Y) (= H (Y,k)) , called its Segre class.

It can be axiomatically defined by the following two properties

(1) The Segre class of a vector-bundle E over Y is the inverse of its total

Chern class c(E) , i.e.
s(E) = c(8) L .

(2) The Segre class is compatible with proper pushforwards in the following

sense : Given a commutative square of two cone bundles

7 | ~

K'— 5K with f proper and f proper birational, the functorial

. . * *
l 1 ring homomorphism £ :H (Y') » H (Y) maps s(K') to s(K) .
YL__Ji._;Y
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we refer to Fulton-MacPherson [FM], or Fulton [Ful chapter 4, for the
proof of existence and uniqueness of such classes s(K) (even on singular base

spaces Y) , as well as for more properties and historical back-ground.

1.2 Characteristic class of a subvariety of a vector-bundle.

Let E be a vector-bundle over the non-singular equidimensional variety
Y . Then each subvariety (! of codimension d in E determines a cohomology
class of degree 2d on the base space Y , denoted Q(V) € H2d(Y) , and defined
as follows. We start here with a geometric definition for the case k =10 ,
and postpone the statement of a more general, formal algebraic definition to
the next section (1.3). If m resp. n are the dimension of the fibre resp.
base of E , the real dimension of V 1is 2m+2n-2d . It therefore defines a

canonical homology class [V] in the Borel-Moore (closed support) homology group

el

H2m+2n-2d(E) . Homology with closed supports is sometimes called Borel-Moore

homology. It is the homology of the complex of locally finite singular chains.
A representative for [V] can be obtained by triangulating V (with infinitely

many simplices). Since E 1is nonsingular, Poincaré duality gives a canonical

el

; 2d ]
om+2n-2d with the cohomology group H™ (E) . Since the

identification of H

zero-section o : Y > E is a homotopy equivalence ,

. . ; * * ~ %
we have an induced graded ring isomorphism o : H (E) » H (Y) , which we call
"homological intersection with the zero section". Then, by definition, the

characteristic class Q(V) 1is obtained from the canonical class [V] by Poincaré

duality followed by homological intersection with the zero sectiom.

For the case of a cone bundle V =K , there is the following nice
formula for this characteristic class Q(K) 1in terms of Chern- and Segre classes,

due to Fulton-MacPherson IFM], see also [Ful,p.73, 4.1.8.

Proposition : 1§ fthe subvariety V c E 4s a cone bundle K =V over Y of

codimension d 4«in E , then

QK) = [e(E).s(K)1%¢
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i . .
Here [...]  means homogeneous part in degree 1i .

1.3. Characteristic class determined by a sheaf on a bundle.

The following definition, generalizing 1.2, will not be used until
chapter 3. It may serve as an algebraic alternative to 1.2, but its main purpose
is to link up the results of the present chapter with our work in later chapters.

For general background, we refer to ISGA6], fMa], (Ful, IFL], [BFM].

With notations as in 1.2, we consider now an arbitrary coherent sheaf

[[Res]

of OE-modules whose support supp(F) has codimension d in E , and we
define a characteristic class Q(g) determined by F in H2d(Y) as follows.
We consider the Grothendieck ring K(E) of (the category of) all coherent
OE-modules, filtered by the subgroups Kj(E) (j €Z) generated by coherent
OE—modules of codimension’ > j . The ring structure on K(E) coﬁes from its
identification with the Grothendieck ring of locally free OE-modules (cf. '1.4).
We note that this filtration coincides with Grothendieck's y-filtration at
least after tensoring with @ , see [FL], p.182, Proposition 5.5; but note here
and in the sequel our convention that our coefficients are tacitly extended
to k , for convenience. We next apply the Chern character ch:K(E) o H*(E) s
which is a functorial homomorphism of the Grothendieck ring into the cohomology
ring [Fu]; [FL}, [Hi] . Finally, we intersect homologically with the zero-section

0:Y > E (as in 1.2), and take the degree 2d homogeneous part. In summary,

we define
* 2d
(2) Q(E) :=[o ch[E]] .
We may sometimes also consider the "total" class attached to F by

(3) (E) := o chlF]

Qtotal

*
Remarks. a) Note that we could reverse the order of o and c¢h in this

definition, since functoriality of the Chern character provides a commutative diagram
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*
K(E) ——> K(Y)

S

5 (E) S B () .

b} Let us point out that Q (E) has degree > 2d , or in other words

total

Q(g) is either the lowest degree term of this class, or else zero. To see this,
recall that the ring K(E) is filtered by the Grothendieck subgroups KJ(E)
of coherent OE—modules with support of codimension > j . Then the Chern

character respects this filtration upto a doubling of degrees, that is

adme o W ,
j<2d

which implies our claim.
The Chern character thus induces a homomorphism
*
gr ch : gr K(E) » H (E)

of the associated graded ring gr K(E) into cohomology, given by

(4) grjch : gij(E) c= KJ(E)/KJ+1(E) - HZJ(E) , for all degrees j,

1.4, Comparison of the two definitions for @ .

In order to establish compatibility of the topological definition for
Q(V) 1in 1.2 with the algebraic definition in 1.3, we have to check that in
case k = T , the class Q(OV) of 1.3 coincides with Q(V) of 1.2. For the
comparison, the algebraic analogue of Borel-Moore homology of E 1is the
Grothendieck group KO(E) of coherent OE-modules, while the cohomology of E
correspondﬁ to the Grothendieck ring of algebraic vector-bundles (or locally free
sheaves}, denoted K°(E) . Since we are assuming Y (hence E) non-singular,

the canonical ("Poincaré duality") map K°(E) + KO(E) is an isomorphism, which
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justified the notation K(E) for both groups; but for the present specific

purpose, the notational distinction will contribute to clarity. We look at the

following diagram

can.

*
a

K, (E) <= g% E) —> k°(v)

T

can.

Hii(E) <~ g'(E)

where 1

ch ch
*
.

~

> 1 ()

is the "Todd character" defined in [BFM] , which makes the left hand

square commutative only upto multiplication by an element in Hiﬁ(E} which is

the image under 'can." of the Todd class Td(TE) of the tangent bundle of

the smooth variety E . However,
degree term, i.e. in other words

on the associated graded level :

J

Bom+2n-2d <

Now the desired equality follows
tOU]mod Kg(E) determined by

canonical class determined

(vl

From the considerations
which will become significant in

irreducible component of the

v

grdKo(E) <« or

this multiplication does never affect the top

, the above diagram induces a commutative one

-~

K% (E)

> gr KO(Y)

d d

from the fact that the canonical class

in grdKo(E) = KS(E)/K2+1(E) maps onto the

in Hca

by v 2m+2n-2d

(E)

above, we may draw a more general conclusion,
chapter 3 .. Recall that one may attach to each
support

supp(F) of our coherent OE—module

a well-defined integer multiplicity mV(E)-Z 0 . Hence we may define an algebraic

cycle (supporting F)

as the formal linear combination
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supp(F) = Emu(g)[V] .

Proposition : Q(F) = ) mu(g)Q(V) .
codim V=d
In particular, the characteristic class Q(g) of a coherent OE-module F
is completely determined by its supporting cycle.
Let F # 0 . We claim that
d+
(Fl- 5 m(BI0,) € KTH®
codim V=d
has degree strictly larger than [F] . Then the proposition will be clear from
the preceding discussion. Let S denote the (reduced) support of F , and
Ul""’vr its irreducible components. By an easy dévissage, one may assume

that F 1is an Os—module, so we may speak of the class [F] in KO(S)

In each Ui there exists an open subset Ui # @ such that the restriction
of F to Ui is a free module of rank m, (E) . This means that the element
i

IF]- £ m, (F)I0, 1 of K (8) restricts to zero in K (U) , where
= . V. = V. o o
lilir 1 i

U= Ulu---uUr . By the localization exact sequence for K, » this element belongs
to the image of KD(S‘xU) in KO(S) . Since S~U has codimension > d+l1 in

E , this implies our claim.

1.5. Homology of the flag variety [Bo], [H2]

In the present paper, we shall apply the previously defined notions in
the special case where Y = X is a flag variety and E = T'X its cotangent
bundle. So let us introduce now some of the fundamental notations and facts
for this particular situation. We consider a semisimple, connected, linear

algebraic group G defined over k , and fix a Borel subgroup B . Then we

may define the flag variety as X = G/B , a complete homogeneous space. Let

n = dim X . We also fix a maximal torus T c B and denote b W the Weyl
m, y wey'.

group W = NG(T)/T>. For each w € W , the Schubert cell Xw is the locally
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closed subvariety BwB/B , isomorphic to an affine space of dimension 2(w) ,
the length of w with respect to the system of simple reflections determined
by B . Since the various Schubert cells X, (w €W) form a paving of X
by affine spaces of even real dimensions (dimRXw = 2¥w)) , they provide a
vector-space basis for the homology groups

H,.(X) = @ k[x]
2] L(w)=j v

Let us point out that the existence of such an affine paving causes the Chern
: : ~ % : .
character to be an isomorphism K(X) -+ H (X) , so that the two diagrams in 1.4

consist entirely of isomorphisms in the present situation, viz.

*

: a
* ~ * ~
K (T'X) <—— Ko(T ¥X) —> k°(X)

T t: ch = ch =
. *
o]

HiK(T*x) <~ g5 ) = 1)

As another special feature of the flag variety case let us mention here as a

side-remark, that the multiplier Td(T = 1 is trivial in this particular

T*X)

case, so that even the left hand square of the above diagram is commutative

(cf. the remark below).

Let U be the unipotent radical of B . We denote g ,b ,t , u the

Lie algebras of G,B,T,U . For convenience, we sometimes identify g with

its dual E* via the Killing form. We also identify therefore u with the
cotangent space of X = G/B at the base point x = {B} . Then T*X identifies
with the associated fiberbundle G x?ﬂ (as usual, [BMl], [BB] I,III).

It splits into line bundles with fibre Eé’ a € ¢+ . Here ¢+ c E* denotes

the system of positive roots relative B , and EF = E? ig the root space

belonging to a € o .
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Remark : Let us prove that Td(T } =1 . It suffices to prove that

T*X
* . . . .

Td(TX)Td(Tx) = 1 . The filtration of g by the B-invariant subspaces

Ocucbcg induces a filtration of G xgg by homogeneous sub-—bundles.

Since the whole bundle G xgﬁ resp. the bundle subquotient G xB(E[E are

trivial vector bundles (the latter since B acts trivially on b/u , the former

since the B-action extends to a G—aption),we obtain

1 = Ta(e xBg) = Ta(c xPuw) Td(e xB(b/u))Ta(G xB(g/b)) = fd(T;)Td(TX) ,

. ~ % . . .
since u resp. g/b =u identify with the cotangent resp. tangent space of

X at B . (This sort of phenomenon for the flag variety was first observed

in [Mr].)

1.6 Cohomology of the flag variety.

There is a nice explicit description, due to Borel, of the full ring
structure of H*(X) , in terms of polynomial functions on E* , which we shall
explain in more detail in the adequate context in chapter 3 . Let us state
here only basic facts relevant for the present chapter ; First, the cohomology
of X 1is trivial in all odd degrees (by the remarks made in 1.5). Second,
the cohomology group H2d(X) in some even degree 2d identifies canonically
with the vector-space Sﬁarm(ff) of polynomial functions on t which are
W-harmonic, and homogeneous of degree d , for all d = 0,1,...,n . In particular,
this provides a linear W-action on HZd(X) . Third, the cup-product of cohomo~

logy classes is given by multiplying polynomials modulo W-invariants without

constant term (cf. 3. or [Bol),

Convention. From now on, we shall consider the characteristic classes Q(V)

*
resp. Q(F) , defined by a subvariety V< T X or a coherent {, 4, —module F

T*X =

as in 1.3 resp. 1.4, as harmonic polynomials on the Cartan subalgebra t , if

this is convenient. If the difference between a characteristic cohomology class

on X and the corresponding harmonic polynomial on t should matter, then we
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may refer to the latter as a '"characteristic harmonic polynomial".

Example : Let us illustrate the computation of classes Q(K) for cone bundles

*
K in T X , using the conventions above and the formula of 1.2, We take the
special case where the conical fibre k < u is actually a vector-space, spanned

by root-spaces. Let ¥ resp. Y¥' denote the set of positive roots a such

83 a

that u is resp. is not contained in k , so k= & g , and

k' = @ : 5? is a complement of k in u . Then clear?i% the codimension d
of Kaein T X is given by d = dim k' = # ¥' . The total Chern classes are
given by :

c(r'x) = I, (1+a) , oK) = I (l+a) = s(K) " .
a€d a€¥

Hence we may compute the product (cf. 1.2) :

(T X)sK) = e (T™X)/c(K) = T (l+a)
a€yY’

which has highest term ﬁa, a € ¥' , of degree 2d (if each o 1is given

degree 2). Then the formulain 1.2 says that

Ky = . o . (*)
acy’

Strictly speaking, by our convention above, one has always to take only the
harmonic parts of these products. However, in the case when e.g. Y¥' is a

positive sub-root-system, then the product (%) is already harmonic.

1.7. Orbital cone bundles on the flag variety ([BB] III, Appendix B)

*
We denote by @ : T X + N the socalled Springer resolution, which is
*
a G-equivariant proper algebraic map of T X onto the cone N of all nil-
potent elements in g . We obtain some particularly nice cone bundles on X

by taking the preimage of a "nilpotent-orbit". To be more precise, let y € N

denote a nilpotent element, and & = Bu — N the G-orbit generated by u under
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the adjoint action of G on its Lie algebra. Since a nilpotent orbit is
obviously stable under multiplication by a nonzero scalar, its closure & is
clearly a cone, and so is E;TTEE , by the same reason. Now consider the preimage
ﬂ-lgy’of the orbit in T*X . Interpreting T*X as the associated fibre bundle

4

G xgg (notation 1.5), we have obviously

rle=cx®@Gnw,

hence the description of its closure by

rlo=c P FhHa

which exhibits its structure as a cone bundle on G/B = X with fibre &N u .
Moreover, if Cl""’Cr denote the irreducible components of &M u , then

their associated fibre bundles

are the irreducible components of ﬂ_le- . We call these cones Ci resp. cone

bundles Ki "orbital for ©" ; any cone in u resp. cone bundle in "X is
called Torbital" , 1f it is orbital for some nilpotent orbit (which is then
necessarily uniquely determined). By a result of Spaltenstein [Sp2], all C;
(1 < i< r) above have the same dimension, and hence all Ki (1 <i<r)

have the same dimension. From Steinberg [St], it follows that the common

*
codimension of these cone bundles Ki in T X 1is given by

= IS S § . _ .
d = du = dim T Tu = 5 codlmw;? codlmT*XKi .

1.8. Another realization of Springer's Weyl group rerpesentation

We are now ready to state the main result of this chapter.
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Theorem : Let Kl,...,Kr be the orbital cone bundles for some nilpotent orbit

6, of codimension 2du in N (as in 1.7). Let Q(Kl)""’Q(Kr) be their

characteristic classes on X , as defined in 1.2. Then :

a) These classes are linearly independent.

2d
b) They span an irreducible Weyl group submodule of H Y(x) .

c) This irreducible representation is equivalent to Springer's representation Py

For the last statement, we have to recall that Springer [s1] constructs
2d G

an irreducible representation of the Weyl group W on H Yty , the
Gu—invariants of the top cohomology group of the fibre of his resolution, where
Gu is the isotropy group in G of the nilpotent element u . We denote this
representation by Py = D(u,l) , following our conventions in [BM] 1,2 and

B I,IIT, which differ from Springer's by a sign—character (cf. 1. .
[ gl ich differ f inger's b ign-ch (cf. 1.13)

Before going into the proof (1.9 — 1.12), let us point out some immediate

useful consequences

Corollary 1 : The set of classes Q(K) , where K runs through all orbital

cone bundles (for all nilpotent orbits), is linearly independent.

Proof : This follows from a), b), c¢) of the theorem in combination with the
fact that the Springer representations for different nilpotent orbits are pair-

wise non-equivalent. Q.e.d.

Remark : Note that in a general context, our topological invariant Q{Y) defined
in 1.2 may often be zero, and hence not of much interest. But for the study of
nilpotent orbits, the theorem establishes the usefulness of our concept. Here

is another illustration of its use.

Corollary 2 : Let U be the (left) characteristic variety of a primitive ideal

in the enveloping algebra U(g) , or of a Harish-Chandra bimodule (cf.~IBB] I11).

Then Q(V) # 0 .
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Proof : By loc.cit., V 1is a union of orbital cone bundles. Let Kl,...Kr
be those of maximal dimension. Then Q(V) = Q(K1)+'--+Q(Kr) # 0 by corollary 1.

Q.e.d.

Let us also mention that the theorem will allow us to understand and

reprove Hotta's results [Bo] in a more natural way, see §3.

1.9 Reformulation of the theorem using intersection homology.

To put the theorem into a more formal language, note that the fundamental

classes [Kl],...,[Kr] of our orbital cone bundles form a basis of the top

homology group of w_loh , and that our characteristic class construction (1.2)

provides a group—homomorphism

Hﬁﬂd o) = Hzau(?{) ’
u
sending [Ki] to Q(Ki) . Now part a) of the theorem asserts that & 1is
injective. We shall first reinterpret this map (see the proposition below) in
terms of the intersection homology approach to Springer's theory, as developed

by two of us in [BM] I, and then work in this alternative frame-work to establish

the theorem.

In [BM] I, Springer's theory of Weyl group representations was derived
from the Beilinson-Bernstein—-Gabber direct sum decomposition theorem [BBD],
. . ® . ..

applied to Springer's resolution 7 : T X =+ N . The direct sum decomposition

theorem gives that the sheaf A’ := Rn L , considered as an object in the

T*X

bounded derived category Db(N) decomposes into direct summands é.(x © where
»

X runs over a set of representatives of all nilpotent orbits, ¢ runs over

the irreducible characters of nl(ek) , and

. Ve - X .
e B ey 1T Rk )@ Vi o)
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in the noticn of [B M] I. We recall that V( is a certain vectorspace,

X,0)

and the formula states that A, is a sum of dim V(x

=(X ,(D)

direct image under the inclusion map i* o OkG» N of the intersection homology

©) copies of the

sheaf ;gz'(Lq} with coefficients in the local system 1%9 of monodromy @ .

To simplify notation we shall drop ¢ if ¢ =1 1is trivial, so write

éix 1) = A; etc. . Now application of the hyper cohomology functor il
- ’

provides an isomorphism.

g : B SHin,a)

and the direct sum decomposition

A Yuin, @ 4

A ) =
(x,w)_(x’w)

provides an inclusion as a direct summand
i . i .
y tH (N,A)D)H §N,A%).
=X . =
in each degree i , for each nilpotent orbit ¢,

Proposition : There exists an isomorphism @ which makes the following diagram

commutative :

2d
J4 -1 § u
H4n_2du(11 o) —> 1 "X
ol o I~
2d 2d
B YN,A) H Y(N,A0)

Clearly, this implies part a) of the theorem. We shall next explain in
1.10, how also parts b) and c) about the W-action will follow. Then the construction
of the isomorphism « will be given in 1.11, 1.12, to complete the proof of

the theorem.
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1.10 The Weyl group action.

Let us now take into account also Borel's W-action on H*(X) (1.7)
resp. Lusztig's [Lu] W-action on é' , and recall that these make the above
isomorphism B W-equivariant (cf. [BM1], section 6, [Sp]). Furthermore, we
conclude from the main theorem of [BM1]}, that the direct summands éEK,W) are

stable under this action, and that the W-action on each é.x is given by

R0)

a linear representation p of W on the vector-space V which is
P (x,0) < (x,0)
irreducible and identifies with Springer's representation up to a sign character.

Application of the hyper cohomology functor M' to formula 1.9 (*) gives

. : i-2d
1 N ~ X =
H (N’é(x,w)) = (&X’Lw)ev(x,tp) -

which describes the hypercohomology of each direct summand A, as a

X, )

W-module, which is isotypical of type P (x with multiplicity given by the

)’

intersection homology group of 5; , Wwith coefficients in Lw , in the appropriate

degree (notations as in [BML]). Taking x =u , @ =1, i=2d this intersection
homology group becomes IHO(E;) , which is spanned by a single canonical class

[Gh] , so that we find

2d :
u . ~ Q0 ,— ~
™ (N’éu) = TH (G-U)Q v, =Y,

Or in other words, this says that the map vy 1in proposition 1.9 maps
2d
H u(N,é;) onto a single copy of Springer's representation Py * This shows

that the proposition will also imply parts b) and c¢) of our theorem.

1.11 Reduction to a crucial lemma.

We now turn to the construction of an isomorphism o as announced
in the proposition (1.9). As a preliminary, we shall replace our characteristic

class map & by a similar but more convenient map &' , using the following
8 by P g
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commutative diagram :

2d 2d
* * - ' *
H T X,T X-7 1&u) S5y tar*n

~ *

a

2d
&) ——>H Y

. . ] *
which will allow us to work entirely in cohomology of T X . Here the map &'
is defined just by functoriality of cchomology on pairs of topological spaces,
and ¢ 1is Lefschetz duality, which is an isomorphism since T X 1is nonsingular.

In view of this diagram, proposition 1.9 is equivalent to the following :

Proposition : There is an isomorphism o' making this diagram commutative

2d — 2d
* * - ' *
B (T X,T X- 10u) ST 5w Uy

o' e g = BU*
2d 2d
H o Y(N,A) Y »m U(N,A0).,

We prefer to prove this equivalent version. The construction of g

will be accomplished by a discussion of the following diagram, where we denote
BGh = eh~\ea the topological boundary of Gﬁ , and d = du , to simplify

notation.
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* .
2d(T*X,T X7 199

w 8t
* - * J .
w24t x ~n IBG-U,T X~ 1e;—u) — B x, tix 1&) — » 4o
A
=t =
2d(n~ae , NNB34°) ¢— w2 NF;A) —— >N a0
u u = u = =
A
3 Y
2d — 2a ¥ - 2d
(NN ,N®& ;A") «———— H (NN & A) —— > H" (N,A7)
u u =u n u'=u I; =u

In this diagram, all horizontal maps, and also the top triangles, are
induced by inclusions of pairs of topological spaces. The middle row of vertical

isomorphisms are examples of the sheaf theoretic isomorphism

-1

(%) A, TBssT) —>H1(A,B3Rn,8")

which holds for any map = of a space with a complex of sheaves §° to a

space with a pair of subspaces A o> B . Finally, the bottom vertical arrows are
induced by coefficient inclusions A; - A" ; they are inclusions, since A;

is a direct summand of A" . Each of the small squares and triangles in the

diagram clearly commutes, so the diagram is commutative.

Lemma, The maps £ , n , £ , w in this diagram are isomorphisms.

Given the lemma, we may define the desired isomorphism o' by tracing
around the outside edge of the diagram (o' = Cn-lg—lﬁm) , and then the
commutativity of the whole diagram gives vyo' = g8'6' , which establishes our

proposition.
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1.12 Completion of the proof of theorem 1.8.

It is left to prove the lemma. To prove that & 1is an isomorphism,
it suffices to check that for all direct summands éix ©) other than é& ,
. ’ -

Zd(

the group H N\‘M%J’N\Jgh;éix m)) vanishes. We may interpret this group as

the global sections PL( of the local system L(u,(x,m)) on GL whose

u, (x,9))
: 4n-2d

3 . . \ . [ - '
fiber at u € 6 is given by M (N,N {U}’é(x,w)) . Now if 03{# 8
then this fibre is zero by a dimension count, using the Supﬁort conditions for
intersection homology (axioms (AX2) in [eM2]1). If 6 =6 ,bu © #1,
then the local system has no invariants. It follows that indeed

Bizd(N\BGh,N‘\Ei;ékx’w)) = 0 , whenever (x,9) # (u,l) ,

and hence £ 1is an isomorphism.

To see that n 1s an isomorphism, look at the case (x,9) = (u,l) of
the previous discussion, and interpret the target of n as IL = HO(Ga,L)
with L =L , notation as above. Similarly, the source of 0 may be
(u)(uyl))

interpreted as IHD(§;,L) , SO0 we have a commutative diagram of canonical maps

29 (N~26 N~ 5A7) <D HIW NN T A7)
u u =u u" =u

HO(&u,L) <—IP_°(G:1,L) .

Now it is a general fact in intersection'homology theory, that the bottom
canonical map is an isomorphism : In the language of [GMl],'codimension zero

cycles are always allowable.

Finally, the map n 1is an isomorphism since é& is supported on 5; .

And the map w 1is an isomorphism because its source and target are both

vector-spaces with basis the irreducible components of ﬂ_lear, and w identifies
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them via these bases. This completes the proof of the lemma, and hence of the

theorem. Q.e.d.

1.13 Comparison with Springer's original construction.

We have seen in theorem 1.8 that our characteristic class map & :
A 2,
K -+ Q(K) embeds HAn—Zd'(“ 9;) into H “(X) as a subspace invariant for
u
. * .

Borel's W-action on H (X) , and we even know already that the W-action on
this subspace is equivalent to Py that is to the Springer representation of

2d G _
W on H Y 1u) Y (cf. 1.8). It remains to show how this equivalence can be

realized by some geometrically defined map between the two representation spaces.

This is the purpose of the theorem below, which complements theorem 1.8.

We shall use here the construction of the W action on H*(ﬂ-lu)
as in {B’M] 1, due to Lusztig ILﬁJ, and which differs froﬁ Springer's originally
defined representations by a multiplication with the sign character (c¢f. 1loc.
cit., and also [Hol, Appendix; [Sp], §2 for more details). We éhall actually
prefer to work with the contragredient representation on the top homology space

2d
Hyq (7 1u) , dual to H u(n_lu) . This space, and similarly H
u

-1
Afm-2du(Tr eﬁ) ’

are equipped with canonical bases, given by the (canonical classes [C] resp.

[K]l of) the irreducible components C resp. K of w_lu resp. ﬂ-loh .

So the linear maps linking these vector-spaces as explained below can be
explicitly described by referring to these bases. Note that Gu acts via the
finite group C(u) := Gu/Gz of its connected components on (co)homology, since

Gz acts trivially. Since C(u) acts on H2d (ﬁ_lu) by permuting the canonical
u

basis, we get also a canonical basis of the subspace of Gu—invariants, c

corresponding to the C(u)-orbits of components C . We even get a canonical
G
L@ defined by

projection p‘ of Cn-lu) onto

Hog Hyg
u u

(1) plcl = £ [acl =n.([C 1+ --+[C_])
- acc(u) ¢l ¥



where Cl""’cr are the different C{u)-conjugates of C , and n. is the

number of a € C(u) fixing C . Starting from K , an irreducible component

of v_lea , we recall from [BB] III, B.2 that

is the union of one full C(u)-orbit of components of w_lu' (notation as

before). We conclude that the Gysin homomorphism

s -1 -1
JtHinogq (7 76D —— Hyy (m 7w
u u
is given by
(2) jlK] = [GuC] = {01]+---+[cr] .

In particular, it is a linear isomorphism onto the Gu—invariants of the target
space. We also recall from loc.cit. that the G-saturation GC , that is the
union of all gC(g € G) , 1s an irreducible component of ﬂ-lea , SO its

closure is an orbital cone bundle GC = K , and we have a linear map q in

the reverse direction of j by

(3) qlcl = nc[ﬁﬁl .

where the scale factor n, is added to make the triangle p,j,q commute,

Let us summarize this discussion as follows.

Proposition : We have a commutative diagram of linear maps

(r Lu)

‘-HHHHE;\‘H““ ol ‘":T" 2d
> H (r o) <fsn “x

Hog
u
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[

deseribed in (1), (2), (3) resp. 1.8 above.

1.14 Theorem : The maps in the above diagram are W-equivariant.

.

In particular, the Weyl group representation on characteristic classes

of orbital cone bundles is equivalent to Springer's representation P, via the

the Gysin map j .

Proof : Note that the "inclusion" & is W-equivariant by definition, and the
projection p 1is W-equivariant since the actions of Gu and W commute
ISI], [BM1]. It is therefore sufficient to prove that the linear isomorphism
j 18 W-equivariant.

To do this, chose a tranversal slice A in g to Ga at u
denote D = A N N its intersection with the nilpotent cone. (For instance, A
may be chosen as an affine subspace of codimension 2du = dim Oh in ‘g meeting
the tangent space of Gh only in the point -u). Consider the following

commutative diagram :

n -

-1, 4 -1 33 -1

Hyg (7w Hin-2a (T 0 < Hyn-2a (7 8)
~ u : u
2d Y24 ,[2;
- - - - % - * -1 - * * -
H UGl r oer tu) «— B (T Rew 1aou,T X-1 0,) <&y T X,T X-7 l%)
|
1
= v ~ :
¥ y t
2d 2 Y

B (0,0~ {u},8")  <—— H "(N-30 N8, A7)

Our map j occurs in this diagram as the composition of the two Gysin homomor-—
phisms in the first row. The other horizontal arrows come from inclusions of

pairs of topological spaces. The upper row of vertical arrows are Lefschetz
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duality isomorphisms, while the lower ones are again examples of the isomorphism

1.11 (*). Let us point out that the dotted arrow, analogous to v , would

generally not be an isomorphism, because n_leh will be strictly smaller than
ﬂ-1§; in general and is therefore not a  7-preimage. This is the reason why

we are inserting the middle column in the diagram,

Now observe that Springer's W representation on H2d (ﬂ_lu) is

obtained from Lusztig's W action on A" by transport of structure up the

left column of this diagram. On the other hand, our W action on H
2d
is induced from Borel's on H Y(X) , which is again obtained from the same

-1
4n-2d (n eh)
u

W action on A" by transport of structure up the right column in the big

diagram of 1.11. This shows that j 1is in fact W equivariant. Q.e.d.
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1.15. Hotta's transformation formulas.

We may now describe quite explicitly in terms of integer matrices, how
the characteristic classes Q(Kl)""’Q(Kr) transform under the action of W

(notations as in 1.8).

Theorem (cf. [Ho], Theorem 1 [Ho2]) : For each simple reflection s in W

and each 1 =1,...,r , we have either
sQ(K,) = QK
or else
_ s

. . . . . s .
for certain non-negative integer coefficients nij ,» which are zero unless

Kj intersects Ki in codimension 1 .

Moreover, the coefficients nij can be described more precisely in
geometrical terms, see Hotta's formula tHo],l.S, definition 2 (cf. also 4.13 of

the present paper).

The fact that our classes Q(Kl)""’Q(Kr) satisfy Hotta's transformation
formulas may now be viewed as a corollary of theorem 1.14. However, another
proof of this theorem (which does not assume Hotta's work),will also follow

from chapter 4 of our present paper (see 4.13).
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§2. Generalities on equivariant K-theory

For the convenieénce of those readers not familiar with equivariant
K-theory, we have collected here in some detail the general facts needed from
this theory as prerequisites for subsequent chapters., In the present chapter,

G may be an arbitrary linear algebraic group over k .

2.1, Algebraic notion of fibre bundles [Sr2], [Wel].

By a G-variety, we mean an algebraic variety Y over k , equipped
with an algebraic action of G on Y . A G-morphism ¢ : Y » X 1is a map
of a G-variety Y into a G-variety X , which is a morphism of algebraic
varieties, and respects the G-action. A surjective G-morphism is called a

principal G-fibration, if G acts simply transitively on each fibre. The

projection of X x G onto the left factor, with G acting only on the right

factor, provides an example;, refered to as trivial. A principal fibre bundle

with structure group G , base X , and total space Y , is then defined as a

principal G-fibration ¢ : Y - X , which is locally trivial, meaning that each

point in X has a neighbourhood U such that ¢F1u - U 1is trivial (up to
isomorphism). Note that so far, the definitions are only a word by word trans-—
lation from a topological or analytical context. In the algebraic context,
however, there is a subtle point to be clarified here : The "local triviality"
in the definition may refer to either the Zariski or the étale topology, that
is { above is a (Zariski-) open affine neighbourhood in the first case, resp.
any étale covering of such in the second case. For example, the principal
fibration of G by an algebraic subgroup H need not be a bundle in the first,
narrow sense (used by Weil [We]), but it is always a bundle in the second,
wider sense (introduced by Serre [Sr2]). However, it fortunately turns out,

for a lot of groups G , called "special in tSrZ], that this subtle difference

does not matter at all, that is to say local triviality in the weak ("étale')
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sense implies local triviality in the strong ("Zariski') sense for principal
fibrations with this structure group. '"Special" groups in this sense include all
connected solvable linear groups {Ro], and also G = GL_ [sr2]. Now let F be
any G-variety, and Y a principal G-bundle over X in either sense. Then the

assoclated fibre bundle

YxGF—>X

with fibre F 1is defined as usual (see e.g. [Sr2]), and is locally trivial in
the corresponding sense. So again, for the "special" groups above, the two

notions of local triviality coincide for the associated fibre bundle as well.

For example, taking F = k" and Y a principal GLn-bundle on X ,
GL )
we get Y x nop , an (algebraic) vector-bundle over X . Since each vector-

bundle is obtained in this fashion (up to isomorphism), we conclude from the

preceding remarks that a vectorbundle is locally trivial with respect to Zariski

topology, if and 6n1y if it is locally trivial with respect to étale topology.

- As a consequence of this discussion, we will not have to care anymore about

the difference in this paper.

'2.2. Equivariant vector-bundles and definition of KG(X) [SGA6], [Al].

Now we assume that G acts on both the base X and the total space
Y of a vector bundle, and that the bundle map ¢ : Y= X 1s a G-morphism
(2.1). Moreover, we assume that G preserves the linear structure, in the sense
that each group element g € G maps the fibre Y o= w_l(x) (at x € X)
linearly into Ygx . Then Y , equipped with this additional structure, is

called a G-equivariant vector-bundle, or just a G-vector-bundle. Morphisms

of G-vector-bundles are defined as vector-bundle homomorphisms which are

simultaneously G-morphisms.
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We denote by KG(X) z the Grothendieck group of the category of

G-vector-bundles on X . We write
KG(X) = KG(X)Ex z ¥

according to our general conventions on coefficients (cf. §1). The formation
of direct sums resp. tensor products on G-vector-bundles induces the structure

of a commutative ring on KG(X) . The rank of a vector-bundle gives rise to an

augmentation homomorphism € : KG(X) + k of this ring, and the formation of
exterior powers of G-vector-bundles defines the so-called A-operations

Ai : KG(X) > KG(X) ; this equips KG(X) with the structure of an "augmented
A-ring" in the sense of Grothendieck, as defined and studied from an axiomatic
point of view in {SGA6], exposé V, or also in the first chapters of [Kn], [FL].
Our termiﬁology here is completely analogous to Atiyah's, who considers

topological vector-bundles equivariant under a finite or compact group G

in [A1], §§ 1.6, 2.3.

Remarks. 1) If G =1 1is the trivial group, then KG(X) reduces to the ring
K(X) of "ordinary" K-theory (as considered already in §1), see e.g. [Mal,[FL],

or [Al].

2) If X 1is a single point, then a G-vector-bundle on X 1is just a G-module,
that is a finite-dimensional linear representation of G on a k-vector-space.

Hence in this case, KG(X) is nothing else but the representation ring R(G)

(cf. [A11).

So equivariant K-theory is a common generalization of these two

important extreme cases.



2.3. Equivariant homogeneous vector—bundles.

as an important non-trivial example, let us consider equivariant

vector-bundles on a homogeneous space, say X = G/B , with isotropy group B

any closed subgroup of G . Starting from an arbitrary B-module F (of finite

dimension over k) , let us form the associated fibre bundle Y = G 2 F ,

which is a vector-bundle on X (cf. the remark on local triviality in 2.1).

We make it into a G-equivariant vector-bundle, by making G act on G by
left multiplication (whereas for the bundle construction, B acted on G by

right multiplication).

Proposition : The construction of associated fibre bundles F - G B g as

explained above induces an isomorphism of augmented A-rings

R(B) = K.(X)

Obviously, the construction induces a A-ring homomorphism and preserves
the augmentation. It is not difficult to see that every G-vector-bundle on X
has the form G x° F up to isomorphism (cf. e.g. [Sel], p.130), which means
that therhomomorphism is surjective. An inverse homomorphism will be provided
by restriction (to the isotropy group and the base point of X ), cf. 2.9..

below.

2.4, TFunctoriality in the group G .

If ¢ : B> G 1is a morphism of algebraic groups, then our G-variety
X becomes also a B-variety, and each G-equivariant vector-bundle on X 1is

also B-equivariant. This provides a functorial homomorphism

*

4" 1 Ky(X) > Ky(X)

which we refer to as restriction from G to B . This is a homomorphism of

augmentéd A-rings.
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If for instance B = 1 , then this is a canonical homomorphism
KG(X) -+ K(X) , refered to as the forgetful homomorphism, since it is given by
"forgetting” the G-action on a G-vector-bundle. In case X = {x} is a single
point for example, this forgetful hoﬁomorphism KG(X) +~ K(X) T k is just the

augmentation homomorphism € : R(G) % k (cf. 2.2).

2.5. Functoriality in the space X .

Let X,X' be two G-varieties, and f : X > X' a G-morphism. Then
*
for each G-vector-bundle E over X' , the pull-back f E to a vector-bundle
over X 1is again G-equivariant, and this induces a homomorphism

*
- 1]
fG : KG(X ) > KG(X) .

which also preserves the structures of augmented A-rings. In the case G = {1}

. . * . .
this is the so-called Gysin homomorphism £ : K(X') > K(X) in ordinary

K-theory (cf. [Al], and [Ful, Example 15.1.8, or [SGA6], III.4.1, IV.2.7). The

. . x . . . .
G-equilvariant analogue fG induces the ordinary Gysin homomorphism, 1in the

sense that we have a commutative diagram

*
f
. G
KG(X y —» KG(X)

*

K(X') — K(X)

of "forgetful"” and Gysin homomorphisms.

2.6. The sheaf-theoretic point of view.

It will be convenient for us to work with G-equivariant c¢oherent

sheaves of ok-modules on our (irreducible) G-variety X , as we did in IBB] III.
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Let KG(X)0 denote the Grothendieck group of the category of all such sheaves.
(This notational convention follows Fulton [Ful], p.281). Since we can identify
a vector-bundle over X with the locally free OX-module of its germs of
sections, and since G-equivariance of the vector-bundle means the same as
G-equivariance of the corresponding locally free Ox-module, we obtain a

canonical homomorphism KG(X) - KG(X)o . In the cases of interest for our

present paper, this turns out to be an isomorphism by the following proposition.

Proposition : If X is a smooth G-variety which (*) admits a G-equivariant

ample line bundle , then KG(X) = KG(X)0 by the canonical homomorphism.

" Remarks. 1) Note that the existence of an ample line bundle means exactly that

the variety under consideration is quasi-projective. Therefore,, in the case

G = 1, hypothesis (*) means X quasi-projective, and so the proposition

coincides with Borel-Serre's Théoréme 2 in [BS] for the non-equivariant case.

2) For example, the hypothesis (*) of this proposition is always satisfied

for X projective.and G semi-simple. In fact, according to Mumford [Mu], Chapter
1.3, Corollary 1.6, any normal projective G-variety admits a G-equivariant ample
line bundle. More generally, it easily follows that Mumford's result extends

to any G-variety X for which there exists a G-equivariant affine morphism X - Y
to a normal projective G-variety. Hence the proposition implies as a special

case the following criterion, which will suffice for our purposes in this

paper

Corollary : Let E be the total space of a G-vector-bundle over a smooth

projective G-variety. Then KG(E)': KG(E)O , if G 1is semi-simple.

" 3) In the sequel, we shall always assume that X satisfies the

assumptions of proposition 2.6, and we shall use this proposition to identify
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KG(X) with KG(X)0 .

2.7. Existence of equivariant locally free resolutions.

For the proof of the equivariant Borel-Serre theorem (proposition 2.6
above), one may proceed by imitating the original proof in [BS], pp.105-108.
The only step in their argument which requires a new proof in our present,
equivariant version is Lemma 10 in loc. cit., which assures that coherent
sheaves admit locally free resolutions. So let us just state and prove the

"equivariant version" of this lemma here.

Lemma : Every G-equivariant coherent sheaf F on X 1is a quotient of a

G-equivariant locally free sheaf E of finite type on X .

Note that repeated application of this lemma will imply the following

(with assumptions as in proposition 2.6) :

Proposition : Every G-equivariant coherent sheaf F on X admits a finite

resolution by G-equivariant locally free sheaves of finite type.

Proof of the lemma : Let L denote a G-equivariant ample line bundle on X ,

which exists by assumption. Then the tensor product F @)gn over OX of F
with a sufficiently big number n of copies of L will be generated by its

global sections, cf. [Ha], p.153. Then the natural morphism
n n
r,E®@L)® 0, > EQ@L

is surjective, and we can even find a finite-dimensional k-subspace
E c I‘(X,l___7 ® én) such that the restriction map E @® K @X - E® I=Jn is still

surjective. So we have represented F @ Ié.n as a quotient of a locally free
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sheaf E leg OX , and it only remains to observe that this can be done equi-
variantly. Since F and L are G-equivariant, so is F@® ]En . Hence G acts
on TI(X,F G)gn) algebraically, by locally finite linear endomorphisms. By
enlarging the subspace E if necessary, we may assume that E 1is a G-submodule.
Now we have G-actions on E and on Ox , hence on the tensor product

E x . 0 - It is clear that.the above surjective morphism E Q@

®L

I+

k %% 7

is G~equivariant. Tensoring this morphism with the inverse L_n of the

. . n . . . . . .
invertible sheaf L , we obtaln a surjective G-equivariant morphism of the

locally free coherent sheaf

1&1
=

E:= E@0)O L =E® L  onto EOL"OL TE.
X

Remark : For results of the same type, but with different hypothesis, we refer

to Thomason ITI], Corollary 5.2 ("Seshadri's conjecture", see also [shl).

2.8. Remarks on Gysin homomorphisms in terms of coherent sheaves.

a) In order to define the ("equivariant" resp. "ordinary") Gysin

homomorphisms (cf. 2.5)
£ K (X') = K. (X)_ res £ K(X') » K(X)
G G o G o p. ' X o

for a (G)-morphism f : X » X' in working with coherent Ox—modules, one

has to assume f to be a "perfect” morphism in the sense of [SGA6], Défini-
tion III.4.1, and 1IV.2.7, see also [Fu], Example 15.1.8. For example,

if £ : X > X' is a closed embedding, such that £,0, has a finite resolution
by a complex E,.of locally free OX,—modules, then f 1is perfect, and the
Gysin homomorphism £ (also called "homological intersection with X") is

given by the formula
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£'[F] = 5 -DF [Tor} (0,,B)]
1

for any locally free mx.—module. Here Tor?i(ox,g) is the ith cohomology
group of the complex E. & f,(F) (cf. loc.cit.). If the morphism f and
the complex E. are G-equivariant, then the same formula holds for the
equivariant Gysin-homomorphism fz . More generally, if f and E. are only
B-equivariant, for a closed subgroup B cc , then by restricting first the
group from G to B , then the space from X' to X , we obtain a composed

*
restriction homomorphism fB : KG(X') - KB(X) satisfying a similar formula.

b) The above assumptions on F are satisfied e.g. for f the inclusion

of a complete intersection, or for f a regular embedding (cf. ISGA6],

Example III, 4.1.1, or [Ful, chapter 6.2, for a detailed treatment of this

case on the level of Chow groups).

'2.9. Equivariant K-theory on a vector-bundle : Basic restriction techniques.

A crucial technique frequently applied in this paper, will be the inves-
tigation of equivariant K-theory on the total space of a homogeneous vector-
bundle, via its restriction to a fibre, or alternatively to the zero-section,

and finally to a point. Since the morphisms involved are all regular embeddings,

the preceding remarks (2.8) apply to the corresponding restriction homomorphisms (and
these are the only three, very special, cases of 2.8 relevant for our present

work).

Because of the fundamental significance of this restriction technique
for the whole paper, let us explain it in more detail on a general level here.
We assume that X 1is an irreducible G-variety satisfying the assumptions of

proposition 2.6.
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(1) Restriction to a point. Consider the inclusionmap i : {x} > X of a

peint x in X . Let B = Gx be the isotropy group at x . Then we obtain

*
a restriction homomorphism 1

B ° KG(X) + R(B) by the remarks 2.8 a),b). For

X a homogeneous G-space, that is X = G/B , this turns out (easily) to be an

inverse of the homomorphism R(B) =+ KG(X) coming from the formation of associated
*
fibre bundles (see 2.3), and so iB is an isomorphism KG(X) T R(B) in this

case.

(2) Restriction to the zero section. Now let E be the total space of a

G-vector-bundle over X , and let o : X +E denote the zero-section. Then

the restriction homomorphism

x
o : K(E) - RK®X) ,

known as "homological intersection with the zero section', has an equivariant

analogue

0; : KG(E) > KG(X)

*
by 2.8. It is well-known to algebraic geometers, that ¢ is always an
isomorphism (see [SGA6], Exposé IX, Proposition 1.6, or on the level of Chow

groups [Fu], Theorem 3.3). According to recent work of Thomason, this generalizes

*

G is an isomorphism quite

to the equivariant situation, that is to say o

generally [T1], Theorem 4.1. In the cases of interest for our present paper,
we shall see. more explicit reasons why this map is an isomorphism (see 3.7

and 4.3), independently of [T1].

(3) Restriction to a fibre. With E a G-vector-bundle on X as before, let

g s E, 2> E denote the inclusion of the fibre E . at x €X . Then we obtain

a restriction homomorphism
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i~ i KL (E) > K_(E ) here B = G bef
g + Ko KB x ’ where = G, as before.

(4) Combining examples (1), (2) (twice), and (3) into the following diagram

of inclusions

b
A
v

o]
S
v

we obtain a commutative diagram of restriction homomorphisms

X
%G
KG(E) > KG(X)
-* 0*
Ig )
*

B
Ky(E ) ————> R(B)

Summarizing our present discussion, we may now state :

Proposition : This is a commutative diagram of isomorphisms of A-rings.

2.10. Filtrations on KG(X) .

a) Grothendieck's +vy-filtration ... D KZ(X)‘D Ké+1(x) > ... , is defined

as follows (cf. [SGA6], V.3.10, or [A2], §12) : Let IG = Ker ¢ denote the

augmentation ideal, and yl (i = 0,1,2,...) the operators given by the formula

Y@ = ateany :
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for all ring elements Z , where € vresp. the XA"'s are defined in 2.2.

Then Kg(x) is the ideal generated by all moncmials

L i) i
Y (v (22) cen Y (Zr) , with i +ij+eee+i > a,

and Zl,...,Zr € IG .

o _ . 1 _
Then KG(X) = KG(X) , KG(X) =1 and

G ]
a+b

XS (X) K‘G’(x) < K5 )

for all a,beN , i.e. KG(X) becomes a filtered ring. This filtration

has the advantage of being obviously functorial (i.e. preserved by the various
restriction or Gysin homomorphisms introduced above), since its definition
refers only to the structure of KG(X) as an abstract "augmented JIring" ,
which is indeed functorial. - In particular, the various functorial homomor-—

phisms considered induce also homomorphisms on the associated graded rings,

for which we shall use a notation generalizing that introduced in 1.4, that is

gr KG(X) = éB graKG(X) = E}) KZ(X)/KZ+1(X) .

329 qio

b) Topological filtration. Alternatively, we may filter the ring KG(X) by

co-dimension of supports. More precisely, let KZ(X)' denote the Grothendieck
group of G-equivariant coherent ®X~modu1es with support of codimension

a ' a+l ' . . . .
>a. Then ...D> KG(X) > KG X)' > ... 1is another descending filtration
of KG(X) as a ring. Its comparison to the <y-filtration is a delicate
problem in general. In the non-equivariant situation (special case G = 1) ,
it is known that the <¥'-filtration coincides with the topological filtration,

as we already mentioned in 1.3. In general, the two filtrations will be

obviously very different, see the next example.
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2.11, Repreéentation rings for example.

The y-filtration on R{(G) , for a commutative reductive group G , is

given by the powers of the augmentation ideal IG = Ker ¢

R*(G) := Kg(point) =1 for all a €N

G bl

(This follows from the fact that all irreducible representatiomns are one-—
dimensional, cf. [A2], Corollary 12.4.) In general, we have only IZ c R%(G)
from the definition, but the topology defined by the y-filtration on R(G)

still coincides with the IG—adic topology. The completed representation ring

R(G) is defined as the completion of R(G) with respect to this topology.

2.12. Application of equivariant K-theory to {p-modules.

In this chapter, Y is a smooth algebraic variety over k , equipped
with an action q : Gx Y > Y of an algebraic group G . It will be convenient
to introduce a weaker notion for "equivariant DY-modules" than was considered

in [BB] III, 2.2. First, the sheaf of algebras 7D on G x Y , which is

GxY

isomorphic to the external tensor product DG]g DY (notation [Gd]) contains

OG E}DY as a subsheaf of algebras.

Definition : A weakly G-equivariant DY—module is a DY—module M equipped

* %
with an isomorphism g : g M->p M of OG C]DY—modules, which satisfies

a certain cocycle condition which ensures that o induces a group action

of G on M (see [MQ. for more detailsg),

* *
Notice that both p M and q M are DGx -modules,. hence are

Y
OG ® DY-modules.

A good filtration (Mn)neiz of a weakly G~equivariant DY—module M 1is
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. ko~ %k *
said to be G-equivariant if the isomorphism' o : g M-> p M maps q Mn to

*
p Mn (so that each Mn is a H-equivariant sub OY-module of = M).

A weakly G-equivariant DY—module M , which is coherent (as a
DYrmodule), always admits a G-equivariant good filtration. Indeed, let
. . ) . . '
(Mn)nER be any good filtration of M ; then the intersection Mn of Mn and

* *
of pqM=ppM ,is O

_ . . o .
v coherent and (Mn)nEZ is a G-equivariant

good filtration of M .

Now for (Mn) a G-equivariant good filtration of M , the associated
graded module gr(M) =? (Mn(Mn_l) is a G-equivariant coherent OT*Y:mOdUIG,

. *
and therefore determines a class [gr M] in KG(T Y) ~. The lemma below

asserts that this class does not depend on the choice of (Mn) . Hence a

weakly G-equivariant DY-module M determines a well-defined class in

* o~ _ '
KG(T ¥Y) = KG(Y) , which we call the ) © .class of M
in KG(Y).
‘Lemma : Let (Mn)n €z - and (Mril)nEZ be two G-equivariant good filtrations

of M . Then the corresponding associated graded modules gr M  resp.

- . *
gr'M  determine the same class in KG(T Y) .

Proof : By changing the numbering of the second filtration (if necessary),
we may assume without loss of generality that Mn c MI'1 for all n . It is
known that for a suitable integer d > O , we have M['1 c Mn+d for all n .
Our proof proceeds by induction on d . Assume first d =1 . Then we have,

for all n €Z , exact sequences of G-equivariant coherent OY-modu1es

0~ M[:/Mn > M1:1+1/Mn i Mn+1/M;1 +0

. v t 1 '
0~ Mn+1/Mn i n+1/Mn * n+l/Mn+1 > 0';
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Hence we get exact sequences of G-equivariant coherent graded OT* -modules,

Y
0O+A-+grM->B-0
0->B-gr'M>A->0 ,

where we put

n

- 1
/M, and B : Q;Mn+1/M .
n
3 * ) *
So in the group KG(T Y) , we get the equality

[gr M1 = [A] + [B] = [gr'M] .

Now the induction step : Assume for some d > 1 that Mn C‘Mé c Mn+

d
for all n . We consider the further filtration of M given by
"o ' . . _ . . . . .
Mn : Mn+Mn—l‘ . It is again G-equivariant. It is also a good filtration,

because for n big enough, we have

My = Mty = Dy M+, (OML_, = D COME,

We observe that this new filtration satisfies Mn c M; cM . Hence

n+d-1
[gr M] = [grUﬂF by the induction hypothesis. On the other hand,
.Ma_l c M; C.M; for all n . So we know by the d = 1 case of the proof that

also Igr.M'] = [gr M"] . This completes the proof of the lemma. Q.e.d.
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§3. Equivariant K-theory of torus actions and formal characters.

In this paragraph, we consider a torus T , that is a commutative
connected reductive group over k , and a linear action of T on a vector space
E of finite dimension r over k . We shall assume that all weights of T in

are positive with respect to some partial ordering. For example, T might be

the group of homotheties of E ., In the applications in subsequent chapters, T
will be the maximal torus in a semisimple group, E will be the nilradical
of a Borel subalgebra, and the weights of T in E will be the set of positive

roots,

3.1. The completed representation ring of a torus.

The characters y : T - Gm of our torus T form a free abelian
*
group X (T) , and the representation ring of T is isomorphic to the group

ring of this character group, that is

R(T), T2 [X°(T)] , and

R(T) & k[x*(T)] = o(T) .

*
The differential of y € X (T) is a linear form dy : t > k. on the Lie algebra

%
t of T, called an integral weight., Let A = A{T) denote the lattice in t

of all integral weights. For each X € A , we define the formal power series

iZo '
. . P . . *
considered as an element in S(E_) , the completion of the ring S(E ) of

polynomial functions on t (with respect to the L*S(L*)-édic topology.) We

define a homomorphism ¢: R(T) — §(t*) by putting

() := edX
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*
for all yx € X (T) , and we observe (cf. e.g. [AH], proposition 4.3) that this

extends to an isomorphism (notation 2.11)
@ : R(T) »s(t ) .

This isomorphism will allow us to interpret the elements of the completed
representation ring R(T) as formal power series functions on the Lie algebra.

Note that this is an isomorphism of filtered rings. Let us make this slightly

.. . . * .
more explicit. Given a power serles P € S(E ) , we shall use the notation
i . . . .
[P] for its degree 1 homogeneous term, that is the unique homogeneous

polynomial of degree 1 on t such that

p= 1 [p]*
in

~

Recalling that the <y-filtration on R(T) is given by the IT—adic filtration,

where I, is the augmentation ideal (2.11), we get the following

~ ~AL %
Lemma : If an element Q € R(T) corresponds to the power series P = @(Q) € S(t ) ,

then its degree with respect to the +y-filtration is equal to the smallest

number a such that IP]a #0 .

Remark. We shall then refer to [P]® as the lowest order term of the series,

and denote it also

gr P := [p]®

3.2, Formal characters of T-modules

Let M be a T-module, that is to say a k-vector-space equipped with
. . . * . . .
a linear algebraic action of T . For each character x € X (T) with differential

dyx = A € A , we denote by MX or MA the corresponding "weight space"
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Mx =M = {veM|ty = x(t)v,t € T}
Since T 1is a reductive group, M = & MA is a direct sum of weight spaces.
AEA

If the weight multiplicities dim MX are all finite, then we call M admissible

(or we say that M admits a formal character), and we define the formal character

of M as the formal sum

ch(M) = £ (dim M) [x].
B X
We note that this definition coincides with the one used e.g. in {Dil, 7.5, and

[Jal, 4.5.
Let us call ch(M) bounded (by X,)»1f its nonzero coefficients occur only at

—_——

characters x < Xg? for some xoe X(T). Then the multiplication in R(T) ex-

tends to a multiplication of bounded formal characters, defined formally by

( = ag (gl) (= bC (cl) = Cy [xJ,
E<E, Tt XX,
where
c:= I ak, forall x€ X(T),
X' grey ©°

and Xo = £5%0- This makes the group of all bounded formal characters into an

extension ring of R(T), which is denoted R__(T). This ring may be described

as a power series field R__(T) = k[[k1,...,x€]], where x,,...,x, are the ne-

4
gative fundamental weights . (In particular, R__(T) should not be confused

with the completed representation ring ﬁ(T).) Note that R__(T} contains the
field of fractions of R(T),
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3.3. Example.

We consider here a finite dimensional T-module E whose weights are

all positive with respect to some partial ordering. Then the symmetric algebra

M = S(E) admits a formal character, which is bounded, and (with respect to

multiplication in R __(T)) given by the formula

(1) ch(S(E)) = a(E)™",
where we define

o) ,

(2) A(E) := 1 (1-e
A

the product being extended over all weights of E . In fact, for the special

case where E = EA is onedimensional, one gets immediately the geometric series

and then the general case follows by repeated application of the formula

ch(S(E ® F)) = ch(S(E) ® S(F)) = ch(S(E))-ch(S(F)) ,

which holds for any E,F satisfying the above positivity assumption,

As a corollary, we note that

- -dim E

(3) ch(0(E)) = ae™t - n(1—e'*) A,
A

product over all weights A of E.

~

This is because 0O(E) = S(E*) , and the weights of the contragredient T-module

- * .
E* have opposite signs, that is dim EA = dim E—A for all X € A
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3.4, T-equivariant modules with highest weight.

*
Let M be a finitely generated S(E )-module, which is equipped with

a linear, locally finite T-action, such that
*
t{sm) = (ts)(tm) for all t €T , m€EM, s € S(E)

. . .. *
For short, we say that M 1is a T-equivariant finitely generated S(E )-module.
It is easy to see that such M admits a formal character. Let us be slightly

more specific.

. * *
Consider a cyclic S(E )-submodule M' = S(E )v generated by some
weight vector 0 # v € M , of weight X , say. Then M' = kv + M" | where
* , e
M" = EM' has only weights strictly smaller than A , because of our positivity

assumption on the weights of E . Therefore A 1is called the highest weight

of M' , and v resp. M' 1is called a cyclic highest weight vector resp.

(sub~)module of highest weight X . Now let I be the ideal of elements in

*
S(E ) annihilating v . Then obviously I is a T-submodule, and

(*) ch(M') = e* ch(S/I) .

. R *
Here and in the ‘sequel, we sometimes write S = S(E ) , for short.

*
Lemma : a) A finitely generated T-equivariant S(FE )-module M admits a

composition series




CM C""'CM =M

0= MO c Ml 2 .

* ..
of T-equivariant S(E )-submodules M., such that the composition factors

M./M

;M. are cyclic highest weight modules.

b) Then M admits the formal character

L AL
ch(M) = £ e * ch(S/1,)
i=1

where Ai is the highest weight of Mi/Mi_l , and I, the annihilator of the

corresponding cyclic highest weight vector.

c) The composition series can be chosen in such a way, that Il""’IE are
prime ideals.
Proof : Chose Ml = M' as in the preceding discussion, then repeat the same

discussion for M/Ml etc, Since M is noetherian, tﬁis process will terminate
after a finite number of steps, proving a). Now b) follows from (*). Assuming
M# 0, let P be a minimal associated prime ideal of the S(E*)—module M.
Since T 1is connected énd acts by automorphisms on M , it stabilizes P . By
equivariance, T -stabilizes also the submodule of M annihilated by P , which
is therefore a T-equivariant submodule N # O . By choosing the weight vector
O0#v €M in the discussion preceding the lemma even in N , we can achieve
there I = P prime. Repetition of this procedure proves part c¢) of the lemma.

Q.e.d.

3.5. Projective and free cyclic highest weight modules.

Proposition. Each projective finitely generated T-equivariant S(E )-module

M admits a finite composition series with all composition factors free cyclic

highest weight modules.
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*
Here the terms "free" resp. "projective" refer to the S(E )-module

structure. The proposition follows by repeated application of the following lemma.

Lemma : A maximal weight space MA generates a free highest weight submodule

* ~ * . . . .
N = S(E )MA = S(E ) éDk,MA , and the quotient M/N 1is again projective.

Proof : Let m = E*S(E*) denote the maximal ideal corresponding to the zero—point
0 € E . Consider the canonical linear map of N := S(E*)(ﬁ MA into M , which
maps N onto N . The weight space. M: ‘injects into M/mM; because the weights in mM are all
smaller than XA. Hence the map from SfE*) Gﬁk M, to M induces an injection

-

on- the modules tensored with! $(E*)/mS(E*). Because both modules are projective

over S(E;),-it‘follows that- N = S(t£*) Gk Mil'iS’a submodute of ﬁ,'ahd'that”the
quotiént is locally-free at m. Hence M/N * islocdlly free in a neighbournood
U « E of the zero-point. But then the T-saturation is TU = E (since we assume
k§o E, = E), and since M/N 1is T-equivariant, it is locally free,evérywheré
on:E. This means that *M/N - is projective. ' Q.e.d.

Corollary: The formal character of M 1is given by
£ -1, M Ay
ch(M) = A(E") “(e "+---+e ™)

*

where A,,...,A, are the highest weights of the free cyclic composition factors,

L

mentioned in the proposition.

In fact, for a free cyclic highest weight module Ni of highest weight

Ai we clearly have

M Mo el
ch(Ni) = e  ch(S) =e = A(E ) .

by combining 3.4(*) and 3.3(1).

Remark : The proposition states that, in the frame-work of lemma 3.4, the case

"M projective" means that the prime ideals Il,...,I there are all zero; hence

2

the corollary is also a special case of 3.4b).
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3.6. Formal characters of equivariant coherent sheaves.

coh.(

Now let ModT

E) denote the category of T-equivariant coherent
sheaves of OE—modules, and Mod?g'(S(E*)) the category of T-equivariant
finitely generated S(E*)-modules..Thgn the functor F~ I'(E,F) = M establishes
an equivalence of these categories; because E 1is affine. Moreover, a locally

free F corresponds to a projective M , and since each F admits afinite locally

free resolution in Mod;Oh'(E) by 2;7), we have simultaneously that each M

. . . . . - * . . .
admits a projective resolution in Modi E*(S(E")) . Inparticular, the (isomorphic)

Grothendieck K-groups of these categories are generated (over Z ). by locally
free resp, projective objects, and so it follows from the preceding proposition

3.5 that they are even generated by the free cyclic highest weight modules.

-By abuse of language, the formal character of M = P(E,E) is also called the
formal character of F , notation ch(F) := ch(M) . Now it follows from the

*
preceding discussion and from corollary 3.5 that A(E )ch(f) is an integer

linear combination of exponentials.

Corollary : For an arbitrary T-equivariant coherent OE—module F (resp.

*
f.g. S(E )-module M = T'(E,F)) the formal character is of the form

ch(F) = ch(M) = AEDHT 3 oaet

T

where a, = al(g) are integer coefficients, only finitely many of them being

nonzero.

Obviously, these integers a, are uniquely determined by F resp. M .

Following traditional terminologies (cf. [Ja]), we refer to a, as the (integer)

A
multiplicity of the free cyclic highest weight module of highest weight A in

the module M , notation

a,(F) = a, (M) = (M:gr M(Q))



In the sequel, we consider ch(g) as an element of the fraction field

Fract(R(T)) of the domain R(T) .

3.7. Restriction to the zero point.

Since our T-action on E 1is linear, it fixes the zero point, and so
the inclusion 1: {0} - E gives rise to a restriction homomorphism
"t Ko (E) > R(T)
. - .
tp ¢ Ky

*

Proposition : a) lr is an isomorphism of A-rings KT(E) 5 r(D) .

b) This isomorphism can be computed within Fract(R(T)) _by the

following formula :

17 [E] = AE")en(E)

which holds for any T-equivariant coherent sheaf

[l
Q
=
=

Comments. 1) We note that a) may be viewed as a very special case of a theorem
of Thomason [T1], Theorem 4.1 on arbitrary equivariant vector-bundles E ,
cf. 2.9(2). But it is convenient to prove the whole proposition here more

directly below. .

2) The proposition holds even with coefficients in Z .

. * . C e .
Proof : a) Since 1 preserves the J-ring-structure by functoriality, 1it

T
suffices to prove that it is bijective. In fact, let us exhibit the inverse map.

Starting from an arbitrary finite-dimensional T-module F , we form the locally

free coherent OE-module
(1) £=0 ®. F ,

and make T act diagonally on it. Then y :-[F} > [E] defines a homomorphism

of R(T) 1into KT(E), It is clear that F has fibre F at the zero-point, so



(2) plE] = [F] .

In particular, ¢ is injective. We may even conclude from (2) that ¢ 1is an

* - . -
inverse of L o provided that we know ¥ 1is surjective.

To see this, it suffices to show that the sheaves of the particularly

nice form (1) are sufficient to generate the whole Grothendieck group KT(E) .

Observe that each locally free [F of the form (1) gives rise to a projective
~ %
module M := T'(E,E) of the form M = S(E ) E)k F , (under the equivalence

discussed in 3.6), and conversely. But the free cyclic highest weight modules

are of this form, and we have observed in 3.6, that even these suffice to generate
the full Grothendieck group under consideration. A fortiori, the sheaves of the

form (1) generate KT(E) as a group.

b} Since both sides of the formula claimed in b) are additive in [F] ,
it suffices to verify the formula only on a nice set of generators of KT(E) .

for example just for those sheaves F of the form (1). Assuming F of this form,

we get

M= I(E,) = [(E,0) @, F=SE)® F,

ch(E) = ch() = ch(S(E") @  F) = ch(S(E"))ch(E) ,
and so by 3.3
*
A(E )ch(F) = ch(F) .
On the other hand, as pointed out in (2), we have
ch(F) = [F] = 1 [F] ,

which completes the proof of our proposition. Q.e.d.



3.8. Computation of <y-degree.

Proposition 3.7a) says in particular, that the isomorphism
* ~ . :
tp ¢ KT(E) + R(T) preserves degrees with respect to the y-filtrations, and
then formula b) of the proposition tells us, how we may compute the y-degree

of F , as an element in KT(E) , from the formal character ch(EF) , considered

as a formal power series on t (cf. 3.1)

Corollary : For any T-equivariant coherent sheaf F on E , the y-degree

of [F] in KT(E) is equal to the degree of the 'lowest order term of the power

series A(E)ch(F) in 8(t") .

Using our notation for lowest order term as introduced in 3.1, we may

write this statement as a formula
*
y-degl[F] = deg gr(A(E )ch(F)) .

We shall determine the right hand side more explicitly below (3.10). Before
doing this, let us first look more systematically at the lowest order term of

A(E*)ch(g) .

3.9. Character polynomials.

Let F be a T-equivariant coherent sheaf on E , and let

4

a = y—deg[g] denote its y-degree, By the filtered isomorphisms KT(E) 3 R(T)

(37) and R(T) 3 §(£*) (3.1), we may identify the associated graded ring of
K (E) ,
~ %
gr KT(E) - 8(t)

with the graded ring of polynomial functions on t , by identifying for each

degree 'j the vector spaces
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ne

1 j+l ~ L I * 1, %
Kp(B/K3TH(EY 3 8. ()/8,, () S 87 .

In this manner, the class [F] modulo Kg+1(E) determined by the sheaf F 1is

identified with a homogeneous polynomial of degree a on ¢t

Definition : We call this polynomial the character polynomial of F , and denote

it by qg . For a module M = T'(E,F) , we use the similar notation and termino-
logy, calling q; = qg the character polynomial of M . Normally, we drop the

superscript T , if the torus of reference is clear enough from the context.

The term "character polynomial"” refers to the fact that this polynomial
is computable from the formal character by means of formula 3.7b) as the lowest

*
degree term of the series A(E )ch(E) :

Corollary : gqp = dy = 8T A(E*)ch(g) .

Let us illustrate the use of this formula by a few immediate applications.

| =

Proposition : Ay =

o

I oa, (A%, (%)
ACA .

where the integer aA(M) is the "multiplicity" of the free cyclic highest weight

module of highest weight A in M (notation 3.6). Moreover, the number

a= Y—deg{M] may be computed from these integers aA(M) as the smallest positive

integer a for which the righthand side of (*) becomes a nonzero polynomial.

Proof : This is now an immediate consequence of 3.5, by writing out the sum of
exponentials given there as a power series, and taking the lowest order term.

Q.e.d.

Example : Let us compute the character polynomial Ay for M = k the trivial,

one-dimensional module. In this case, ch(M) =1 , and so is the lowest

ay

degree term of
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x % r -ki
A(E d)ech(M) = A(E) = T (1-e ) =
1=1
r r
T (1-1-h.— = A%=...) & T (A.) +ees
. i 21 . 1
i=1 i=1

where Al,...,kr are the weights of T in E , and dots are terms of higher degree.
Hence Gy is equal to the product of all weights of T in E‘-, and in particular

deg Gy = TiS dim E is the vector-space dimension of E in this case. - Similarly,

one obtains for an arbitrary M of finite vector-space dimension the formula

r

=dim M I ( A.)
. 1
i=1

bl

Iy

deg y = dim E =: r .

3.10. Degree of character polynomial equals codimeéension of support.

Theorem : Let F be a T-equivariant coherent sheaf on E . Then

(1) deg 4p = codimE supp F .

Comments : Note that, by definition of the character polynomial
dp > its degree is also the y-degree of [g] . — Let us also restate the

theorem in terms of the corresponding T-equivariant module M = F(E,g) :
(2) deg Ay = r—d(M) ,

where r :=dim E , and d(M) denotes Krull- (or Gelfand—Kirillov-) dimension.
We refer to Joseph [Jl], 2.4 (i1) for a similar result; the precisé relationship

is explained later in our present paper -(4.8).

Our proof of this theorem, given in 3.12-3.13, proceeds by induction
on d(M).:fo make the induction argument work, however, we first have to shérpen

the theorem by the following technical complement.



-80-

3.11. Positivity property of character polynomials

Let us call a polynomial g on t* positive, if it takes only positive
values on all regular dominant integral weights.In more detail, let Wysenn,Wp
denote the fundamental weights corresponding to our choice of partial ordering
on t*, and p = O+ ... H0p. Then Q := mm1+ ces +Ngt_ resp. p + Q denote the
semigroups of (resp. regular) dominant integral weights, and "q positive" means

q(x) > 0, for all x€ p + Q.

In particular, q(p) > O.

Complement of Theorem 3.10: The polynomial P is positive.

Our induction argument, which will prove the theorem and its com-

plement simultaneously, is based on the following key lemma.

3.12. Division by a non-zero-divisor.

Lemma: Let M # 0 be a finitely generated T-equivariant S(E*)-module, and let

0 # f € S(E*¥) be a weight vector of weight -u # 0, which acts as a nonzero-

divisor on M. Then we have

(1) Uu/em =
and
(2) d(m/fmf = d(M)-1.

Proof: In fact, the assumptions on f imply that multiplication by f maps
each weight space M, injectively into Mx-u’ so that

ch(fM) = ch(M)e™,
hencé

ch(M/fM) = ch(M)-ch{(fM) = (1-e ")ch(M).
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Since 1-e”" = p- %, uzi-... , it follows that the lowest order term of

A(E*)ch(M/fM) is obtained from that of a(E*)ch(M) by multiplication with
u. This proves (1). The last equation (2) is a well known property of Krull

dimension. Q.e.d.

As a consequence of (1), we can conclude that Ay will be posi-

tive if Im/FM is.

3.13. Proof of theorem 3.10 and 3.11.

Let us proceed by induction on d(M). The case d(M) = 0 is
settled by example 3.9. So assume d{(M) > 0. We choose prime ideals I1,...,Q_
as in 3.4c), so that by 3.4b):

A Ag
ch(M) = e ch(S/I1)+ ... e ch(S/IE).

By 3.9, Oy is the lowest order term of the series
A

ch(M)B(E*) = T e 'ch(S/I,)a(E%). (*)
1

Let J e {1,...,2} denote the set of indices i for which deg gy~ assumes
i

its minimum value, m say. Observing that multiplication by an exponential

X,
series e | does not affect the lowest order term of a power series, we see

that the power series (*) has its degree m term equal to é qS/I , and
i€y i
.has only zero terms in smaller degree. So we may conclude from (* ) that

deg qy = M, and

q = z q (**)
M7 ey S

unless this sum vanishes. But suppose for a moment we knew already that theorem
3.10 and its complement hold for the modules M = S/Ii involved in the sum.

Then the polynomials 4g/p. are all positive , and so their sum (**)
i

obviously cannot vanish, but must be positive as well.
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Hence

deg Qy =m := 12%23 deg qS/Ii’

On the other hand we have

r-d(M) = min (r-d(S/Ii)).
1<i<g

Therefore, we conclude that theorem 3.10 and 3.11 hold for M, provided that
we can prove that they hold for all modules of the form S/I, where 1 is a

T-stable prime ideal in S = S(E*), and d(S/I) < d{(M).

In other words, by the preceding argument we have reduced the proof to the
particular case M = S/I, with 1 a T-stable prime.ideal. To prove-the theorem for this
case, pick some weight vector 0 # f € M_u of strictly negative weight -u; this
is possible: in fact, we can take any weight vector in S/I except the scalars.
Then gy = u™'qy ey by the lemma (3.12), and d(M/fM) < d(M), so gy will be
positive, since qM/fM is by induction hypothesis. Moreover, since

deg Gy /ey = r-d(M/fM)

by induction, the lemma gives also

deg Qy = (deg qM/fM) -1 = r-d(M/fM)-1 = r-d(M).

This completes our inductive proof of theorem 3.10 and 3.11. Q.e.d.
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3.14, Determination of character polynomials by supports.

If Vo E is a T-stable closed subvariety, then the structure sheaf
F = 0(V) is T-equivariant, and so has a character polynoﬁial, which we also
denote dy = qpy » for short. If ¥ is an arbitrary T-equivariant coherent
sheaf on E , then its support in E 1is clearly a T-stable closed subvariety.

Recall our notation for the supporting cycle of F : This is the formal linear

combination
(*) supp(E) = Emv(l‘;)[V] ,

extended over the irreducible components V of the support (notation 1.4).

Proposition : Let F be a T-equivariant coherent sheaf on E , let d

denote the codimension of its support in E , and let (*) bé its supporting

cycle. Then

L
[}

b3 m,(F)q
codim V=d v v

In particular, the character polynomial of is completely determined by its

=3

supporting cycle.

I as in lemma 3.4.

Proof : We let M = I'(E,F) and chose prime ideals Il""’ .

To introduce our new notation, we let Vj denote the support of S/Ij in

E ; then g/, ~ Ay, - We already knew that
J

q'F= ! =z'

qS/I- qv ?
] J
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where I' 1is summation over those j for which dg/1 has minimal degree
i

(cf. 3...). But from theorem 3.10, we now know in addition that

deg Pp = d , deg qV. = dj
= 3

for j=1,...,% , where dj denotes the codimension of Vj in E . We

conclude that
b3 = )
( ) qF z qU. .

On the other hand, it is clear that the Uj of codimension dj = d are the
irreducible components of the support of F of minimal codimension. Now (**)

gives the proposition. Q.e.d.

Corollary :'Let O > M, >M > M, + 0 be'a short exact sequence of T-equivariant

+ . N * . . o
finitely generated S(E )-modules. If d(Ml) = d(Mz) , then

qy = 4, *a ’
M M]. M2

if d(Mi) < d(Mj) (i,j = 1,2) , then

3.15. The theory of Hilbert=Samuel polynomials as'a special case '[AC], [AM].

Let us now look more carefully at the particular case of a onedimensional
% .
torus, that is T = Gm = k 1s the multiplicative group. Then the representation
ko~ )
ring R(T) 1is the group ring of an infinite cyclic group X (T) =Z , or in

other words R(T) identifies with the ring ktt,t—l] of Laurent pdlynomials

in one variable t (cor'r*espohding to the character ,a»—->é1 of Gm). The augnentation .

ideal I is then the principal ideal generated by t-1, and so the I; -adic degree of a Laurent

polynomial f(t)
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is given by the order of vanishing of f(t) at t =1 . More generally, this

extends to infinite Laurent series as well. Recalling 3.1, let us summarize ;:

Lemma : The completed representation ring of the multiplicative group is the

ring of formal power series in the variable t-1 ,

R(cm) = k[[t-111 ,

........

the y-degree of a power series‘being its order of vanishing at ¢t =1 .

A T-action on a module M is now just a Z-grading M= @& M. ,
i€z
and M will admit a formal character iff the homogeneous subspaces M, are

finite-dimensional, the formal character being known as the Poincaré series

ch(M) = £ (dim Mi).tl
i

in this case. - Now let dl,...,dr € Z denote the weights of our linear action
of T = Gm in the r-dimensional vectorspace E ., By our assumption, they

are all positive. Recalling 3.3, we find that now

A(E) = (1-t
SO

1,-1

ch(SGE™Y) = a1 = a-¢ H7hL .. a-t HL

Now let F be a T-equivariant coherent OE-module, and M = F(E,g) the
* . Lo

corresponding graded S(E )-module. Then our result in proposition 3.7 and

theorem 3.10, specialized to this case, yieldsin particular the following

facts about Poincaré serieés.

Corollary : Theé Poincaré series of the Z-graded module M (as above) takes

the form of a 'rational function




P(t)
d d ?
1)....(l-t r)

ch(M) =
(1-t

where P(t) 1is a Laurent polynomial, whose order of vanishing at t =1

equals r-d(M) , the codimension of the support of M in E .

For example, let T be the group of homotheties on E . Then

d1 = d2 =...=d_ =1, so the Poincaré series equals

P (qopy=d D)

ch(M) =
(1-t)*

Q(t) ,

where Q(t) 1is a polynomial with Q{1) # O .

Remark : These are essentially classical results of Hilbert and Samuel in
commutative algebra, for expositions of which we refer to e.g; Bourbaki, [AC]
VIIT, §4, n°3, Théoréme 2, and n°4, Théoréme 3, or also [AM], theorems 11.1
and 11.14, or [Sr], uﬁder the headlines of "degree of the Hilbert-Samuel

functions", resp. "Hilbert functions" and "dimension theory':

3.16. Restriction to one—parameter subgroups.

Let Wy W, be free generators of the lattice A of integral
weights, called the "fundamental weights'. Their choice corresponds to the
choice of the partial ordering of weights. Then Q:=1Nw1+-~-*-ﬂiw£is the
semi—lattice of "positive integral weights", so our positivity assumption on

the T-module E means that its weights belong to Q , and furthermore for

* .
any T-equivariant S(E )-module M , there exists some X € A such that

chM) = ¢ (dim M )e¥ (*)
—HEA4+Q

*
for each T-equivariant S(E )-module.



-87-

-u_)1 -

We note that the exponentials tyize ..., t, := e ¢

are algebraically inde-
pendent. So we may consider the formal character as a formal Laurent power series

in t1,...,t£, as mentioned in 3.2, that is
ch(M):F(t1,...,t£) = >

, a
mr..”méz-k Myseeesly

with Myseees My integers bounded below by some -k.

Now we consider a one parameter subgroup ¢: Gm —— T. We may describe ¢

in terms of the perfect pairing X, (T) x X*(T) — Z. of the (rank £ free

abelian) groups of all one parameter subgroups resp. characters of T (see e.qg.
[S2], 2.5.12) as follows: For a character x € X*(T), we define <x,¢> as the
integer n describing the restricted character ¢*(x)} of Gm as ai—»a"
(q € Gm). We denote x4,...,x, the "fundamental characters” of T (that is
[xi] = emi = t;1). Then ¢ is uniquely determined by the £ integers

Ny = <xyH9> (i =1,...,2).

Definition: ¢ is called positive, if all NgsenesNp are positive.

Lemma: The & -module obtained from M by restriction to a positive one para-
meter subgroup ¢ admits a formal character d*ch (M). _If ch(M) = Flty,....tp)

as above, then

n n
(*) * ch(M) = F(t 1,...,t £).
1 of €

Here t = e " denotes the character al—> a~ -

The lemma is obvious for a one dimensional module M = kX of character

M Me
ch(M) = [x] = t1 v tﬂ , since then

NyMy+...+N,m n, m n, m
o* ch(M) = S S 2 g 1™ £ _ (t11) 1 o (tzﬁ) £

r

and it extends linearly to arbitrary modules M of finite dimension, i.e. to

polynomials F. For the extension to arbitrary bounded formal characters ch(M),
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i.e. to Laurent power series F, we need the positivity assumption on 4¢. This

will guarantee the existence and boundedness of the formal character of M,
considered as a € -module by restriction, and then formula (*) follows as in the

finite dimensional case.

Proposition: Let ¢ be a positive one parameter subgroup of T.
Let ¢*: KT(E) ——fé'KGm(E) denote restriction. Let [M] € KT(E) denote the
class determined by some T-equivariant S{E*)}-module M, and d 1its +v-degree.
Then
a) v-deg ¢*[M] > d = y-deg [M].
b) v-deg ¢*[M] = d if and only if

gy (¥) £ 0, at y := de(1) € t.

c) If such is the case, then the character polynomial of the "restricted" module

3
is obtained by restriction of the character polynomial, i.e. qu = ¢*q;. If we

write q; = f(m1,....,w£) as a polynomial in the fundamental weights, then

Wy = T(ny,..oony) o

with ni = <xi,¢> as above.

Proof: Refering to 3.7 and the lemma above, we may describe the restriction map
¢* explicitely by means of the following commutative diagram,

“; -1 -1
E) == R(T) ka[trt.l ""’tﬂ',t.‘l ]

KT(

¢ ¥ ¢*

v ~ "1
Gm
where the vertical arrows will allbe denoted ¢*, but the last one is explicitely

described as a specialization map of Laurent polynomials as follows:
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N e
¢*P(t1,...,t£) =P(t ',...,t 7).
Hence if [M] is represented by the multi-variable Laurent polynomial P(t1,...,t£),
. n n
then ¢*[M] 1is represented by the one-variable Laurent polynomial P(t 1,...,t Z)

-,
=: P'(t). Now recalling ti e ' and t=e™, we may develop these polynomials

into power series in the fundamental weights WyyeoasWp TESP. W,

If we write

P(t,,....t,) = I q.
R N .

(LU1 y e smz)',

with qj a homogeneous polynomial of degree j in WegeonsWp, and Ay # 0, then
the character polynomial of M with respect to T is

(1) Q= QglOgsee-20p).

whereas that of M with respect to ¢ (i.e. q:m) is the lowestterm of the

power series

(2) P'(T) = Z ¢, o
S|
]
Now
n n -N,w -N,w
Pr(t) =P(t ,....tE)=pPle | ....e &)=
(3) = & q; (nw,...,nw) = £ q; (n,, -,n)sz
i>d it £ i2d 9 1 £

and the statements of the proposition are then obvious by comparing coefficients
in (3) and (2}, in particular

QM =qd(n1,---,n£) wd,

if this is non-zero. Q.e.d.

Corollary: For a given T-equivariant module M, restriction preserves v-degree,

that is equality holds in a) above, for "almost all" positive one parameter sub-

groups ¢, in the sense that the exceptional set is contained in a Zariski

closed subset of X, (T) ®; k.

Recall that X,(T) denotes the group (isomorphic to Zz) of all one parameter sub-
groups ¢ of T.
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Remarks: 1) Equality holds in a) above even for all positive one parameter
subgroups ¢ by theorem 3.10. In fact, theorem 3.10 says that the vy-degree
of M equals the codimension of its support, and hence is completely inde-
pendent of the torus action under consideration, provided, that this action
has only positive weights on E, which is guaranteed in the present situation

for our one parameter subgroup ¢ since it is assumed positive.

2) The reason for stating the proposition in the weaker form above
which we have easily prog_)od directly (independent of 3.10), is that it
provides an alternative method of proof for theorem 3.10: In fact, the
corollary above reduces the proof of the theorem to the special case
T = Gm of a one-dimensional torus. It seems to us that even this case
is not fully covered by the existing literature (cf. e.g. [Bol, [AMI, [Srl,
[Sm], theorem 5.5). Let us give therefore another full proof in 3.18, which
is essentially based on a lemma about real power series (3.17), and which

might have some independent interest.

3.17. A lemma on the growth of coefficients of a power series.

Let (Hj) be a sequence of non-negative real numbers, with a

JEZ

"minimal positive term H. (that is Hj =0 for j < jo) . Let us define its
o

order of growth as the infimum of all real mumbers Y > O such that

¥ H., = n0(n') as n tends to infinity. (For example, the order of growth
j<n

of a polynomial function is its degree). Now we assume that the Laurent power
series

H(t) = £ H,t9 (1)
j ]

is a ratiomnal function of the form

T m.
B(t) = P(e)/ 1 (1=t %), | (2)
i=1

where P(t) 1is a Laurent polynomial, and r,m ,m_ are positive integers.

10"
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Lemma: The order of growth of (Hj) is r-d-1 where d 1is the order of

vanishing of P{t) at t = 1.

Proof . We first note that with H(t) also (1+t+t2+...+t5 )H(t)

has non-negative coefficients and satisfies all assumptions of the lemma (for
all s>0); moreover, since all its coefficients are the sums of s successive

coefficients Hj-s+1 + ... 4 Hj of H(t), it is obvious that the order of growth

of the coefficients is not changed by multiplication with such a polynomial

(1+t+t?+...+ts'1)

. By applying this observation r - times, we conclude that
the power series
m. -1

2”+ et ! )

(1+t+t
1

=
+
g

"

T
———
ot

=

has also non-negative coefficients of the the same growth as H(t). On the
other hand, equation (2) gives now

u(t) = P(t) / (1-)".
‘Consequently, we have reduced the proof of the lemma to the special case where
all degrees are one, My =My = ... =M = 1. In this case, the proof of the

r
lemma is easy by use of the binomial series

(1-t)7" =
1

N ™MB¢

Ny (o)t = F (D e
0! iz T

see [Bol. Q.e.d.

3.18. An alternative proof of theorem 3.10.

As mentioned before, in view of Corollary 3.16, it suffices to prove
the theorem for the special case T = Gm , acting on E with positive weilghts
myseee,m Let F and M = P(E,g) as in 3.10, and consider the formal

character or Poincaré series of M , denoted

chM) = ¢ H.tJ = u(e) ,
i ]

(1-1j = dim M—j) . We know from 3.7, 3.15 (independently of theorem 3.10) that
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this series is a rational function of the form considered above, in 3.17 Q).
Hence by lemma 3.17, we know the order of growth of (Hj) to be r-d-1 , where
r =dim E , and d = y-deg[M] (use lemma 3.15). Now the proof is completed

by the following

Lemma : The order of growth of (Hj) is equal to dim supp E-1 .

This lemma is easily proven via an analogue, for orders of growth,

of lemma 3.11.
Q.e.d.

3.19. Character polynomials of subalgebras.

The following generalization of the notion of character polynomials

will be useful in chapter 4, Let Y < E be an irreducible closed T-equivariant

T

B) , for

subvariety. We have defined the character polynomial qY(= a5 = 4
* .
B = 0(Y) , as the lowest degree term of A(E )ch(B) , considered as a power

series on t ., Similarly, we define for any T-stable subalgebra A c B

B

the character polynomial q, (= qi’ ) to be the lowest degree term of

A(E*)ch(A) . This is a homogeneous polynomial of degree deg q, > deg q .

This notation is extended also to finitely generated T-equivariant A-modules.
- Now let A be finitely generated, say A = 0(Z) the coordinate ring of the
affine T-variety Z . Then we also write q& =q, . Let ©:Y=>2Z denote

the T-equivariant dominant map corresponding to the inclusion A cC B .

Lemma : If ¢ : Y= Z 1is birational .., then d4; = Gy -

Proof : There exists a dense, open, T-stable subset Z' < Z , such that the
restriction of ¢ to Y' = qflz' is an isomorphism Y' 32" . Let 32' = Z-2" ,

3Y' = Y¥' be their complements, and let I resp. J be the ideal in A
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resp. B of functions vanishing on 3Z' resp. Y .

Obviously, all
these sets and ideals are T-stable, so that we may argue in terms of formal
characters. Since A_ = B_ , the difference between A and B can be calcu-

I I

lated over 1 :

ch(B)-ch(A) = ch(B/A) = ch{((B/IB)/(A/A N IB))

= ch(B/IB)-ch(A/A n1B)

We may assume O # I (the other case being easily settled separately).
Then by lemma 3.11, the lowest degree term of Q(E*)ch(B/IB) has degree
strictly bigger than A(E*)ch(B).Since‘ch(WM:TiB)S'ch(B/IB) coefficient wise,
we conclude that also A(E*)ch(AﬁAnngcannot contribute to terms in degree

< deg Py - (Here we use the characterization of vy-degrees by order of growth,

3.18). It follows then on the left hand side of the equation

AETYCh(B)=a(E™)ch(A) = A(E™)ch(B/IB)-A(E™)ch(A/ An I8)

the lowest degree terms must cancel each other, that is to say Qg = 49, -

Q.e.d.

Proposition : If ¢ : Y» Z is dominant: and dim Y = dim Z , then

qy = mq, for some integer m > 0 .

More precisely, m 1is the generic degree of the map ¢ , or also

m = [L:K] , where K,L denote the fields of rational functions on Z resp. Y .

"Proof : The equality of dimensions implies that K and L have the same
transcendence degree, so that m = [L:K] is finite. Let A denote the integral

closure of A =0(Z) in B = (0(Y) . Then we have qp = qx by the lemma.
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We may chose m weight vectors Viseers Vo € X , which are independent

over K = Fract A, so that M := Av1+...+Avﬁ is a free A-submodule of

rank m in A . Then we have

~ M M e
ch(®) = ch(A)(e “#...+e ™) + ch(&/M) , (*)

where By is the weight of Voo Now K/M

is a finitely generated (!) torsion

module over A, Therefore, it follows by an obvious generalization of lemma

3.11, that q_
A/M
(*), that up to terms of higher degree

has strictly larger degree than q_
A

. Hence it follows from

K H
ACE™)ch(A) = AGEN)ch(A) (e Loee-te ™) =

*
Z mA(E )ch(A) (mod higher degree terms)

It follows that gq_ = mg, which completes the proof.

Q.e.d.
A
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§4. Equivariant characteristic classes of orbital cone bundles.

In this chapter, G 1is a connected semisimple algebraic group over

k , and T a maximal torus in G . We use the notations introduced in 1.5.

So in particular, U 1is a maximal unipotent subgroup normalized by T , and

B=TU0 =

G,B,T,U

UT 1is a fixed Borel subgroup; g,b,t,u are the Lie algebras of

etc.

4.1. Borel picture of the cohomology of a flag variety [Bol, [H1] .

The purpose of the theorem below is to recall, and simultaneously

to rephrase in an equivariant K-theory language convenient for our present

*
paper, the Borel picture of the cohomology ring H (X) of the flag variety

X = G/B

*
. This picture describes H (X) as a quotient of the representation

ring R(T) by a certain ideal defined as follows. Note that the Weyl group W

of G relative to T acts on R(T) , stabilizing the augmentation ideal I

T
(notation 2.11); so let I¥ = Ip n R(T)w denote the subspace of W-invariants.
Then the ideal mentioned above is the one generated by I¥ .

Theorem (Borel picture) : We have a commutative diagram of canonical ring

homomorphisms

RG(X) — =~ » R(B) ——% R(T)

R(K)  —> R(T)/IR(T)

i

~
. v
v

~o ~

ch

H (X)

Here the map from KG(X) onto K(X) forgets the G action (2.1),

and the isomorphism of KG(X) onto R(B) 1is given by restriction to the base



point (2.4(1)). The link from K(X) to H*(X) is of course made by the

Chern character c¢h (an isomorphism, cf. 1.5), and that from R(B) to R(T)

is given by restriction from B to T (2.1). Observing that U acts trivially
on each finite dimensional irreducible (hence one-dimensional) B-module, we
conclude that this restriction homomorphism R(B) e R(T) 1is also an isomorphism.
- For further information and more classical formulations of the Borel picture,

we refer to e.g. Borel [Bo], or Hiller [Hl] III, theorem 4.1.

4.2. Description in terms of harmonic polynomials on a Cartan subalgebra.

The isomorphism ¢ of the completed representation ring R(T) with
" % . )
the formal power series ring S(t ) (cf. 3.1) is canonical, hence W-equivariant;

it maps the ideal generated by I? onto the ideal generated by

* * *
J¥:=S(5)wnES(£) ’

that is the W-invariant polynomial functions on t vanishing at O . Therefore

¢ 1induces a diagram of isomorphisms

RN ———> RMAMI «———— RMO/RDIL

ny

~t ~t
= =

~

Moo= sehysehHal

3t —> §(£*)/§(£*)JT

* *
Furthermore, we recall that the residue class map of S(E )/S(E )J¥ admits a
% . %
natural section, given by the graded subspace S(t )“<: S(t') of all

*
W harmonic polynomials. In conclusion, Borel's description of H (X) as

formulated in 4.1 also says that

B(x) T RO /RMIE T s /sHan T s M
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canonically. These isomorphisms clearly respect gradings and W-actions. Thus
we reobtain the following formulation of the Borel picture, which is perhaps

motre familiar to some readers :

Corollary (loc. cit.) : For all degrees d > 0 , we have canonically

Here the right-hand side denotes the space of harmonic polynomials
which are homogeneous of degree d . If we add that the cohomology of X
vanishes in all odd degrees, then the above statement completes the description

*
of H (X) as a graded ring with W action.

Remark : Let us recall our convention, already made in 1.6, that whenever
convenient, we identify a cohomology class on X with a harmonic polynomial

]

on t , by means of the above isomorphism.

*
4.3. Equivariant K-theory on T X .

We shall now return to the study of certain conical subvarieties in -
resp. sheaves on - the cotangent bundle T*X of the flag variety X , which
has been our main object in §l1 already. We now observe that T*X is
G~équivariant as a vector-bundle over X , and that the subvarieties and
sheaves in question are also G-equivariant. This will allow us to study them
by means of calculations in the ring KG(T*X) . This study will amount in a
certain sense to "lifting" the geometrical investigations of our §1 to the
more refined level of equivariant K-theory in the present chapter, and will

finally lead to improvements of the results in §1.

The purpose of the following proposition is to provide a fairly

*
explicit description of the ring KG(T X) , as well as a method for performing
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actual calculations. We recall that the coténgent space of X at the base
point x = {B} is identified with the "co-isotropy space" at x , that is to
§+ =u , and then T*X is identified with the associated fibre-
bundle T'X = G XB‘E (notations 1.5). Consider the following diagram of

*
say (T X)x =

inclusion maps :
* ]
TX <—— u
o 1
X <—— {x}
. - * . *
Here o resp. ] denote the inclusion of X resp. u into T X as the

zero-section resp. the fibre at x .

Proposition : We have a commutative diagram of canonical isomorphisms of A -rings

R
K (T*X) JB ) N (u)
KD —E— K > R
o * *
1 1
x B T
ig o
KG(X) ————> R(B) > R(T)
Here all maps are given by restriction to a smaller group . . and/or to a

subvariety.

Proof : All these restriction homomorphisms are clearly )-ring homomorphisms,

* *

so it suffices to check bijectivity. For the two horizontal arrows jB , iB ,

this is a consequence of the G-homogeneity of X (ecf. 2.4(1)). Also, the
horizontal arrow p 1is an isomorphism, as observed already in 4.1, and the

*
vertical arrow lp is an isomorphism by proposition 3.7. Identifying R(B)
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with R(T) , we may repeat the proof of proposition 3.7 almost word by word
*
to construct an inverse map of g from R{(T) = R(B) to KB(E) . Now the

bijectivity of the remaining two arrows follows by commutativity of the diagram.

Q.e.d.

Remark. Alternatively, one may invoke Thomason's general result [Tl], Theorem 4.1

x %k %

(cf. 2.9(2))to conclude directly that all three vertical arrows lpslps tg

are isomorphisms. However, for the convenience of the reader, we are avoiding

this here.

*
4.4. Restriction to a fibre of T X .

Let us now explain in more detail the use of the proposition above
for computational purposes. Let us compute for instance the class in KG(T*X)
determined by some G-equivariant coherent sheaf E on T*X ..To identify
this class [F] as an element in R(T) by means of the proposition, we proceed
as follows : We restrict F to a sheaf j*g on the fibre u (which is
affine!) , then take its module of global sections M = P(E,j*g) and the

formal character ch(M) in ﬁ(T)' (3.2). Then the desired element in R(T)

*
is given by the explicit formula for the map lp given in 3.7, that is to

say :
Corollagz 1:
* * * *
ty jglEY = ACu) ch T(u,j E) -.

* -
Here A(u ) is the product 1(l-e Ct) , expanded over all positive

roots o (relative b and t ).

*
Corollary 2 : Let F denote a G-equivariant coherent sheaf on T X

* -
Then yydegree of its class [EF] in Ko (T X) equals the codimension of the
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. *
support of E in T X .

Proof : This follows from theorem 3.10 by means of proposition 4.3. Q.e.d.

4.5. Definition of equivariant characteristic classes.

*
Let F be a G-equivariant coherent sheaf on T X , whose support

*
has codimension d in T X . Then its equivariant characteristic class QG(E)

is a homogeneous polynomial of degree d on t , which is definéd as follows.
First of all, F determines a class [F] in KG(T*X) . By "homological inter-
section with the zero section", it determines a class UE[E]N in KG(X) ,

which we may consider-as a power series on Ef, by means of the
idéntifications'

ES

&

St )

~

K, (X) = R(T) < R(T)

explained in 4.3 resp. 3.1. Then we define QG(E) as the lowest degree term

of this power series :

Qu(E) = gr i oplE] .

Proposition : The polynomial Qcﬁg) may be computed from a formal character

by means of the formula

Q. (E) = gr A(d)ch P(g,j*g) .

In particular, it is homogeneous of degree d .

Proof : The first statement follows from corollary 4.4.1 - in view of the
commutativity of the diagram in proposition 4.3. The second statement follows

from corollary 4.4.2, so is a consequence of theorem 3.10. Q.e.d.
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Remark. Using the terminology and notations of character polynomials as defined
in 3.9, we may also state the proposition this way : As a polynomial on t ,
the equivariant characteristic class of F coincides with the character

. . * .
polynomial of its restriction to a fibre of T X , that is to say

T
Q.(F) = q .
G'= ¥

Retaining the notations of 4.5, let us recall that we already defined

a characteristic class Q(E) in chapter 1, as an element in

~ * K
HZd(X) = Sd(E )h (see 1.3 and 4.2). Let us denote prP ph the projection

of a polynomial p on t onto its uniquely determined harmonic part pH .

Proposition : The characteristic class 'Q(E) may be computed from the

. equivariant one QG(E) by taking the harmonic part,

QE) = QuE)] .

Proof : From the "Borel picture" (theorem 4.1, 4.2) we obtain the following
commutative diagram by passing to the associated graded level (terminology

and notations as in 1.3, 1.4) :

grdKG(x)_‘”.___;. grdR(T) - > Sd(_r._*)
grK(X) —T—> gr RD/ARMI —=— sl

Here the left vertical arrow is given by forgetting the G-action, while the

¢

right one is taking harmonic parts. So the diagram says that forgetting the
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G-action in graded K-groups corresponds to taking harmonic parts of the
corresponding polynomials on t . Now note that Q(E) was defined as an element

in
gr k(0 T w0 TsdehHh
and QG(E) is an element in
~ ~ *
gr K (X) = gr R(T) = S(t )

by definition. The only delicate point is that both QG(E) and Q(E) should
'occur in the same degree, that is in degree d . Bﬁt this was made sure by
theorem 3.10 (cf. 4.4.2). Now it is clear that Q(F) is obtained from QG(E)
by forgetting the G-action, and so the proposition follows from the above

commutative diagram. Q.e.d.

Complementary remarks.

* 4
1) If K< TX is a G-stable closed subvariety, then we define its equivariant

characteristic class by
Q) 1= qg0p)
Since we may define Q(K) analogously as Q(OK). (see '1.4), we see that also

QK) = Qi (K)¥ .

N—
*
2) Let us recall that it was a delicate question in §1, whether or not the
*
characteristic class Q(V) of a given subvariety V < T X vanishes. So let
us point out here for the case of a G-stable subvariety V # ¢ that QG(V)

is always nonzero by definition, and that the delicate question is,whether or
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not the corresponding polynomial has nonzero harmonic part. In our case of

main interest, that is for V an orbital cone bundle, it actually turns out
that even the equivariant class itself is already harmonic, so that Q(V) = QG(V)

in this case (so in particular Q(V) # 0) .

3) Let us point out that the equivariant characteristic class QG(E) may be

described as a class in the équivariant cohomology group Héd(x) . We use the

the standard definition of equivariant cohcmelogy, that is

H;(X) = H*(x:xG EG) (see fBoZ], chapter 4 ). It is also easy to define a
purely algebraic equivariant de Rham cohomology, by viewing X ;G EG as a
simplicial algebraic vafiety over k , and taking the hypercohomology of the
de Rham complex (which is a simplicial complex of sheaves) (see [D1l] or

{Fr] for general notions about simplicial varieties and simplicial sheaves).
In our case, where X = G/B , we have Héd(x) ; SdQE*) (and HE(X) =0 for
k odd). Also, the restriction to the zero-section induces an isomorphism -

* ko~ K
HG(T X) - HG(X) . There is a general equivariant Chern character

2i

even
) :

even
e )

ch, = ch : KG(-) - H G

G where H is the product of all H =) .

For the flag wvariety X , we have a commutative diagram.

even
(

KG('X) S HG

X)

§

R(T) ——> 8¢

where the lower line is defined in 3.1. It follows that c¢h maps KG(X)d

to T Héi(x) . So we may give an alternative geometric definition of
QG(gizdas follows. Take F as in 4.5, then QG(E) is the component of
ch({E]) in Héd(x) . Remembering the isomorphism Héd(x):# Sd(E*) we get
the same class as in 4.5. The commutative diagram used in the above proof of

Proposition 4.6 may be completed as follows
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~ ~ *
grdKG(X) e Héd(x) —_— sd(g )

H

BT K(X) ———> i) —2— 59

We will not try to give a purely homological definition of QG(U)-’
in the style of 1.3, because of the lack of references concerning equivariant

Borel-Moore homology.

*
4) The cotangent bundle TX may be viewed as a G-equivariant vector bundle

) * ; .
on X . Since the equivariant Chern classes ci(Tx) € Hél(X) are defined, we

IR
may, by the usual procedure [Hi]l, §10.1, introduce the Todd class Td(TX) .

To compute it, we freely identify Hgven(x) with .S(E*) , as in the previous
n .
remark. We have I ci(T;)xl = I (l4ox) , hence
i=1 * a>o
* o ¢, (Ty) . )
Td(Tx) = I ( -a) = = (this is an equality in the fraction field of
a>o l-e A(E )

3™ .

. . ' *
Now let F be a G-equivariant coherent sheaf on T X , let

* ;
M= P(E,j g) . Then the formula for ch(M) in 4.4 may be rewritten as :

*
Td(T.).Q.(F)
Ch(M) = _-_-—)_{_—_:E_G—_
Cn(TX)

4.7. Equivariant characteristic classes of orbital cone bundles.

We are now ready to state some of the key results of the present chapter.

*
Theorem 1 : Let K be an orbital cone bundle in T X (terminology 1.7).

Then its equivariant characteristic class QG(K) is a harmonic polynomial,

In other words, we have QG(K) = Q(K) in this case,
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Theorem 2 : Let Kl,...,Kr be the orbital cone bundles for some nilpotent orbit

0; (notations as in theorem 1.8). Then the classes QG(Kl)’°"’QG(Kr) span

a Weyl group submodule,

Theorem 3 : The corresponding representation of W is isomorphic to Springer's

irreducible representation pﬁ (notation as in thecrem 1.8).

We note that theorems 2 and 3 above would be immediate consequences
of theorem 1.8, if we would assﬁme theorem 1. However, our proof proceeds in a
different logical order : Logically, the proof of theorem 2 comes first; it will
be completed in 4.13. But let us show here first how to derive theorems 1 and

3 from theorem 2.

Theorem 2 implies theorem 3: Let M resp. N denote the linear span

of QG(Kl),...,QG(Kr) resp. of Q(Kl),...,Q(Kr) . By proposition 4.6, M is
mapped onte N by the projection onto harmonic parts, which is a W module
homomorphism. Its restriction to M must be a linear isomorphism by 1.8a).

So assuming that M 1is a W submodule, we conclude that it carries the same

W representation as N , which is Py by theorem 1.8¢c). Q.e.dg

o
By
3

Theorems 2 and 3 imply theorém 1 : Suppose not all QG(Ki) were

harmonic. With notations as before, this means M # N , and so M,N are

. d .
two different copies of the irreducible representation pu‘ in § u(E)
(notation 1.8). However, it is known that Springer's representation p, occurs

only once in (the lowest possible) degree du , see'[BMl], Corollaire 4. Hence

we must have M =N . Q.e.d.

The proof of theorem 2 will consist in verifying directly the following

much more precise statement
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Theorem 2' : Even the equivariant characteristic classes QG(KI),...,QG(Kr)

satisfy the Hotta transformation formulas (cf. 1.15).

This is our version of a result essentially due to Joseph [J1], 3.1,
and reinterpreted by Hotta [Ho], 3.4. In addition to prbving theorem 2, this
stronger theorem 2' will simultaneously prove theorem 1.15 (see 4.14 below),
and hence reprove also the main results of Hotta's work [Hol], [Ho2]. The proof
will be given in sections 4.8 to 4.13. The crucial final part of the proof
(cf. 4.13) is essentially Joseph's so that we could refer partially to [J1].
However, for convenience of the reader, we prefer to give here an essentially

self-contained, full proof.

4.8. Comparison with Joseph's notion of "characteristic polynomial”

The purpose of this section is to link up terminology and notations
of Joseph [J1] with our present language. The main point to be made is that
our notion of "equivariant characteristic classes" essentially coincides with
Joseph's notion of "characteristic polynomial', providing a more conceptual
geometric reinterpretation for it. Let us give a few more explanations, which

should help the reader to verify the coincidence.

*
We shall identify here polynomials on t  with polynomials on ¢t

* %
t, tw—t ,

~

by means of the Killing form, that is by the isomorphism ¢t

. * ) .
characterized by u(t) = (u,t ) . Let C <u” be a B-stable closed cone, and let

B

Sk
K=Gx CcTZX denote the corresponding G-stable closed cone-bundle.

s . . * . . . .
Proposition : Considered as a polynomial on t =t , our equivariant characteristic

class QG(K) (= qg by 4.5) coincides with Joseph's "characteristic polynomial

P » as defined in {Jl], 2.4,
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1) Let us first recall Joseph's definition (loc.cit). Let M deqote
the T-equivariant S(Ef)—module M= 0(C) . Let v € E* denote an integral
welght, which is assumed dominant and regular, that is (a,v) > 0 for all
positive roots o« , which will eventually be considered a variable. Now Joseph

considers the "Poincaré series"

Ry(t,v) := I (dim M ye (V)
peEA H
(notation as in [J1]), which is a formal power series in one variable t , and
which depends on v as a parameter. Next he studies the leading coefficient
of the Hilbert-Samuel polynomial of RM(t,v) , considered as a functiom of v ,

denoted rM(v)/d(M)! , and he finds that the function

py(V) 1= r (V- I alv) 1
a>o
*
is given by a polynomial Py on t , -homogeneous of degree d := codimu C = n=d(M)

This polynomial is denoted Po i= Py > and is called the "characteristic

polynomial of C " in loc.cit..

2) Next let us rewrite Joseph's procedure in our present language.
We consider the restrictions of the T-action on our T-equivariant module
M= 0(C) = F(C,OK) to the various one parameter subgroups 1y : Gm + T .

On a weight-vector v € M of weight pu , such a subgroup acts by
*
p{t)v = t(“’V)v (tek),

*
where v 1is the integral weight corresponding to ¢ (that is v = (dp)(1) ,

cf. 3.16). This shows that in our notation,

R, (£,v) = 97 (ch()
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that is Joseph's one variable Poincaré series is just the restriction of the
formal character of M to0 & one parameter subgroup. As discussed in detail

in 3.16, this one variable series is obtained from the multi-variable power

series ch(M) = I (dim Mu)e“ by "specializing" the variables t, = e *
v (w,,V)
(i=1,...,2) all to a single variable t wvia et * . This speciali-

zation may also be interpreted as an "evaluation" of ch(M) , considered as
. * . .
a function on t =t : In fact, evaluation on Tv , for a variable scalar

T € k gives

95 1
e (tv) =k =
m

ti(Tv)

m 1 m
| wi(Tv) = I E!(mi,Tv)
m

(wi,Tv) T(mi,v) (wi,v)

. T .
putting e =t . So we consider

¥ (ch(n) = ch@) () = R (£,v) (3)

as the (formal) evaluation of ch(M) on the Lie algebra of our one parameter

subgroup. Similarly, we get

* v
ey = 1 -V () (4)
o>o0
which we denote by PM(;,v) . We know from §3, that this is a Laurent
polynomial PM(t,u) € k[t,t_l}; in fact, it is the class determined by the

restriction of M (with respect to ) in the equivariant K-group

~

. Yo
Kw(q;m)(g) = R(E ) = k[t,t

]

Now let us assume again that .v 1is regular (all (a,v) > O, for all o > 0) .
Then we know that the order of vanishing of PM(t,v) at t =1 |is

d = codimuC (cf. 3.18), so let us write
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B, (c,0) = (=D B (e,v)

where now 3ﬁ(t,v) is a Laurent polynomial such that 5&(1,v) # 0 . From the

resulting expression

(t-l)d
H (1_t(u,\)))
o>0

Ry(t,v) = B (e, v) . Fm Fo ()
for Joseph's Poincaré series, one may now deduce some information about its
Hilbert-Samuel function (by the methods used in [AC] VIII, §4, cf. also
[Sm], or [J1], or our 3.17) : It has degree n-d = dim C (cf. 3.18), and
leading coefficient %ﬁ(l,u)/(n—d)! . Comparing this with Joseph's notation

(see 1), we get
5&(1,v) = pM(v) = pc(v)

Combining this with (5) and (4), we obtain that

1 @enCn) = p () (=1%o = p (v .rtr

up to higher terms in t-1 resp. in 7t , so the homogeneous term of degree

d must map to
¢ (Ta@enen1?) = )

*
On the other hand, 1 means evaluation at <ty by (3) above, and

[A(Qﬂch(M)]d is our "character polynomial" qT

y by corollary 3.9 (which has

. T
degree d by theorem 3.10). Hence equation (6) reads as follows : qM(Tv)=pC(v)Td .
But qE(Tv) = q;(v)rd by homogeneity, and so we conclude that our polynomial
. T
qi coincides with Joseph's Pe + Finally, we have also Ay = QG(K) , as
was already explained in 4.5.

Sk
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4.9. Generalization to the case of sheaves.

Let us extend the considerations of the previous section to the case
. . . *
of an arbitrary G-equivariant conical coherent sheaf E # 0 on T X . Let

* . . , .
F = j E denote the corresponding B-equivariant coherent sheaf on the fibre

* —_
v of T X , obtained by restriction. As before, we let M denote the

* . . y
T-equivariant S(u )-module M = r(u,E) = r(u,F) . Generalizing proposition
4.8, we may now state

* . .
Proposition 1 : Considered as polynomials on t =t , our equivariant charac-

teristic class Q,(E) (= qg) , and Joseph's "characteristic polynomial"

pS(M) , as defined in [J1], 5.5, coincide.

Let us denote the supporting cycles for E resp. F (cf. 1.4) by

supp(E) = & m, (E)U,] resp.
1
supp(F) = L m, (E)[V,] .

1

Then the irreducible components ui resp. Ui are clearly G-resp. B-stable

closed cone bundles resp. cones, and by chosing the correct numbering, each

us will be a hdﬁSégﬁeOus cone bundle with fibre V; » that is U.1 =G «B v

for all i . Moreover, the multiplicities and codimensions will coincide :

mi(g) = mi(g) for all 1 ,

and codim . supp(E) = codim supp(F) =: d
= u z

T X

Proposition 2 : With notations as above,

a) Q,(E) =< w. (E)Q,(U.)
; .G - codim Ui=d * €t
b) q =% o, (£)ay,
1

= codim U,=4
1



=111 -

Proof of proposition 2 : As explained in 4.5, we have QG(E) = qg , and
QG(ui) = qs , that is statements a) and b) coincide term by term. In the
i

Grothendieck group KT(EQ , we have up to higher degree terms

1

(£ = 2o, @00, 1 -

By theorem 3.10, we know (since E and hence F and M are # 0) that the
y-degree of (F] is d , and that of [Ui] is codim Ui" so in grdKTﬁi)

we get

[Fl= ¢ m; (©)[0 1 mod SARICON

codim V.=d
i

By definition of our character polynomials, this means exactly

q§ = b mi(g)qg Q.e.d.
= codim Ui=d i

Corollary : The equivariant characteristic class of E 1is completely determined

by its (G-equivariant!) characteristic cycle.

So far, we have established an equivariant version of proposition 1.4.

Let us now make the link to Joseph's work, i.e. let us prove proposition 1

above. Joseph's definition of a character polynomial Py » as recalled in 4.8,
generalizes in an obvious way to our present module M = I'(u,E) = T'(y,F) ,

by the same proof as before.

and then we get the coincidence QG(E) = q§ = Py

Note, however, that Joseph in loc.cit. does not explicitly use this obvious
extension of his notation. Instead, he introduces the new notation Pg(m)
(see loc.cit., 5.5). In our terminology, his S(M) is the top-dimensional

part of the supporting cycle of M (that is of F)

S(M) = z m. (F)[V.] .
codim Ui=d 1=
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Then he defines

P 1= )} m. (F)p .
5 () codim Ui=d e Vi

But now it suffices to observe that Py = qg by 4.8, and so Ps(M) = Pu
i 1

by proposition 2b) above. This completes the proof of proposition 1. Q.e.d.
Remark : From now on, we shall normally no longer care much about notational

distinctions between Joseph's characteristic polynomials p and our character

polynomials q .

4.10. Equivariance under a Levi subgroup.

Now let G' be a connected reductive closed subgroup of G containing
T . We denote W' =W its Weyl group, and U' any maximal unipotent subgroup
(e.g. U' =G' N U ). Let us now assume that our coherent sheaf F on u ,
viewed as a coherent sheaf on g , is not only T- , but even G'-equivariant,

Then M = TI'(u,F) is a direct sum of finite-dimensional simple G'-modules,

and so its formal character is of the form

ch(M) = & mtp(L'(A),Mech(L'(X)) , (1)
AEA

where L'()) denotes the simple G'-module of highest weight A . The

A-weight-space of L'(A) equals the U'-invariants,

Ul
AFCONIES ATCO L
and since it is one-dimensional, we may also write

mtp (L' (A),M) = dim Mf' (2)
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for the multiplicity of L'(A) in M .

* - [P | 1] 1
Lemma : ch(M) = A(u' ) 1 e P (r det(w)w)ep ch(MU ) . Here u' is the
wEW' o

' is half the sum of roots occurring in u' , and M

Lie algebra of U' , o

is the space of U'-invariants in M .
Proof : By Weyl's character formula (IHu], 24.3),

ch(L'()) = ( £ det@e? PP y/( 2 derw)e™ ) (3)
weW' wEWT

By the denominator formula (cf. loc.cit.), we have

-a/f2

Podet(e” = 1 (e*%e™2) - agu™eP’ )

wEyW' a>o
(notation 3.3). Imserting (3), (4), (2) into (1) above, we.obtain

ch(M) = (dim ME')( L det(u)e

A wEW'

-1

W)y = ¥y

Further computation gives then

ep'ﬂ(g'*)ch(M) z L{dim Mgl)det(w)w(ek+p')

wEW' A

]

t 1
T det(w)w IZ(dim ME )elep
wEwW' A

(z det(w)w)ep'ch(MU') y

wew'
which 1is the formula claimed in the lemma. Q.e.d.
Proposition : If F is G'-equivariant, then its character polynomial
A = is W'-anti-invariant (i.e. Sy = ~dy for each simple reflection

s in W' ).
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. . * .
Proof : Since qy 1is the lowest degree term of A(u )ch(M) , and since the

* . . .. .
lowest degree term of A(E ) equals I o , which 1s clearly anti-invariant,
a>0

it is enough to show that ch(M) itself is W'-invariant. This follows from

the formula in the above lemma, or more directly from (1) and the W'-invariance

of ch(L'(})) . Q.e.d.

4.11. Multiple cross section of a unipotent action.

With assumptions and notations as in 4.10, let us now study further
the case F = OU , where Vcu is a G'-stable closed irreducible subvariety.
The ring of U'-invariants A := O(U)U' is known to be finitely generated
by a theorem of Had%iev ([Ha], cf. also [Kr]) , and so we can define an affine
variety UV/U' := Spec A , called the qﬁotient of V by U' . It is equipped
with the canonical morphism 7 : V -+ V/U' provided by the inclusion A < O(V) .

Generically, this morphism is a '

'good quotient map" for the group action,
that is an (affine) fibration with a single U'-orbit as a fibre, see e.g.

[BGR], Satz 16.6; more precisely, for a suitable weight vector 0 # a € A ,

the localization O(U)a is a polynomial ring over A , and
0wy, =4, ®0IV]

with V an affine homogeneous U-space, U acting via its action on the
second factor (cf. loc.cit.). In particular, dim {/U' = d(A) = dim {Y-dim V ,
that is the GK-dimension of the U'-invariants is given by the dimension of

the variety, minus the "generic orbit dimension'.

Let us now make the assumption, for simplicity, that this latter
dimension is as big as possible, that is that |/ contains a free U'-orbit
(hence a generic subset of them, cf. loc.cit., or [BK]). Following [Jl], 2.6,
and using our notation Y,v from 4.8 for a one parameter group, we consider

the Poincaré series
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R,(£,) := © (dim A ye V) o ¥ enca))
pEA a

*
and define a function rA(v) and a polynomial on t (= t)

pA(v) 1= rA(v) T alv)
a>0

in a manner completely analogous to the procedure of 4.8, which defined

* .
: RM(t,v) = ¢ (ch(M)) , rM(v) , and pM(v) for M = 0(V) . We shall also use
the notations Py = pV/U' , and Py = Py - We note that these polynomials

coincide with Ay = dyyr > a8 defined in 3.19.

Lemma A : If U' acts generically freely on the G'-stable subvariety

Vcu as above, then :

-1 @) 1w
pv B B wew' pu/ul ]

where the product extends over all roots B occurring in U' .

Proof : By restriction to a one parameter subgroup, lemma 4.10 gives

= 7! 1 e . p'
R-M(t,\)) =1 —___'-(E—\:j— e oL det(w)w.e RA(_t,\)) .
g (1-t P77 wEW'

nv(l-t—(B’“))_l £ det(w)w R, (t,v) +---

B weEW!
where ... are power series of higher lowest degree term, which may be
neglected in computing r, and Ty Now by taking lowest order terms,

as in the special case considered in [J1], 2.6, we get

rM(v) = n'(B,u)_l 1 det(w)w rA(v) .
B wEW'!
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and so multiplication by the product of all positive roots, which is W'

anti-invariant, gives the lemma. Q.e.d.

Now we consider a T-stable "multiple cross section" C for the
U'-action on V . By this, we mean a closed (T-stable) irreducible subvariety
Cc V of dimension dim C = dimV/U' = diml~dim U' , such that u'c =V .

By the last assumption, the restriction of functions on
V to C embeds A = O(V)U' into 0{(C) as a subring, and by the first
assumption, d(A) = d(0(C)) , so that the restriction of the quotient map
V- V/U' gives a generically finite map C - V/U' . We denote d(C,V/U")

the degree of this map, or in other words the degree of the field extension.
d(c,V/u') = [Fract(0(C)) : Fract Al .

Note that this is the number of times that a generic orbit in V meets C .

Lemma B : Pe = d(C,V/U')pU/U, .

A proof of this lemma was provided by 3.19.

4,12, TFor example SLZ—equivariance.

Let us specialize the previous discussionsto the case where G' is
of type Ay, and U' = U_ for a simple root o of G . (Here we denote
a

UB the root subgroup of G , for any g ). If Ccu is any closed irreducible

subvariety which is stable under B = TU , but not under G = G' , then
a a a

its G -saturation { := GaC will be a closed (!) G -subvariety (use [St2],
a o

p.68, lemma 2) satisfying our assumptions in 4.11, -provided that qﬂc<:g,.

and we obtain as speciel cases of 4.10, 4.11:

<
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)

: Let C be an irreducible closed Ba-stable

*
Lemma (cf. [J1], 2.5-2.7)

subvariety of v, and Cv“cc u. Then -

1 O
_a_(sa+l)pc =2 pGaC ]

where z =0 if C is Ga—stable, and z = d(C,U/U_a) > 0 otherwise.

4.13. Completing the proof of theorem 4.7.2.

We are now ready to complete the proof of our main results annonced
in 4.7. The argument below is due to Joseph [J1], 3.1, and is repeated for

convenience of the reader in our present frame-work.

Let s € W be a simple reflection, a the corresponding simple root
1 the corresponding minimal parabolic subgroup of G .

For all orbital cone bundles Ki =G xB Ci , we wish to tompute SQG(Ki) as

and PS = B U sBs

a linear combination of QG(Kj)'s , where 1,j = 1,...,r . By 4.6 resp. 4.8,
we may equivalently work in terms of the cones Cj and their character

polynomials gq,.(C.) resp. characteristic polynomials . If C. should
T 73 1

pCj
be Ps—stable, then SPy. = "Pg by 4.12, and we are done.
i i

So let us assume from now on that C, is not Péﬁétable. Let wu_
denote the hyperplane in u orthogonal to the root space for -a . This
hyperplane is also the nilradical of the Lie algebra of P, . In particular,
u is Ps—stable. We conclude that our cone C, is not contained in this
hypgrplane, because otherwise also PS'Ci ? Ci would be contained in u, é_g .

and in GC; = BL , contradicting the fact that Ci is a maximal irreducible
*) In comparing with [J1], note that there are sign errors in propositions 2.6,

and 2.7, and in lemma 2.9 of tJl], which happen to cancel each other in the

calculation in [J1], 3.1.
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subset of & N u . Therefore u_ intersects C, in codimension one; more
v = u
precisely, by lemma 3.11, the corresponding character (istic) polynomials are

related by

pM = GPC- b R (l)
i
where the module M describes the intersection (including multiplicities),
M :=T(C. N Es’oci) = 0(cH/x_0(c)

where X_, is a root vector for -o . Let us denote its supporting cycle

as in 1.4, i.e.

supp(M) = L mU(M) (vl . (2)

— U

Here the irreducible components V of C; n ug = supp(M) are all of codimension
one in C; » by Krull's Hauptidealsatz. Now we claim that for each such

component |/ , the Ps—saturation PSV is either { , or else one-of the other
C.'s , for some j = j(s,VV) # 1 . In fact, since each { 1is B-stable, it

]

follows that it is either even Ps—stable, or else has dimension

dim B_V = 1+dim V = dim C,
(in Yot €0 i &)

But since PSU is irreducible and contained in Gh n.E\{,which is equidimensional,
it follows that then PSU must be one of the other (Ps—stable!) irreducible
components of O; N u , that is PSV = Cj for some j = j(s,V) # i . Now

we apply 4.12 to conclude that

—-é (1+s) Py = 2P (3)

C.
J

for j = j(s,V) and some integer
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z = z(s,V) = d(Vv,c./U_ ), (4)
3’ T—a

Note that '(3) holds for all V , if we just put z(s,V) = 0 1in case PSU =Y

(use 4.11).

Now we have

-1
P. =0a p,=a rm,(Mp
Ci M v v v

by (1), (2), and 4.9, and so we compute, using (3)

~a"Ns+)py, = a3 m () (s+D)p,,

(s-)p
¢ v

r m,(Mz(s,V)p
v VT T ¢,
Q.e.d.

4.14. Reproving Hotta's transformation formula.

The proof yields the following more precise formula, A subset of
* .
T X is called s-vertical (cf., Hotta's terminology [Ho]), if it is a union
of projective lines of type s , i.e. projecting onto a conjugate of the line

PS/B in X = G/B .

Corollary : If K, is s=vertical, then SQG(Ki) = _QG(Ki)-’ and otherwise
A
sQq(K;) = QgKy) + £ gy QK (4)
]

S . . . . .
where nij = 0 unless Kj 1s s-vertical and meets Ki in codimension 1,

in which case



Here the summation is over all irreducible components W of Ki n Kj
(necessarily of codimension one), oy is the intersection multiplicity of

Ki and Kj at W , and 2 7 is the non-negative integer

z(s, Wnu) defined in 4,13, .
~ %
Remark : By applying the canonical map KG(X) - K(X) = H (X) , which forgets

the G-action, to (4), we reobtain Hotta's formula in the version of our

theorem 1.15.

4.15., On explicit computations of our characteristic classes.

Let us conclude this chapter with a few remarks and examples concerning
the explicit computation of our characteristic classes Q(Ki) in H*(X)
introduced in chapter 1. The first point to be made here is that it is more
convenient to perform the computation on the level of equivariant K-theory,
using the fact that the cone bundle under consideration is a G-equivariant
one. Of course, to know Q(Ki) , or to know QG(Ki) , amounts to the same,
in view of 4.6 and 4.7 (theorem 1). However,actual computations tend to be
much more pleasant in KG(X) Z R(T) , a unique factorization domain, than in

*
H (X) , which has lots of nilpotent elements.

The second point is that the interpretation of QC(Ki) as a
character polynomial qT(Ci) by 4.5 is helpful for calculations. (Here C;

denotes the fibre of Ki .) Let us give an example.

Proposition : Suppose C. is a complete intersection of codimension d in

o e dar iyt of

u , defined bfYunations fr,...,f, € O(Ci) which are T-semiinvariant, of

weights THyseeesTHy Then

QK = 2g = kg kg
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Proof : This follows by repeated application of lemma 3.1}? Q.e.d.

For example, if f,,...,f, are root vectors x X , then
’ 1 -

d TOyseees 4
QG(Ki) = Q0.0 and we recover the example treated in 1.6. In this
example, all equations are linear, and the cone bundle Ki is actually a
vector-bundle, so all computations are very easy. Let us therefore conclude

with a less trivial case, where Ki is not a vector-bundle, and which is also

covered by the proposition above.

4.16. Example.

Take G = SLn . For n < 3, all orbital cone bundles are vector
bundles, and the computation of their characteristic classes are covered by
1.6. For n = 4 , there occurs the following orbital cone C , which is not
linear, but quadratic : It consists of all block triangular matrices of rank < 1

of the form

This cone C 1is a complete intersection given by the three equations

a =0

12 » 83, =0,

31489478933, = 0 3

these equations are semi-invariant under the group T of diagonal matrices
in SL 3 their weights are

a) » A3 5 @yFlaytay = og,tang

respectively. Here we denote aij the root with root vector the matrix unit

eij , and a; i= ai,}+1 the simple roots (1 <1<j<nm)
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Now we conclude from 4,15 that the character polynomial of C is

given by
Pe = aoy(a;+2aytag)

This example may be generalized as follows., Let n = p+q with
q>p2>2. Let C(r,p,q) denote the set of all block triangular matrices

of the form

(*)

p-g
n

y Where

a a
. p,p+l p,n

is a p by q matrix of rank < r . Then C(0,p,q) c C(l,p,q)é = c(p,p,q)
is a chain of orbital cones, and these are all the orbital cones which are
contained in the vector space of all matrices of this form (*). Now we take
the particular case p=9q , and r = g-1 : The cone C(p-1,p,p) 1is again

a complete intersection, given by the linear equations aij =0 (1<i,j<p,
or p<i,j<n) , and the single non-linear equation det A =0 , of

weight

g o= Q. +20 +30:3+....+pap+(p-1)ap+l+....+a

1772 n
p-1
=pa + I ifa.+a__.) .
Prj=p * 77°
%o again by 4.14, we conclude that
Prgo_ = (a, _*a, _.teeeta ) I . I a.. .
¢lp-1,p,p)  1,n 72,n-1 PP cicicp M peicien M

For other values r,p;q , the cone C(r,p,q) need no :longer be a complete

intersection, and the computation of characteristic classes becomes more delicate.
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4.17. Remark. A possible geometric generalization of proposition 4.15

We conjecture (along with W. Fulton) the following generalization

of the Whitney sum formula for Chern classes of vector bundies ([Ful], p.51)

to Segre classes of cone bundles. Suppose we have a diagram of cone bundles
‘ Q?fi m
Ke~——>E ——> & ﬂi
' i=1

where the vector bundle E 1is mapped by a fibre preserving algebraic but not
necessarily linear map to a direct sum of line bundles, and the local complete
intersection cone bundle K of codimension m in E is defined scheme

theoretically by the vanishing of &5fi . Then

s(E) = s(K) s( Q‘Ei) ,
}

or equivalently, the Segre class of K may be computed from the Chern classes

of E,L £ , as
m

100"

s(K) = c(ﬂl)...c(ﬂm)/c(E)

Notice that a special case of this is implied by proposition 4.15. This
illustrates the power of the methods of equivariant K-theory in algebraic

geometry.
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§5. Characteristic classes and primitive ideals

In this chapter, G is again a semisimple group with Lie
algebra g, and we use the notations introduced in 1.5. As in
chapter 3 and 4, we denote'by A the lattice in t* of in-
tegral weights (3.1) of our maximal torus T c G, by 2 ¢ &
the "dominant integral weights" (3.16) with respect to the
ordering fixed by our choice of a Borel subgrpup B o T, and
by e € 9 half the sum of weights in b. We furthermore de-
note by U(g) the enveloping algebra of g, that is the ring
of differential operators on G invariant under rigth trans-
lations. Our purpose is - to study g-modules, that is to say
U(g) modules. In particular, we are interested in the annihi-
lators in U(g) of simple g-modules, called primitive ideals.

We denote by L(2) the simple g-module of highest weight A
(which is defined as the unique simple quotient of the univer-

sal (or Verma-)module M{x) = VU(g) @p(pykar Where Kk, is a one-
dimensional b-module of weight A). Then the center of U(g) s a
polynomial ring in dim T variables (Harish-Chandra, Chevalley),
acts by a character on L({(Xx) which is denoted Xy3 we note that
by Harish-Chandra's theorem, X, = X, if and only if w» = w.A,

for some Weyl group element w € W, where the "shifted Weyl group
action" w.x = w(Xx+p)-p occurs.lF§nally, it will be convenient
to identify g* with g, and t* with t by means of the Killing
form. We apply analogous notations to the group GxG, so for in-

stance (A,u) = t* x t* defines a central character X(x,u) of

U(g x g) etc..



-125-

5.1 Characteristic class attached to a g-module

Let M be a finitely generated g-module, with central cha-
racter x,, given by the dominant integral weight . Let
M = D; QUTQ) M denote its localization as a coherent D;—module
on X [BeBel, where D; is the sheaf of differential operators
on X with coefficients in the line bundle L(A) given by x.
Chose a good filtration on M, and consider the associated graded

sheaf grM as a coherent sheaf on T*X. Then we define the cha-

racteristic variety of M by

Ch (M) := Ch (M) = supp gr M,

the characteristic cycle of M by (notation 1.4)

-
=
—
H
(9]
-
——
=
St
1

supp (gr M),

and the characteristic class associated to M by (notation 1.3)

P(M) := Q(gr M).

Zd(X), where d is the codimen-

This is a cohomology class in H
sion of Ch(M) in T*X; if convenient, we also consider P(M)
as a harmonic polynomial, homogeneous of degree d on t (con-
vention 1.6). Let us point out that the above notions are well-
defined , i.e. independent of the choice of a good filtration.
For P(M), this is proved the same way as for Ch(M) (or a spe-

cial case, G = 1, of Lemma 2.12}. In fact, even more is true:

P-apa-tTion 70 cneLn i Ter oL L, TR U G A S

T N O S LA A SO0 A ENGRY off SO R TAVE o5 s RN B R O g
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Proposition: The characteristic class of a module is entirely de-

termined by its characteristic cycle. More precisely, if V ,V

1o
are the irreducible components of Ch(M} of mimimal codimension (d),

r

with multiplicities Mysoen,m, in Ch(M), then (notation 1.4)
P(M) = m, Q(Ui) o +‘hf Q(Vr)’

This is true by proposition 1.4.

5.2 Translation invariance

Let A,u be dominant integral weights. Let E(u-\x) denote
the finite dimensional simple g-module with extremal weight wn-A.
Let M be a g-module with central character x,. Then T) M is
defined as the direct summand of central character Xy, of M®E(u-A).

The"translation functor" T: is then an equivalence of the catego-

ries of finitely generated g-modules with central character Xy

resp.  x, ([BeGel, [Jal).

Lemma: Ch(TY M) = Ch(M), and P(TiM) = P(M).
Proof: The second statement follows from the first one by propo-
sition 5.1. Let M resp. T: M denote the D;- resp. D;-module
corresponding to M resp. Ti M. Then the functor T; thus de-

fined is equivalent to the '"geometry. translation functor"

Mi——— 0(u-21) ® M, where 0(u-2) denotes the invertible sheaf
X

corresponding to the line bundle L(n-x). Since O{(m-r) 1is lo-

cally isomorphic to OX’ it follows that this functor does not

change the characteristic cycle. Q.e.d.

vy

- P . P -, . + « . oo .
R TR S uY L st L L BoduBG Y L)y '

LA T Y NS VI O Sxte e oL
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Remark: By the lemma, all of our results stated in [BB3] for the
trivial central character (case » = 0) only, extend to the case

of an arbitrary central character Xy with A € @ without change.

5.3 Characteristic variety of a Harish-Chandra bimodule

By a Harish-Chandra bimodule , we mean a (g x g,K)-module

with finite K-multiplicities, where K is the diagonal copy of

6 in G x G. (Here we use the terminology of [BB3l; so the mo-
dule is K-equiva}iant in the strong sense that the differential

of the K-action coincides with the action of the diagonal subalge-
bra k of g x g.) For any finitely generated Harish-Chandra bi-
module H with integral central character X(x,u) given by a

1

pair {(x,u) of dominant integral weights we define modules L

resp. L™ of central character Xy resp. x, by

1 r

LY oi= M(u)Y ®U(gr)H resp. L' := M(a)Y ®1I(g"1)H’

where e.g. gr = 0 x g denotes the right copy of g in g x g,
and M(u)Y is the universal (Verma-)module of highest weight w,
considered as a right g-module via the principal anti-automorphism

of U(g). Then H+—— L! resp. Hw— L" are equivalences of

the category of Harish-Chandra bimodules with central character

X{x,u) with the category of all finitely generated (g,B)-modules

with central character X, Tresp. Xy
For a geometric interpretation (and proof) of this well-known re-
sult of Bernstein-Gelfand [BeGel, Joseph [J4], and Enright [E],

see [BB3],cf. also 5.9 below. In particular, this establishes bi-

jections of the simple objcets (up to isomorphism); we shall de-
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note by H&A’”) for any w& W the simple Harish-Chandra bi-
module corresponding to L1 = L (w.A) resp. to Lr = L(w'1.u)

1

(f. [(BB3l, 3.4). We denote H" the g = gl-module obtained

r

from H by forgetting the g -action.

Theorem ([BB31, 5.8, [Gil): Let H be any finitely generated Ha-
r

rish-Chandra module of central character x(>L nE and let L be

the corresponding (g,B)-module of central character x, as above.

Then

chnly = 6 xB v(L").

Here V(Lr) denotes the associated variety of Lr, that is the
support of gr L™ in g* = g with respect to some good filtration.
Of course we obtain an analogous result Ch(H") = 6 xB V(Ll) by

interchanging left and right.

Corollary: Ch(Hi) is a union of orbital cone bundles (termino-

logy 1.7).

In fact, it is enough to show that V(LT) is a union of orbital

because then Ch(Hl) is the union of the orbi-

1>~
tal cone bundles Ki = G xB Ci by the theorem. Let us briefly re-

cones C .,C

r’
call the reason: The localization of L" on X is a holonomic
D-module and its characteristic variéty is a union of closures of
conormal bundles of Schubert cells, which project onto orbital
cones under Springer's map =n: T*X —> g. On the other hand, =

maps Ch(L") onto V(L") by [BB3], 1.9.
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5.4 Homogeneous Harish-Chandra bimodules

We denote d(M)} = dim V(M) the Gelfand Kirillov dimension of
a g-module M. for a Harish-Chandra bimodule H as in 5.3 it is
obvious, that d(H') = d(H) = d(H"). We call H (left) homoge-
neous, if d(M) = d(H) for each left submodule 0 # M ¢ H. It is
easy to see that the following are examples:
a) Each siméle Harish-Chandra bimodule H = H&A’") is homogeneous
(cf. lemma 5.10).

b) For each primitive ideal J, H = U(g)/J 1is a homogeneous Harish-

Chandra bimodule. The g x g action is defined by
(x,y)u := xu - uy for x,y € g, u€ H,
see [BB3], § 3.

Corollary:1 (notation 5.3): If H is homogeneous, then Ch(Hl)

is a union of orbital cone bundles K , K all of the same di-

1r e

r\)

mension
dim Ch(HY) = dim X + d(L") = dim X + % d(H).

Proof: By theorem 5.3, it suffices to show that V(Lr) is equidi-

mensional of dimension d(Lr) = % d{H). This follows from the fol-

lowing lemma by a general theorem of Gabber-Kashiwara [Lel. Q.e.d.

Lemma: L" is homogeneous of dimension d(L") = % d(h).

Proof: The equivalence of categories, sending H to Lr, described

in 5.3, induces an isomorphism of the lattices of submodules. Let

T T P A LD - A R
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L' # 0 be a submodule of Lr; and let H'e¢ H be the correspon-

ding bisubmodule H' & 0 in H. Then V(H') = =(Ch(H'l)) =

(G xB V(L')) = GV(L') = GC1u...uGCr for some orbital cones

C .,C by 5.3. But dim GCi = 2 dim Ci for each orbital cone

10

Ci by well-known results of Steinberg and Spaltenstein (see 1.7).

Hence d(H') = dim v (4'1)= dim GV(L') = max dim 6C, = 2 max dim C,
- i
= 2 d{(L'). Since H 1is homogeneous of dimension d(H), it follows

now that d(L') = % d(H') = % d(H). Q.e.d.

r

From the above proof, we make the following

Observation: Each irreducible component KiofCh(Hl) maps {(under

r) onto an irreducible component of V(Hl).

In fact, u(Ki) = 1(G x C.) = GCi has dimension dim GCi = 2 dim Ci’
while dim Ky = dim X + dim Ci' Since the last dimension is inde-
pendent of i by the corollary above, the first one is also, hence
dim u(Ki) = dim V(Hl) = d{H), so n(Ki) must be an irreducible com-

ponent of V(Hl).

Note that in particular this says that V(Hl) is also equidimensio-
nal, which is of course a direct consequence of the equidimension-

ality theorem of Gabber-Kashiwara quoted above.

Corollary 2: If M c M' are left submodules #% 0 of a homogeneous -

Harish~Chandra bimodule H, then

a) Ch(M) is‘equidimensional of dimension dim Ch(Hl), and

b) d(M'/M) < d(H) implies Ch(M) = Ch(M').



a)

5.

-131-

Proof:

Let H' be the bimodule generated by M. Then H' is finitely
generated as a left module, hence is a finite sum of homomorphic
images Mj of M. It follows that Ch(H‘I) = U Ch(Mj) c Ch(M),
hence Ch(H‘I) = Ch(M). Now a) follows from Co%ollary 1.

If M'/M would contribute to the characteristic cycle of M',
then Ch(M'M) would contain an irreducible component of Ch(M'),

hence V(M'/M) = n(Ch({(M'/M) would contain an irreducible compo-

wncomponent'of V(M') by:-the.above.observation, hence. d(M'/M)

weed (M )ose-d{H), contradicting. the assumption. Q.e.d.

5 Characteristic cycle and class of a Harish-Chandra bimodule

With notations as in 5.3, we have the even stronger result:

Theorem: (cf. (BB31, 5.9): gg(Hl) - 6 x5 v(Lh).

r

In more detail, this means that if the associated cycle of L is

LTGRO

with C,,...,C. the different irreducible components of V(L"),

1

then the characteristic cycle of H is

where K., = G x

hinl) = m (K, + oo+ (K]

B
i Ci’

= 1,..,r).

and the positive integers m, are as in (2)
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Corollary 1: If H 1is homogeneous, then P(Hl) = mQ(Ky)+...+m Q(Kp),

and deg P(Hl) = dim X - % d(H).
This follows from 5.1 and Corollary 5.4.1.

Corollary 2: If H 1is homogeneous, then Ch(Hl) is entirely deter-

mined by P(Hl) {and conversely).
In fact, the polynomials Q(K1),...,(K

r,) are linearly independent

by corollary 1.8.1. Hence P(Hl) determines the multiplicities

LPIII uniquely.

r

Corollary 3: If H 4 0, then P(H!) % 0.

k]

5.6 Identification with a character polynomial

Recall that we defined in 3.9 a character polynomial M for

any finitely generated T-equivariant S{u)-module M. Now we con-
sider a finitely generated (g,B)-module L as in 5.3, and we de-

fine its character polynomial p or p(L) by

- (1)
PL i= AgpL

where grlL denotes the associated graded module with respect to
some T-equivariant good filtration of L. It is obvious that such
a filtration exists, and that grL is a T-equivariant finitely
generated S{u)-module, so qgrL is defined. Since the formal cha-

racters of L and grL are the same, Corollary 3.9 gives
p_ = gr &(u*) ch(L). (2)

We take this formula as an alternative definition of PL, @n terms

oot F e T
R B St ! A
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of the formal character of L, which exhibits the independence of the

choice of a filtration.
Theorem. (notations 5.3): P(Hl) = p(Lr) (3)

Proof: Let C

.,C denote the irreducible components of V(Lr)

10>

of minimal codimension d, and let MysennsMy denote their multi-

plicities in !(Lr), so that by (1) and proposition 4.9.2:

r

™y o .
P(LY) = agp = 2 m qc . (4)

—
st

By theorem 5.4, Ki

u
o)
>
[ep]

for i =1,...r, are the irreducible

components of Ch(Hl) of minimal codimension d in T*X, so

peel) = 2 omy aky) o (5)
i
by 5.1 and theorem 5.5. Now we have by 4.6, resp. theorem 4.7.1,

resp. 4.5

- o
Q(Ki) = QG(K-) = QG(K-
for each i = 1,...,r. So the sums in (4) and (5) are equal term

by term, and (3) follows. Q.e.d.

Remark: This proof of the theorem is based on the harmonicity of the

character polynomials e . (theorem 4.7.1). We shall give in 5.9 an’
1

alternative proof, based more directly on the harmonicity of the cha-

racter polynomial p(Lr), which seems more satisfactory.
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Corollary: For a simple Harish-Chandra bimodule, we have (notation

5.3)

p(Lw™Tu)),

P(H&X,H),l)

P(H(Aau),r)

W p(L(w.x)).

5.7 Harmonicity of character polynomials

Let L be any finitely generated (g,B)-module of central cha-
racter Xy Let us recall from the theory of highest weight modules
[pil, [Jal that within an appropriate Grothendieck group, L 1is ex-
pressible as an integgr linear combination of Verma-modules M(v)

of highest weight v = w.u, we W, say

(Ll = = aw(L) (M(w.n)], (1)
WweEW

where the integer coefficients aw(L) are uniquely determined. We
list some properties of the character polynomial p(L), which are

well-known, but briefly reproved here for convenience of the reader.

Proposition:

a) p(L) 1is homogeneous of degree a':= dim u - d(L).
b) p(L) =4, T a (L) (w.w)? (2)
T wWeW

c) a 1is also characterized as the smallest integer >0 that makes

" -the right hand side of (2) nonzero.

d) Let af(L) denote the group ring element z aw(L)w.
- - WEW
Then a(L) %! (u+p)J is zero for j<a, and is p(L) for j = a.

e) P(L) is harmonic.
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Proof:

a) By theorem 3.10, the degree of the character polynomial equals to
the codimension of the support of QrL in u*, hence a) follows
from d{L) = dim V(L) = d(grL);

b),c) Since the formal character of a Verma-module is obviously given

by ch(M(v)) = A(g*]'1ev [DPil], equation (1) gives

a(u*)eh(L) = £ a (L)e" ", (3)
WEH

Writing out the exponentials as power series, we obtain

[a(u¥)eh(L)1) = 2 a (L) ) (w.w)
WEW
for the homogeneous term of degree j of (3), for all j > 0.
Now b) and c¢) follow from a).

d) follows from a),b),c}) by binomial development of (w.u)d = (w(u+p)—p)j,
using induction on j.

e) Let Q be a constant coefficient differential operator on t
which is W invariant, say Q@ homogenous of degree d > 0. We
have to prove Qp(L) = 0. This is clear for deg Q > deg p(L).
So let d < a. By Leibniz' rule, we have Q- c.Q(l)la'd for
some scalar ¢ independent on A € t*, where we consider Q as
a polynomial function on t*. Using the formula for p(L) given

in d), we obtain

O
o
—
—
—
1]
fan)
[a1]
——
—
—
I
—
=
+
©
—
=1}
u
o

a (L) Q %! (u+p)?

; Qu+p) a (L) (u+P)a-d = 0,

o

where the second equation comes from W “invariance of Q, and
the last comes from d), since a-d ist strictly smaller than a.

Q.e.d.
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5.8 Equivariant characteristic class for a Harish-Chandra bimodule

Let H be a finitely generated Harish-Chandra bimodule with
central character X(A 0) as in 5.3. Then H has a localization

H on the flag variety 12

X x X of the group G x G. By defini-
(A,u)

tion (cf. [BeBel, [BB3]), H 1is the coherent (2 , K)-module
. _ (l,]J) H,
=17 By (gxg)
where D(A’") denotes the sheaf of rings of differential operators

with coefficients in the line bundle L (x,u) on Z given by (x,u).

Now let pl: Z =.X x X —— X denote projection onto the left copy

of X. Then the direct image sheaf pl H is a Qi-module, which still

éarries a G action, G acting via K. Note, however, that while H

is K-sequivariant in the strong sense of [BB31, 2.2, the module plg
is only "weakly G-equivariant" in the sense of 2.12. The following

is easy to see (cf. [BB31, 5.10a) resp. 5.5a)):

Lemma:
a) H admits a K-equivariant good filtration (ﬂn)neZ'
b) This induces a G-equivariant good filtration (pign)nez on piﬂ.

With respect to such a filtration, the associated graded module

gr pig is a G-equivariant OT*X-module, and hence defines a class
in KG(T*X), which is.independent of the choice of filtration'by
lemma 2.12. Under the composition-of the maps KG(T*X) — KG(X)
—— R(T) ¢ g(i*), this class determines a power series on t, of

lowest degree homogeneous term QG(grpiH) (see definition 4.5).
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Now we define

Po(H) 1= Qglarpik).

Proposition: P(Hl) is the harmonic part of PG(H).

Proof: One has to observe that plg is isomorphic to the localiza-
tion of H' on X (cf. [BB3I, proposition5.4). Then

Dy = qtar ol #) = aglor pat)? = po(H)H

P(H
fbllqws from proposition 4.6. Q.e.d.

5.9 Alternative proof of identification with character polyno-

mials (5.6).

With notations as in 5.8, let us compute PG(H), using the

r

functor H +——b described in 5.3. Let us first recall the

geometric interpretation of this functor (cf. [BB3], 3.6): The in-

clusion of X into Z = X x X as the right copy x" = (B} x X

- *
is denoted ipe The restriction ér = irﬂ of the gék’u)—module
H to X" = X is a B-equivariant D)-module, which is canonically

isomorphic to the localization of L™ on X, and the functor

*

ir: Ht—— ér establishes an equivalence of the category of co-

herent (Dél’”), K)-modules with the category of coherent (g;,B)-

modules. We note that L7 % r(x,L") (cf. loc.cit.).
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Lemma-(cf. [BB3], 5.10): A K-equivariant good filtration on H 1in-

*
duces a B-equivariant good filtration on irg = ér. With respect to

such filtrations, we have a B-equivariant isomorphism of graded B-

equivariant Ou-modules

1

i*(gr pu H) T gr r(X,i ",

H) = gr L

*
r=

Here j: Ue— T*X denotes the inclusion of the cotangent space
at the base point; also we notationally do not distinguish between

the O(u)-module gr L™ and the corresponding sheaf of 0,-modules,

since u is affine.
Theorem (notation 5.3): PG(H) = p(L").

Proof: By definition, Pg(H) = Qg(gr PLH), with notations as in 5.9.

By proposition 4.5, QG(gr pig) is the character polynomial of
j*(gr piﬁ). By the lemma, this coincides with the character poly-

nomial of gr L', hence with p(L") by definition 5.6(1). Q.e.d.

As a corollary, we obtain the following alternative proof of theo-

rem 5.6:
P(HY) = Po(HM = p(LM% = p(L™)

by propositon 5.8, the theorem above, and proposition 5.7 e).

Q.e.d.

Remark: In all preceding considerations, we may obviously inter-
change left and right sides to obtain analogous results. For in-

stance, we define the "right" equivariant characteristic class of

. PR ey roL wobel ) - . aAE e — . Vet e



-139-

H by PG(Hr) 1= QG (gr p:g), where p': X x X — X denotes pro-

jection onto the right copy, in complete analogy to the "left" one,

PG(HI) = PG(H) in 5.8, and thén we obtain
Po(H) = p(Lh) = p(H")

in analogy to the theorem and corollary above. In the sequel, we

have the statement of right analogues to the reader, and consider
only left characteristic cycles and classes P(H'); we shall even-
tually even give up to write the "1", in order to avoid too clum-

sy notation in our formulas.

5.10 Some non-commutative algebra

The Goldie rank of a module M, denoted rk M, is the maxi-

mal number r such that M contains a direct sum of r sub-
modules % 0. A module # 0 1is called uniform, if any two sub-
modules & 0 have intersection ¢ 0, i.e. if rk M = 1. If M
is noetherian, then clearly rk M < =, and M contains a direct
sum of rk M uniform submodules; moreover, as a matter of fact
from general ring theory, any direct sum within M of uniform
submodules (necessarily of < rk M terms) can be extended to a
direct sum within M of rk M wuniform terms (see e.g. [Gol,

Theorem 1.07).

Proposition: Let H be a simple Harish-Chandra bimodule. Let

U be a uniform submodule of Hl. Then

1

a) H* contains a direct sum M of rk n copies of U.

b) d(H!/M) < d(H).




Corollary:-a) Ch (Hl) =rk H

b) Ch (U) 1is independent of the choice of U.

Note that corollary a) 1is immediate from the proposition by

corollary 5.4.2, and b) follows from a) on dividing by the

positive integer rk Hl.

Lemma:

1

a) H is homogeneous of GK-dimension d{(H) = d(A), where

A = U(g)/Ann HI,

b) Every proper homomorphic image of U has smaller GK-dimension.

Proof of the proposition: Here we write H as a left-right U(g)-

bimodule. Let 0 # Eec¢ H be a finite dimensional K-submodule;

1

then H = U(g)EU(g) = U(g)E, so H is finitely generated (hence

noetherian). By simplicity of H, UU(g) = H, hence UF = H for

some finite dimensional subspace F ¢ U(g) by noetherianness of

Hl. For each f € F, Uf is a homomorphic image of U. If Uf # 0,

then d{(Uf) = d(H) = d(U) by homogeneity (lemma a)), so Uf T U
by lemma b). We have proved that H = UF 1is a finite sum of copies

of U. Let M = Uf1+...+Uf be a maximal sub-sum (f .,f .  EF)

r 1> r
such that the sum is direct. It remains to prove that d(H/M) < d(H),

and that r = rk Hl. Suppose d(H/M) = d(H). Then since HY is a

finite sum of Uf's (f € F), d(H/M) is the maximum of d(U%), where
~— denotes the quotient map H — H/M. Hence d(H/M) = d(H) implies
d(Uf) = d(H) for some O % f &€ F, so Uf maps isomorphically onto
Uf by lemma b), so Uf n M = 0, contradicting the maximality of M.
Hence d(H/M) < d{H) 1is proved. Clearly r < rk Hl. If r < rk Hl,

then by the remark preceding the proposition, there exists a sub-
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module 0 + U' ¢ H! such that U' s M = 0. Since this implies

d(H/M) > d(U') = d(H) by homogeneity of Hl, this contradicts

d(H/M) < d(H). Hence we must have r = rk H!. Q.e.d.

Proof of the lemma:

a) If Nc H' has d(N) < d(H), then d{NU(g)) < d(N) < d(H), so

NU(G) would be a proper bisubmodule of H, hence N = 0 by sim-

plicity of H. The inequality d(H) < d(A) 1is trivial, and the

opposite inequality follows e.g. from the fact that Al

1

embeds
into a finite direct sum of copies of H" (cf.e.g. [BB3], 4.10).

b) Let T~ : U ——> U be a homomorphism with kernel N % 0. Let
UeEU, and L = {a € A l-au = 0}. We claim that this is an essen-
tial left ideal of A, i.e. that every left ideal L' % 0 meets

L non-trivially. In fact, suppose L'un L = 0. Then L' — L'u

is injective, so t' —» L'u 1is injective, and L' A N = 0, con-
tradicting uniformicity of U. Now it follows from [BGR], 2.7

that L <contains a nonzerodivisor s of A, since A 1is a prime
noetherian ring. Now we conclude that d(Au) = d(A/L) <

d(A/As) < d(A) - 1 by the argument given in [BK21, 3.4 or by [B31],
1.3. By a) this proves d(U) <.d(A) = d(U). Q.e.d.



-142-

5.11 Definition of the polynomials P

W

Lemma: Let U -be a uniform left submodule of Hio,o)

for some

w € W. Then for every pair A,u € @, the module ™y (notation

0
5.2) is isomorphic to a uniform submodule of H&A’“)

. x o (0,0),1 _ (x,0) l0,0)y1 _ , (,0),] . A
Proof: We have T0 Hw = (T(o,o) Hw ) = Hw , S50 U ”iToU
is a left submodule of H&A’O); since Tg is an equivalence of

categories, it preserves the lattice of submodules up to isomorphism,

so U wuniform implies U' wuniform.

is a direct summand of

(x,0)
W

Now we have H&X’“) - Tidm) H&A‘O)

(x,0)

HLA’O) ® E(0,u) (notation 5.2); let p: H ® E(0,n) — H&A’”)

be the projection map. As a left module, H&A’O) ® E(O,n) is a
finite direct sum of copies of HLA’O); hence a finite sum of copies
of U' (by the first part of the argument in 5.10). So p(U") % O
for at least one of these copies, U" say. But then d{(p(U")) =
d(H&A’“)) = d(H&A’O)) = d{(U') by homogeneity (lemma 5.10a)), hence
p(U") = U" = U' by lemma 5.10 b). Q.e.d.

Theorem: Let w € W. Take any two pairs {(A,n), (x';u') of domi-

nant integral weights. Let U resp. U' be uniform left submodules

W) then ch(U) = CH(U'), and P(U) = P(U').

W _— = = _

(A, m)
of H, resp.

Proof: The characteristic cycle Ch (U) 1is independent of the
choice of U by corollary 5.10.b). Making a choice as in the lemma,
we see that this cycle is independent of w, and also of X by 5.2.

The second claim follows by 5.1. Q.e.d.
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Definition: For each we€& W, we denote Py 1= P(U) the polyno-

mial uniquely determined by the theorem.

: (l,].l) - ()"!u)il v
Corollary: P(Hw = rk Hw Pw.

This follows from corollary 5.10 a) by 5.1. In particular, we note

that Pw is a homogeneous harmonic polynomial of degree a = a(w).

5.12. Relation to primitive ideals

Let J be a primitive ideal of U(g), and A := U(g)/J. We
note that the left resp. right modules have the same Goldie rank,
denoted rk A, also called the Goldie rank of J. This number
has the following well-known alternative interpretation: Let S
denote the set of nonzero-divisors of A; by Goldie's theorem, A

admits a ring of fractions S'1

A, which is simple artinian, and
hence isomorphic to the ring of n by n matrices over some skew
field (Wedderburn-Artin theorem) ; then n = rk A.

Now assume J of integral central character We recall that

Xy +

J = I(w.x) := Ann L{w.X) (1}

for some w € W (Duflo's theorem [D]), and that a simple Harish-

Chandra module H&A’") has left resp. right annihilator
Ann H&A'“)’l = I{(w.X) vresp. Ann H&A’“Lr= I(w'1.u). (2)

(Note that we are still considering left-right U(g)-modules.)

The last result (due to Joseph [J5],is easily deduced from the
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equivalences stated in 5.3 (cf. also [Jal, 7.9).

Theorem: Let A := U(g)/I(w.x), where weé& W,x€ Q. Let U be a

uniform left ideal of A. Then

a) P(A)
b) P(U)

rkA P(U)

Al

Pw (definiton 5.11).

Corollary 1: Pw = Py for w,y € W in the same left cell.

Here two Weyl group elements w,y are said to be in the same left

cell, if I{(w.x) = I(y.x) for one (and hence for all) x» € Q. Note

that the corollary follows from the theorem because P(A)/rkA de-

pends only on the ideal I(w.A).

Notation: The corollary justifies the notation PJ = Pw if w is

any element in W such that J = I(w.Xx).

Proof:
a) Considered as a Harish-Chandra bimodule, A has finite length,
and hence a socle H # 0, which obviously must be simple by

primality of A (as a ring), so
" socle(A) = H 2 HSA’X) (3)

for some v € W. Also d(A/H) < d(A) by [BK21l, Satz 3.4, and
hence P(A) = P(H) by corollary 5.4.2 and 5.1. Now let

U' := U n H; then also d(U/U') < d(A/H)<<'d(AL‘sb'th_wefmain
conclude P(U) = P{U') by loc.cit.. We also must have

l < rk A, and then we

rk A = rk Hl, because otherwise rk H
could find a uniform submodule of Al jnjecting into A/H

- e . . A S " . ,
v . . ! f RIS PR e Lt
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by the remark preceding proposition 5.10, which would contradict
d(A/H) < d(A) (using homogeneity of Al). Applying corollary
5.10a) (plus 5.1) to H and U' (which is of course uniform), we

may now conlude

rk HD P(UT) = rk A P(U).

v
—
o]
—
1l
-
—
o g
~—
1]

b) Note that (3) gives us P(U) = P(U') = P, but only for a par-
ticular element v in the left cell of w, so this is not enough
to prove b). Instead, we proceed as follows. We embed A1 into
a finite direct sum of copies of Hél,o) (using (2) and [BB31],
lemma 4.10). Projecting onto a suitable one of these copies, we
get a homomorphism of U' into H&A’OLl with nonzero image.

(A’ )’1
iN °

Since is homogeneous of dimension d(A) (use (2) and

lemma 5.10a)) we have d(pU') = d(A), so pU' = U' by lemma
5.10b). We have proved that H&A’O)’l contains a copy of U',
so (by definition 5.11)

P(U) = P(U') = P . Q.e.d.

Remark . 1: We have also seen in the proof that:

Corollary 2: There exists v € W such that TI{w.x) = I(v.xr),

P(ULg)/T(w.n) = p(r{MA)y, (4)
and

rk-U(g)/1(w.x) = rk ﬂé*’*)’l. (5)
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Remark 2: The choice of v above in the left cell of w is uniquely
determined by (3). We further note that v2 = 1 (Duflo [D], Propo-
sition 9). Since H(l’x) = T(A’A) H(O’O) is the simple socle of

v (o0,0) v |
U(@)/1(w.2) = T2 (U(g)/1(w.0)), it can be concluded that v is
uniquely determined by w, i.e. independent of x (cf. [Jal, 7.11).
Logically, we shall not have to use this fact here, because we any-

way know by corollary 1 that Pv is independent of A.

Remark 3: We note that in general (4) does not hold with w in place

of v. Although we do have (even for arbitrary w € Q)
CR(U(g)/T(w.2)) = ch (R (ca xB v (Lew oun,

the corresponding equation for characteristic cycles (or equality

for characteristic classes, Cor. 5.5.2) is only true up to a pro-
portionality factor, as is seen by combining theorems 5.11 and 5.12.
In fact, the factor is the ratio of two Goldie-ranks and is a func-
tion of A,u, and w in the left cell. We shall analyze the "Goldie
rank functions" in the last sections of this chapter (5.15-5.18).

But before doing this, let us first make some remarkable applications

of theorems 5.11 resp. 5.12.

5.13 Irreducibility of Joseph's Weyl group representations

Theorem 1: Each polynomial Pw (we€ W) generates an irreducible W

submodule of S(t).

We shall see (in 5.17) that our polynomial Pw is proportional to

Ew in Joseph's notation [J3), [J1], so this theorem 1 and also
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theorem 2 below are just reformulations of -theorems of Joseph [J3].
OQur point to make here is that theorem 1 is an easy consequence of
the result (5.11) underlying our definition of P, The argument is
the same as in [Jal, 14.10, but we make it explicit here for con-

venience of the reader:

Proof: We consider the group ring element a_ := a (L{w

and the degree a = a(w) as defined in 5.7. Then we have

3y 3!

—
=
1
o
—
—
u

(A,H—p)
P(Hw ) € NP, c kP

by 5.7d), theorem 5.6, and corollary 5.11, for all uw € Q@ +p. Using

that @ + p is Zariski dense in t* = t, and that the powers u

(h€t) span S%(t), we conclude that the linear operator a,

jects'all of sa(g) onto the line kPw. (In particular, Pw is an

pro-

eigenvector.) On the other hand, S%(t) splits into a direct sum of
irreducible W submodules, each of which is projected into itself by
Ay So a, must kill all but one irreducible summand, E say. Then

P € a,  E€E, so P generates E. Q.e.d.

W =W W
Remark: The argument shows simultaneously that E has multiplicity

one in Sa(i) resp. zero in Sj(i) for j < a.

Although we do not use it in the sequel, let us restate here - for
the sake of completeness - also Joseph's result about the classifi-

cation of primitive ideals [J31].

Theorem: If Ji,...,J are all primitive ideals of a given'central

r

character x, (» € @) corresponding to a given irreducible W mo-
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dule E by theorem 1, then P, ,...,P; (notation 5.12) form a

A r

basis of E.

This is now derived from Vogan's characterization of the order re-
lation of primitive ideals (V1], as exposed e.g. in chapters 7

and 14 of Jantzen's book [Jal

5.14 Irreducibility of associated varieties of primitive ideals

Theorem 1 [BB1]: Each primitive ideal J with integral central-

character has an irreducible associated variety V(U(g)/J).

Since this variety is obviously G invariant, and contained in
the cone N of nilpotent elements, it is then necéssarily the
closure of a single nilpotent orbit, say Ux.
Proof [BBM2], [Gil: Let J = I (w.A) with w e W, x & a. Then
the (left) characteristic class P(U(g)/Jd) 1is proportional to
p by theorem 5.12, hence generates an irreducible ﬁ module

W
by theorem 5.14. On the other hand, we have

PLU(G)/I) = my QUK ) +...+m. QK ), )

as in 5.5.1, where Ki is an orbital cone bundle of codimension

a = a(w) (=deg Pw) in T*X, and 0 # m; € N is also the multi-
plicity of K; in the characteristic cycle CH(U(g)/J) (by 5.5.2),
for each i = 1,...,r. By theorem 1.8, each Q(Ki) generates an
irreducible W submodule of Sa(i) equivalent to Springer's re-
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presentation op if ¢ is the nilpotent orbit determined by

u,’ u,
i i
K; (notation 1.8), i.e. if n(Ki) = & . Suppose O, 6 % O for
u, e u,

some 1i. Then the corresponding Springer representations »p p

u,’

u
i 1
would be inequivalent by Springer's theory (cf. [BM11), so they

both occur in the cyclic W module generated by(*), contradicting
the irreducibility of this module (5.16). Hence the nilpotent or-

bits &, are all the same g,. Now by iBB3l], 1.9,
1

V(U(g)/3) = = CR(U()/D) = = K;) = B,.
1
Q.e.d.

Note that we have proved simultaneously:

Theorem 2 (Barbasch-Vogan)(BV11,[BV2]): Joseph's Weyl group re-

presentation generated by P(U(g)/J) 1is equivalent to Springer's

Weyl group representation Py corresponding to the dense nilpo-

tent orbit in V(U(g)/d).‘

Remark Theorems 1 resp. 2 had first been verfified by the first
two authors [BB1] resp. Barbasch-vogan [BV1l, [BV2] using case by
case arguments; conceptual proofs were then given by Joseph [J21,
Kashiwara-Tanizaki [KT]1, the first two authors [BB3], resp. by
Hotta-Kashiwara [HK], The argument given in the present subsection

appeared independently in Ginsburg's [Gil and in [BBM2].
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5.15 Evaluation of character polynomials

In the notation of 5.7, we define a W x W matrix of integers

by

alw,y) := ay(L(w.A)) for all w,y € W.

By a well known "“translation principle" (due to Jantzen), these

integers are independent of X € @, as is the degree
a := a(w) := dim u - d(L{w.2))
in 5.7.

Remark: Let us mention that in the notation of Kazhdan-Lusztig [KLI1,

i 1(w)-1(y)
alw,y) = (-1) 1T (1), (1)

where the Kazhdan-Lusztig polynomials Py,w are defined by a pure-
ly combinatorial recursion formula. We recall that (1) was conjec-
tured by Kazhdan-Lusztig, and proved by Beilinson-Bernstein [BeBel
and Brylinski-Kashiwara [BKal. As a consequence, these numbers can

be effectively calculated on a computer.

Definition: For each w e W, we define polynomial functions p

W
resp. P, ont x t* resp. t by

PulEon) = 2 aw,y) {yle+p), n+p> @ (2)
Y€
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resp.
() = p,(£.0); (3)
in this context, we shall identify t with t* by the usual scalar
product. Then our pw,ﬁw coincide with those considered in [J11,

5.1, up to a shift by o»p.

Lemma: For &,n € t = t*, and each w €& W we have

\

P, (&:n) = P (0.8

Proof: This follows from (2) by W invariance and symmetry of the
scalar product, using the following property of the coefficients

a(w,y):.
a(w,y) = a(w'i,y") for all w,y € W.

This property follows e.g. by composing the equivalence functors

1 — H+— L7 (notation 5.3), sending L{w.x) to L(w'1.k),

L
and M(w.A) to M(w '.x), hence identifying a(w,y) with

a(w'1,y'1). Q.e.d.

Proposition: For all we€ W, A,pu € R, v&€ t* = £, we have

p(Hik'U))(v+P) = D(L(w-1.u)) (v+¢p) = %! p (v,u).

Proof: The first equation is corollary 5.6, the second is proposi-

tion 5.7d)}, in combination with the lemma. Q.e.d.

-~ 9% -
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Corollary: pw(k,u) is a positive integer for all Xx,u€ Q.

Proof: They are integers by definition. They are positive, because
the character polynomial p(L(w‘1.u)) takes only strictly positive
values on the set 0Q+4p of regular dominant integral weights, by

3.11. Q.e.d.

5.16 Computation of Goldie-ranks

From corollary 5.11 we obtain that for all x,n &€ Q

(A, u) (0,0)

P P
- w .

rk HiMow rk H{00)

(From now on, let rk denote always left Goldie rank, to slightly
simplify notation.) By proposition 5.15, we get from this equality
of polynomials an equality of values, so

p (v /rk R g (v oy rk w000 (1)

for all v € t*. Using corollary 5.15, we get at least for all

v € 0
(A,m) _ (0.0) Dw("’”) (2)
rk H, Moo rk iN 5. (507 °

Taking v = 0, this gives:

- 9% -
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Theorem: The left Goldie-rank of a simple Harish-Chandra bimodule

is given by

rk Hik’”) =¢c, . o (W) (3)

for all XA,p € Q, we W, where Cy is a positive rational con-

stant.

In fact, Cy = rk H£°’°)/pw(o,o). Note that the polynomial thus des-
cribing the left Goldie ranks by (3) for given w is uniguely de-

termined by (3), since @ is Zariski dense in t*.

Remark. It follows now from corollary 5.12.2, that also the Goldie
ranks of primitive ideals are given by polynomial functions. More
precisely,

rk U(g)/I(w.x) = ¢ . B _,(u),
. v

where v(= v'1) is chosen as in 5.12.2. This is a famous result of
Joseph [J3]1, of which we shall obtain a more complete version in 5.18

below.

5.17 Joseph-King %actorization of polynomials Py
From 5.16 (1) we get more generally
(A:u) _ )
rk H, = c,(vg) wop(vgsmd, (1)

for any Vo € Q, where cw(vo) is a positive constant

- 207
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(= rk H&O’O)/pw(vo,o)), independent of A,u. Now we use 5.16 (1) for

a second choice of u, say uw'é€ G, to get

(A,u) _ | (A,m')
p,(v.m) / rk H = p,(v.u') / rk H_ (2)
for all v,u,u' € 0. Going with (1) into (2) twice, and cancelling
the nonzero factor cw(vo) on both sides, we obtain

p (v.u) 7 p (v ) = p(v,ut) /op(vout)

for allvnb&uu' € Q. Using Zariski density of & in t*, we derive

the following remarkable polynomial identity:

Proposition: p (&,n) p (€',n') = pw(E,n‘) p,(E'.n).

Taking the special case &' = n' = 0, we obtain the following fac-

torization

Corollary 1 (Joseph-King, cf. [Jd1], 5.1[Kil):

p(2om) = Py(*.0) pyloow) e b, (%) Bw-1 (u).
p,(0,0)

This factorization, up to the constant factor ¢ = pw(o,o)'1,
was given in [J1], 5.1; a direct proof by combinatorics of the
Kazhdan-Lusztig polynomials seems to be not known. - Now we may

rewrite proposition 5.15 as follows:

PG I
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Corollary 2: P(Hé*’“))(v+p) = p(L(w'1.u)) (v+p) = %! Dw_1(u) %w(V)-

Corollary 3: The polynomial Pw (5.11) coincides with p,» upto

a positive integer constant factor, and a shift by e; more pre-
cisely:

P (v) = al B (o) P (vsp).

This formula follows from corollary 2, using corollary 5.11, and

theorem 5.16.

Remark: At this point, it becomes clear that our formulation of

Joseph's irreducibility theorem (5.13) is equivalent to Joseph's.

Corollary 4: P {(p) = %

W !

Corollary 5 (Joseph): For w,y € W in the same left cell, Bw is

proportional to B

y"

In fact, Pw = P by corollary 5.11.1, and of course a(w) = a(y);

by corollary 3.

Remark: The converse of this statement is also true cf.(Jdal, but

we do not reprove this here.

- 32 -



-156-

5.18 Goldie-ranks of primitive ideals

We may now use corollary 5.17.3 to reformulate theorem 5.16 as

- follows:

Proposition: rk H(;’") / rk H&O’O) al P _, (u+p)

for all A,u € Q, w € W.

The significance of this alternative formulation is that P _,
’ W
pends only on the left cell of w'1 {(by cor. 5.12.1), so only on the

de-

primitive ideal J := I(w'1,k), which is the right annihiiator of

H(A”U).

W Since the same is true for

a =a(w) = a(w ) = dim X -% d (u(g)/dJ),
let us point out the

Corollary 1: The ratio of left Goldie-ranks of two simple Harish-

Chandra bimodules as in the proposition is a function of the right

annihilators.

Let us mention that this ratio is also the ratioc of the corres-

ponding left characteristic classes (by corollary 5.11), i.e.

p(ridu) y peylenoly o gy JRITDR (1)

- Y-
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Theorem (Joseph [J3]): For all w€&€ W there is a positive rational

constant cw such that

rk U(g)/I{w.x) = ¢ p (1),

for all X E a.

Proof: We take v € W in the left cell of w as in 5.12, remarks

1, 2, so Hsl’l) is isomorphic to the socle of U(y)/I(w.x), and
v2 = 1. The right annihilators of these modules are I(v'1.x)=I(w.1)
(by 5.12(2)}), so
P =P = P (2)
W v—1 v
by corollary 5.12.1 and v= 1 2 V. Hence 5.12(5) gives us

rk U(g)/T(w.2)/rk U(g)/I(w.0) = rk Hi%A) / py ylos0)

=al P _, (A+p) = al Pw(x+p), (3)
using af{v) = a{w) = a, and the above proposition. Now the theorem
follows by using again cor. 5.17.3. Q.e.d.

Corollaries: P(U(g) / I(w.x)) = cwpw(l) P (4)

w’

(x) te x® y(Lw o)) 1(5)
B

ch (U(g) / T(w.A)) = ¢ B,

n
(9]

V(L)) (6)

1
(9]
—
o
>

with positive rational factors Cyo c', c; independent of A.




1

-158-



BIBLIOGRAPRHY
CLAL1] Atiyah, M.F.:
[A2] Atiyah, M.F.1
LA3] Atiyah, M.F.:
Hirzebruch, F.:1
CAM] Atiyah, M.F.-~
MacDonald, I1.G.:s
CAB] Atiyah, M.F.-
Segal, G.B.:
LBFM] Baum, P.-
Fulton, W.-
MacPherson, R.:
[BBD] Beilinson,
Bernstein, J.-
Deligne, P.1
[8GA&) Berthelot, P.-
Illusie, L.
[Bol Borel, A.1
(Bo2] Borel, A.:
[BS] Barel, A.-
Berre, J.-P.1
£BBl1 Borho, W.-
[BB13 Borho, W.—~
Brylinski,
{BBM1]1 Borho, W.-
Brylinski,

MacPherson,

A.A. -~

J-—L-|

J.-L.-
R.s

.-

-159-

b

K—theory; Benjamin, New York-Amsterdam 19&7.
Characters and cohomology of finite groups;

Publ. Math. IHES 9 (1961), 23-6&4.

Power operations in K-theory;
Math. (Oxford) 17 (1966),

fOuaterly J.
165-193.

Vector bundles and homogeneous spaces;
Diff. geometry. Froc. of Symp. Pure Math.
AMS X (1961), 7-38.

Introduction to commutative algebraj; Addison-—
Wesley 1969.

Equivariant K—-theory and completiong
J. Differential Geometry I (1969) 1-18.

Riemann—Roch and topological K-theory for

singular varieties; Acta math. 143
(1979, 155-192.
Faisceaux Perversy Soc. Math. de fFrance,

Astérisque 100 (1983).

Théorie des intersections et theorem de
Riemann-Roch; Sém. Géom. Alg. du Bois Marie
19646£/67, Lecture Notes in Math. 223,
Springer 1971.

Topics in the homology theory of fibre
bundles; Lecture Notes in Mathematics 3I6,
Springer 1947.

Seminar on transformation groupsi; Annals of
Math. Studies 44, Princeton 1960.

Bull.
F7-136.

Le Théoreme de Riemann—Rochjg Soc.

Math. France 86 (1938),

Differential operators on homogeneous spa-—
ces Iz Invent. Math. &9 (1982), 437-476.

Differential operators on homogeneous spa-—
ces IIIy Invent. Math. 8@ (1983) 1-68.

Open problems in algebraic groups. (R. Hotta,
N. Kawanaka,eds.)The Taniguchi Foundation,
Katata (Japan) 1983.

S




—

[(BBM2] Borho, W.-

[BGR1

C(BK1

CBM11

[BM2]

LAC1

{D11

[Dil

{Frl

LFul

CFL]

LFM]

(Gi1d

CGd1

Brylinski, J.-L.-

MacPherson, R.:

Barho, W.-
Babriel, R.-
Rentschler, R.:

BDI"hD, W. -
Kraft, H.1

Borho, W.-
MacPherson, R.:

Borho, W.-
MacPerson, R.t

Bourbaki, N.1

Deligne, P.1

Dixmier, J.t

Friedl ander:

Fulton, W.s

Fulton, W.-

Lang, S.:

Fulton, W.-
MacPherson, R.1

Binsburg, V.:

Godement, R.

e v
.- Lo

-160-

A note on primitive ideals and characteristic
classesy int: Geometry Today (E. Arbarello,

C. Procesi, E. Strickland eds.), pp. 11-20,
Birkh&user: Boston — Basel - Stuttgart 198S5.

Primideale in Einhdllenden aufl&sbarer
Lie—~Algebren; Lecture Notes in Math. 337,
Springer 1973.

Uber Bahnen und deren Deformationen bei
linearen Aktionen reduktiver Gruppen;
Comment. Math. Helvetici 54 (1979), &1-104,

Représentations des groupes de Weyl et homo-
logie d’'intersection pour les variétés
nilpotentes;y C.R.Acad. Sci. Paris (R) 292
(1981), 707-710.

Partial resolutions of nilpotent varietiesg
in: Analyse et Topologie sur les Espaces
Singuliers , Soc. Math. de France, Astérisque
101 (1983), 23-74.

Algebre commutative; Paris — New York -
Masson 1983.

Theorie de Hodge III, Publ. Math. IHES 4
(1974) , &-77.

Algebres enveloppantes; Paris: Gauthier
Villars 1974.

Etale homotypy of simplicial schemes; Annals
of Math. Studies 104, Princeton 1982,

Intersection theory; Springer: Berlin-
Heidelberg — New York - Tokio 1984.

Riemann—-Roch algebraj; Springer: Berlin -
Heidelberg — New York - Tokio 198S5.

Intersecting cycles on an algebraic variety;
in: Real and complex singularities, Oslo
1976 (P.Holm ed.), Sijthoff & Noordhoff:
Alphen a.d. Riin 1977. ’

G-modules, Springer’'s representations
and bivariant Chern classes; preprint, Moscow
198%5.

Topologie Algébrique et Théorie des
Faisceauxky Paris: Hermann 1958.




[GM11]

[GM21]

CHal

tH11

[Hil

{Hol

CH2]

{Hul

[Jal

[J11

£J21

CJ31]

CKn3l

CKr1

CLul

Goresky, M.-
MacPherson, R.:

Goresky, M.-
MacPherson, R.:

Hadziev, D.1

Hiller, H.:

Hirzebruch, F.:1

Hotta, R.1

Hotta, R.:?

Humphreys, J.E.»

Jantzen, J.C.1:

Joseph, A.:

Joseph, A.1

Joseph, A.:

Knutson,P.:?

Kraftt, H.:

Lusztig, 6.3

'-161— 'J;.

Intersection Homology theory; Topology 19
(1980), 135-162.

Intersection Homology II; Invent. Math. 72
(1983), 77-130.

Some questions in the theory of vector in-
variants; Math. USSR - S5b. 1 (1967), 383-396.

Geometry of Coxeter groups; Res. Notes in
Math. 54, Pitman: Boston - London - Melbourne
1982.

Topological methods in algebraic geometryg
Springer: RBerlin - Heldelberg 19S56.

On Joseph’'s construction of Weyl group re—
presentationsg Tohoku Math. J. 36 (1984),
49-74.

On Springer’'s representations, J. Fac. Sci.,
Univ. of Tokyo, IA 28 (1982), agé)—an.

Introduction to Lie Algebras and Representa-
tion Therory; New York — Heidelberg —~ Berlin:
Springer 1972.

Einhdllende Algebren halbeinfacher Lie-
Algebren; Springer: Berlin - Heidelberg -
New York — Tokio 1983.

On the variety of a highest weight module; J.
of Algebra 88 (1984), 238-278.

On the associated variety of a primitive
ideal; J. of Algebra 923 (1989), S09-323.

Goldie rank in the enveloping algebra of a
gemisimple Lie algebra I,II; J. of Algebra &5
(1980), 269-306.

Lambda-rings and the representation ring of
the symmetric group; Lecture Notes in Math.
303, Springer 1973.

Geometrische Methoden in der Invarianten-
theorie; Braunschweig—Wiesbaden: Vieweg 1984

Green polynomials and singularities of uni-
potent classes; Adv. in Math. 42 (1981),
169-178.

r—-- s
ae
.



-162-

{Mal Manin, Y.t Lectures on the K—functor in algebraic geo-
metry: Russ. Math. Survey 24 (196%7), 1-89.

CMr1 Marlin, R.1 Thése; Nice 1979

CMul Mumford, D.: Geometric Invariant Theory:; Heidelberg:
Springer 1963.

[Sell Segal, G.1 Equivariant kK-theory; Publ. Math. IHES 34
(19468), 129-151.

(Se2] Segal, G.3 The representation ring of a compact Lie
groups; Publ. Math. IHES 34 (1968), 113-128.

{Sr1 Serre, J.-P.1 Algebre locale-Multiplicités;l.ecture Notes
in Math. 11, Springer 19&635.

[(Bhl Seshadri, C.5.1 Geometric reductivity over arbitrary basej
Advances in Math. 26 (1977), Z225-274.

[8Sm] Smoke, W.1 Dimenzsion and multiplicity for graded alge-
bras; J. Algebra 210 (1972), 14%9-173.

[Sp1l Spaltenstein, On the generalized Springer correspondence
N.z for exceptional groups; Advanced Studies in
Fure Math. 4, Algebraic groups and related
topics (R. Hotta ed.); North-Holland: Amster-~
dam — New York — Oxford 1985,

[611] Springer, T.A.1 Trigonometric sums, Green functions of finite
groups and representations of Weyl groups;
Invent. Math. 3& (19746), 173-207.

[52] Springer, T.A.1 Linear algebraic groups; Boston - Basel -
Stuttgart: Rirkhiuser 1981.

[(5t1 Steinberg, R.1 On the desingularization of the unipotent
variety; Invent. Math. 3& (1974), 209-224.

(6t2]1 ©6Steinberg, R.1: Conjugacy classes in algebraic groups;
Lecture Notes in Math. 36&, Berlin - Heidel-
berg — New York: Springer 1974.

CTal TaniSaki, T.? Associated varieties of highest weight mo-
dules; manuscript, Tohoku Univ., Sendai 1985.

£T11] Thomason, R.W.:3 Algebraic K-theory of group scheme actions;
preprint, Baltimore 1983 (to appear in Annals
of Math. Studies).

(T21 Thomason, R.W.1 Comparison of egquivariant algebraic and topo-
logical kK-theory; preprint, Johns Hopkins
Univ., Baltimore 1985.

{§p%] Spaltenstein, N.: On the fixed point set of a unipotent element on ths

variety of Borel subgroups; Topology 16 (1877), 203-204.




Additional Bibliography

[BV1]

{BV2]

[B1)

[L}

[sr2]

[Ro]

Barbasch, D.-
Vogan, D.

Barbasch, D.-
Vogan, D.

Borho, W.

Lusztig, G. :

Serre, J.-P.

Rosenlicht, M.

R

163-

Primitive ideals -and orbital integrals in complex
classical groups; Math. Ann. 259, 153-199 (1982).

Primitive ideals and orbital integrals in complex
exceptional groups; J. Algebra 80 (1983), 350-382.

A survey on enveloping algebras of semisimple Lie
algebras; Canad.Math.Soc.Conf.Proc. 5 (1986), 19-50

A class of irreducible representations of a Weyl
group; Proc. Kon. Nederl. Akad. Wetensch, 82 (1979),
323-335.

Espaces fibrés algébriques; Séminaire C. Chevalley,
E.N.S., avril 1958 (pp. 1-01 to 1-37).

Some basic theorems on algebraic groups; Amer. J.
Math. 78 (1956), 401-443.



-164-

ADDITIONAL BIBLIOGRAPHY FOR § 5

[BeBel Beilinson, A. - Bernstein, J.: Localisation de g-modules;
' C.R.Acad.Sci. Paris 292, 15-18 (1981).

[BeGel Bernstein, J. - Gelfand, S.I.: Tensor products of finite
and infinite dimensional representations of semisimple Lie
algebras; Compositio Math. 41, 245-285 (1980).

[BK2] ‘Borho, W. - Kraft,H.: {ber die Gelfand-Kirillov=Dimension;
Math. Annalen 220, 1-24 (1976).

[BKal Brylinski, J.-L. - Kashiwara, M.: Kazhdan-Lusztig conjec-
ture and holonomic systems; Invent. Math. 64, 387 - 410
(1981).

(D] Duflo, M.: Sur la classification des idéaux primitifs dans

1'algébre enveloppante d'une algébre de Lie semisimple;
Ann. Math. 105, 107 - 120 (1977).

LE] Enright, T.J.: Lectures on representations of complex semi-
simple Lie groups; Tata Institute Lectures on Math., Berlin
et al.: Springer 1981.

[Gol Goldie, A.W.: The structure of noetherian rings, in: Lectures

on rings and modules, Springer Lecture Notes in Math. 246,
213 - 321 (1972).

LHK] Hotta, R. - Kashiwara, M.: The invariant holonomic system on
a semisimple Lie algebra; Invent. math. 75, 327-358 {(1984}.

[J41] Joseph, A.: Dixmier's problem for Verma- and principal )
series modules; J. London Math.Soc. (2) 20, 193-204 (1979).

(J5] Joseph, A.: On the annihilators of the simple subquotients

of the principal series; Ann.Sci. E.N.S. (4) 10, 419-440
(1977).



(Kil

LKT]

LKL]

[Lel

Lv]

[B3]

-165-

King, D.R.: The character polynomial of the annihilator
of an irreducible Harish-Chandra module; Amer. J. Math.
103 (1981), 1195-1240.

Kashiwara, M. - Tanisaki, T.: The characteristic cycles of
holonomic systems on a flag manifold; Invent. Math. 77,
185-198 (1984}).

Kazhdan, D.A. - Lusztig, G.: Representations of Coxeter groups
and Hecke algebras; Invent. math. 53, 165 - 184 (1979).

Levasseur, T. (after 0. Gabber): Equidimensionalité de la
variété caractérisque; manuscript, Paris 1982.

Vogan, D.: Ordering of the primitive spectrum of a semi-
simple Lie algebra; Math. Ann. 248, 195-203 (1980).

Borho, W.: On the Joseph-Small additivity principle for
Goldie-ranks, Compositio math. 47 (1982), 3-29



- 166 -

CORRIGENDA:

pP+6, footnote: "of the introduction to chapter 5"

P.125, l.6: after "given by A" add "(note that our notation is slightly
different from loc. cit,)"

pe127,1.,-5: delete "which are locally b-finite"

p.128, bottom: add

A A
Y Remark: The 9(x ’/u)—module ﬂi ') , with global sections

A
Hi '/“) may be described simply as the middle extension of

du (A A)
7, (L7 \(azu))'

codimension of the K-orbit z in Z (sees BB 3, §2.7 for the

case 7\ =/( =[9‘ i

pP.129, after 1.1: Insert "All the Harish-Chandra bimodules we consider admit

from z~(d2 ) to Z, where d is ths
w w

integral central charactsr, as in § 5.,3."
pe129, 1l.6: "the following is true:"

P.135, 1.5: "“Verma module of highest weight V"

P«135,1.-3: "second squality"

P+136, 1l.B: "with coefficisnts in the K—squivariant line bundle"

p.142, 1,9: replace "is &" by "; it is a"

p.144, 1,-8: after "obviously muet be simple" continue

"gince for Hy s H2 two sub-bimodules of A with H1(1H2 =0,

the H, are two-sided idsals of A such that H1H2 =0, hence
1

one of them is 0 because A is prime. So "

p«145, 1l.,-4: Replece "There exists” by

"For any w€lW as in the theorem, there exists®



