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Abstract

In the paper asymptotic solutions ·at infinity to differential equations with poly

nomial coefficients are constructed. The method of constructing of these solutions is
based on the multidimensional resurgent analysis and uses the notion of aresurgent
function of several independent variables introduced by the authors in the paper [1].

Introduction

The paper is aimed at the construction of asymptotic solutions to differential equations

Pu der L P,,(x) (:xru(x) = 0
lal:5M

with polynomial coefficients Pa(X) for large values of the variables x = (Xl, ... l x") E c n
•

Here a = (0'1, ... , an) is an integer-valued multiindex and 101 = 0'1 + ... + an'
To present the exact definition of an asymptotic solution used below, we introduce the

following notions.
Let f(x) be a function (ramifying in general) defined in a conical (that is, R+)-invariant)

subset D of the space C" for sufficiently large lxI> R. We say that this function has the
order k and the type c if the inequality

(2)

·Supported by Max-Plank-Gesellshaft zur Förderung der Wissenschaften e.V.} Arbeitsgruppe "Partielle
Differentialgleichungen und komplexe Analysis".
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is valid in D n {lxi> R) with some positive constant C.
Let now Do be a fixed conical subset in C n and k be a positive number. We say that an

asymptotic solution to the equation (1) is defined in Do if there is a finite covering

N

Do = UDj

j=l

of the set Do with the help of conical sets Dj and if in each set Dj a function Uj(x} is given

such that:
a) The functions Ui(X) and Uj(x) coincide on the intersection Di n D j up to functions

of order k with arbitrary negative type. This means that for any positive constant c there
exists such constant C that the inequality

holds in the intersection Di n Dj •

b) The functions Uj(x) are solutions to equation (1) up to functions of an arbitrary
negative type, that is, the inequality

holds for any c > 0 with some constant C (possibly dependent on c).
In what follows the tuple of functions {Uj(x)) subject to the conditions a) and b) above

will be denoted simply by u(x).
To solve the stated problem, we shall use the notion of aresurgent function of several

independent variables introduced in [1]. Namely, we say that a function Uj(x) is aresurgent

function of the variables (xl, . .. ,xn
) if it is representable in the form

Uj(X) = L Je-( U((, x)d(
SiEOj rj

(3)

in each domain Dj introduced above where U( (, x) is an infinitely continuable function of

( which is homogeneous with respect to ((,x) of some order. Each contour f j included in
(3) comes around the point Si (x) as it is shown on Figure 1 and comes to infini ty along the

direction of the positive part of the real axis. The set nj = {Sl(X), ... ,SNj(X)} is a subset
of the singularity set of the function U((, x) which can depend on the domain Dj •

Form,ula (3) we shall also write down in the form

u(x) = l[U((,x).]

2
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Figure 1

We emphasize that the set nj included in formula (3), the support of the resurgent function
(3), in general depends on the domain Dj. This phenomenon is well-known in the theory of
differential equations (Stokes phenomenon).

More exactly, the function U((, x) included into representation (3) must be considered as

an equivalence dass of (ramifying) analytic function with respect to functions holomorphic
in the vicinity of the set nj and the integrals in formula (3) are defined up to a function of
arbitrary negative type.

We remark that in the paper [1] we considered functions U((, x) heing homogeneous with
respect to the standard action of the group C., that is

Such functions allow to consider only resurgent functions of order 1., As we shall see below l

such class of functions is not sufficient while constructing asymptotic solutions to equation
(1). Namely, asymptotic solutions to such an equation can have arbitrary order depending on

degrees of the coefficients Po(x) in this equation. To overcome this difficulty, we introduce a

modification of the notion of resurgent function of several variables considering homogeneous
functions U(x) with respect to more general action of the group C., namely

(5)

for some k. Such generalization allows to include into consideration also functions given hy
integral (3) with arbitrary order k at infinity.

We note that the degree of homogenuity (j of the function U(x) included into representa

tion (3) is not essential. For example, this degree can be changed with the help of integrating
by parts in integral (3):

(6)

3



From the viewpoint of the functional dass described by representation (3) only action (5) of

the group C. is essential.
Later on, solving equations of the type (1) oue often can find DO solution u(x) repre

sentable in the form of integral (3) with a homogeneous function U((, x). Hence, it becomes
nesessary to consider more wide dass of asymptotically homogeneous functions for which

equality (5) holds up to O(AU
') for some u' < u.

In order to avoid cumbersome computations, in the first section we consider the theory of

asymptotic solutions on the example of the stationary Schrödinger equation. This example
is rather representative in the sense that all main features of the theory can be illustrated

on it.
The second section is aimed at modifications needed for consideration of general equations

of the type (1). Here we consider also the generalization of the theory to the case when the
function u(x) has different orders in different directions of the complex space cn.

In the third section examples of construction of asymptotic solutions to concrete differ
ential equations are presented.

The concluding fourth section is aimed at the illustration of the application of the de
veloped theory to nonstationary problems. This illustrarion is carried out on the simplest

example of the wave equation.
Acknowledgements. The present paper was written in Max-Plank Arbeitsgruppe "Par

tielle Differentialgleichungen und komplexe Analysis". We are grateful to the chief of this
group Prof. B.-W. Schulze for very good conditions for our work.

1 Asymptotic Solutions to Schrödinger Equation

1. The aim of this section is to construct asymptotic solutions to the equation

~u(x)+V(x)u = 0 (7)

where V(x) is a polynomial of the complex variabes (Xl, ... 1 xn ) E C n of degree 2m. This

equation is essentially the stationary Schrödinger equation

h2

--~u +W(x)u = Eu
2m

with polynomial potential W(x} for same special choice of units of measure (it allows to
eliminate the coefficient h2 /2m) for V(x) = E - W(x).

We shall construct asymptotic solutions to equation (7) of the form (3) with the function

U((, x) being asymptotically homogeneous with respect to the action

(8)
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(9)

of the group C",.
To illustrate more explicitely the form of asymptotic expansions (3), we consider a func

tion u(x) representable in this fornl under two simplifying assumptions.
1. The function U( (, x) is a homogeneous function with respect to action (8) of the group

C",.
2. The function U( (, x) has simple singularities, that is, this function is representable in

the form
ao ~ «( - Sj(x)l

U((,x) = (_ Sj(x) +10(( - Sj(x))~ I! a'+l(x)

near each its singular point ( = Sj(x).We remark that if the function U«(,x) has the ex
pansion of the form (9) with polar singularity of order more than one in a neighbourhood
of some singular point Sj(x), then the multiplicity of the pole can be easily diminished to
unity with the help of integration by parts in integral (3) (see formula (6)).

Under the above assumptions Sj(x) are evidently homogeneous (in the usual sence) func
tions of the variables (xl, ... , xn

) of order k. One can show that in this situation integral

(3) has the asymptotic expansion of the form

N 00

u(x) ~ 2: e-Sj(x) 2: aJ(x)
j=l 1=0

(10)

with respect to diminishing powers of homogenuity.
Thus, for functions with simple singularities outside foca.! points resurgent functions of

the considered form are simply expansions of tbe form (10).
Now let us turn our mind to the consideration of the general case. To derive an equation

for the function U( (, x) we substitute integral (3) to equation (7) and use the commutation
formula for operator (4) and the differentiation operator1

a [(a)-l au ]ax i l [U (( , x)J = l B( ax i ( ( , x) . (11 )

Formula (11) is proved in the paper [1] for k = 1 and can be immediately generalized on the
case of action (8) of C",.

As a result of the substitution of (3) into (7) we obtain the following equation for the
function U(( , x):

(
a )-2
a( ßU«(,x) + V(x)U((,x) = 0, (12)

IThe operator ala( is evidently invertible modulo functions holomorphic in the neighbourhood of points
( =Sj(z).

5



which can be also rewritten in the form

82

ßU((,x) + V(x) 8(2U((,X) = O. (13)

As it ean be seen from formulas (9) and (10) above, to construet asymptotie solutions
at infinity to equation (7) one has to construct asymptotic solutions to equation (13) with

respect to smoothness. Such asymptotics are investigated by the authors in a sery of papers
on the theory of differential equations on complex manifolds (see, for example, (2, 3]).

We remark that equation (12) is a 8/8(-differential one so that for its investigation the

8/8(-formalizm can be used (see (3]).
Note, that if the polynomial V(x) is a homogeneous one with respect to x of degree 2m,

then equation (13) can be considered as an equation for homogeneous functions U((, x) with
respect to action (8) of the group C", with k = m + 1. Actually, for such choice of k the
operators ß and V(x)82/8(2 diminish the homogenuity power of the function U((, x) by
one and the same amount (namely, by two units). However, in the case when V(x) is not a
homogeneous polynomial, equation (13) must be considered as an equation for asymptotically

homogeneous functions.
The following affirmation is valid.

Theorem 1 Let U( (, x) be an asymptotically homogeneous solution to equation (13) with

respeet to action (8) 0 f the group C"'. Th en th e correspondin9 resurgen t fu netion u (x) give n

by (3) is an asymptotic solution 0/ equation (7) 01 order k up to lunctions 01 arbitrary negative

type.

Proof (sketch). The fact that the function u(x) satisfies equation (7) up to funetions
of arbitrary negative type ean be derived from equation (13) with the help of commutation
formulas (11).

Later on, the inequalities of the type (2) of the function u(x) given by integral (3) can
be obtained by direct estimating of this integral. To da this one has to take into aecount
the fact that the singularity set ( = S(x) of solution to (13) is defined by the homogeneous
funetion S(x) of x of the degree k. Below it will be shown that the degree k for an asymptotic

solution U((, x) in action (8) of the group C", one must choose to be equal to m +1.

2. Let us investigate now the resurgent strueture of the solution u(x) to equation (7),

that is, the singularity set of solution to equation (13). It is well-known that the set ( = S(x)
can be the singularity set of a solution to equation (13) only if the function S(x) satisfies
the Hamilton-Jacobi equation

(
8S)2
8x +V(x)=O,

where (8S/8x)2 = L:i=l (8S/8xi )2.

6
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This fact ean he easily verified if one uses the so-ealled 8/8(-formalism (see [3]). Actually,
we remark that equation (12) is a 8/8(-differential one (see, for example, [4]). The WKB
asymptotics (by smoothness) of such an equation has the form

e- S (r)8j8( A(, %), (15)

where A(C x) is asymptotieally homogeneous function with respect to action (8) of the group

C •. Substituting function (15) into equation (12) we obtain Hamilton-Jacobi equation (14) aB

weil as the eorresponding transport equations.

As it was rnentioned above, the function U((, x) is a homogeneous function for homoge

neous polynomiaJ V(x). Hence, the function S(x) is a homogeneous function of the varia.bles

x of degree k = m + 1. Thus, in this case S(x) determines a homogeneous Lagrangian

manifold (with respect to the variables x) in the cotangent space T* C n .

Let us try to show that in tbe case when V(x) is an arbitrary polynomial of the degree

2m, a solution to equation (14) is determined by some homogeneous Lagrangian manifold

in T*Cn as weIl. To do this, we represent the function V(x) a.s a. surn of homogeneous

polynomials
2m

V(x) = L \tj(x), \tj(AX) = AjVj(X).
j;O

Let us now to search for solutions of equation (14) in the form of the surn of hornogeneous

functions
00

S(x) = L SI(X),
1;0

SI(X) being bomogeneous functions of degree m - k + 1. Substituting the latter expression
to equation (14) and equating to zero components with different degrees of homogenuity, we

obtain the homogeneous Hamilton-Jacobi equation for So(x)

n (8S0)2f; 8xi + V,m(x) = 0

and the tri angle system of equations for fUDctions SI (x), S2 ( X ), •••

7
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On the diagonal of the latter system stands the transport operator

.- 2:n aso a
P=2 -a'-a..xJ xJ

;=1

Equation (16) shows that So(x) is a generating funetion of some homogeneous Lagrangian
manifold Lo in the space T·C n which satisfies HamiIton-Jacobi equation (14) with V(x) sub

stituted by its principal part V2m (x). Equations (17) allow to calculate the functions SI (x),
S2(X), . .. as integrals along the Hatniltonian vector field on the manifold Lo corresponding
to HamiItonian

H(x,p) = p2 + V2m (x).

In this sense the Harn iltonian H (x, p) is the prineipal part of the Hami ltonian

1i(x,p) = p2 + V(x) (18)

with respect to asymptotics as x -+ 00.

Thus, the resurgent structure of the function U( (, x), that is, its singularity set is de

seribed by the equation

( = Sex)

for the asymptotically homogeneous funetion S(x) of degree k = m+ 1 which was determined

above with the help of the system (16), (17).
3. Let us investigate naw the proeess of computation of asymptotic expansions them

selves. Ta da this, one must investigate singular parts of the function U((, x) near its singu

Lar point ( = Sex). In this investigation we shall consider more narrow dass of solutions to
equation (13) than the dass of general resurgent functions.

Namely, let

(19)

be some sequence of functions f;(~) of one complex variable ~ regular in the deleted neigh
bourhood of the origin (these functions are, eertainly, singular at the origin itself). We
suppose (19) to be a Ludwig's sequence ([5]) This means that functions (19) satisfy the
relation

Definition 1 A function U((, x) will be caLled aresurgent function wilh simple singularities

wilh respect to the Ludwig's sequence (1 g) if in the vicinity of any i ts singular point ( = S (x )
this function admits the asymptotic representation of the form

00

U (( , x) ~ 2: a; (x ) fj (( - S(x )).
;=0

8
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Remark 1 A function U((, x) is a function with simple singularities in usual sense if it is

a function with simple singularities with respect to tbe Ludwig's sequence

1
~ , In ~, ~(ln~ - 1),

i = 0,1, ...
f(u+i+l)'

However, sometimes it is useful to consider functions witb simple singularities with respect

to other Ludwig's sequences. For example, one of the often used Ludwig's sequences is

~t7+j

for some noninteger number er. We shall use below only the above two Ludwig's sequences.

Now, substituting expansion (20) to equation (13) and equating to zero coefficients of

Ij(( - S(x)) one can easily verify the following assertion.

Theorem 2 Expansion (~O) is an asymptotic expansion 0/ solution to equation (19) iff the

lunction S(x) is a solution 01 Hamilton Jacobi equation (14) and the /unctions aj(x) are
solutions to the transport equations

(21 )

where Fj = Fj [ao, ... ,aj-tl is an expression containing the /unetions ao, ... ,aj-l and their

derivatives, Fo being equal to zero.

one can show that equations (21) simi lar to Hamilton-Jacobi equation (14) can be solved

with the help of expansions with respect to homogeneous functions of the variables x.

We remark that Theorem 2 provides one with the method 01 solving equation (13).

Namely, if a solution S(x) of Hamilton·Jacobi equation (14) and solutions aj(x) of sys

tem of transport equations (21) are already found, then the presum of series (20) is the

solution of equation (13). We shall use this fact while considering examples.

2 General Equations with Polynomial Coefficients

This section is aimed at the description of the changes which must be made in the above

theory to adapt it to the investigation of general equations of the form (1). Theorem 1

formulated in the previous section can be generalized to the case of equation (1) almost

directly. The corresponding affirmation is as folIows.
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Theorem 3 Let U( (, x) be a solution to the equation

(
8 ) -101 ( 8 ) 0L Po(x) 8( 8x U((,x) = 0

101:5M
(22)

which is asymptotically homogeneous with respect to action (8) 0/ the group C.. Then the

corresponding resurgent /unction u(x) given by integral (9) is an asymptotic solution to

equation (1) 0/ order k up to /unclions 0/ arbitrary negative type.

To modify the considerations of the previous section one has to describe the method

of the appropriate choice of k such that equation (22) has an asymptotically homogeneous

solution.

To do this, we use the method of solving equation (22) with the help of homogeneous

Lagrangian manifolds. To begin with, we rewrite equation (22) in the form

(
8 ) M-101 ( 8 ) °L Po(x) B( 8x U((,x) = 0,

101:5M

(23)

exduding negative powers of the derivative 818(. The Hamilton-Jacobi equation corre
sponding to equation (23) has the form

where the notation

(8S)0L Po(x) 8x = 0,
101~M

(24)

(ßS)O = (ßS)OI ... (~)on
8x 8x l 8xn

is used. If U(, x) is an asymptotically homogeneous function with respect to the a.ction

(8) of the group C., then the function S(x) is an asymptotically homogeneous function of

degree k. Then degrees of homogenuity of terms induded in equation (24) are equal to

0"0 + (k - 1) la] (25)

correspondingly for any multiindex a where 0"0 is the homogenuity degree of the polynomial

Po(x). The principal terms of equation (24) with respect to homogenuity are those terms

for which the expression (25) has maximal value. The choice of principal terms with respect

to homogenuity for fixed value of k cau be illustrated graphically as follows.

Let us consider the plane with coordinates (0", 10'1) and mark on this plane points (0", laI)
corresponding to terms of the form P;(x)(818x)o. with homogeneous polynomial P;(x) in
d uded to equation (1) (see Figure 2).

10
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Figure 2

lcil

Consider straight lines (J' + (k - 1) 10'1 = const. Evidently, the points lying on these lines

correspond to terms in equation (1) with one and the same homogenuity degree. Therefore,
points corresponding to leading (with respect to homogenuity) terms of (1) He on the line

of support with inclination (k - 1) to the minimal polygon containing all marked points

(Newton's polygon, see Figure 2).
Now, similar to the previous section, we search the solution S(x) to equation (24) in the

form
00

S = L Sj(x),
j=O

where the functions Sj(x) are homogeneous functions of degree k - j. This leads us to the
system of equations first of which is the Hamilton-Jacobi equation

( aso)
H x, 8x = 0,

and the rest form a triangle system with the transport operator

(26)

on the diagonal.
Certainly, the condition of solvability of this system is that the Hamiltonian vector field

included in operator (26) does not vanish on zeroes of the function S(x), that is that the
equation is (in usual terminology of the theory of differential equations) the equation of the

principle type.

We emphasize that in fact the resurgent structure of the solution (that is, the singularity

set ( = S (x)) is descrihed with the help of the contact structure in the space ((, x, p), where

p = (PI, . .. ,Pn) are dual variables t~ x, with the structure form

d( - pdx

11
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Figure 3

rather than with the help of the symplectic structure. However, we can project the Leg
endre manifold defined by the equation ( = S(x) to the symplectic space with coordinates
(x,p), deriving ( from the equation of this manifold. The inverse procedure is, in general,
ambiguous: the corresponding Legendre manifold is defined up to adding of an arbitrary

constant to the action S(x). In our case, however, this constant is fixed by the homogenuity

degree of the function S(x) and, hence, sympleetie and contaet structures are in our ease
are isomorphie to eaeh other.

Let us illustrate the procedure of choosing the principal terms on the example of operator

(7), considered in the previous section. For such an operator the Newton's polygon drawn

on Figure 3 is defined by two points. It is evident that the homogeneous Hamiltonian
corresponding to values of k less than m + 1 is equal to V (x) (the lioe of support /1 on
Figure 3) and, hence, the Hamilton-Jacobi equation degenerates to the equation

V(x) = 0,

which does not contain the function So(x). Evidently, the latter equation has no solution

and, hence, the equation (7) has uo asYluptotie solutions of order k < m + 1. Later on,
the case k = m + 1 (the line of support /2 on Figure 3) was considered in details in the

previous section. Finally, the choice k > m + 1 (the line of support 13 on Figure 3) leads to
the HamiIton-Jacobi equation

(880)2 (880)2 = 0
8x l + 8x2 '

which has solutions (Xl ± ix2)k of the degree k. The corresponding Hamiltonian vector field
(for the function (Xl + ix2)k) equals to

2k(x l + ix2l- l (~ +i~)ax l 8x2

12
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aod vanishes identically on zeroes of the function So(x). So, the only appropriate choice of

k is k = m +1.
To conclude this seetion we remark that for constructing oi asylnptotic solutions to

certain differential equations the described method needs further modification connected
with considering weighted homogenuity not only with respect to (, but also with respect to
x. Let us illustrate this effect on the simple example.

Consider the equation

8
2

U (1 ) 2m 8
2

U 0 ( )
(8X1)2 + X (8X2)2 = . 27

The 'Newton's polygon' for such an equation drawn on Figure 4 consists of the two points
posited one under' another. Hence, for any choke of k the homogeneous Hamilton-Jacobi

equation has the form

(X I)2rn (;~r = o.

Evidently, this equation is not an equation of principal type for every k (the corresponding z.._
Hamiltonian vector field vanishes identically on zeroes of the latter equation).

To be able to construct an asYIn'ptotic solution to equation (27), we can consider more

general action of the group C.

(28)

compared with those in (8).For such action of C. the principal part So(x) must be a weighted

homogeneous function of degree ko with weights (kl, k2 ):

Evidently, th~ notion of homogenuit'y with respect to action (28) depends only on the ratio
(ko : k1 : k2 ) and one can normalize the choice of these numbers putting ko = 1.

13



Let us try now to choose the numbers kl and k2 in such a. way that for this choice both
.' ..• , .' "11, . '.,

tertlls of the 'correct' Hamilton-Jacobi equation

are of one and the same homogeneous degree. This condition can be satisfyed by the choice

kl = 1, k2 = m + 1.

The rest of the procedure of constructing of asymptotic solutions to equation (27) is of no

difference with those described ?,bove. We renlark only that for the present example the
order of an asymptotic solution is equal to 1 along the axis xl and is equal to m + 1 along

the axis x 2 • Thus, this order depends on the direction.

3 Examples

The aim of this section is to illustrate the work of the described method on two elementary
examples.

1. The Helmhölz equation. Let us compute the form of asymptotic solutions to the

equation

(29)

for large values of Ix I; here x = (x I, x 2
) E C 2 . As above, we search for the solution in the

form
u = e-S(x)a(x).

We remark that the corresponding Hamilton-Jacobi equation has the form

(aS)2 (aS)2axl + 8x2 + k
2

= O. (30)

Evidently, S = Sext, x 2
) must be a homogeneous function of degree 1. To solve equation

(30) we introduce the polar coordinates

Xl = r cos <p,
2 •x = r Sln <po

t
I
f

Then equation (30) can be rewritten in the form

14



Taking into account that the function S is a homogeneous function of the first degree, we
have

S = irs(cp),

where the function s(cp) satisfies the equation

Solutions of tbe latter equation are

s(cp) = ±k

or
s(ep) = ±ksin( cp - CPo).

The expressions of the fouod solutions to Hamilton-Jacobi equation (30) in Cartesian
coordinates (xl, x~) are

and
S2 = k (ax l + bx2

)

where a and bare subject to the relation a2 + b~ = 1.

(31)

(32)

Remark 2 If one considers the restriction of the solution u(x 1, x 2 ) to the equation (29) on
the real space R 2 then action (31) corresponds to the divergent or convergent (dependent on
the sign) spherical wave and tbe action (32) to the plane wave propagating in the direction
of the vector (a, b).

Let us compute now the amplitude functions of the corresponding waves, that is, functions

al(x) included into expansion (10). The transport equation for the amplitude function ao
reads

and for the amplitude functions a}, a2,' .. the transport equation is

[
as a as a ]

2ax l ax l + 2ax2 ax 2 + fj"S ai = Fi [ao, ... ,ai-tl , (33)

aao 1
-+-ao=O.ar 2r

where j = 1,2, .... To begin with, consider the action S = st. Then in polar coordinates
the transport equation reads

15



The latter equation gives ao = r- 1
/

2a(<p) with an arbitrary function a(<p). Tq~~, th~ ]~~~~~g

term of the asymptotic solution has the form

e±ikr

u~ ,;::a(<p).
yr

The rest terms ab a2,' . . of the asymptotic sohltion can be determined from equation (33)
uniquely due to homogenuity of functions aj.

The recurrent formulas for the functions a1, a2, ... for j ~ 1 are

a . = _ [(j + 1/2)2 + !~] a' 1
:J j j dc.p2 J_.

Remark 3 Thus, we have obtained that a solution of equation (29), at least up to functions
decreasing exponentially at infinity, determines uniquely by the function a(c.p). This fact is
well-known in the radiophysics where the fu.nction a( 'P) is called a diagram of the wave field
u (certainly, similar to Remark 2 we must restrict all functions to the real space R~).

For action (32) with the help of similar computations one can obtain that an asymptotic
solution u(x 1, x~) with the action S2 has the form u(x\ x2 ) = eik(ax

l
+bx2)ao, that is, in this

case ao = const, aj = 0 for j ~ 1.
2. The stationary Sehrödinger equation for the harmonie oseillator. Consider

equation (7) in the two-dimensional complex space C 2 with the function V(x) equal to
(Xl)~ + (x2)2:

(34)

Let us compute the form of asymptotic solutions at infinity to this equation.
Similar to the considerations in the previous example, we obtain the Hamilton-Jacobi

equation

(8S)2 (8S)2 (1)2 (2)2
8xl + 8x2 + X + X = o. (35)

In this example, unlike the previous one, the action S(x) being a solution of equation (35)
fiust have the homogenuity degree 2 with respect to variables (Xl, x 2 ). Now, solving equation
(35) with the help of the substitution S = ir2s(c.p) one comes to the equation for s( 'P) of the

form

(
d )2 'd; + 48

2
= l.

This equation has two possible types of solution:

(36)
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s('P) = ~ sin 2( 'P - 'Po), 82 = r 2 sin('P - 'Po) cos('P - 'Po). (37)

The function S2 can be evidently transformed to the function st by a linear change of
variables (with complex coefficients). Therefore we present the computation of the amplitude
function only for function (36) .. For this action the leading transport equation reads

(
I 8 2 a )

2x ax l + 2x ax2 +2 ao = 0,

that is, in the polar coordinates

Thus, we obtain ao = r- 1a(cp) with an arbitrary function a(cp). The leading term of tbe

corresponding asymptotic solution has the form

Similar to the previous example, the rest of the terms of the asymptotic solution are uniquely
determined by a(cp).

4 Concluding Remarks

The aim of this section is to illustrsate on the simplest example how the above technique
can be applied to the investigation of asymptotic solutions to nonstationary equations. For

simplicity we carry out our considerations for tbe Cauchy problem for the wave equation

a2u
8t2 = L\u,

ult=o = uo(x), aa
u I = Ul (x)
t t=O

(38)

in the complex space Cn +1 witb coordinates (t, x) = (t, xl, ... , xn ). For simplicity we suppose
that the initial functions uo(x) and Ul(X) are resurgent functions of order k with one and
the same support (in particular, it is supposed that the singularity sets of the corresponding ,

functions Uo((, x) and U1 ((, x) coincide to each other). Suppose also that the functions Uj,
j = 0, 1 are homogeneous with respect to action (8) of the group C.:

for some powers CF;, j = 0, 1.

17



A remarkable property of representation (3) of aresurgent function is that this represen
tation commutes with the restriction operators. This means that for any submanifold X the

following relation takes place

(fu=l((fU),

where the operator l is defi~ed with relations (3) and (4) and ix is the restriction on X.
Hence, denoting by U((, x, t) the function corresponding to an unknown solution of (38) due
to representation (3), Olle comes to the relations

U((,x,t)lt=o = Uo((,x),

8U I-8((,x,t) = U1((,x).
t t=O

(39)

In the latter formula we used the fact that the homogenuity degree of the function U( (, x)
can be changed arbitrarily with the help of integration by parts (see formula (6) above).

Therefore, without loss of generality one can assume that the homogenuity degrees O"~ and

0"1 of the functions Uo and U1 respectively satisfy the relation 0"0 = 0"1 + 1.
Theorem 3 together with formulas (39) allow one to derive the Cauchy problem for the

function U((, x, t):

8
2
U((, X, t) _ L.\ U(( )

8t2 - x ,X, t ,

BUIUlt=o = Uo((,x), -8 = U1((,x)
t t=O

(40)

which is tbe family of Cauchy problems with variables (x, t) and the parameter (. The fact
that ( is included in this problem only as a parameter is purely accidental and is due to the
particular form of initial problem (38).

The existence of an analytic (in general, ramifying) solution to problem (40) can be
proved with the help of the elementary solution (see, for example, [6, 7]). The singularities
of the constructed solution lye on the characteristic conoid of the singularity set of the initial

data Uo((, x), U1((, x).
From tbe viewpoint of the theory developed in this paper it is important that the solution

U((, x, t) of problem (40) is a hon10geneous function of degree 0'0:

The easy pfoof of this fact is left to tbe reader.
Let us compute tbe form of asymptotic solution u(x, t) for concrete initial data of the

form

18



where S(x) is a homogeneous function of degree k and a(x) is a homogeneous function of

degree (j with respect to x. In this case one has

a(x)
Uo(x) = ( _ S(x)' U1((, x) = 0,

the homogeneous degree (jo of the function U( (, x) being equal to u - k.
As it can be easi ly seen, the solution U ((J x, t) of problem (40) will have the form

) ~ [ a~j)(x, t) ( ())~ (( - Sj(x, t))l (1) ()] ()
U((,x,t =~ (_Sj(x,t)+ln(-Sjx,t ~ I! .a/+lx,t, 41

where Sj(x, t) are two solutions of the Cauchy problem for the Hamilton-Jacobi equation

( Bfftjr= (~~r'
Sjlt=o = S(x),

corresponding to two components of the characteristic conoid of the singularity set ( = S(x)
of the function Uo((, x) and a}j) are solutions of the corresponding transport equations. Cer

tainly, representation (41) is valid in a neighbourhood of those poins where both components

of the characteristic conoid are regular manifolds. In the vicinity of the rest points the form

of singular parts of the function U( (, x, t) can be investigated with the help of the elementary

solution mentioned above.

Thus, in a neighbourhood of all nonfocal points (x, t) the asymptotic solutions u(x, t) to

problem (40) will have the form

U(X,t)=t [e-Sj("")~aV)(x,t)],

the functions Sj(x, t) being homogeneous functions of degree k with respect.to the variables

(x, t).
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